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Abstract 

Background  COVID-19 manifests with huge heterogeneity in susceptibility and severity outcomes. UK Black Asian 
and Minority Ethnic (BAME) groups have demonstrated disproportionate burdens. Some variability remains unex-
plained, suggesting potential genetic contribution. Polygenic Risk Scores (PRS) can determine genetic predisposition 
to disease based on Single Nucleotide Polymorphisms (SNPs) within the genome. COVID-19 PRS analyses within non-
European samples are extremely limited. We applied a multi-ethnic PRS to a UK-based cohort to understand genetic 
contribution to COVID-19 variability.

Methods  We constructed two PRS for susceptibility and severity outcomes based on leading risk-variants from the 
COVID-19 Host Genetics Initiative. Scores were applied to 447,382 participants from the UK-Biobank. Associations with 
COVID-19 outcomes were assessed using binary logistic regression and discriminative power was validated using 
incremental area under receiver operating curve (ΔAUC). Variance explained was compared between ethnic groups 
via incremental pseudo-R2 (ΔR2).

Results  Compared to those at low genetic risk, those at high risk had a significantly greater risk of severe COVID-19 
for White (odds ratio [OR] 1.57, 95% confidence interval [CI] 1.42–1.74), Asian (OR 2.88, 95% CI 1.63–5.09) and Black (OR 
1.98, 95% CI 1.11–3.53) ethnic groups. Severity PRS performed best within Asian (ΔAUC 0.9%, ΔR2 0.98%) and Black 
(ΔAUC 0.6%, ΔR2 0.61%) cohorts. For susceptibility, higher genetic risk was significantly associated with COVID-19 
infection risk for the White cohort (OR 1.31, 95% CI 1.26–1.36), but not for Black or Asian groups.

Conclusions  Significant associations between PRS and COVID-19 outcomes were elicited, establishing a genetic 
basis for variability in COVID-19. PRS showed utility in identifying high-risk individuals. The multi-ethnic approach 
allowed applicability of PRS to diverse populations, with the severity model performing well within Black and Asian 
cohorts. Further studies with larger sample sizes of non-White samples are required to increase statistical power and 
better assess impacts within BAME populations.
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Background
Coronavirus disease 2019 (COVID-19) is a highly infec-
tious disease caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). The virus has spread 
globally since its emergence in Wuhan, China in late 
2019, reaching the United Kingdom (UK) in January 2020 
[1]. The UK represents one of the most severely impacted 
countries in Europe. As of May 2022, the pandemic has 
amassed over 22.3 million cases in the UK alone; associ-
ated morbidity and mortality have inflicted health-related 
burdens of over 177,000 deaths and 860,000 hospital 
admissions [2]. Resulting strains on healthcare systems 
and social, economic, and political spheres have been 
profound [3]. As the UK emerges from the pandemic, 
a large body of public health research remains focused 
upon understanding COVID-19 and protecting the pop-
ulation from its future impacts.

An important and unusual manifestation of COVID-
19 is the observed heterogeneity in outcomes. Severity 
of phenotypic presentation ranges from asymptomatic 
to acute respiratory distress and death [4]. Individual dif-
ferences in susceptibility to COVID-19, defined as the 
probability of developing COVID-19 after SARS-CoV-2 
exposure, are also widely established [4, 5]. A compre-
hensive understanding of factors underpinning these 
patterns can inform population risk stratification and 
implementation of mitigatory measures to protect those 
most vulnerable [6]. Alongside external factors such as 
viral characteristics and efficacy of healthcare and gov-
ernmental responses, evidence has proven the role of 
host-associated factors such as older age, male sex, lower 
socioeconomic status and presence of common comor-
bidities including hypertension and diabetes in driving 
COVID-19 susceptibility and severity outcomes [7, 8]. 
However, it remains that the huge variance cannot solely 
be explained by these risk factors.

Furthermore, Black, Asian and minority ethnic 
(BAME) groups within the UK have suffered higher 
age-standardised diagnosis rates, hospitalisations, and 
as much as two-fold increases in mortality compared to 
counterparts of White ethnicity during the pandemic 
[9]. There has been widespread criticism and demand for 
policymakers to take further action in protecting minori-
ties bearing high risk burdens [10]. Association of BAME 
groups with various factors including greater deprivation 
index, lower vaccine uptake, high-risk frontline occupa-
tion, larger multigenerational households, and higher 
comorbidity burdens have helped in explaining eth-
nic discrepancies [11, 12]. However, it remains unclear 
whether genetic differences could also play a role in the 
increased risk of susceptibility and severity observed in 
BAME individuals [13]. In order to fully address the long-
standing health disparities exacerbated by the pandemic, 

it is imperative to achieve a more robust understanding 
of contributory causes [12].

Alongside ethnic differences, family clustering of 
severe cases and presentation of severe disease among 
young, healthy patients further supports the possibility of 
a complex genetic predisposition to adverse COVID-19 
outcomes [14]. As susceptibility and severity of infectious 
and immune-mediated disease can be strongly heritable, 
investigating host genetic determinants that may impact 
COVID-19 presentation is vital [15, 16]. Many recent 
genome-wide association studies (GWAS) are centred 
around identification of single nucleotide polymorphisms 
(SNPs) that influence complex disease presentation and 
pathology [17]. SNPs represent a single point mutation 
in which one DNA nucleotide is substituted for another; 
though the majority of variants are silent, others can 
modulate downstream gene expression and signalling, 
producing potential pathological impacts [18]. The added 
contributions of many SNPs with small effects can drive 
disease development and progression [17]. Individual 
genetic differences could therefore provide further expla-
nations regarding variability in the context of COVID-19.

The COVID-19 Host Genetics Initiative (HGI) is lead-
ing the global effort to meta-analyse results from many 
COVID-19 GWAS in order to identify important SNPs 
associated with infection, hospitalisation and death 
[19]. By comparing variant expression across millions 
of COVID-19 patients and healthy population controls, 
results have implicated different sets of variants in influ-
encing COVID-19 susceptibility and severity respec-
tively. Expression of certain SNPs confers increased risk 
whilst others produce protective effects [15]. COVID-19 
SNPs are associated with processes such as innate antivi-
ral defence signalling, mediation of inflammatory organ 
damage and cell-receptor upregulation; modulation of 
such pathways can alter infection and subsequent dis-
ease phenotype [15, 20]. In addition, studies have proven 
that variation in COVID-19 SNPs exists between ethnic 
groups; risk variants associated with the 3p21.31 locus, 
which confers a greater risk of respiratory failure from 
COVID-19, are carried disproportionately by individuals 
of South Asian descent, potentially correlating with high 
levels of severe COVID-19 within this group [21]. Other 
variant differences conferring additional risk have been 
reported within other ethnic groups, including those of 
African descent [22]. As such, genetic differences could 
contribute to ethnic disparities in outcomes.

SNPs typically produce modest disease associations 
when considered individually. However, summation of 
cumulative SNP effects can represent a greater propor-
tion of polygenic disease risk, and better explain popula-
tion variance in incidence and severity [23]. A Polygenic 
Risk Score (PRS) can be utilised to aggregate effects of 
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multiple SNPs into a singular score for pragmatic appli-
cation to individuals within a population [24]. Broadly, 
PRS is calculated by summing the number of risk SNPs 
carried by an individual, weighted by the estimated effect 
of each variant. SNPs and effect sizes associated with 
the disease of interest are extracted from a training base 
dataset, typically GWAS summary statistics, for incor-
poration into the PRS model; selected variants are then 
applied to individuals within a distinct target cohort.(25) 
PRS can therefore be a powerful tool for determining an 
individual’s genetic liability for developing a particular 
trait or disease [24, 25]. Scores are typically normally dis-
tributed within a population, with a higher score indicat-
ing a greater genetic risk [26].

PRS has been applied to many common polygenic 
pathologies including cardiovascular disease, psychiatric 
conditions, and cancer, with indication of potential popu-
lation health benefits [27–29]. Addition of PRS to tradi-
tional risk factor models enhances ability to effectively 
identify high-risk individuals. Clinical implementation 
of PRS could help to facilitate early detection, define life-
time risk trajectory, and deliver targeted interventions 
[30].

The possibility of developing and applying a PRS using 
COVID-19 variants has been explored by a small num-
ber of studies, with clear associations elicited between 
PRS and severe disease risk. However, PRS models in 
most instances have been applied to target cohorts con-
sisting only of European ancestry participants [31–33]. 
This prevents any assessment of applicability to other 
ethnic groups or contribution to disparities in outcomes. 
Though one recent study focusing on European ancestry 
samples did additionally apply a PRS of 6 SNPs to Afri-
can and South Asian groups, associations found with 
COVID-19 outcomes were limited, severely restricted 
by sample size, and largely non-significant [34]. Moreo-
ver, no current UK-based analysis has yet developed and 
evaluated a PRS model for COVID-19 susceptibility, as 
recent work has focused on severe disease.

This gap is reflective of a severe underrepresentation 
of diverse populations within PRS analyses, with very 
few studies applying PRS models to non-European tar-
get cohorts [35]. PRS performs best when base and target 
samples are ancestry-matched [25]; as there is a severe 
deficiency of GWAS data from non-European samples, 
target cohorts of European-descent are typically selected 
[35]. Generalisability of European-derived PRS to non-
European samples is limited due to genetic differences, 
leading to historically poor performance of PRS within 
diverse ancestries [36]. Such approaches are damaging 
and non-inclusive, with potential to exacerbate existing 
health disparities and prevent advances in genomics and 
personalised medicine from reaching minority ethnic 

groups [37]. Recent evidence supports the use of ‘multi-
ethnic’ PRS models in order to enhance applicability and 
predictive accuracy of PRS within diverse populations 
[35, 38, 39]. This methodology involves utilising train-
ing GWAS data that combines samples from multiple 
population sources across different ancestries, thereby 
producing significant improvements in PRS performance 
across diverse ethnicities [35].

Our study aimed to employ this multi-ethnic approach 
in order to better understand the role of genetics in 
contributing to COVID-19 susceptibility and severity 
outcomes across ethnic groups. To facilitate this, two 
separate PRS were developed: one for susceptibility and 
another for severity, and applied to a UK-based target 
cohort. Associations with COVID-19 were tested, and 
relative predictive performance and explained variance 
were compared across ethnic groups.

Methods
In accordance with existing recommendations [25], SNPs 
and associated beta-value effect sizes showing significant 
associations with COVID-19 susceptibility and sever-
ity outcomes were extracted from the COVID-19 Host 
Genetics Initiative (HGI) meta-analysis and applied to 
individual genotype data within the UK Biobank. PRSs 
for each participant were calculated by computing the 
sum of risk SNPs present weighted by effect size. Asso-
ciations, variance explained, and discriminative power 
were subsequently assessed through statistical analysis. 
An overview of the employed protocol is outlined in Sup-
plementary Material I.

Target data sample
The UK Biobank (UKBB) is a prospective popula-
tion-based cohort study, consisting of over 500,000 
participants aged between 40–69 years. Extensive socio-
demographic, lifestyle and health-related phenotypic 
data was collected via surveys and anthropometric meas-
urements across 22 UK assessment centres between 
2006 and 2010 [40]. Blood samples were collected, then 
extracted DNA was directly genotyped using the Affym-
etrix UK BiLEVE Axiom Array and UK Biobank Axiom 
Array. Imputation of genotypes was subsequently con-
ducted using the Haplotype Reference Consortium and 
UK10K haplotype resource, providing a total of around 
96 million testable variants [41]. The imputed genotype 
dataset was utilised for our PRS analysis.

All participants provided informed consent at recruit-
ment for long-term anonymised data storage and health-
record access [40]. UKBB holds ethical approval granted 
by the North West Multi-centre Research Ethics Com-
mittee [42] (https://​www.​ukbio​bank.​ac.​uk/​ethics).

https://www.ukbiobank.ac.uk/ethics
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Participants who withdrew from the study, were 
lost to follow-up or who died before January 31st 2020, 
the beginning of the UK COVID-19 pandemic, were 
excluded. Those with poor quality or missing genotype 
data were also removed. Remaining participants who met 
quality control standards were then stratified by ethnic 
group to facilitate subgroup analysis.

Ethnicity was self-reported at enrolment; all UKBB 
participants identified as one of six ethnic groups before 
specifying a more specific ethnic background [43]. The 
groups and corresponding backgrounds utilised for PRS 
analysis were White (British, Irish and any other White 
background), Asian/Asian British (Indian, Pakistani, 
Bangladeshi and any other Asian background) and Black/
Black British (Caribbean, African and any other Black 
background). Mixed, Chinese, and Other ethnic groups 
were excluded due to a low sample size and associated 
COVID-19 caseload (Fig. 1).

Selection of single nucleotide polymorphisms
The leading variants published from Release 6 (June 
2021) of the COVID-19 Host Genetics Initiative (HGI) 
meta-analysis were utilised for our PRS model, consist-
ing of updates to multi-ethnic meta-analysis results [44]. 

HGI meta-analysed GWAS summary statistics from 61 
studies across 24 countries, with an effective sample size 
over 2 million COVID-19 patients and controls [19]. Var-
iants were stratified by their apparent effects on suscepti-
bility or severity into datasets C2 (infected vs population) 
and B2 (hospitalised covid vs population). HGI published 
variants which produced the most significant associa-
tions; 9 SNPs associated with susceptibility and 17 with 
severity were employed for incorporation into the PRS. 
Selected SNPs and associated beta values are detailed 
within Supplementary Material II.

Establishing COVID‑19 outcomes
The UKBB data utilised for this study included COVID-
19 tests and deaths from the start of the pandemic until 
November 2021. Participants with any one or more of 
a) positive COVID-19 test result, b) hospitalisation with 
COVID-19, and/or c) death from COVID-19 were coded 
as having a positive susceptibility outcome. Those with 
one or more of b) hospitalisation with COVID-19 and/
or c) death from COVID-19 were coded as having a posi-
tive severity outcome. Participants lacking associated 
COVID-19 data were assumed to be negative for both 
outcomes.

Fig. 1  Shows a flow diagram of the included and excluded samples from the UK Biobank cohort. n indicates numbers of UK Biobank participants
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Outcomes for Biobank participants were ascertained 
using available dynamically linked electronic health 
record data. A positive test result was determined using 
real-time PCR COVID-19 diagnoses from Public Health 
England or Public Health Scotland, and inpatient diagno-
ses from hospital data. Hospitalisation with COVID-19 
was defined by documented ICU admissions obtained 
from hospital episode statistics. Death from COVID-
19 was defined by death register information showing 
a death up to 14  days after a positive SARS-CoV-2 test 
result, or where the underlying cause of death was stated 
as COVID-19 (ICD-10 codes U0.71 and U0.72) [45].

Quality control and PRS calculation
All utilised HGI variants had an imputation INFO score 
of > 0.6 and a minor allele frequency > 0.1% [19], and as 
such met recommended quality control standards [25]. 
These parameters were also applied to the target genomic 
UKBB data, as well as filtering for a Hardy–Weinberg 
equilibrium of 1 × 10–6 and removing SNPs and individu-
als with a high fraction of genotype missingness.

PLINK 1.90 software [46] was utilised for all geno-
type extraction and PRS calculation. All target genotype 
data was converted to PLINK-executable binary format. 
Selected risk SNPs (Supplementary Material II) for sus-
ceptibility and severity were applied to the target UKBB 
imputed genotype dataset, stratified by ethnic group. 
Corresponding beta-values and p-values from COVID 
HGI summary statistics for included SNPs were input-
ted in order to calculate a PRS for each individual in the 
UKBB cohort.

Selection of covariates
Covariates were selected for incorporation into the 
regression model as potential confounders based on 
established influences on susceptibility and severity out-
comes [47]. Age, sex, alcohol status, smoking status and 
average total household income were collected via sur-
veys at recruitment for all UKBB participants and subse-
quently categorised. Body mass index (BMI) in kg/m2 was 
calculated for all individuals from measured height and 
weight. Townsend deprivation index (TDI) represents a 
composite measure of socioeconomic status; the score 
for each participant was derived from collected data 
regarding home ownership, vehicle ownership, unem-
ployment, and household overcrowding [48]. Comor-
bidity was ascertained utilising ICD-10 codes from 
hospital records; coronary heart disease (CHD, ICD-10 
I121-I123) type 2 diabetes mellitus (T2DM, ICD-10 E11), 
hypertension (ICD-10 I10-I15) and respiratory disease 
(Chronic Obstructive Pulmonary Disease (COPD) and/
or asthma diagnosis, ICD-10 J41-J45) were added as con-
founders. Any previous diagnoses of these conditions 

from available linked hospital statistics up to 31st August 
2021 were counted as a positive outcome.

Univariate logistic regression of each covariate sepa-
rately against COVID-19 infection and severity out-
comes was undertaken; all associations were significant, 
and all covariates were incorporated into the final model 
as confounders. No collinearity was found between 
included variables. The first 10 principal genetic com-
ponents (PCs) of each participant were also included as 
covariates to adjust for population genetic structures and 
avoid bias, as per current recommendations [25, 26].

Statistical analysis and association testing
Baseline characteristics for participants within each eth-
nic group were calculated as numbers of cases, percent-
ages and means with standard deviations.

Once PRS was calculated, each ethnic group was sepa-
rately stratified into quintiles for susceptibility and sever-
ity PRS, then categorised into low genetic risk (quintile 1, 
bottom 20% of cohort), intermediate risk (quintiles 2–4, 
middle 60%) and high risk (quintile 5, top 20%) for each 
outcome. Binomial logistic regression of PRS risk catego-
ries against COVID-19 susceptibility and severity out-
comes was then conducted using SPSS v.27, fully adjusted 
for confounders. For each regression, odds ratios (ORs) 
and Wald’s test p-values were described. Nagelkerke 
pseudo-R2 was reported for regression models incorpo-
rating PRS and covariates, and for covariates alone. The 
incremental pseudo-R2 (ΔR2) was calculated as the differ-
ence between the two models, reported as the proportion 
of variance explained by PRS alone.

Discriminative power of models in identifying high-risk 
individuals was then assessed using receiver operating 
curve (ROC) analysis. Area under the receiver operating 
curve (AUC) was calculated for full models (consisting of 
covariates and PRS) and base models (covariates only). 
Increment in AUC (ΔAUC) was reported based on the 
difference between the two models, reported as the dis-
criminative or predictive power conferred by PRS.

One-way ANOVA tests were conducted to assess dif-
ferences between mean susceptibility and severity PRS 
between ethnic groups. As PRS demonstrated a normal 
distribution (Supplementary Material III) and showed 
non-homogeneity in variance between ethnic groups, a 
post-hoc Games-Howell multiple comparisons test was 
selected for subsequent pairwise analysis.

All analyses are reported according to existing guid-
ance [49].

Results
Descriptive characteristics of study participants
Table  1 shows participant demographics within each 
ethnic group. 96.4% of the overall cohort were of White 
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Table 1  Shows the demographic characteristics of UK Biobank participants stratified by ethnic group. n (%) refers to the number of 
cases showing the characteristic, followed by the number expressed as a percentage of the total number of participants within the 
ethnic group

Abbreviations: SD Standard deviation of mean, BMI Body mass index, COPD Chronic obstructive pulmonary disease
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ethnicity, 2.0% Asian and 1.6% Black. Incidence of 
COVID-19 infection was 4.6% higher within the Asian 
cohort and 3.1% higher within the Black cohort as com-
pared to the White cohort. Similarly, severe COVID-19 
incidence was 0.9% and 1.3% greater in Asian and Black 
groups respectively.

Ages were comparable across all ethnicities. The Asian 
group comprised a comparatively lower proportion of 
female participants (42.6%). The Black cohort repre-
sented the highest mean BMI (29.5) and the greatest 
proportion of current smokers (12.3%), while the White 
group had the greatest proportion of current alcohol con-
sumers (93.5%). Asian participants showed the greatest 
incidence of CHD, T2DM and COPD/Asthma. The Black 
group was associated with the lowest household income 
and greatest deprivation index.

Testing associations between PRS and incident COVID‑19 
outcomes
After within-ethnicity stratification of participants into 
PRS genetic risk categories was completed, binomial 
logistic regression was performed.

Table 2A shows the results from the regression of the 
fully adjusted PRS model against incident severe COVID-
19. A significant association between PRS and severe 
COVID-19 incidence was found for all ethnicities; over-
all p-values were 1.35 × 10–19, 1.33 × 10–3 and 2.36 × 10–2 
for the White, Asian, and Black cohorts respectively 
(p < 0.05). The White group demonstrated the greatest 
overall significance (p < 0.0001). Odds ratios (ORs) rela-
tive to the low genetic risk category were greatest within 
the Asian cohort (1.97-fold risk for intermediate, 2.88 for 
high) and Black cohorts (1.99 for intermediate, 1.98 for 
high) as compared to the White cohort (1.17 for interme-
diate, 1.57 for high). Associated 95% confidence intervals 
were universally largest within the Asian group, followed 
by Black and White cohorts. Pseudo-R2 for full models 
including PRS were 10.8%, 17.3% and 12.7% for White, 
Asian, and Black cohorts respectively. The Asian cohort 
showed the greatest ΔR2 between base and full mod-
els, with 0.98% of total variance in severity explained by 
PRS alone. PRS explained 0.61% and 0.20% of variance in 
Black and White cohorts respectively.

Table  2B shows results from the regression of sus-
ceptibility PRS category against COVID-19 infection 
cases, including the same confounders. A highly sig-
nificant overall association between PRS and COVID-
19 infection was shown for the White ethnic group 
(p = 8.69 × 10–44, < 0.0001). Associations for Asian and 
Black cohorts were non-significant (p > 0.05). Odds of 
COVID-19 infection relative to the low-risk category 
were increased for the White cohort (1.1-fold risk for 
intermediate, 1.31 for high). All ORs and ΔR2 were less 

than those demonstrated with severity PRS. Full model 
pseudo-R2 values including PRS were 3.0%, 4.9% and 
3.1%, demonstrating incremental increases of 0.19%, 
0.053% and 0.12% from the base model for White, Asian, 
and Black cohorts respectively.

Receiver Operating Curve (ROC) analysis
All analyses showed small improvements in area under 
the receiving operating curve (AUC) with addition of 
PRS to the base model containing covariates only, illus-
trating an improvement in ability to predict COVID-19 
susceptibility and severity across all ethnicities. Across all 
models, asymptotic p-value was < 0.0001, indicating a sta-
tistically significant ability to predict risk.

Figure  2A shows that for severity, PRS produced a 
0.9%, 0.6% and 0.2% improvement in AUC for the Asian, 
Black and White cohorts respectively. This demonstrates 
enhanced discriminative power of PRS within non-White 
cohorts.

For susceptibility, the greatest incremental AUC was 
demonstrated by the Black cohort, followed by White 
and Asian cohorts (Fig.  2B). All observed AUCs were 
smaller than those for severity.

Evaluating relationship between PRS and COVID‑19 risk
In order to evaluate if increases in PRS across smaller 
strata were associated with observable increases in risk, 
susceptibility and severity PRS were further stratified into 
deciles and plotted against ORs relative to the first decile 
for severe COVID-19 (Fig. 3A) and COVID-19 infection 
(Fig. 3B) respectively.

For severity, the White cohort showed an increase in 
risk across deciles with the most substantial increases 
present at the tail of the distribution. Black and Asian 
cohorts also demonstrated overall increases in risk with 
generally higher ORs, though increases across deciles 
were more sporadic with prominent fluctuations. Nota-
bly, OR decreased between ninth and tenth deciles for 
the Asian cohort. Confidence intervals associated with 
Black and Asian cohorts were very large.

For susceptibility, only the White group demonstrated 
an increase in OR across deciles. Similarly, this increase 
was most pronounced at the highest deciles. Black and 
Asian cohorts demonstrated no uniform trend, though 
risk increased in both groups across the highest decile.

Differences in mean distribution between ethnic groups
PRS was normally distributed for all ethnicities (Sup-
plementary Material III). Figure  4 shows the difference 
in PRS distributions across ethnicities, and results of the 
one-way ANOVA and post-hoc Games-Howell test for 
significant differences between means.
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For severity (Fig.  4A) the Asian ethnic group showed 
the highest mean PRS (5.78 × 10–3), followed by White 
(2.14 × 10–3) and Black (-6.22 × 10–3); differences between 
all groups were significant (p < 0.0001).

Figure  4B shows that Asian participants again dem-
onstrated a significantly greater mean susceptibility 
PRS than other groups (-3.43 × 10–3, p < 0.001), followed 
by Black (-3.92 × 10–3), then White (-4.02 × 10–3). 

Differences between the latter groups were non-signifi-
cant (p = 0.177).

Discussion
Within this study, two separate PRSs were calculated 
based on leading variants associated with COVID-19 sus-
ceptibility and severity respectively. Scores were applied 
to a UK-based target cohort of 447,382 participants 

Table 2  Shows the results of binomial logistic regression for PRS, fully adjusted for confounders, against A) Severe COVID-19 and B) 
COVID-19 infection

Abbreviations: CI Confidence intervals
a  p-value relative to the low genetic risk category. b Overall p-value for association of PRS as an independent variable with COVID-19 outcome. c Incremental 
difference in Nagelkerke pseudo-R2 between full model (covariates + PRS) and base model (covariates alone)

* p < 0.05, ** p < 0.01, ***p < 0.001, ****p < 0.0001, ns no significance
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across White, Asian/Asian British, and Black/Black Brit-
ish ethnic groups. Meaningful associations were elicited 
between PRS and corresponding COVID-19 outcomes. 
Discriminative performance, variance explained, and 
mean distributions were compared between ethnic 
groups.

A significant association between severity PRS and 
incident severe COVID-19 was found across all ethnici-
ties, independent of other confounders. The highest PRS 
risk categories generally showed highest adjusted odds 
ratios, implying a direct relationship between PRS and 
severe disease risk; this establishes a genetic basis for 

differences in severity outcomes between individuals. 
These findings align with previous analyses conducted 
in European-ancestry target cohorts that elicited similar 
relationships between PRS and severe COVID-19 [31, 
32].

Severity PRS performed well across all ethnicities, 
and exhibited a greater predictive power and variance 
explained within Asian and Black cohorts. This repre-
sents a very promising finding, especially when consider-
ing historically poor performance of PRS within diverse 
populations [35]. Our PRS predicted risk more effectively 
in non-White cohorts than typical models trained using 

Fig. 2  Shows receiver operating characteristic (ROC) curves for base models (covariates only) and full models (covariates + PRS) for A) severity and 
B) susceptibility PRS across all ethnic groups. Area under the curve (AUC) for the full model, and incremental increase in AUC (ΔAUC) from base 
model is reported for each curve. An AUC of 0.5 indicates the model produces no utility in predicting risk. Abbreviations: SEV = COVID-19 severity, 
SUC = COVID-19 susceptibility
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European-only GWAS samples, illustrating the ben-
efit of the multi-ethnic approach employed. This further 
validates findings that utilising multi-ancestral GWAS 
training datasets can allow predictive accuracy within 

wider ethnic groups [50]. As such, we recommend wider 
employment of multi-ethnic PRS models to facilitate a 
more inclusive approach and rectification of current eth-
nic imbalances in PRS analyses.

Fig. 3  Is a quantile plot of PRS percentiles against odds ratios for A) Severe COVID-19 and B) COVID-19 infection, relative to the first percentile for all 
ethnicities. Error bars show 95% confidence intervals for odds ratios
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Odds ratios and variance explained for susceptibility 
PRS were universally smaller than for severity across all 
ethnicities. This may suggest that genetic predisposition 
contributes less to COVID-19 susceptibility risk as com-
pared to severity, supporting hypotheses that differences 
in susceptibility outcomes are driven more by factors 
associated with SARS-CoV-2 exposure, such as occupa-
tion and household overcrowding, as opposed to other 
biological factors [51]. Furthermore, whilst susceptibil-
ity PRS and COVID-19 infection were highly associated 
within the White cohort, non-significant associations 
and a smaller predictive power were produced within 
the Black and Asian cohorts. Though this could imply 
that PRS cannot explain COVID-19 infection burdens 
in non-White groups, it is more likely that this finding 

is attributable to the considerably smaller numbers of 
Asian and Black individuals within the UK Biobank; 
limited sample size can result in failure to detect asso-
ciations between PRS and the associated trait [24]. Fur-
ther research utilising larger sample sizes for non-White 
cohorts is required to establish more firm conclusions.

As highlighted in Fig.  3A and B, fluctuations in ORs 
across strata were very large for Black and Asian cohorts 
as compared to the White cohort for both susceptibility 
and severity. This inconsistency may be attributable to 
the markedly smaller sample sizes of these groups, fur-
ther evidenced by the large confidence intervals asso-
ciated with the ORs. It remains that with the current 
model, PRS cannot be reliably implemented for risk 
stratification in non-White ethnic groups and may pro-
duce damaging consequences; for instance, individuals in 
the Black cohort within the ninth PRS decile for severity 
produce an odds ratio as low as that of the second decile, 
illustrating an inability to accurately stratify individuals. 
Furthermore, this sporadic relationship influenced the 
initial stratification into risk categories for regression and 
subsequent odds ratios produced. Those in the eighth 
severity decile of the Black cohort produced a greater 
odds ratio for severe COVID-19 than the ninth and tenth 
deciles but were classified as intermediate risk, with the 
ninth and tenth deciles classified as high genetic risk. This 
discrepancy may help to explain the similar odds ratios 
observed within the intermediate (1.99, CI 1.21–3.29) 
and high risk (1.98, CI 1.11–3.53) categories for severity 
PRS regression. As such, further analysis utilising more 
robust and larger genetic data samples from non-White 
cohorts is necessary before it may be reliably and feasibly 
implemented for risk stratification within these groups.

The results do, however, indicate potential utility for 
the PRS model in risk stratification of the White cohort 
for both susceptibility and severity, as indicated by the 
consistent increase across strata seen within this group 
in Fig. 3A and B. This could assist in protection of those 
with the greatest genetic vulnerability in potential future 
outbreaks; targeted public health interventions such 
as shielding, closer monitoring, protection from high-
risk frontline work and vaccination prioritisation may 
help to mitigate associated risk. Hospital-based applica-
tions might facilitate screening of COVID-19 patients 
and early detection of severe disease [30]. Furthermore, 
informing patients of an increased polygenetic risk has 
some evidence of positive behavioural impact [52], with 
potential to decrease risk-taking behaviours and there-
fore promote better outcomes.

However, important societal and ethical concerns 
pertaining to PRS implementation must be considered; 
prescribing high-risk individuals to continue shielding 
or abstain from work longer than others may reinforce 

Fig. 4  Is a violin plot showing the differences in A) COVID-19 
Severity and B) COVID-19 Susceptibility PRS distributions for different 
ethnicities. Central dashed lines within each violin indicate medians, 
with the other two lines indicating upper and lower quartiles. 
**** = p < 0.000, ns = no significance for Games-Howell multiple 
comparisons test
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detrimental impacts on financial security, mental wellbe-
ing and social functioning that outweigh the conferred 
risk [53]. Additionally, potential discriminatory impacts 
of genetic risk stratification could include preferen-
tial employment of low-risk individuals and increased 
insurance premiums for those at higher genetic risk [53, 
54]. No formal legislation regarding genetic discrimina-
tion currently exists in the UK [55]; wider issues must 
be addressed before clinical implementation of PRS can 
be considered to avoid marginalisation of those most 
vulnerable.

Findings also demonstrated significant differences in 
mean PRS between ethnic groups for both susceptibil-
ity and severity. Similar differences have been produced 
by other studies [55, 56]. This has been attributed to dif-
ferences in allele frequencies and linkage disequilibrium 
patterns between ancestries; as variants exist at differ-
ing levels within each population, differences in absolute 
PRS values are produced [57, 58]. Such discrepancies 
were also present within our analysis, as differences in 
mean allele frequency for the SNPs utilised were present 
between ancestry groups within the UKBB cohort (Sup-
plementary Material IV). This suggests that absolute PRS 
values are not directly transferable between ethnicities, 
as a score considered high-risk in one group may fall 
within the lower-risk distribution of a different group. 
It can be concluded that utility of our PRS is restricted 
to risk stratification within ethnic groups and must be 
interpreted relative to population-specific distributions; 
it cannot be applied across all populations in tandem. 
Accurately contextualising individual PRSs to correct 
ancestries for interpretation poses a logistical challenge 
to clinical implementation [30].

Though meaningful associations were produced, vari-
ance in outcomes explained by PRS was under 1% across 
all analyses. Whilst addition of PRS to existing risk fac-
tor models was shown to enhance risk prediction and 
elucidate some ethnic differences, such small propor-
tions show that genetics alone is by no means explana-
tory of ethnic disparities. The need to avoid the so-called 
‘molecularisation’ of race through placing sole focus 
upon genetic and biological differences between racial 
groups has been emphasised; [59] it is evident that more 
investigation of structural and systemic factors that drive 
disparities are needed in order to fully understand and 
mitigate the risk experienced by BAME groups within the 
UK [11].

Whilst severity PRS performed well in Black and Asian 
cohorts, it is important to consider implications of the 
more sporadic relationship observed between PRS strata 
and COVID-19 risk, and the universally large associ-
ated confidence intervals exhibited as compared to 
the White cohort. These findings, as well as the lack of 

susceptibility association, are likely attributable to the 
severely limited sizes of non-White samples. The avail-
able UK Biobank population comprised only 2% Asian/
Asian British and 1% Black/Black British participants 
(Table 1); such proportions are not representative of the 
UK population demographics which are estimated at 
8% and 3.5% respectively [60]. Limited statistical power 
within non-White cohorts reduces confidence in associa-
tions and conclusions drawn, indicating the need for fur-
ther research utilising more robust data from UK BAME 
groups.

Though the COVID-19 HGI Release 6 meta-analysis 
utilised was multi-ethnic and global in nature, the effec-
tive sample size remained heavily European-dominant 
[19]. Incorporated SNPs may therefore have a reduced 
applicability to non-European samples, representing 
a limitation of our study. This is reflective of the severe 
deficiency of GWAS and PRS analyses within diverse 
populations [35]. Research forums have emphasised the 
need to collect samples from underrepresented ances-
tries [61], and initiatives such as Polygenic Risk Meth-
ods in Diverse Populations (PRIMED) consortium have 
been recently introduced to promote enhanced PRS risk 
prediction within broader ethnicities [62]. However, it 
remains that more must be done to rapidly address ine-
qualities and ensure advances are made suitable for all 
populations.

Another factor limiting applicability of findings 
included oversimplification of ancestry within our 
analysis. Broad ethnic groups were utilised due to the 
small sample sizes available; however, this overlooked 
important within-group heterogeneity. For instance, 
Bangladeshi and Black African individuals experienced 
significantly worse burdens than other backgrounds from 
wider Asian and Black ethnicities [63]. Aggregation of 
backgrounds prevents elucidation of such differences 
and identification of specific populations at the highest 
risk. More data is required in order to perform within-
group stratification and understand genetic contribution 
to such patterns. Whilst ethnicity serves as an important 
proxy for differences in genetic ancestry and societal 
influences that drive tangible health inequalities between 
groups, it remains a social construct, and ill-defined 
within genomics [59]. Further study is required regarding 
applicability of personalised medicine in the context of 
imperfect categorisations of race and ethnicity, and how 
we can most effectively group individuals based on true 
ancestorial patterns.

Further study limitations comprised inclusion of a lim-
ited number of SNPs. Incorporation of larger numbers 
of variants within the PRS confers a greater predictive 
performance;[26] whilst we only included 24 variants, 
this number is greater than those utilised within some 
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other published COVID-19 PRS analyses [34] and so our 
study can still provide a somewhat more comprehensive 
model. Furthermore, the summary statistics utilised from 
the COVID-19 HGI meta-analysis included UK Biobank 
participants; this overlap in base and target populations 
can lead to overestimations in prediction accuracy of PRS 
and represents a limitation in the model used. Addition-
ally, data regarding factors such as occupational exposure 
and multigenerational households were not available; 
such factors directly influence ethnic disparities [12] and 
their inclusion as confounders would enhance conclu-
sions drawn. Furthermore, Chinese, Other and Mixed 
ethnic groups were excluded from this analysis due to 
severely limited sample sizes, preventing assessment of 
performance. Further research regarding genetic factors 
within these groups is required.

Conclusion
Our study is the first to prioritise analysis and assessment 
of a COVID-19 PRS within multiple UK ethnic groups. 
PRS was significantly associated with severe COVID-
19, and higher risks in Asian and Black cohorts can help 
to explain ethnic disparities in outcomes. A significant 
association between susceptibility PRS and COVID-19 
infection was found for the White cohort. Further analy-
sis utilising larger sample sizes from non-White cohorts 
is needed to enhance statistical power, increase confi-
dence in conclusions and better assess impacts within 
BAME groups. A multi-ethnic approach was shown to be 
beneficial in allowing predictive accuracy of PRS within 
diverse ancestries, and therefore should be more widely 
employed.
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