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Lay Summary

The leading cause of transplant loss is antibody-
mediated rejection (AMR). This is diagnosed by kidney
transplant biopsy according to strict diagnostic criteria,
but not all biopsies meet the diagnostic threshold, and
in these cases, transplant outcomes are worse than
those in biopsies without rejection. We have developed
and validated a gene expression model to predict AMR
on archived formalin-fixed paraffin embedded kidney
transplant biopsies and have applied this to help clas-
sify biopsies that do not meet the full criteria for AMR
diagnosis. This model can be used to identify biopsies
at a higher risk of graft loss.
The Banff Classification for Allograft Pathology includes
the use of gene expression in the diagnosis of antibody-
mediated rejection (AMR) of kidney transplants, but a
predictive set of genes for classifying biopsies with
‘incomplete’ phenotypes has not yet been studied. Here,
we developed and assessed a gene score that, when
applied to biopsies with features of AMR, would identify
cases with a higher risk of allograft loss. To do this, RNA
was extracted from a continuous retrospective cohort of
349 biopsies randomized 2:1 to include 220 biopsies in a
discovery cohort and 129 biopsies in a validation cohort.
The biopsies were divided into three groups: 31 that
fulfilled the 2019 Banff Criteria for active AMR, 50 with
histological features of AMR but not meeting the full
criteria (Suspicious-AMR), and 269 with no features of
active AMR (No-AMR). Gene expression analysis using the
770 gene Banff Human Organ Transplant NanoString
panel was carried out with LASSO Regression performed
to identify a parsimonious set of genes predictive of AMR.
We identified a nine gene score that was highly predictive
of active AMR (accuracy 0.92 in the validation cohort) and
was strongly correlated with histological features of AMR.
In biopsies suspicious for AMR, our gene score was
strongly associated with risk of allograft loss and
independently associated with allograft loss in
multivariable analysis. Thus, we show that a gene
expression signature in kidney allograft biopsy samples
can help classify biopsies with incomplete AMR
phenotypes into groups that correlate strongly with
histological features and outcomes.
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A ntibody-mediated rejection (AMR) is the leading
cause of late kidney transplant loss.1 This occurs when
donor-specific antibodies (DSAs) are generated that

bind to the endothelium, triggering transcriptomic and
phenotypic changes, activation of the complement cascade,
and inflammatory cell recruitment.

The standard of care for diagnosing kidney transplant
pathology is histological assessment of biopsies. The Banff
Classification of Allograft Pathology was developed to stan-
dardize and grade histological lesions in biopsies2 and re-
quires 3 elements to diagnose AMR: criterion 1: histological
features of AMR; criterion 2: evidence of the interaction
between DSA and the endothelium; and criterion 3: evidence
of DSA.3,4 However, histology has limitations: biopsies are
prone to sampling error, potentially leading to “false-nega-
tive” diagnoses; in addition, there is significant interobserver
variability with grading of histology.5,6 Biopsies with histo-
logical features of AMR, but without other criteria, have
incomplete phenotypes and cannot be diagnosed as AMR.
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The Banff classification was modified to include the use of
“thoroughly validated” transcripts in the biopsy that are
“associated with AMR” as a surrogate for either evidence of
DSA interaction (criterion 2) or in place of evidence for DSA
(criterion 3).3

There is no “gold standard” for diagnostic transcript
expression in biopsies. Discovery studies have consistently
identified groups of genes that are differentially expressed in
transplant biopsies with rejection pathologies7 and that bi-
opsies with indistinguishable histological features have
different transcript profiles that correlate with outcomes.8 In
biopsies with AMR, identification of “pathogenesis-based
transcripts,”9 such as endothelial-cell transcripts, DSA-specific
transcripts, and natural killer–associated transcripts, have
influenced our understanding of the pathophysiology10–12

and have been described in different platforms, such as
microarray,9–15 quantitative polymerase chain reaction,16,17

and NanoString.18,19

High-throughput gene expression analysis can be per-
formed on formalin-fixed paraffin-embedded (FFPE) biopsy
material leftover from routine histological diagnosis by using
multiplexed color-coded probe-based gene expression anal-
ysis with NanoString nCounter technology.18,20 NanoString
has a similar sensitivity to quantitative polymerase chain re-
action18,20 and microarray,21 both of which require a separate
core of biopsy tissue in an RNA preservative. Use of leftover
FFPE tissue for molecular analysis carries no additional risks
for patients and permits the use of archived samples for
investigation. As analysis is performed on the same tissue that
histological grading has been performed on, direct compari-
sons between histological features and transcript expression
can be performed. Studies show that NanoString has a strong
correlation between gene expression and histological features
on allograft biopsies than does quantitative polymerase chain
reaction.20

To enable the validation of comparable gene expression as-
says across multiple centers for potential clinical use, the Banff
Molecular Diagnostics Working Group identified a list of
validated transplant-related genes of interest from a literature
search of peer-reviewed microarray and NanoString publica-
tions on transplanted organs. In conjunction with NanoString,
they developed the Banff-Human Organ Transplant (B-HOT)
codeset of 758 transplant-related genes of interest and 12 in-
ternal reference genes22 (Supplementary Table S1).

The aims of this study were to (i) identify an AMR-
associated gene score derived from the B-HOT Panel by
comparing biopsies with and without AMR in a retrospective
cohort of kidney transplant biopsies and (ii) to test the
context of use for the gene score as defined in the most recent
Banff classification by reclassifying biopsies with incomplete
phenotypes for AMR.

METHODS
Study cohort
We assembled a continuous retrospective cohort of indication adult
kidney allograft biopsies performed at Imperial College between
Kidney International (2023) 104, 526–541
March 1, 2016 and December 31, 2017. Patients who were trans-
planted outside the United Kingdom or had no available tissue-
typing data were excluded.

Kidney allograft biopsies were obtained using an 18-G spring-
loaded biopsy needle under ultrasound guidance. Human samples
used in this project (R14094) were obtained from the Imperial
College Healthcare Tissue and Biobank, approved by Wales REC 3 to
release human material for research (22/WA/2836). Patients were
followed up until April 2022.

Histopathological features
Biopsies were classified according to the 2019 Banff criteria4 by using
histological and serological assessment but excluding the results of
gene expression analysis. Biopsies were divided into 3 groups on the
basis of the fulfilment of the Banff criteria for active/chronic active
AMR.

Biopsies were classified as “AMR” if they fulfilled all criteria for
active or chronic active AMR: criterion 1: histological evidence of
tissue injury; criterion 2: antibody interaction with the endothelium;
and criterion 3: evidence of circulating DSA, or C4d staining. Bi-
opsies that did not meet criterion 1 were defined as “No-AMR.”
Biopsies with C4d deposition without any other features of rejection
were included in the No-AMR group.

Cases that met criterion 1 for active or chronic active AMR only,
but no additional criteria, were categorized as suspicious for AMR
(“Susp-AMR”).

Histological evidence of tissue injury was defined as glomerulitis
(g) or peritubular capillaritis (ptc) $1 (in the absence of glomeru-
lonephritis for g and of borderline or T cell–mediated rejection
[BLTCMR or TCMR] or infection for ptc); evidence of intimal
arteritis (v)$1; and/or thrombotic microangiopathy (TMA) on light
microscopy in glomeruli or arterioles. Acute tubular injury on its
own was not considered a criterion for AMR. Chronic active AMR
required the presence of glomerular capillary double contours
(cg) $1a or peritubular capillary basement membrane multilayering
(>7 layers of capillary basement membrane multilayering in at least
1 peritubular capillary, plus $5 layers in at least 2 others on electron
microscopy). Electron microscopy was not performed on all biopsies
routinely.

DSA detection
DSAs were assessed using LABScreen mixed beads (One Lambda,
Inc.), and, if positive, the anti–human leukocyte antigen (HLA)
antibody specificity was identified using LABScreen single antigen
beads. Patients in whom an antibody was detected in $1 sample,
with a mean fluorescence intensity of >500, were considered
DSA-positive. Patients with detectable DSA within 3 months
prebiopsy or 1-month postbiopsy were classed as DSA-positive at
biopsy.

RNA extraction and quantification
Six consecutive 12 mm paraffin curls were cut from each FFPE block
using a Leica Microtome and placed into 1.5 ml RNase-free
Eppendorf tubes. Microtome blades were replaced between blocks
and equipment cleaned with RNaseZap (ThermoFisher). RNA was
extracted from paraffin curls using the Rneasy FFPE kit (Qiagen) and
deparaffinization solution (Qiagen), according to the manufacturer’s
instructions, and eluted in the minimum volume of RNase-free
water. RNA purity and concentration were measured using a
NanoDrop 2000c spectrophotometer (ThermoFisher).
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NanoString gene expression preprocessing
The B-HOT codeset22 was used to analyze gene expression in FFPE
biopsy samples using NanoString technology. The codeset com-
prises reporter and capture probes that hybridize to target se-
quences of RNA. One hundred nanograms of RNA from each
biopsy were added to the NanoString codeset in hybridization
buffer and incubated at 65 �C for 18 hours. Gene expression was
quantified using the nCounter SPRINT Analysis System (Nano-
String Technologies).

Initial quality control assessment was performed using the default
settings in nSolver 4.0 Analysis Software (NanoString Technologies).
Samples flagged for quality control were not included in normali-
zation. Raw gene counts were processed and normalized using the R
Bioconductor package NanoStringQCPro.23 Digital counts were
standardized using positive-control probes and normalized using the
geometric mean of 12 internal reference genes. Log2 normalized
counts were used for gene analyses. Relative log expression plots24 of
all the gene expression profiles in all biopsies were performed, after
normalization, to ensure that there was no unwanted variation be-
tween samples or batches (Supplementary Figure S1).

Statistical analysis
Statistical analysis was performed using R version 4.1.125 and
GraphPad Prism 9.0 (GraphPad Software).

Differential gene expression. We compared gene expression in
AMR with No-AMR biopsies using linear regression (lm function in
the stats package25). To account for multiple testing, P values were
adjusted with the Benjamini-Hochberg method and statistical sig-
nificance was defined as a false discovery rate threshold of <0.05.

Differential pathway expression. We used the gene set vari-
ation analysis method (GSVA R package)26 to identify pathways
that were differentially up- or downregulated in AMR and No-
AMR biopsies. Gene sets were defined using Hallmark pathways
(http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp). We
used the same modeling approach and significance thresholds as
at the gene level.
Figure 1 | Flow diagram of cohort selection. This figure shows the ste
biopsy per patient was selected. All biopsies were randomized into eith
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Supervised learning. For development and validation of an
AMR molecular classifier, the cohort was randomized 2:1 into a
discovery and a validation group. The expression of 770 genes in the
B-HOT Panel, in addition to age at biopsy, time from transplant to
biopsy, and sex as covariates, were used to train both a molecular
LASSO (Least Absolute Shrinkage and Selection Operator) and a
Random Forest classifier to discriminate AMR biopsies from No-
AMR biopsies using the glmnet27 and randomForest28 packages,
respectively, within the framework of the caret package.29 After
stratified splitting of the discovery cohort into training and testing
sets (73.5%:26.5%), we created 200 random data partitions and
trained the LASSO and Random Forest models using leave-one-
group-out cross-validation. For the Random Forest model, given
that as the “mtry” parameter increases, the model performance
metrics become better but the risk of model overfitting increases, we
kept “mtry” constant using the “rule of thumb”mtry ¼ sqrt(number
of predictors � 1). The LASSO model was tuned using the F1 metric
to address the class imbalance within our data, as there were fewer
cases with AMR than with No-AMR. To avoid overfitting, the most
parsimonious model with lambda within 1 SE of the optimal model
was selected. The molecular classifier was then validated in the
validation cohort (Supplementary Figure S2).
RESULTS
Cohort selection and RNA extraction
A total of 611 indication transplant biopsies performed at our
center were identified (Figure 1), of which 585 biopsies from
445 patients met the inclusion criteria. For patients with
multiple biopsies, only the first biopsy with histological fea-
tures of rejection (AMR, TCMR, or BLTCMR) or the first bi-
opsy chronologically (if there was no rejection) was included.

Sufficient RNA was isolated from 378 of 428 available FFPE
blocks. The mean RNA concentration was 48.64 ng/ml
(range, 7.2–225 ng/ml), and the mean 260/280 absorbance ratio
was 1.96 (range, 1.6–2.4). The NanoString B-HOT Panel
ps used in the selection of the biopsies used in this study. A single
er the discovery or the validation cohort.

Kidney International (2023) 104, 526–541
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Standard, which has synthetic targets for each of the test probes,
was run 5 times to test technical reproducibility; this showed a
good correlation (r ¼ 0.999). Four biological replicates were
included, which showed correlations of r ¼ 0.977 to 0.986.

After quality control and normalization, gene expression
analysis was available in 349 biopsies, of which 220 were
randomized to the discovery cohort and 129 to the validation
cohort.

Baseline characteristics
The relevant clinical characteristics of the entire cohort are
presented in Table 1. There were no statistically significant
differences between the discovery and validation cohorts.

Among the biopsies randomized to the discovery cohort,
168 (76%) had No-AMR, 32 (14%) were Susp-AMR, and 21
(9.5%) met the full criteria for active AMR. In the validation
cohort, 101 (78%) biopsies had No-AMR, 18 (14%) were
Susp-AMR, and 10 biopsies (7.8%) had AMR. AMR biopsies
in the validation cohort were taken earlier post-transplantation
than those in the discovery cohort (median 542 days vs. 2039
days; P ¼ 0.1), but this did not meet statistical significance.

There were no significant differences in the overall histo-
logical features between the discovery and validation cohorts
(Supplementary Table S2).

Histological characteristics
All biopsies were divided into 1 of 3 groups: AMR, No-AMR,
and Susp-AMR, the histological features of which are sum-
marized in Table 2.

The AMR group had significantly higher scores than did
the others for C4d deposition and g, ptc, v, and cg as well as
higher scores for interstitial inflammation and tubulitis. One
biopsy with TMA alone was included in the AMR group; this
case had C4d (fulfilling criteria 2 and 3) but was from an
ABO-incompatible recipient. Susp-AMR biopsies had higher
scores for g, ptc, and cg than did No-AMR biopsies. Scores for
chronic lesions other than cg (interstitial fibrosis [ci], tubular
atrophy [ct], and vascular fibrous intimal thickening [cv])
were not different between the groups, nor was the degree of
interstitial fibrosis and tubular atrophy.

Of the 50 Susp-AMR cases fulfilling criterion 1, 40 were
included because of a microvascular inflammation (MVI ¼
g þ ptc) score of >0; 8 because of TMA alone, and 2 because
of a v score of >1 alone. Four patients had detectable DSA at
biopsy, but none of these met criterion 2. Most cases, there-
fore, were DSA-negative.

Among No-AMR cases, 25 had BLTCMR and 26 had
TCMR (13 of these also had pyelonephritis or BK virus ne-
phropathy). Two biopsies had chronic (inactive) AMR,
without meeting criterion 2 or 3. Eighteen biopsies had C4d
deposition, of which 13 came from ABO-compatible donors.
Ten of 13 showed C4d deposition without evidence of rejec-
tion, 2 had TCMR only (with no DSA), and 1 biopsy was
DSA-positive, had MVI $2, but had concomitant TCMR and
glomerulonephritis, so neither the ptc nor the g score was
counted toward a histological diagnosis of AMR.
Kidney International (2023) 104, 526–541
Clinical features at the time of biopsy
Clinical features at the time of biopsy are summarized in
Table 3. Biopsies in the AMR group were taken at a later stage
post-transplantation (1097 days) than those in the No AMR
and Susp-AMR groups (641 and 621 days), but this was not
statistically significant. Most biopsies were performed to
investigate rising creatinine, but there were significantly more
biopsies performed for an elevated protein-creatinine ratio in
the AMR (16%) and Susp-AMR (22%) groups than in the
No-AMR (8.6%) group. In addition, more biopsies in the
AMR group were performed in the context of de novo DSA
(13%).

The median serum creatinine and estimated glomerular
filtration rate (as calculated using the Modification of Diet in
Renal Disease formula) were not significantly different be-
tween groups; however, there was heavier proteinuria in the
AMR and Susp-AMR groups than in the No-AMR group.

Most patients were maintained on tacrolimus mono-
therapy. The proportion of patients on either maintenance
antiproliferative agents or steroids before biopsy was higher in
the AMR group. Forty-eight percent of patients in the AMR
group had received prior augmented immunosuppression
compared with 19% in the No-AMR group and 26% in the
Susp-AMR group.

HLA-DSAs were detected in 77% patients in the AMR
group at the time of biopsy compared with 12% in the No-
AMR group and 8% in the Susp-AMR group; their charac-
teristics are provided in Table 4.

Differential gene expression analysis comparing AMR and No-
AMR
We performed differential gene expression analysis between
biopsies with AMR (AMR group) and those in the No-AMR
group in both the discovery and validation cohorts
(Supplementary Figure S3A and B); 391 genes were differ-
entially expressed in the discovery cohort (369 upregulated
and 22 downregulated) and 28 genes in the validation cohort.

The effect estimates in differential gene expression corre-
lated well between the discovery and validation cohorts (r ¼
0.622; P ¼ 0.0001), even though fewer genes in the validation
cohort met the significance threshold (5% false discovery
rate), suggesting that the smaller sample size in the latter
affected the statistical power to detect differential expression
(Supplementary Figure S4).

We used gene set variation analysis to explore differential
pathway expression between AMR and No-AMR biopsies in the
combined discovery and validation cohorts. In biopsies with
AMR, we identified expression of pathways associated with
allograft rejection, interferon-g and -a signaling, complement
activation, and inflammation (Supplementary Figure S5).

Selecting predictors for AMR
We next sought to develop a classifier to predict the diag-
nosis of AMR on the basis of biopsy gene expression. Many
genes associated with AMR in the B-HOT Panel share
common pathways with correlated expression. Thus, the
529



Table 1 | Baseline characteristics of transplant recipients in the discovery and validation cohorts

Characteristic Overall (N [ 349) Discovery (n [ 220) Validation (n [ 129) Pa

AMR group 0.8
AMR 31 (8.9) 21 (9.5) 10 (7.8)
No AMR 268 (77) 167 (76) 101 (78)
Susp-AMR 50 (14) 32 (15) 18 (14)

Age at transplant, yr 50.00 (37.00–57.00) 48.00 (36.75–55.25) 52.00 (38.00–57.00) 0.070
Sex 0.6

Female 139 (40) 90 (41) 49 (38)
Male 210 (60) 130 (59) 80 (62)

Ethnicity 0.9
African/Caribbean 62 (18) 38 (17) 24 (19)
Caucasian 140 (40) 92 (42) 48 (37)
Indian Asian 103 (30) 63 (29) 40 (31)
Other 44 (13) 27 (12) 17 (13)

Cause of kidney failure 0.3
APKD 34 (9.7) 17 (7.7) 17 (13)
Diabetes 71 (20) 44 (20) 27 (21)
GN 98 (28) 70 (32) 28 (22)
HTN 15 (4.3) 8 (3.6) 7 (5.4)
Other 27 (7.7) 15 (6.8) 12 (9.3)
Urological 23 (6.6) 13 (5.9) 10 (7.8)
Unknown 81 (23) 53 (24) 28 (22)

Transplant type 0.3
Deceased donor 204 (58) 123 (56) 81 (63)
Living donor 121 (35) 81 (37) 40 (31)
ABO-incompatible 10 (2.9) 5 (2.3) 5 (3.9)
Simultaneous pancreas-kidney 14 (4.0) 11 (5.0) 3 (2.3)

Graft function 0.5
Delayed 68 (22) 42 (21) 26 (24)
Immediate 234 (77) 153 (77) 81 (76)
Primary dysfunction 3 (1.0) 3 (1.5) 0 (0)
Not recorded 44 22 22

Induction immunosuppression 0.3
Basiliximab 17 (5.2) 13 (6.4) 4 (3.3)
Campath 292 (90) 183 (90) 109 (91)
Campath/rituximab 3 (0.9) 3 (1.5) 0 (0)
Daclizumab 8 (2.5) 4 (2.0) 4 (3.3)
Daclizumab/rituximab 3 (0.9) 1 (0.5) 2 (1.7)
Methylprednisolone 1 (0.3) 0 (0) 1 (0.8)
Not recorded 25 16 9

HLA-A MM 0.8
0 67 (19) 44 (20) 23 (18)
1 157 (46) 96 (44) 61 (48)
2 121 (35) 78 (36) 43 (34)
Unknown 4 2 2

HLA-B MM 0.6
0 49 (14) 34 (16) 15 (12)
1 211 (61) 131 (60) 80 (63)
2 85 (25) 53 (24) 32 (25)
Unknown 4 2 2

HLA-DR MM 0.7
0 120 (35) 79 (36) 41 (32)
1 141 (41) 89 (41) 52 (41)
2 84 (24) 50 (23) 34 (27)
Unknown 4 2 2

Total mismatch number 3 (2–4) 3 (2–4) 3 (2–4) 0.3
0 25 (7.2) 18 (8.3) 7 (5.5)
1 15 (4.3) 13 (6.0) 2 (1.6)
2 68 (20) 43 (20) 25 (20)
3 100 (29) 61 (28) 39 (31)
4 80 (23) 44 (20) 36 (28)
5 30 (8.7) 20 (9.2) 10 (7.9)
6 27 (7.8) 19 (8.7) 8 (6.3)
Unknown 4 2 2

Previous transplant (yes) 49 (14) 31 (14) 18 (14) >0.9

AMR, antibody-mediated rejection; APKD, autosomal dominant polycystic kidney disease; GN, glomerulonephritis; HLA, human leukocyte antigen; HTN, hypertension; MM,
HLA mismatch; Susp-AMR, suspicious for antibody-mediated rejection.
aPearson c2 test, Wilcoxon rank-sum test, and Fisher exact test.
Data are expressed as median (interquartile range) or n (%).
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Table 2 | Histological characteristics of biopsies in the AMR, No AMR, and Susp-AMR groups

AMR group

Variable Overall (N [ 349) AMR (n [ 31) No AMR (n [ 268) Susp-AMR (n [ 50) P (all groups)a P (AMR vs. Susp)a

DSA at biopsy <0.001 <0.001
Yes 58 (17) 24 (77) 30 (11) 4 (8.0)
No 282 (81) 7 (23) 229 (86) 46 (92)
Unknown 9 (2) 0 (0) 9 (3.0) 0 (0)

g score 1 (0–2) 0 (0–0) 1 (0–1) <0.001 0.061
0 294 (84) 8 (26) 263 (98) 23 (46)
1 37 (11) 12 (39) 4 (1.5) 21 (42)
2 14 (4.0) 8 (26) 1 (0.4) 5 (10)
3 4 (1.1) 3 (9.7) 0 (0) 1 (2.0)

ptc score 1 (1–2) 0 (0–0) 0 (0–2) <0.001 0.020
0 286 (82) 6 (19) 254 (95) 26 (52)
1 21 (6.0) 10 (32) 1 (0.4) 10 (20)
2 37 (11) 13 (42) 11 (4.1) 13 (26)
3 5 (1.4) 2 (6.5) 2 (0.7) 1 (2.0)

v score 0 (0–0) 0 (0–0) 0 (0–0) <0.001 0.74
0 330 (98) 26 (87) 260 (100) 44 (94)
1 3 (0.9) 2 (6.7) 0 (0) 1 (2.1)
2 2 (0.6) 1 (3.3) 0 (0) 1 (2.1)
3 2 (0.6) 1 (3.3) 0 (0) 1 (2.1)

C4d score 2 (0–3) 0 (0–0) 0 (0–0) <0.001 <0.001
0 288 (85) 12 (39) 230 (88) 46 (94)
1 16 (4.7) 2 (6.5) 12 (4.6) 3 (6)
2 15 (4.4) 6 (19) 8 (3.1) 0 (0)
3 21 (6.2) 11 (35) 10 (3.8) 0 (0)

cg score 0 (0–2) 0 (0–0) 0 (0–0.25) 0.11
0 305 (88) 14 (48) 254 (95) 37 (74)
1a 10 (2.9) 1 (3.4) 8 (3.0) 1 (2.0)
1b 14 (4.0) 4 (14) 5 (1.9) 5 (10)
2 2 (0.6) 2 (6.9) 0 (0) 0 (0)
3 12 (3.5) 6 (21) 1 (0.4) 5 (10)

ci score 1 (1–2) 1 (0–2) 1 (0.75–2) 0.32 0.54
0 111 (32) 6 (20) 93 (35) 12 (24)
1 122 (35) 15 (50) 90 (33) 17 (34)
2 80 (23) 6 (20) 58 (22) 16 (32)
3 36 (10) 3 (10 28 (10) 5 (10)

ct score 1 (1–2) 1 (1–2) 1 (1–2) 0.69 0.63
0 79 (23) 5 (17) 65 (24) 9 (18)
1 154 (44) 16 (53) 118 (44) 20 (40)
2 80 (23) 6 (20) 58 (22) 16 (32)
3 36 (10) 3 (10) 28 (10) 5 (10)

cv score 1 (0–2) 1 (1–2) 1 (1–2) 0.40 0.80
0 73 (22) 9 (30) 53 (20) 11 (23)
1 122 (36) 10 (33) 92 (35) 20 (43)
2 100 (30) 9 (30) 77 (30) 14 (30)
3 42 (12) 2 (6.7) 38 (15) 2 (4.3)

i score 1 (0–2) 0 (0–0) 0 (0–1) <0.001 0.12
0 260 (75) 14 (47) 212 (79) 34 (68)
1 48 (14) 5 (17) 34 (13) 9 (18)
2 17 (4.9) 5 (17) 8 (3.0) 4 (8.0)
3 23 (6.6) 6 (20) 14 (5.2) 3 (6.0)

t score 1 (0–2) 0 (0–1) 0 (0–1.25) 0.007 0.40
0 236 (68) 13 (43) 194 (72) 29 (58)
1 51 (15) 9 (30) 33 (12) 9 (18)
2 39 (11) 5 (17) 24 (9.0) 10 (20)
3 22 (6.3) 3 (10) 17 (6.3) 2 (4.0)

ti score 1 (1–3) 1 (0–1) 1 (0–2) 0.087
0 152 (44) 3 (10) 134 (50) 15 (30)
1 116 (33) 13 (43) 82 (30) 21 (42)
2 45 (13) 6 (20) 30 (11) 9 (18)
3 36 (10) 8 (27) 23 (8.6) 5 (10)

ah score 0 (0–2) 0 (0–2) 0.5 (0–2) 0.47 0.84
0 181 (52) 16 (53) 140 (52) 25 (50)
1 63 (18) 3 (10) 51 (19) 9 (18)
2 59 (17) 6 (20) 46 (17) 7 (14)

(Continued on following page)
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Table 2 | (Continued) Histological characteristics of biopsies in the AMR, No AMR, and Susp-AMR groups

AMR group

Variable Overall (N [ 349) AMR (n [ 31) No AMR (n [ 268) Susp-AMR (n [ 50) P (all groups)a P (AMR vs. Susp)a

3 43 (12) 5 (17) 30 (11) 8 (16)
8 1 (0.3) 0 (0) 0 (0) 1 (2.0)

TMA 13 (0.37) 1 (0.03)b 0 (0) 12 (24) <0.0001 0.0136
PTCML 11 (7.2) 3 (14) 5 (5.2) 3 (8.6) 0.24 0.66
IFTA (%) 15 (5–30) 15 (10–30) 15 (5–30) 20 (10–30) 0.21 0.38
Number of glomeruli 13 (8–18) 12 (8–18) 13 (8–17) 14 (8–18) 0.96 0.88
Number of obsolete glomeruli 1.00 (0.00–3.00) 1.00 (0.00–3.00) 1.00 (0.00–3.00) 1.00 (0.00–3.75) 0.76 0.91
Primary rejection diagnosisc

Active AMR 18 (5.2) 18 (58) 0 (0) 0 (0)
BLTCMR 33 (9.5) 0 (0) 26 (9.7) 7 (14)
C4d WER 10 (2.9) 0 (0) 10 (3.7) 0 (0)
Chronic (active) AMR 9 (2.6) 9 (29) 0 (0) 0 (0)
Chronic (inactive) AMR 6 (1.7) 0 (0) 3 (1.1) 3 (6.0)
Mixed 4 (1.1) 4 (13) 0 (0 0 (0)
No rejection 237 (68) 0 (0) 202 (75) 35 (70)
TCMR 32 (9.2) 0 (0) 27 (10) 5 (10)

ah, arteriolar hyalinosis; AMR, antibody-mediated rejection; BLTCMR, borderline or T cell–mediated rejection; C4d WER, C4d deposition without evidence of rejection; cg,
glomerular capillary double contours; ci, interstitial fibrosis; ct, tubular atrophy; cv, vascular fibrous intimal thickening; DSA, donor-specific antibody; g, glomerulitis; i, interstitial
inflammation; IFTA, interstitial fibrosis and tubular atrophy; ptc, peritubular capillaritis; PTCML, peritubular capillary basement membrane multilayering; Susp-AMR, suspicious
for antibody-mediated rejection; t, tubulitis; TCMR, T cell–mediated rejection; ti, total inflammation; TMA, thrombotic microangiopathy; v, intimal arteritis.
aFisher exact test and Kruskal-Wallis rank-sum test.
bOne biopsy with TMA alone was included in the validation cohort. It met criteria 2 and 3 of the Banff classification, but came from an ABO-incompatible donor.
cMorphological classification of rejection as defined by the most recent Banff classification, without the use of a molecular classifier as a surrogate for criterion 2 or 3 for the
diagnosis of AMR. Biopsies that fulfill features of both TCMR and AMR are labeled as mixed rejection. Biopsies that do not meet the Banff classification of AMR and have no
other morphological features that meet the diagnostic threshold for TCMR or BLTCMR, are defined as “No rejection.”
Data are expressed as median (interquartile range) or n (%).

c l i n i ca l i nves t iga t i on J Beadle et al.: NanoString assessment of antibody-mediated rejection
naive approach of selecting the most significant differentially
expressed genes will not necessarily provide the best pre-
dictive performance. We therefore performed supervised
learning with 2 different approaches: LASSO regression and
Table 3 | Clinical features at the time of biopsy in the AMR, No

Characteristic Overall (N [ 349) AMR

Time of biopsy, d 653 (127–2318) 1097
Indication for biopsy

Delayed graft function 23 (6.6) 0
Creatinine rise 307 (88) 28
Proteinuria 39 (11) 5
De novo DSA 15 (4.3) 4
Immunosuppression switch 4 (1.1) 0

Features at biopsy
Serum creatinine, mmol/l 186 (146–240) 195.00
MDRD eGFR, ml/min per 1.73 m2 33 (23–43) 33.00
Protein/creatinine ratio, mg/mmol 35 (<20–108.00) 100.00

Maintenance immunosuppression
Maintenance CNI 348 (100) 30
Maintenance antiproliferative 127 (36) 19
Maintenance steroid 83 (24) 15
Treatment of rejection before biopsy 78 (22) 15

Postbiopsy treatment
No change 225 (64) 7
Introduction of an antiproliferative agent 9
Introduction of steroid 4
Initiation of plasma exchange 8
Other postbiopsy treatmentb 4

AMR, antibody-mediated rejection; CNI, calcineurin inhibitor; DSA, donor-specific antibo
Disease; Susp-AMR, suspicious for antibody-mediated rejection.
aKruskal-Wallis rank-sum test, Fisher exact test, and Pearson c2 test.

bOther recorded treatments at biopsy include rituximab (1 patient in the AMR group, 5 p
(3 patients in the AMR group, all with mixed rejection, and 1 patient each in the No AMR a
Data are expressed as median (interquartile range) or n (%).
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Random Forest. Comparison of the 2 approaches revealed
that LASSO outperformed Random Forest in terms of ac-
curacy (Supplementary Table S3). Moreover, LASSO has
additional advantages in relation to developing a classifier
AMR, and Susp-AMR groups

(n [ 31) No AMR (n [ 268) Susp-AMR (n [ 50) Pa

(301.5–3198.5) 638 (89–2215) 621 (238–1923.25) 0.2

(0) 22 (8.2) 1 (2.0) 0.11
(90) 236 (88) 43 (86) 0.8
(16) 23 (8.6) 11 (22) 0.016
(13) 8 (3.0) 3 (6.0) 0.031
(0) 3 (1.1) 1 (2.0) 0.7

(149.5–222.5) 190 (148.75, 242.25) 164 (123–243.5) 0.2
(26.00–44.00) 31 (23–41) 37 (23.25–51.5) 0.12
(<20–215.00) 28.00 (<20–80.50) 65.00 (<20–180.00) 0.004

(97) 268 (100) 50 (100) 0.089
(61) 92 (34) 16 (32) 0.010
(48) 56 (21) 12 (24) 0.003
(48) 50 (19) 13 (26) <0.001

<0.001
(23) 202 (75) 16 (32)
(29) 27 (10) 16 (32) <0.001
(13) 12 (4) 8 (16) 0.009
(26) 8 (3) 3 (6) <0.001
(13) 7 (3) 3 (6) 0.016

dy; eGFR, estimated glomerular filtration rate; MDRD, Modification of Diet in Renal

atients in the No AMR group, 2 patients in Susp-AMR group), anti-thymocyte globulin
nd Susp-AMR groups, respectively), and alemtuzumab (1 patient in the No AMR group).
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Table 4 | DSA status at biopsy

Characteristic AMR (n [ 31) No AMR (n [ 268) Susp-AMR (n [ 50) Pa

DSA subtype >0.9
De novo DSA 22 (81) 35 (80) 6 (86)
Preformed DSA 5 (19) 9 (20) 1 (14)
No DSA 4 224 43

DSA history
DSA at the time of biopsy 24 (77) 30 (12) 4 (8.0) <0.001
Historical DSA onlyb 3 (9.7) 13 (4.9) 3 (6.0) 0.4

DSA class 0.8
I 8 (30) 16 (37) 2 (29)
II 14 (52) 22 (51) 5 (71)
I/II 5 (19) 5 (12) 0 (0)

Immunodominant DSA class 0.8
I 9 (35) 17 (40) 2 (29)
II 17 (65) 26 (60) 5 (71)

Immunodominant DSA specificity 0.9
HLA-A 5 (21) 4 (13) 1 (25)
HLA-B 2 (8.3) 3 (10) 1 (25)
HLA-C 0 (0) 3 (10) 0 (0)
HLA-DP 2 (8.3) 3 (10) 0 (0)
HLA-DQ 13 (54) 15 (50) 2 (50)
HLA-DR 2 (8.3) 2 (6.7) 0 (0)

Immunodominant DSA mean fluorescence intensity 9150 (4825–12,825) 2700 (1350–5250) 1400 (1250–3350) <0.001

AMR, antibody-mediated rejection; DSA, donor-specific antibody; HLA, human leukocyte antigen; Susp-AMR, suspicious for antibody-mediated rejection.
aFisher exact test, Pearson c2 test, and Kruskal-Wallis rank-sum test.
bPreviously detected DSA no longer detectable at the time of biopsy.
Data are expressed as median (interquartile range) or n (%).
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that might ultimately be translated into a clinical tool.
LASSO enforces model sparsity, leading to a relatively small
number of predictors and, in the case of correlated pre-
dictors, will only select 1, thus avoiding redundancy.

In our training set, age at biopsy, recipient sex, and time
from transplant to biopsy were included as covariates, but
none of these were selected by the LASSO algorithm for in-
clusion in the final predictive model.

LASSO regression in the discovery cohort selected 9 genes as
predictors of diagnosis of AMR (PLA1A, PTPN6, RPS6,
MAPK3, CXCL11, HLA-DQB1, IFNGR1, PECAM1, and EMP3;
Figure 2a). All genes but RPS6 were significantly (5% false
discovery rate) upregulated in the differential gene expression
Figure 2 | Generation and performance of the predictive model. (a)
Least Absolute Shrinkage and Selection Operator regression, organized
matrix of the predictions made by the proposed model when tested in t
the Banff Classification of Allograft Pathology.
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analysis of AMR versus No-AMR biopsies (Supplementary
Figure S6). We chose a stringent AMR cutoff to minimize the
misclassification ofNo-AMR biopsies and then tested themodel
in our independent validation cohort. The model (Figure 2b)
had an accuracy of 92% (range, 0.85–0.96), a specificity of 0.98,
and a sensitivity of 0.3 in the validation cohort.

Histological associations of transcriptomic predictors
The correlation between individual genes and histological
features on biopsy is described in Supplementary Table S4.
Across the entire cohort, the model-derived score correlated
with histological features of AMR, including ptc (r ¼ 0.59;
P < 0.0001), g (r ¼ 0.59; P < 0.0001), cg (r ¼ 0.35; P <
Genes identified as predictors of antibody-mediated rejection from
by regression coefficient (x axis) in descending order. (b) Confusion
he validation cohort. References classes were classified according to
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Figure 3 | Correlation matrix (Pearson r) between the antibody-mediated rejection molecular classifier score and the grade of
histological lesions on biopsy. Results are ordered by k-means clustering. Numbers represent Pearson r coefficients. Squares are colored by
strength and direction of the correlation. Where the correlation does not meet significance, squares are left blank. ah, arteriolar hyalinosis; Bx,
kidney allograft biopsy; cg, glomerular capillary double contours; ci, interstitial fibrosis; ct, tubular atrophy; cv, vascular fibrous intimal
thickening; DSA, donor-specific antibody; g, glomerulitis; i, interstitial inflammation; IFTA%, degree of interstitial fibrosis and tubular atrophy;
ptc, peritubular capillaritis; t, tubulitis; ti, total inflammation; v, intimal arteritis.
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0.0001), and C4d (r ¼ 0.22; P < 0.0001; Figure 3). There was
a correlation with other features of inflammation—tubulitis
(r ¼ 0.18; P ¼ 0.003) and interstitial inflammation (r ¼ 0.31;
P < 0.0001)—but clustering demonstrated that the gene score
associated more closely with AMR lesions than with TCMR
lesions or inflammation. The AMR gene score was higher in
biopsies with histological features of AMR than in those
without (P < 0.00001; Figure 4); gene scores increased with
increasing MVI. The AMR score was significantly different in
biopsies with different phenotypes of rejection (Figure 5),
compared with AMR.

AMR prediction for suspicious cases
Fifty biopsies in the Susp-AMR group were assessed using a
model consisting of the 9 predictor genes identified by LASSO
to extract the probability of AMR. Using this approach, 6
biopsies were reclassified as “AMR” and 44 biopsies were
reclassified as “No-AMR.”

The differences between the biopsies are outlined in
Table 5. There were no significant differences between the
biopsies in terms of sensitization, previously treated episodes
of rejection, or maintenance immunosuppression. Those bi-
opsies with a high AMR probability had a lower median
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estimated glomerular filtration rate (15.5 ml/min per 1.73
m2) than did low-probability biopsies (38.5 ml/min per 1.73
m2; P ¼ 0.045), but there were no differences in proteinuria
or the presence of detectable HLA-DSA.

High-probability biopsies had significantly higher ptc
scores (P ¼ 0.002), contributing to a higher median MVI
score (P ¼ 0.01), and higher cg scores (P ¼ 0.04) than
did low-probability biopsies. There were no significant
differences in other histological features of AMR. Simi-
larly, no differences were identified in i and t scores, in
chronic histological features (ct, ci, and cv scores), or in
the overall degree of interstitial fibrosis and tubular at-
rophy (P > 0.9). Most cases predicted to be at a low risk
of AMR (32 of 44) had MVI scores of 0 or 1. Ten low-
probability cases had isolated TMA or isolated v, 22 had
MVI scores of 1 (1 had both TMA and g), and 12 had
MVI scores of $2. In the group of 6 with a high AMR
probability, there were 3 biopsies with MVI scores of 1, 1
had ptc alone, and the other 2 had concurrent glomer-
ulonephritis or BLTCMR, so 1 component of the MVI
score was not counted. The other 3 had MVI scores
of $2; 1 of these also had TMA, and 1 also had v. There
were no statistical differences in AMR score in patients
Kidney International (2023) 104, 526–541



Figure 4 | Antibody-mediated rejection (AMR) prediction score in biopsies with histological features of AMR. (a) AMR score in
biopsies with glomerulitis (g) graded from 0 to 3. (b) AMR score in biopsies with (ptc score >0) and without (ptc score 0) peritubular
capillaritis (ptc). (c) AMR score in biopsies with C4d staining graded from 0 to 3. (d) AMR gene score with chronic glomerulopathy (cg)
graded from 0 to 3. Biopsies with cg noted on electron microscopy alone (cg 1a) were included with cg 0 biopsies. There were only 2
biopsies with cg 2 in this cohort. (e) AMR score in biopsies with microvascular inflammation (MVI ¼ g þ ptc) scores of 1 (P ¼ 0.0248)
or $2 (P < 0.0001) compared with those without MVI (MVI score 0). AMR scores between groups were compared using the t test. NS, not
significant. *P < 0.05, ***P < 0.001, ****P < 0.0001.
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with and without detectable HLA-DSA at the time of
biopsy nor was MVI score alone responsible for an
elevated AMR score (Figure 6a and b).

Those biopsies with a high AMR probability had signifi-
cantly worse allograft outcomes (Figure 7). All patients with
Figure 5 | Box plots comparing antibody-mediated rejection (AMR)
P values for the scores in each group compared to biopsies with activ
[NS], P ¼ 0.977); AMR versus chronic (inactive) AMR (**P ¼ 0.0013); AM
***P < 0.0001); T cell–mediated rejection (TCMR; ****P < 0.0001), border
rejection (****P < 0.0001). On each box, the central mark indicates the m
and 75th percentiles. The whiskers extend to the most extreme data p
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high-probability biopsies had allograft failure within 5 years of
biopsy. The AMR molecular prediction score correlated
strongly with the risk of graft loss (c2 ¼ 5.7242; P ¼ 0.0167)
overall and was independently associated with allograft loss in
multivariable analysis (Supplementary Table S6).
probability scores across Banff diagnostic groups. The adjusted
e AMR are shown: AMR versus mixed rejection (not significant
R versus C4d deposition without evidence of rejection (C4d WER;
line or T cell–mediated rejection (BLTCMR; ****P < 0.0001), and no
edian, and the bottom and top edges of the box indicate the 25th
oints not considered outliers in the Tukey method.
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Table 5 | Comparison of Susp-AMR biopsies divided according to the AMR molecular classifier

Characteristic AMR not predicted (n [ 44) AMR predicted (n [ 6) Pa

Allograft loss 17 (39) 6 (100) 0.006
Age at biopsy, yr 53 (44–61) 57.5 (53.75–62) 0.2

Sex (male) 18 (41) 3 (50) 0.7
Time from transplant to biopsy, d 703 (248.50–2095.75) 328.5 (157–807.5) 0.12

Transplant type 0.6
Deceased donor 25 (57) 5 (83)
Live donor 16 (36) 1 (17)
SPK 3 (6.8) 0 (0)

Sensitization
Total mismatch number (HLA-A, -B, -DR) 2.9 2 0.4
Previous transplant (yes) 3 (6.8) 1 (17) 0.4

Graft function at biopsy
Creatinine, mmol/l 314.5 (75–818) 145.5 (76–677)
eGFR, ml/min per 1.73 m2 38.5 (25.5–49) 15.5 (12.75–22) 0.045
Proteinuria (uPCR) 47 (20–185) 101.50 (82.25–116.25) 0.5

Treatment
Prior treatment of rejection (yes) 11 (25) 2 (33) 0.6
Calcineurin inhibitor 44 (100) 6 (100)
Antiproliferative 16 (36) 1 (17) 0.6
Steroid 11 (25) 1 (17) >0.9
Change in treatment after biopsy? (yes) 32 (73) 5 (83) >0.9

Histology
DSA (yes) 3 (6.8) 1 (16.7) 0.4
C4d score 0 (0–0) 0 (0–0.25) 0.3
g score 1 (0–1) 0.5 (0–2.25) 0.10
ptc score 0 (0–1.75) 1.5 (1–2.25) 0.002
MVI score 1 (1–2) 1.5 (1–3.5) 0.01
v score 0 (0–0) 0 (0–1.5) 0.3
i score 0 (0–1) 0 (0–1.5) 0.5
t score 0 (0–2) 0 (0–1) 0.5
ci score 1 (0.25–2) 1 (0.75–2.25) 0.6
ct score 1 (1–2) 1 (1–2.25) 0.3
cv score 1 (1–2) 1 (0–2.5) 0.2
cg score 0 (0–0.5) 0.5 (0–3) 0.04
ah score 0.5 (0–2) 1.5 (0–3) 0.2
ti score 1 (0–1.75) 1.5 (0.75–3) 0.3
IFTA (%) 20 (8.75–30) 20 (10–25) >0.9

AMR histological featuresb

MVI $ 2 12 (27) 3 (50) 0.346
MVI ¼ 1 22 (50) 3 (50) >0.9
MVI ¼ 0 10 (23) 0 (0) 0.327
Thrombotic microangiopathy 9 (1 with g ¼ 1) 1 (with ptc ¼ 2) >0.9
v lesion 2 (with mvi ¼ 0) 1 (with g ¼ 2, ptc ¼ 3) 0.378

ah, arteriolar hyalinosis; AMR, antibody-mediated rejection; cg, glomerular capillary double contours; ci, interstitial fibrosis; ct, tubular atrophy; cv, vascular fibrous intimal
thickening; DSA, donor-specific antibody; eGFR, estimated glomerular filtration rate; g, glomerulitis; HLA, human leukocyte antigen; i, interstitial inflammation; IFTA, interstitial
fibrosis and tubular atrophy; MVI, microvascular inflammation; ptc, peritubular capillaritis; SPK, simultaneous pancreas-kidney transplant; Susp-AMR, suspicious for antibody-
mediated rejection; t, tubulitis, ti, total inflammation; uPCR, urine protein-creatinine ratio; v, intimal arteritis.
aFisher exact test and Wilcoxon rank-sum test.
bMVI is defined as the sum of g and ptc scores (in the absence of glomerulonephritis for g and of borderline or T cell–mediated rejection (BLTCMR or TCMR) or infection for
peritubular capillaritis). Where ptc exists in the presence of BLTCMR or TCMR or infection or g exists in the presence of glomerulonephritis or BL/TCMR, these scores are not
counted toward either histological evidence of AMR (criterion 1) or included in the sum g þ ptc ¼ MVI.
Data are expressed as median (interquartile range) or n (%).
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AMR score is associated with graft loss when using the 2013
Banff definition of suspicious

Under the 2013 Banff classification, “Suspicious for AMR”
existed as a separate category,30 requiring the presence of 2
of 3 Banff criteria. We assessed whether the AMR gene
scores in Susp-AMR biopsies fulfilling 2 of 3 Banff criteria
had significantly different AMR scores than did those that
fulfilled only criterion 1. There was no significant differ-
ence in score between biopsies meeting the historical
(2013) definition of “suspicious” and those fulfilling
536
criterion 1 alone (Figure 6c). There was no significant
difference between HLA-DSA–positive and –negative bi-
opsies in the Susp-AMR group. We subsequently reclassi-
fied all biopsies in the cohort according to the 2013 Banff
classification. Thirty biopsies met the historical definition
of “suspicious.” In this subset, 7 of 30 had a high AMR
probability, and the outcome in these biopsies was signif-
icantly (P ¼ 0.003) worse than those in equivalent biopsies
with a lower predicted probability of AMR (Supplementary
Figure S7).
Kidney International (2023) 104, 526–541



Figure 6 | In biopsies with incomplete histological features of antibody-mediated rejection (AMR) (suspicious for AMR [Susp-AMR]),
gene score is not significantly different between biopsies with and without the addition of Banff criteria 2 and 3. (a) There was no
significant difference in AMR score in Susp-AMR biopsies with varying degrees of microvascular inflammation. (b) There was no significant
(P ¼ 0.1026) difference in AMR gene score between anti–human leukocyte antigen–donor-specific antibody (HLA-DSA)-positive and
-negative biopsies within the Susp-AMR group. (c) Gene score in Susp-AMR biopsies is not significantly different between biopsies that have
histological features (criterion 1) of AMR alone or criterion 1 with either a microvascular inflammation (MVI score of $2 or positive DSA at the
time of biopsy (the historical 2013 Banff definition of “suspicious for AMR”). NS, not significant.
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AMR prediction correlates with allograft loss
To simulate the clinical use of histological features of AMR
(H), the detection of circulating DSA or C4d (D), and the
addition of the molecular classifier score (G) on allograft loss
across all biopsies in the retrospective cohort, we generated
logistic regression models including combinations of these
variables (Figure 8), as described previously.16,31 The full D þ
H þ G model had a larger area under the receiver operating
characteristic curve (0.628; range, 0.563–0.695) than the
combination of DSA and histology (0.611; range, 0.544–
0.668) or histology alone (0.586; range, 0.534–0.638). Net
Figure 7 | Kaplan-Meier survival curve of time for biopsy to
death-censored allograft failure in “suspicious for antibody-
mediated rejection (AMR)” biopsies. Allograft loss was seen in 6 of
6 biopsies (100%) with a high probability of AMR (pink line) and in
17 of 44 biopsies (39%) with a low probability of AMR (blue line).
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reclassification indices demonstrated improved reclassifica-
tion of risk in the full model as compared with histology
alone (net reclassification index 0.368 [range, 0.153–0.584];
P ¼ 0.0008) and the combination of DSA and histology (net
reclassification index 0.286; P ¼ 0.01).

DISCUSSION
This is the first study to develop and apply an AMR-
associated gene score using the B-HOT Panel on FFPE
samples. Using an unselected retrospective cohort of trans-
plant biopsies to minimize the sample bias, we developed a
parsimonious 9-gene panel and demonstrated that it effec-
tively identifies cases with worse outcomes in biopsies with
features suspicious of AMR. This work therefore confirms
the proposed application of molecular diagnosis as defined
in the Banff classification. Our classifier is highly specific at
ruling out AMR in biopsies with incomplete phenotypes. It
performed less well at predicting AMR in our smaller vali-
dation cohort, which comprised only 10 cases of AMR,
including 1 from an ABO-incompatible donor with TMA
alone. However, the accuracy of our molecular classifier in
the validation cohort (0.918) compares favorably with the
accuracy seen in a microarray AMR classifier (0.85)13 and a
3-gene AMR classifier identified in nonhuman primates
(0.881).32

AMR has a heterogeneous histological appearance,
including variable activity and chronicity relating to multiple
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Figure 8 | Prediction of death-censored graft failure (n[ 349). Receiver operating characteristic curve analysis of the prediction of death-
censored allograft failure revealed an area under the curve (AUC) of 0.558 for the presence of donor-specific antibody (DSA) or C4d alone,
0.586 for the presence of histological features of antibody-mediated rejection (AMR) alone, 0.608 for the combination of histological and
serological features of AMR, 0.611 for the addition of the AMR molecular classifier to histology, and 0.632 for the combination of serological,
histological, and molecular features in predicting allograft loss.
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biopsy features.3,4,33 Within the most recent versions of the
Banff classification, a subset of biopsies that were previously
referred to as Susp-AMR, including some with MVI but
without C4d or detectable DSA, were reclassified as No-
AMR.33 Biopsies with an incomplete AMR phenotype
represent a diagnostic quandary. In series that include pro-
tocol biopsies, biopsies with an incomplete phenotype for
AMR have inferior outcomes to patients without rejection but
with a more indolent disease course than do histologically
similar patients with detectable circulating DSA.15,34 Other
studies of indication biopsies have shown similarly poor
outcomes in biopsies with MVI from patients with and
without DSA.35,36 Studies with the molecular microscope
(MMDx, Kashi Clinical Laboratories) showed no difference in
gene expression profiles of biopsies with MVI, regardless of
the presence of DSA.36 Our research complements these
studies by showing that in a group of biopsies with incom-
plete features of AMR, some have a higher molecular prob-
ability of AMR, whether they had only histological features
(criterion 1) alone or met the historical 2013 Banff definition
of “suspicious” (with 2 of 3 Banff criteria for AMR). Our
classifier correlated strongly with histological features of AMR
(ptc, g, v, cg, and C4d), which reflects findings by other
groups using microarray8,9,13 and NanoString in transplant
biopsies,18,37 and we see significant differences in gene score
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in biopsies with varying levels of MVI. In combination with
the findings of other groups, our results confirm that AMR
gene scores correlate more with MVI scores than with DSA.

However, MVI is not the sole determinant of elevation of
our AMR gene score. It is impossible to tell at this stage why
some biopsies with MVI show increased expression of our
AMR gene score and inferior outcome and others not; there
may be a variety of causal and treatment-related factors that
influence this.

Our results show that the group we defined as Susp-
AMR contains a majority of cases that do not align with
HLA-DSA–positive AMR (44 of 50) and a minority that
do. Only 8% of the Susp-AMR cases had HLA-DSA; the
etiology of the other cases may be diverse: related to non–
HLA-DSA, to missing self,38,39 or other causes of TMA or
v lesions. One of the 6 reclassified was HLA-DSA–positive
and likely represents “subdiagnostic threshold” AMR. Five
of the 6 reclassified were HLA-DSA–negative and may be
related to anti–HLA-DSA undetectable with our current
methods. Our Susp-AMR group included both cases with
MVI and other histological features of AMR, namely,
TMA and v. The majority (35 of 50) of Susp-AMR cases
had MVI scores of 0 or 1, and these were more likely to
be classified as low-probability AMR. In the Susp-AMR
group, there was no difference in scores between DSA-
Kidney International (2023) 104, 526–541
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positive and DSA-negative biopsies, regardless of the his-
tological lesions.

Although this is the first study using NanoString in the
context of use defined by the current Banff classification, we
previously used a 10-gene score using quantitative polymerase
chain reaction to classify biopsies with features suspicious of
AMR into high- and low-risk groups for allograft loss.16 The
genes in this former 10-gene score were selected from the
literature as the most reliably increased transcripts described
by others in AMR. When “top transcripts” are selected, these
may belong to the same biological pathways and be strongly
coexpressed, offering no additive predictive value to a model.
In the present study, we used LASSO regression to generate a
sparse predictive model, a more robust approach for gener-
ating a predictive score. LASSO selects 1 feature from multiple
correlated features to provide a list of genes that convey
orthogonal information. This explains why the gene sets
derived in our 2 studies only partially overlap (for PLA1A,
CXCL11, and PECAM1). NanoString analysis on FFPE sam-
ples has the added advantage of enabling direct comparisons
between histological features and transcript expression in the
same tissue.18,37

Although developed for classification of biopsies, our score
correlates strongly with the risk of allograft loss in biopsies with
incomplete AMR. The addition of our molecular classifier to
the standard histological and serological diagnosis of AMR
improved the prediction of allograft loss in all biopsies in our
cohort.

This is the largest cohort of transplant biopsies in which
B-HOT NanoString analysis has been reported to date.
Nevertheless, AMR represents a relatively rare diagnosis
(<10% of biopsies in our cohort). Relatively small numbers
affect the power to detect significant differences in genes
between groups, while class imbalance may mean models
are more accurate at predicting the dominant class—bi-
opsies without AMR. We compared LASSO regression with
Random Forest and found that within our training sets,
LASSO outperformed Random Forest. We did not prefilter
our gene expression data before LASSO regression, as we
did not want to exclude genes that, even though not
significantly differentially expressed, could retain strong
discriminatory potential. The genes identified by LASSO
have been described in other studies of transplant biopsies.
PLA1A and CXCL11, interferon-inducible endothelial tran-
scripts, have been well described as being specific for
AMR.12,13,16–18,40 PTPN6 is a regulator of STAT4 and has
been associated with allograft loss after transplant rejec-
tion.41 PECAM1, a cellular adhesion molecule, is upregu-
lated in AMR.11 EMP3 and HLA-DQB1 are both markers
in the cell-extracellular matrix pathways that are upregu-
lated in chronic AMR.40 RPS6, a mammalian target of
rapamycin pathway–associated protein kinase gene, was the
only gene among our predictors that was not significantly
differentially expressed between AMR and No-AMR.
Studies of chronic AMR in primates have shown only a
variable association between RPS6 and chronic AMR
Kidney International (2023) 104, 526–541
stages.42,43 The role of RPS6 in the mammalian target of
rapamycin pathway has been extensively described in heart
and lung allografts with AMR44,45 and kidney transplants
where it was shown to be strongly associated with the
presence of anti–HLA-DSA and poor allograft survival.46

Our model suggests that RPS6 may help discriminate
some biopsies with AMR within this cohort, providing
further evidence that the mammalian target of rapamycin
pathway may be important in a subset of AMR.44–46

Although the unselected cohort represents a “real-world”
approach to biopsies, there are limitations. This is a single-
center study, and although it is the largest published
cohort of NanoString analysis of transplant biopsies to date,
there may be center-specific differences in patient de-
mographics or immunosuppression that limit its generaliz-
ability to other transplant centers. Patients in our cohort
received a wide range of treatments both before and after
their index biopsies, which may have influenced both their
gene expression profiles at the time of biopsy and subse-
quent allograft outcomes. We selected allograft failure as a
clinically relevant “hard” outcome measure, but this can be
influenced by factors other than AMR; we acknowledge that
an improvement in prognostic capability is not the same as
diagnostic accuracy and prospective evaluation of the utility
of a molecular score compared with the current standard of
care alone will be necessary to assess diagnostic accuracy. To
investigate the reproducibility of our model and generaliz-
ability to patients in other centers, further external valida-
tion will be needed.

In summary, we have demonstrated that a 9-gene AMR
classifier applied to biopsies with incomplete AMR pheno-
types enables the identification of those with worse outcomes.
To validate an AMR gene score for clinical practice, the next
steps are as follows: external validation with other groups
using NanoString (work with the International Consortium
for Diagnostics & Outcomes in Transplantation; http://icdot.
org/) or other platforms and prospective investigation in
clinical trials of the added value in patient care.
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Supplementary Table S1. NanoString Banff Human Organ
Transplant (B-HOT) Panel genes.
Supplementary Table S2. Differences between the discovery and
validation cohorts.
Supplementary Table S3. Confusion matrices of Least Absolute
Shrinkage and Selection Operator (LASSO) and Random Forest
models in the testing, training, and validation sets.
Supplementary Table S4. Pearson correlation between Least
Absolute Shrinkage and Selection Operator (LASSO)–generated
predictors and histological lesions on biopsy.
Supplementary Table S5. Multivariable analysis of survival in
suspicious for antibody-mediated rejection (Susp-AMR) biopsies by
histological and clinical parameters at the time of biopsy.
Supplementary Table S6. Banff Human Organ Transplant Panel
gene annotations and KEGG pathway labels.

Supplementary Figure S1. Relative log expression (RLE) plots of
normalized data. RLE plots illustrating any unwanted variation or
batch effects. (A) Colored by cohort: discovery (D) and validation (V).
(B) Colored by diagnostic group: antibody-mediated rejection (AMR;
pink), No AMR (blue), or suspicious for AMR (Susp-AMR; yellow). (C)
Colored by Banff Human Organ Transplant (Banff-HOT) Panel codeset
batch (1–4).

Supplementary Figure S2. Model for the development of the
antibody-mediated rejection (AMR) gene score. Biopsies with
complete features of AMR (“AMR”) and without histological fea-
tures of AMR (“No-AMR”) were used to develop a molecular model
predictive of AMR. Step 1: A stratified split (73.5:26.5) of the dis-
covery cohort was performed to partition the data into training
and testing sets. Two models were fit on the training set: Least
Absolute Shrinkage and Selection Operator (LASSO) regression
and Random Forest (RF). Two hundred models in the training set
were performed using leave-one-group-out cross-validation to
tune the optimal lambda for LASSO. RF was performed on 200
models using leave-one-group-out cross-validation with “mtry”
kept constant [mtry ¼ sqrt(number of predictors � 1)]. The LASSO
and RF models were then tested in the testing set, and a confusion
matrix was generated for both. These parameters were then used
on the entire discovery cohort, and the coefficients of the model
were extracted to validate in the validation cohort. Step 2: LASSO
and RF, tested and tuned in the discovery cohort, were validated in
“AMR” and “No-AMR” biopsies in the validation cohort. Step 3: The
AMR prediction model was tested on suspicious for AMR (“Susp-
AMR”) biopsies, and AMR prediction scores were extracted for all
biopsies with incomplete AMR phenotypes. AUC, area under the
curve.

Supplementary Figure S3. Volcano plots showing the differential
gene expression between antibody-mediated rejection (AMR) and No
AMR biopsies, adjusted for 5% false discovery rate (FDR). (A) Dis-
covery cohort (AMR, n ¼ 21; No AMR, n ¼ 167): 391 genes were
significantly differentially expressed. (B) Validation cohort (AMR,
n ¼ 10; No AMR, n ¼ 101): 28 genes were significantly differentially
expressed (5% FDR).

Supplementary Figure S4. Correlation in differential gene
expression profiles in the discovery and validation cohorts. (A) Scatter
plot of differential gene expression estimates in the discovery and
validation cohorts, colored by 5% false discovery rate (FDR); 17 genes
were significantly differentially expressed by FDR in both cohorts. (B)
Scatter plot of differential gene expression estimates in the discovery
and validation cohorts, colored by P value. The differential expression
profiles of genes in antibody-mediated rejection (AMR) versus No-
AMR biopsies in both the discovery and validation cohorts correlate
540
significantly (rho ¼ 0.6215; P < 0.0001). Genes in pink were signifi-
cantly differentially expressed in AMR versus No AMR biopsies in both
the discovery and validation cohorts; genes in green were signifi-
cantly different in the discovery cohort only; genes in purple were
significantly different in the validation cohort only; and genes in blue
were not significantly different in AMR versus No-AMR biopsies in
either cohort.
Supplementary Figure S5. Gene set variation analysis (GSVA)
method has been used to explore differential pathway expression in
antibody-mediated rejection (AMR) and No AMR biopsies in the
combined discovery and validation cohorts. (A) Volcano plot illus-
trating the differential expression of pathways in AMR versus No AMR.
Upregulated pathways in AMR, such as interferon gamma response
and allograft rejection, are red and seen on the right. (B) Pathways
differentially expressed in AMR versus No AMR biopsies, ranked by
–log10(P-value significance scores).
Supplementary Figure S6. Expression of the selected predictors in
antibody-mediated rejection (AMR) versus No AMR biopsies in the
combined discovery and validation cohorts. PLA1A, PTPN6, MAPK3,
CXCL11, HLA-DQB1, IFNGR1, PECAM1, and EMP3 were all significantly
differentially expressed. The expression of RPS6 between AMR and No
AMR biopsies did not reach statistical significance.
Supplementary Figure S7. Kaplan-Meier survival curve of time for
biopsy to death-censored allograft failure in biopsies reclassified as
“Suspicious for antibody-mediated rejection (AMR)” under the 2013
Banff classification. Allograft loss was seen in 6 of 7 (85%) biopsies
with a high probability of AMR (pink line) and in 6 of 23 (26%) bi-
opsies with a low probability of AMR (blue line).
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