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Abstract

Deep learning methods have outperformed human capabilities in many pattern recognition and data processing

problems, in game playing, and now also play an increasingly important role in scientific discovery. A key application of
machine learning in the molecular sciences is to learn potential energy surfaces or force fields from ab-initio solutions of
the electronic Schrodinger equation using datasets obtained with density functional theory, coupled cluster, or other quantum
chemistry methods. Here we review a recent and complementary approach—using machine learning to aid the direct solution
of quantum chemistry problems from first principles. Specifically, we focus on quantum Monte Carlo (QMC) methods that use
neural network ansatzes in order to solve the electronic Schrodinger equation, both in first and second quantization, computing
ground and excited states, and generalizing over multiple nuclear configurations. While still at their infancy and far from
maturity and routine usage, these new methods are already able to generate virtually exact solutions of the Schrodinger equation
for small systems, and rival advanced conventional quantum chemistry methods for systems with up to a few dozen electrons.

1 Introduction

In the past decade, machine learning (ML) has made inroads
into many areas of the physical sciences, often outperforming
more conventional computational methods™~ or offering entirely
new approaches to solve scientific problems.™” Quantum chem-
istry (QC) has been among the first fields to have been affected
by this revolution.”~ Most applications of ML in QC have been
concerned with supervised learning of molecular properties from
molecular structure,’ either across conformational '’ or chemical
space, ' as well as with unsupervised learning for the generation
of novel molecules.'~ These methods all require a pre-existing
dataset of molecules and their properties for training, typically
obtained with standard methods of QC such as density functional
theory'~ or coupled cluster.'” In these scenarios, ML accurately
approximates a given method of QC at vastly increased compu-
tational efficiency. This approach has been already reviewed in
other works cited above. In contrast, the present review focuses
on the complementary use of ML as an ab-initio technique in
QC, which requires no external data and instead recovers molec-
ular properties from first principles. Here, ML is “integrated”
into QC, with the goal of arriving at ab-initio methods with a
more favourable accuracy—efficiency trade-off than conventional
QC methods.

The goal of computational chemistry is to predict uncharacter-
ized properties of molecules with a given structure and to design
new molecules with desired properties. Most molecular proper-
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ties are determined by the behaviour of the electrons, so QC meth-
ods attempt to approximate the Schrodinger equation for electrons
in molecules. QC methods can be divided into ab-initio and semi-
empirical methods, where the former have no fitted parameters
determined from external data, whereas the latter do. Methods
that do not use quantum mechanics at all (such as force fields) are
called empirical and are typically not considered part of QC, al-
though this view may be changing with the advent of principled
and accurate ML-based empirical methods (we use “empirical”
to refer to the use of any external data, be it experimental, calcu-
lated, microscopic, or macroscopic). Itis useful to cast these three
categories of methods in the light of ML terminology (Fig. 1a).

ML can be roughly divided into supervised, unsupervised, and
reinforcement learning. In supervised learning the ML model
learns to predict the labels in the data given the corresponding
features so as to minimize the difference between the predicted
and reference labels. By identifying the features (inputs) with
molecular structures and the labels (outputs) with molecular prop-
erties, all empirical and to a various degree also semi-empirical
methods of QC fit into supervised learning, but using mostly rel-
atively simple and physically motivated functional forms rather
than the more general and highly flexible functions typical for
ML. Vice versa, the many recent successful supervised ML mod-
els that predict energies or other molecular properties based on
QC training data can be classified as empirical methods.'"'>~
Along this line, ML models of density functionals or approxi-
mate Hamiltonians that are embedded into some QC framework
and trained end-to-end in a supervised fashion on QC data can
be considered semi-empirical methods. Unsupervised learn-
ing is concerned with unlabelled data, and the general task is
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Fig. 1 | Quantum chemistry and machine learning. (a) Machine learn-
ing (ML) disciplines and their dependence on data can be mapped to dis-
ciplines in quantum chemistry (QC). This work reviews the use of ma-
chine learning in ab-initio QC, where the only input to ML is the Schro-
dinger equation itself. This approach uses self-generated data, rather
than relying on external data. The closest analogue in ML is reinforce-
ment learning with self-play, which substitutes data from an external en-
vironment with data generated by the agent, though in many other re-
spects the two approaches are distinct. (b) Trade-off between the ac-
curacy and computational efficiency, resulting in practically accessible
molecular system size of QC methods. New technologies can lead to
better trade-offs, i.e. pushing the front (diagonal lines) to better accu-
racy and/or system sizes. Currently, ML methods are being developed
to achieve higher accuracy within existing QC frameworks. Whereas su-
pervised ML force fields are already established (orange), this is work in
progress for the ML of density functionals (green) and quantum Monte
Carlo (blue, this review). Acronyms—FF: empirical force field; DFT:
density functional theory; DFTB: density-functional-based tight bind-
ing; CCSD(T): coupled-cluster with singlets, doublets, and perturbative
triplets; FCI: full configuration interaction; HF: Hartree—Fock; MP2:
Mgller—Plesset perturbation theory to second order; CISD: configuration
interaction with singlets and doublets. For further discussion see Sec. 6.

to learn the underlying probability distribution that would gen-
erate a given dataset. Examples in chemistry include generative
models for structural formulas™ as well as full 3D structures of
molecules,”” and in physics the estimation of quantum states
from measurements, known as quantum tomography.” Finally,

in reinforcement learning, the ML model (also referred to as an
agent) is able to interact directly with its environment, rather than
to just passively receive data. Here, the aim is for the agent to
learn a policy for how to interact with the environment so as to
maximize a long-term reward.”’ Reinforcement learning is be-
hind some of the most prominent successes of ML such as play-
ing games at a superhuman level or the control of plasma in
tokamaks.”' In certain settings the agent can self-generate data
by treating its own policy as the environment. This is known as
self-play, and has been the basis for many advances in symmetric
games. Although there are many key differences, this is the
branch of ML conceptually most similar to ab-initio QC, in the
sense that no external data other than the rules of the system or
game are required for either.

In our case, the rules of the system are encoded in the Schrédin-
ger equation, which is an eigenvalue problem that can be equiv-
alently formulated via various variational principles—its solu-
tions, the eigenstate wavefunctions and energies, can be found
by searching for stationary points of certain functionals over the
space of all physically admissible wavefunctions. Importantly,
the ground state of a molecule can be found by minimizing the
energy expectation value of a wavefunction. This principle un-
derlies many ab-initio QC methods, and also the methods in this
review, as such a variational principle naturally defines a ML
problem—the eigenstates (such as the ground state) are repre-
sented as a neural network, and the parameters of that network
are obtained by minimizing the variational electronic energy. The
various reviewed methods then differ in the particular form of the
neural-network ansatz used. A tutorial introduction into this topic
has been previously published as a book chapter. is a com-
plementary review of neural network approaches for solving the
electronic Schrodinger equation.

While one obvious contribution of the methods reviewed be-
low is extending the scope of application of ML into new areas,
these methods must be ultimately evaluated within the context
of QC with its existing advanced numerical methods and estab-
lished criteria for what constitutes a practically useful method. A
central concept in such an evaluation is the trade-off between the
accuracy of a method, and its computational efficiency, which in
practice translates into the largest system size that can be feasi-
bly modeled (Fig. 1b). Ab-initio methods are in general costly—
virtually exact results can be obtained for systems with at most
one to two dozen electrons, and one order of magnitude larger
systems can be routinely treated with highly accurate approximate
methods, which can nevertheless fail even qualitatively for sys-
tems with complicated electronic structure (referred to as strong
correlation or multireference character). In this context, the aspi-
ration of ab-initio QC with neural networks is to restore the high
accuracy of the approximate QC methods even for such difficult
cases, without reducing the accessible system sizes too much.
And while none of the methods reviewed here are yet mature
enough to routinely model systems with more than a few dozen
electrons with guaranteed accuracy, the results obtained so far and
reviewed below indicate that with further effort and progress, this
aspiration might be achievable.

Section 2 briefly reviews the components of electronic struc-
ture theory necessary for the development of the ML methods
discussed later on. The electronic structure problem is mapped to
ML in Section 3, which is followed by a review of the ab-initio
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Fig. 2 | Electronic structure problem and its neural-network solutions. (a) The problem is fully specified by the geometry of a molecule and the
electronic Schrodinger equation. (b) Only fully antisymmetric wavefunctions are admissible as solutions due to the Pauli exclusion principle and (c)
these are often represented with Slater determinants. (d,e) Solutions formulated in first quantization use antisymmetric neural networks to represent
the wavefunction directly in real space. (f) Second quantization transfers the antisymmetry to a fixed finite basis, enabling the use of vanilla neural

networks.

ML methods for QC formulated in real space and in a discrete
basis in Sections 4 and 5, respectively. The review is concluded
in Section 6.

2 Electronic structure

2.1 Schrodinger equation

QC aims at finding approximate solutions of the electronic Schro-
dinger equation that strike a good balance between accuracy and
efficiency’® (Fig. 1b). The nonrelativistic electronic Schrodin-
ger equation within the Born—Oppenheimer approximation for a
given molecule specified by the charges and coordinates of the nu-
clei, Z;, Ry, is a second-order differential equation for the wave-
function, y(ry, ..., ry), which is a function of the coordinates of
N electrons (Fig. 2a):
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An alternative formulation of the Schrédinger equation uses the
notion of an expectation value,
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Instead of solving Eq. (1), the ground-state (lowest-energy) so-
Iution can be found by minimizing this energy expectation value
with respect to all possible wavefunctions (variational principle),

E = n}llin(f{),l,. “

2.2 Antisymmetric wavefunctions

Electrons are fermions, and as such their wavefunction must be
antisymmetric with respect to exchange of any two electrons. This
cardinal feature of electronic wavefunctions permeates the whole
of QC. In general, electrons also possess spin coordinates, s; €
{1,1}, but the nonrelativistic Hamiltonian does not operate on

spin, so the spin coordinate of each electron can be considered
fixed. In this scenario [for full treatment, see 37, Sec. IV.E], the
spatial wavefunction must be antisymmetric only with respect to
the exchange of same-spin electrons, i.e., when s; = s j (Fig. 2b),

®)

By far the most common way to form antisymmetric wave-
functions in QC is as antisymmetrized products of single-electron
functions (orbitals), ¢;(r). These products can be written as de-
terminants of an N X N matrix, ¢;(r;), formed by putting N elec-
trons into N orbitals, and are referred to as Slater determinants
(Fig. 2¢):

¢y (1) ¢1(ry)
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(6)
When interpreting ¢;(r;) as the j-th component of a N-
dimensional feature vector for the i-th electron (using ML par-
lance), ¢(r;), a Slater determinant is in fact the only antisym-
metric function of N feature vectors that is linear in every one
of them, making it a natural choice. Alternative antisymmetric
forms exist, such as the Pfaffian’® or the Vandermonde determi-
nant and its generalizations, but these are far less common
and we will not discuss them here.

Slater determinants formed from different orbitals can be fur-
ther mixed in a linear combination without breaking the antisym-
metry (Fig. 2¢). In fact, this simple technique is the powerhouse
behind all the high-accuracy methods of QC, yet it s also its bane,
because the number of Slater determinants required to achieve a
given accuracy rises exponentially with the number of atoms in
most cases. For fermionic wavefunctions there is no known gen-
eral approach to effectively reduce the search space from this ex-
ponential regime without sacrificing accuracy. However, QC has
produced many methods that achieve excellent approximations
for specific molecules and materials of practical interest. The cost
of these highly accurate methods is generally less than exponen-
tial, but nevertheless increases rapidly with system size (Fig. 1b).



2.3 Variational wavefunction methods

An important class of QC methods derives directly from the vari-
ational principle (Eq. 4), by assuming a certain wavefunction
ansatz, y(-; 0), parametrized by 6. Minimizing the energy of this
ansatz with respect to 0 then always yields an upper bound for the
exact ground-state energy,

E= rr}llin(lfl)w < min(H),, .0 )
The bound becomes tighter as the expressiveness of the ansatz is
improved.

One can distinguish two strategies to construct the ansatzes.
First, traditional QC uses relatively simple forms, such that the
integral of Eq. (3) can be evaluated analytically, which drasti-
cally simplifies the minimization problem.”"" Second, quantum
Monte Carlo (QMC) enables the use of ansatzes with arbitrary
analytical forms at the cost of having to do the integral evalu-
ation and minimization stochastically.”~ The latter is a natural
framework to incorporate neural networks, and we introduce it in
more detail in Section 3.1. Here we introduce three ansatzes for
electronic wavefunctions of the first (traditional) kind, since they
serve as scaffolding for the neural-network ansatzes of Sections 4
and 5.

Hartree-Fock Perhaps the simplest nontrivial ansatz in QC is
the single Slater determinant of Eq. (6), where the orbitals ¢;(r)
are varied. Optimized variationally, this ansatz leads to the so-
called Hartree—Fock (HF) method. In practice the orbitals are
linearly expanded in a fixed finite one-electron basis, @, (r), k =
1,..., K, with K ~ N in most cases:

Eyr = I%H<H>det ;) & nclijf_l(HMetzk Clj o) (8)
The use of a finite basis set turns the functional optimization prob-
lem of Eq. (8) into a computational problem whose cost scales
with the fourth power of the number of basis functions, O(K*),
assuming a naive implementation. On its own, the HF ansatz is
expressive enough to describe much of chemistry qualitatively,
but not always, and certainly not quantitatively. However, it can
be considered a starting point for most wavefunction-based QC
methods.

Density functional theory (DFT) is quite a different approach
and relies instead on an in-principle exact mapping of the ab-initio
Hamiltonian (Eq. 2) to a mean-field-like problem. For a given en-
ergy functional, this problem can be solved exactly with a single
Slater determinant. However, the variational principle does
not hold in DFT because the exchange-correlation contributions
to the energy functional are not known exactly and must be ap-
proximated in practice. From here on, we will stay within the
variational principle and instead focus on increasing the expres-
siveness of the HF ansatz.

Configuration interaction The HF ansatz can be straightfor-
wardly extended by forming multiple Slater determinants from
different sets of orbitals and considering their linear combination
(Fig. 2¢),

w(ry,...,ry) = Zchd,p(rl,...,rN). ©)
p

When the orbitals of each determinant are pooled from a larger
superset of (mutually orthogonal) fixed orbitals of size M > N,
and the only free parameters are the linear coefficients of the deter-
minants, the ansatz is called configuration interaction (CI). One
of the appeals of the CI ansatz is that its Slater determinants can
be considered a many-electron antisymmetric basis and labelled
using the occupation numbers of the one-electron states. This
so-called second quantized formalism has many convenient prop-
erties for computation (see Box 1). The simplest version of CI,
called full CI (FCI), considers all (%) possible Slater determi-
nants and is exact within the chosen finite one-electron basis. In
the usual case when M ~ N, however, the computational effort
scales exponentially with N, which makes FCI applicable only
to the smallest molecules. Ways to tackle the exponential scaling
include fixed truncation of the CI expansion or its “compression”
through analytical means (coupled cluster theory, [14]; matrix
product states, [44]), deterministic pruning (selected CI, [45]), or
stochastic sampling (FCI-QMC, [46]). Section 5 explores a novel
way of “compressing” the CI expansion through neural networks.

Beyond fixed bases The effectiveness of the CI ansatz depends
on the choice of the fixed molecular orbitals ¢;(r) from which
the Slater determinants D¢p (ry,...,rp) are built. A natural ex-
tension of CI allows both the orbitals and the CI expansion co-
efficients ¢, to vary during the variational minimization. Such
an ansatz of two stacked linear combinations (Egs. 8 and 9) is
harder to optimize but much more expressive. The most com-
mon variant is to consider all (%:) Slater determinants formed
by letting N’ < N electrons occupy a space of M’ < M or-
bitals, while the remaining N — N electrons occupy a fixed set
of inactive orbitals. This is called the complete active space self-
consistent field (CASSCF) method.”’ Due to the larger variational
freedom, a CASSCEF ansatz typically requires many fewer deter-
minants than a CI ansatz of comparable accuracy.

But CASSCF and even FCI are still limited by the fixed one-
electron basis used to form the molecular orbitals (Eq. 8): FCI is
only exact in the complete basis set limit, which in practice can-
not be reached for any but the smallest molecular systems. An
extension of the CASSCF ansatz would allow not only the one-
electron orbitals but also the one-electron basis functions to vary.
The stacked structure of such an ansatz would be reminiscent of
deep neural networks, and Section 4 explores the culmination of
this line of thought by incorporating actual deep neural networks
into the ansatz. This removes any a priori limitations on the ex-
pressiveness. By making each individual determinant maximally
expressive, such ansatzes further reduce the number of determi-
nants required to reach a given accuracy.

3 Machine learning for electronic Schrodinger equation

3.1 Mapping quantum mechanics to machine learning

A ML problem and its solution are specified by the model, its
inputs and outputs, the data, and the optimization criterion (loss
function). In this regard, solving the Schrodinger equation with
the variational principle amounts to the following ML problem
(Fig. 3). The neural network (Section 3.2) represents a wave-
function, which accepts electron coordinates (first quantization)
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Fig. 3 | Variational Monte Carlo with neural networks. Electron posi-
tions, r;, or orbital occupation numbers, n,, describe an electron config-
uration (Box 1) which is an input to the wavefunction, v, represented by
a neural network parametrized with 6. The wavefunction is used in two
ways: first, to sample new electron configurations which provide new
input to the neural network (yellow, Box 2), and second, to evaluate the
electronic energy, which is minimized by varying the network parame-
ters (blue, Box 3).

or occupation numbers (second quantization) as input and out-
puts the wavefunction value. The loss function is the energy ex-
pectation value corresponding to this wavefunction. The inputs
are sampled from the probability distribution given by the square
of the wavefunction represented by the current neural network.
The Hamiltonian is used to estimate the loss function from the
samples. The parameters of the network, and thus the wavefunc-
tion, are then modified to minimize the loss function. Except for
the representation of the wavefunction as a network, this is the
regular variational Monte Carlo (VMC) framework (Box 2). The
optimization methods used (Box 3) are also fairly conventional,
although adapted to a neural network context.

The applicability of deep learning for representing many-
body wavefunctions was first realized and exploited by Carleo
& Troyer”’~ for the case of spin lattices in one and two dimen-
sions. Their approach, known as Neural Quantum States (NQS),
has since been applied to many different quantum systems.

In essence, this review is concerned with the extension of this
approach to electrons in molecules.

3.2 Deep learning

The standard practice in ab-initio QC today is in some ways anal-
ogous to the state of computer vision before the rise of deep learn-
ing. Prior to 2012, the best pipelines for large-scale image recog-
nition consisted of a combination of hand-designed features and
simple ML models.”" A single deep convolutional neural network
trained end-to-end was able to cut the recognition error in half rel-
ative to these systems,’~ and since then deep neural networks have
dominated computer vision research.

In ab-initio QC, ground-state solutions to the Schrodinger
equation are usually represented by a wavefunction ansatz with
a relatively simple functional form, and parameters are usually
fit through a mix of procedures (fixed-point iteration, variational
optimization) rather than a unified end-to-end estimation of all pa-
rameters simultaneously. The development of deep QMC meth-
ods is driven by the hope that the use of neural networks will sig-

nificantly increase the expressiveness of wavefunction ansatzes,
enabling large leaps in accuracy as in image recognition. To ap-
preciate how and why deep neural networks can be usefully ap-
plied in QC, a brief review of their application in artificial intelli-
gence is necessary. For a thorough review of the history of deep
learning, see Schmidhuber,”” and for a review of the fundamental
concepts in deep learning, see LeCun et al..

Neural networks date back to the very beginning of computer
science,”” and their modern form originates with the single per-
ceptron “unit”,” which produces as output a non-linear function
of the sum of a constant, known as the bias, and a linear com-
bination of its inputs. The non-linear function rises from zero
to one as its input increases, mimicking the activation function
of a biological neuron. When many such units are assembled in
parallel to form a “layer,” and several layers are computed seri-
ally, taking the output from one layer as the input to the next,
the resulting multi-layer perceptron (MLP) can, in theory, rep-
resent any smooth function to arbitrary accuracy given enough
units.”’ However, actually fitting or learning a set of parameters
that matches any given function is a different matter. A form of
gradient descent utilizing derivatives computed using backpropa-
gation, or reverse-mode automatic differentiation,”*~"" was found
to be effective for training neural networks.”' This led to a wave
of enthusiasm for neural networks, which eventually faded as sev-
eral issues were discovered, such as the infamous “vanishing gra-
dients” and getting stuck in local minima.

Several factors were instrumental in rehabilitating neural net-
works under the banner of “deep learning”: a combination of al-
gorithmic advances’~ and the use of modern GPU hardware
made the computations much faster, and the resulting ability to
train larger networks made issues with local minima less se-
vere. Furthermore, with the help of stochastic gradient de-
scent, deep neural networks can be applied straightforwardly and
efficiently to large datasets, unlike other ML models. Finally,
empirical successes like winning the ImageNet Large Scale Vi-
sual Recognition Challenge’® helped legitimize deep learning re-
search and generate excitement among researchers.

Today, the barrier to entry for developing and training deep
neural networks is quite low, thanks to a mature ecosystem of
software libraries for numerical computing with automatic dif-
ferentiation and hardware accelerators. However, achieving
good performance from a deep learning model still requires fi-
nesse and the application of various heuristics. Deep neural net-
works also sometimes suffer from odd failure modes, such as im-
perceptible perturbations to the inputs causing enormous changes
to the outputs.”~ However, linear models also have this issue, and
these issues are of limited concern in the applications discussed
here, where only average performance matters.

3.3 Neural network architectures

The starting point for most neural networks is the multi-layer per-
ceptron (MLP), formed as a composition of L layers,
MLP(x) = frof o of (),

11
ff@=7r(Wz+b), (an

where o denotes function composition, f is some non-linear ac-
tivation function, and W’ and b’ are the matrices of weights



and vectors of biases to learn. While a vanilla MLP is capa-
ble of representing arbitrary functions, the real power of neural
networks comes from more sophisticated architectures. Many of
these architectures are designed to encode some particular invari-
ance or equivariance—that is, when the input to the network is
transformed in a particular way, the output should either be un-
changed or should transform in a corresponding way. For in-
stance, the weights in a layer of a convolutional neural network
(ConvNet)" are restricted to be a discrete convolution operator,
which constrains each layer to be translation-equivariant, a natu-
ral constraint for image recognition, and dramatically reduces the
number of possible weights in a layer.

Equivariance to permutation is another frequently useful prop-
erty that is especially important in real-space approaches to rep-
resenting electronic wavefunctions (see Section 4). A simple
permutation-equivariant layer first proposed by Shawe-Taylor
can be constructed by applying the same transformation to each
input and summing the results. More sophisticated permutation-
equivariant layers are used by models like the Transformer®” or
SchNet.”” Many of these equivariant layers can be unified in a
conceptual framework based around the language of geometry
and group theory, wherein the choice of transformation to be
equivariant to leads naturally to recipes for constructing the ap-
propriate neural network layers.

Another class of neural network architectures, which have been
influential as wavefunction ansatzes, are restricted Boltzmann
machines (RBMs).”® These were originally developed for unsu-
pervised learning, but in the VMC setting considered here they
lead to a simple deterministic expression for the log probability
closely resembling a one-layer MLP. Despite their early pop-
ularity, RBMs have been largely eclipsed in the Al community
by other methods for unsupervised learning, such as variational
autoencoders,”” generative adversarial networks,”” normalizing
flows,”' autoregressive models, and diffusion models.”” In
fact, some of these newer models have started to have an impact
as neural network wavefunction ansatzes for spin systems. Ex-
amples are deep autoregressive quantum states, ” convolutional
neural networks,”” recurrent neural networks,”’ and normalizing
flows.

3.4 Neural network architectures for molecules

In the past 15 years, there has been very active research on design-
ing ML architectures for molecular physics and chemistry tasks
that are expressive and flexible, yet incorporate physical concepts
and constraints. Invariance, e.g. of energy functions with respect
to translation and rotation of the molecular coordinates, and with
respect to exchange of identical particles, has already been in-
corporated into early architectures by designing features with the
respective invariances. Message-passing architectures such
as SchNet have leveraged the increased expressiveness of deep
learning by defining graph convolutions parametrized by roto-
translationally invariant features. Many recent efforts went
into the design of rotation-equivariant neural networks which
have vectorial or tensorial features rotating with the inputs.

It has been shown that such neural network architectures can reach
high accuracy not only in the large-data limit, but also for small
datasets which could previously only be tackled by kernel ap-
proaches.'”/-'’® Energy functions based on many-body expan-

sions were considered in the form of using permutationally in-
variant polynomials, "~ atomic cluster expansion, '’ and permu-
tationally invariant polynomials for molecules.

While these neural network architectures have been predomi-
nantly developed for supervised learning of potential energy sur-
faces from quantum chemistry data, they have provided tools and
concepts that are applicable to QMC with neural network wave-
functions.

4 Electrons in first quantization

One approach to studying the electronic problem with deep learn-
ing is to work with parameterized many-body wavefunctions
in first quantization, y(r;0). Here r stands for the N-tuple
of electron coordinates, r,r,, ..., Iy, and sampling is realized
over electronic positions ¥ (Box 2). The antisymmetry con-
straint (Eq. 5) must be imposed in y to avoid collapsing onto
a lower-energy bosonic state. A commonly adopted form is
w(r; 0) = S(r; 0)X A(r; 0), where the first factor is symmetric (or
“bosonic”) under exchange of electron coordinates and the sec-
ond factor carries the necessary antisymmetry. The simplest and
most common approach is to build the antisymmetric part of the
wavefunctions using Slater determinants (Eq. 6). As discussed
in Section 2, single Slater determinants with fixed orbitals have
limited expressiveness, and many such determinants need to be
combined to achieve high accuracy.' '’ A natural generalization
of a sum of fixed-orbital Slater determinants is the commonly-
used Slater—Jastrow wavefunction
COH) ¢y (ry;6)

w0 =/ 0N : (12)
ko |ph 5 0) N
where the Jastrow factor, J({r};0) constitutes the symmetric
(“bosonic”) part of the state and typically contains one- and two-
body (and in many cases higher-order) parameterized correla-
tions. The set notation, {r} = {r(,...,r,}, indicates that J
does not depend on the order of the electron coordinates. The
determinants in Eq. (12) are typically replaced with the prod-
uct of spin-up and spin-down determinants.”’ Separating the up-
and down-spin determinants improves computational efficiency,
simplifies the implementation, and makes it easier to handle the
electron-electron cusps while leaving expectation values of spin-
independent operators unchanged.

More flexible parametric forms can be obtained by leveraging
the approximation power of artificial neural networks. In the fol-
lowing, we discuss neural-network-based strategies to parameter-
ize these forms.

4.1 Discrete space

The first applications of neural networks to electronic systems
were for electrons moving in discretized space, as realized, for ex-
ample, in the 2D Hubbard model of strongly interacting electrons.
In the following, for simplicity, we discuss the case of N spinless
electrons in M lattice sites and denote with I(r) € [1, M] the
discrete lattice index corresponding to electron position r. The
extension to the spinful case will be considered more in detail
when discussing continuous space later on. The symmetric part
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S(r; 0) can be readily parameterized with a strategy closely re-
lated to NQS for spins:

S(x;0) = g(n(r); 0), 13)

where n(r) is the unique occupation number representation cor-
responding to the electronic positions ¥ and g represent a generic
function which could be represented by a neural network. Since
the occupation numbers n(¥) are invariant under permutation of
the electron positions, g(n(r)) is also symmetric under exchange.
Any of the NN architectures also adopted for spin systems’~ or lat-
tice bosons” can be used to represent the symmetric part .S. Early
works on the Hubbard model adopted positive-definite RBM-
based parameterizations of S(r; 0),’* while more recent works
have adopted deep-network parameterizations allowing for sign

changes.''*

The simplest parameterization for the antisymmetric part,
A(r; 0), is again a Slater determinant

¢,(r;;0) $i(ry;0)

A(r;0) = ; (14)

dn(r1:0) dn(ry:0)

where the matrix ® € CV*M of discrete orbitals ¢,(r;) = D, e
holds the variational parameters to be optimized. This approach,
however, has the important drawback of not providing enough
variational flexibility since it effectively fixes the anti-symmetric
part to a mean-field reference solution.



Neural backflow A significant improvement is obtained by
considering a many-body backflow transformation of the or-
bitals."'’»*'® In this variational form, the matrix of one-electron
orbitals @ is promoted to a parameterized many-electron function
depending on all the occupation numbers:

3,;(0) = @,,(0) + A, (n(r); 0), (15)

where A is a correction to the single-particle orbitals @. In
physics-inspired parameterizations, A is typically taken to be a
simple function of the electronic occupation numbers.' '~ The
neural backflow method' -’ instead introduced a flexible param-
eterization of the backflow orbitals based on artificial neural net-
works. In this case, A is parameterized with a MLP taking as
inputs the electronic occupation numbers and outputting a many-
body correction to the matrix ®. This approach allows the or-
bitals to change dynamically depending on the positions of the
electrons, thus allowing one to include genuinely many-body cor-
relations in the antisymmetric part of the wavefunction.

Constrained hidden fermions Neural backflow transforma-
tions are not the only way to introduce flexible parameterizations
of the antisymmetric part of the wave function. The constrained
hidden fermion formalism builds on the idea of introducing a set
of N auxiliary fermionic particles, with positions q, and living
on M lattice sites. These auxiliary particles are used to effec-
tively mediate correlations among the physical degrees of free-
dom.'”! Calling A(r, q; 6) a Slater determinant for the extended
(physical+hidden) system, the resulting antisymmetric form for
the physical system is given by

A(r;0) = A(x, F(r;0)). (16)
In this expression, F is a function parameterized by a neural net-
work, mapping the physical positions to the hidden ones. This
approach has been shown to improve systematically over the neu-
ral backflow form for the 2D Hubbard model.

4.2 Continuous space

We now focus on describing the important case of first-quantized
electrons in continuous space, directly corresponding to the elec-
tronic Schrodinger equation. As in the discrete-space case, the
Slater—Jastrow form may be improved in a matter suitable for use
with neural quantum states by adding a backflow transformation,
in which the one-electron orbitals ¢,(r;; 0) are replaced by many-
electron functions q’;,-(r ;»{r};0). The backflow transformation
can either modify the orbitals directly via a multiplicative and/or
additive term:

Gix;. (£):0) = ¢, 2w, (x)1:0) + ;. (v):0), (17)

or act as a quasiparticle transformation of the electron coordi-
nates:

Fi(r;. (v):0) = §(r; + E{r}:0)), (18)

where the parameterized functions, fi®, fiEB, &, are invariant to
permutations of {r}, and £({r};0) is a three-component vector
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Fig. 5 | Automerization of cyclobutadiene with neural-network
ansatzes. Top: PauliNet converges more quickly, while FermiNet
reaches lower total energy. Hartree—-Fock and CCSD(T) absolute en-
ergies (three red lines correspond to cc-pVnZ basis sets, n = D, T, Q)
for the equilibrium geometry are also shown. Bottom: Both PauliNet
and FermiNet predict relative energies within the range of experimental
values and agree with multireference coupled cluster (MR-CC) methods
(different lines denote different MR flavours of the CC theory). Figure
modified from Spencer et al..

that modifies r e If we consider a determinant of orbitals of this
form,

¢y (ry; {r}) ¢ (ry;{r})

: : , (19)

Py {r}) ¢n(ry;{r})
then we see that orbitals with backflow transformations are just
one example of a broader class of functions. In order for the de-
terminant to be antisymmetric, the matrix with elements ®@;; =
¢;(r;; {r}) must be permutation-equivariant; that is, exchanging
electrons k and / also exchanges columns k and /. While con-
ventional Slater—Jastrow—backflow (SJB) wavefunctions have had
considerable success, they also have limitations due to the choice
of fixed functional forms. Therefore, the goal is to develop more
flexible permutation-equivariant functions. Here we highlight
several approaches that share this common theme. We also note
that similar model architectures can be used for other fermion-
inc systems, such as those encountered in nuclear physics. Real-
space VMC with neural-network ansatzes has been successfully
used to model those as well. =

Iterative backflow Taddei et al.'~ introduced a form of back-
flow that applied Eq. (18) repeatedly in an interative fashion. Such
an ansatz is formally equivalent to expressing the backflow as a
deep neural network, - albeit with artificial restriction on the di-
mensionality of the hidden layers. The iterative backflow was
used for studying the 3He and “He liquids.



DeepWF The DeepWF’~ approach uses an ansatz similar to
a Slater—Jastrow wavefunction but with a simpler antisymmetric
term:

w(r) = S{r}, RATEhHA @Y. (20)

The learned symmetric function .S is similar to a Jastrow factor
and ensures that the wavefunction captures the electron-nuclear
and electron-electron cusp conditions. The antisymmetric fac-
tors A° are constructed from the Vandermonde-like determi-
nant of an explicitly antisymmetric two-body function, A° =
[Ti<i<j<n (aCri,x;,r) = a(r;,x;,r;;)). The two-body antisym-
metric function is entirely learned. Such a functional form can
be evaluated in O(N?) operations, compared to O(N 3) for a de-
terminant. However, using a simplified antisymmetric function is
also likely to limit the accuracy achieved: DeepWF obtains only
43.6% of the correlation energy for the beryllium atom and does
not even reach HF accuracy for the boron atom. The PauliNet and
FermiNet approaches described below do much better: vanilla
PauliNet obtained 99.94% and 97.3% of the correlation energies
for the beryllium and boron atoms, and FermiNet 99.97% and
99.83%, respectively. Furthermore, FermiNet and PauliNet sub-
stantially surpass conventional SJB wavefunctions on first-row
atoms, for which nearly exact benchmark values exist.

PauliNet PauliNet' '~ builds upon HF or CASSCF orbitals as
a physically meaningful baseline and takes a neural network ap-
proach to the SJB wavefunction in order to correct this baseline
towards a high-accuracy solution (Fig. 4a). Cusp conditions are
explicitly met via the inclusion of cusp correction terms in the
wavefunction.' =° A graph-convolutional block based on SchNet
is used to create a permutation-equivariant latent space represen-
tation depending on the many-electron configuration. This em-
bedding is then passed into separate deep neural networks that
learn the Jastrow factor and a (cuspless) backflow transforma-
tion. Hermann et al.' '~ introduced PauliNet with a purely mul-
tiplicative backflow as shown in Fig. 4a; Schitzle et al.'~” gener-
alized this to a multiplicative and additive backflow as shown in
Eq. (17). PauliNet is optimized with a fixed number of Slater de-
terminants. Most of the results reported in Hermann et al., Schét-
zle etal.' '~ were obtained with around 10 determinants.

FermiNet FermiNet' '~ takes a more minimalist (or machine-
learning maximalist) approach and attempts to train a neural net-
work to represent the entire wavefunction (Fig. 4b). FermiNet
uses two parallel networks, describing one- and two-electron fea-
tures, respectively. The inputs to each layer in the one-electron
stream are permutation-equivariant functions of the activations
from the previous layers of the one- and two-electron streams.
The final layer projects the latent space into the required num-
ber of orbitals, from which determinants can be formed and eval-
uvated. As with PauliNet, the final wavefunction is a sum over
a number of determinants. For most of the results reported
in Pfau et al., 16 determinants were used. FermiNet builds
up a rich description of electron-electron interactions from the
permutation-equivariant mixing of information describing one-
and two-electron features. In particular, the electron-nuclear and
electron-electron cusps in the wavefunction are represented ac-
curately, despite not being encoded explicitly. Whereas PauliNet

is usually trained with the first-order ADAM optimizer, " Fer-
miNet training was found to be substantially improved when em-
ploying the KFAC optimizer (Martens & Grosse,”” Box 3).

While both PauliNet and FermiNet exceed the accuracy of con-
ventional SJIB wavefunctions on small systems, there are impor-
tant tradeoffs between the two models. Results from both on the
automerization of cyclobutadiene can be seen in Fig. 5. The Fer-
miNet is typically trained with a larger number of parameters than
the PauliNet, requiring more iterations and more computation per
iteration to converge, but it typically converges to lower absolute
energy.

Novel Ansatzes While the FermiNet and PauliNet were the first
neural network ansatzes in first quantization to outperform other
methods, newer neural network ansatzes have emerged which are
even more accurate. Gerard etal.'”' proposed a hybrid ansatz that
uses neural network layers similar to the SchNet and PauliNet in a
FermiNet-like architecture. This hybrid ansatz was found to reach
even lower absolute energies than the FermiNet on systems like
benzene and the potassium atom, and in fewer iterations. Glehn
et al.'”~ introduced the Psiformer, which marks a more dramatic
departure from prior work, by replacing the neural network part
of the FermiNet with a sequence of self-attention layers similar to
the Transformer.”” The Psiformer was found to reach even lower
energies than Gerard et al."”' on benzene, and on larger systems
like carbon tetrachloride and the benzene dimer, the improvement
in performance relative to the FermiNet was as large as 0.1 Ha.
Transformers have also been applied to electronic structure calcu-
lations in Xie et al.,”” though for estimation of the density matrix
rather than ground state.

Potential energy surfaces Typically one optimises a wavefunc-
tion at a specific geometry, but this quickly becomes prohibitively
expensive for exploring the high-dimensional potential energy
surface of even relatively small molecules. Scherbela et al.
developed a training methodology that allows weight sharing be-
tween (simplified) PauliNet architectures targeting different ge-
ometries. By switching the geometry being trained at each epoch,
they showed that the computational cost for training across a set
of geometries can be improved by an order of magnitude without
affecting the accuracy of the final energies, with 95% of network
parameters shared across all geometries. This implies that the net-
work is learning features of electron correlation in general rather
than fitting to a specific geometry. They also demonstrated that
a wavefunction for a larger molecule could be initialised from a
wavefunction for a smaller molecule and could then be fine-tuned
in a relatively short optimization stage. Pretraining neural net-
work wavefunctions from smaller systems has also been shown
to dramatically accelerate convergence for Kagome lattice mod-
els.

Similarly, Gao & Giinnemann, Gao & Giinnemann
demonstrated a hypernetwork approach (a network that predicts
weights of another network), where a graph neural network is
used to parameterize a wavefunction model as a function of nu-
clear geometries, which can accurately represent the wavefunc-
tions for multiple geometries. This enables a single model to fully
quantum-mechanical potential energy surface, including gener-
alization to previously unseen geometries. Their approach used



a FermiNet-like wavefunction model, but the hypernetwork con-
cept directly applies to other wavefunction representations, as-
suming the wavefunction form is sufficiently flexible.

Potential energy surfaces can also be estimated locally by com-
puting forces rather than energies. While the Hellmann-Feynman
theorem'~’ provides an elegant method for computing forces and
other gradients of the energy at the true ground state, correction
terms are usually necessary when performing calculations from
imperfect ansatzes. These techniques have been success-
fully applied to the computation of forces using the FermiNet as
a ground state ansatz.

5

Periodic systems There has also been progress on using first-
quantized neural network architectures in periodic systems, such
as interacting quantum gases in low dimension, *' the electron
gas, "~~'"" and for small cells of solids such as lithium hydride
and graphene. ™" Again, sufficiently expressive networks at the
VMC level have been found capable of rivaling or surpassing the
accuracy of fixed-node diffusion Monte Carlo calculations using
conventional Slater-Jastrow-backflow trial wavefunctions.

Computational cost Any comparison of the computational
cost of the reviewed methods against traditional quantum chem-
istry will depend largely on the target property, target accuracy,
hardware, and system size. On one hand, the scaling of the re-
viewed methods with number of electrons N are favourable, on
the other hand the prefactors are large because neural networks
are much more expensive to evaluate than traditional ansatz func-
tions in quantum Chemistry. For the system sizes considered in
this review, and ordinary properties such as binding energies, tra-
ditional methods such as CCSD(T) are much faster, often by or-
ders of magnitude. This, however changes when one considers
traditional methods able to treat multireference systems—for in-
stance, the computational cost of a few GPU-days of Paulinet on
cyclobutadiene is comparable to the many dozens of CPU-days of
multireference CC methods on the same system.' '~ In any case,
it is too early to make any conclusions about the efficiency of
neural-network QMC, and future work will no doubt focus both
on reducing the computational cost and on properly quantifying
1t.

4.3 Extensions

Pseudopotentials The electronic structure of heavy atoms, es-
pecially transition metals, is complicated and challenging for all
QC methods. The difficulty is compounded by the high com-
putational cost of variational Monte Carlo methods, which scale
roughly as O(Z3),'*> where Z is the nuclear charge. Whilst the
core electrons contribute heavily to the total energy, energy differ-
ences are largely determined by the behavior of the valence elec-
trons. The core electrons can therefore be removed and the effec-
tive nuclear charge reduced by using pseudopotentials. The use
of pseudopotentials is common in many methods, including den-
sity functional theory and conventional variational Monte Carlo.
Liet al.""” demonstrate that effective core potentials can be read-
ily combined with FermiNet and achieve accuracy comparable to
CCSDT(Q) extrapolated to the complete basis set limit for first-
row transition metal atoms. The computational time per iteration
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was reduced by 43% (17%) for the scandium (zinc) atom using
an argon core. Again, this approach is not restricted to FermiNet.
Pseudopotentials can be used with any first-quantized neural net-
work wavefunction.

Diffusion Monte Carlo (DMC) Projector methods such as
DMC ' and auxiliary-field Monte Carlo'*® go beyond VMC by
using stochastic algorithms to sample the ground state without
requiring its wavefunction to be represented as a known function
or network. DMC is in principle, exact but, for many-fermion
systems, relies in practice on the fixed-node approximation, in
which collapse to the bosonic ground state is avoided by im-
posing the sign structure of the trial wavefunction on the DMC
wavefunction. A DMC simulation, therefore, samples (stochas-
tically) the lowest energy state with the same sign structure as
the trial wavefunction. The improvements that result from ap-
plying DMC to conventional Slater-Jastrow-backflow trial func-
tions optimized using VMC methods are substantial, explaining
why DMC is so often used to provide improved estimates of the
ground-state wavefunction and energy. Wilson et al."”” combined
DMC with a FermiNet trial wavefunction. For first-row atoms,
DMC captured much of the remaining correlation energy (94%
of the difference between the VMC energy and the exact energy
in the case of the nitrogen atom). However, Wilson et al.'"” used
a simplified FermiNet that gave VMC energies higher than those
reported by Pfau et al.," '~ which were already within 1 mH of ex-
act results for all first-row atoms. Given the evidence that the
mean-field equivalent of PauliNet can essentially match HF in
the complete basis set limit,' ~~ it is possible that the remaining
error in PauliNet and FermiNet wavefunctions is dominated by
errors in the nodal surface, which are rarely sampled regions dur-
ing optimisation. If this is the case, diffusion Monte Carlo with
the fixed node approximation may not produce substantially lower
energies. On the other hand, since neural network wavefunctions
routinely capture over 90% of the correlation energy at the VMC
level, the need to perform expensive diffusion Monte Carlo cal-
culations is greatly reduced. More recently, Ren et al.'”" showed
that DMC can capture roughly half of the remaining correlation
energy for the atoms Li-Ar, when using a very small FermiNet-
based architecture. Whilst it is possible to achieve energies within
chemical accuracy using FermiNet at the VMC level, these cal-
culations model the case for larger systems where converging the
energy with respect to network size might not be feasible. Ren
et al."”” went on to demonstrate that DMC using FermiNet trial
wavefunctions noticeably reduces the energy for larger systems.
In the case of the benzene dimer, the reduction was 50 mH.

Excited States Our discussion so far, and most VMC calcu-
lations, have focused on ground-state properties. However, ex-
cited states are of critical importance to understanding the behav-
ior of materials. Fortunately, recent algorithmic developments by
multiple groups have demonstrated that the calculation of excited
states using VMC methods is feasible and can achieve an accept-
able trade-off in accuracy and cost. Here we highlight three such
approaches utilizing conventional VMC wavefunctions. One ap-
proach is the state-averaged VMC method, in which the
average energy over multiple states is minimised and individ-
ual states are projected out via diagonalization within the basis



of excited states. Similar techniques are used with other quan-
tum chemistry methods. Zhao & Neuscamman '’ instead mini-
mized a different objective function, such that the state with en-
ergy closest to a desired energy target is obtained. Pathak et al.
suggested a simple alternative, where a state is forced to be (ap-
proximately) orthogonal to all lower energy states via a penalty
term. These techniques can be readily applied to VMC using
neural-network wavefunctions and, in particular, penalty function
approaches have recently been explored. As with ground-state
calculations, the flexibility of the wavefunction ansatz to repre-
sent the desired state is critical. Entwistle et al.''* demonstrated
that the PauliNet architecture combined with a penalty function
can represent the lowest few excited states of molecules up to the
size of benzene (Fig. 4c). Relatedly, Choo et al.'”” demonstrated
that NQS on lattice models can obtain the lowest-energy state of
any given Abelian symmetry by performing what is essentially
a ground-state simulation in that symmetry sector, and multiple
states of the same symmetry using a penalty function. However,
the most accurate and efficient way to obtain excited states within
VMC, irrespective of wavefunction ansatz, remains an open ques-
tion.

5 Electrons in second quantization

Instead of working directly with the infinite-dimensional Hilbert
space corresponding to the real-space Hamiltonian of Eq. (2), it
is common practice in QC to use a finite basis set. By choosing a
set of electronic basis functions {@;(r), @,(r), ... }, we can define
the corresponding second-quantised operators cAiT (¢;) which cre-
ate (annihilate) an electron in the i-th basis function, and which
satisfy the canonical anticommutation relations {cAI.T, ¢t = o
The anti-commutation relations are a direct consequence of the
Pauli exclusion principle and of the antisymmetry of the wave
function with respect to the exchange of electrons.

Projecting the real-space Hamiltonian onto the given set of spin
orbitals yields the corresponding discretized Hamiltonian,

Fa

A=Y 8¢+ ueclee, @1
ij ijkl
where
x 1 4
t = J @i (r) _§v2 -y m @;(r)dr, (22
1
Ujj = H (pf(r)(pj(r’)m(pk(r)(m(r’) drdr’,  (23)

are matrix elements of the one- and two-electron terms in the real-
space Hamiltonian of Eq. (2). The matrix elements can be evalu-
ated analytically for simple basis functions such as Gaussians or
plane waves. In this framework, the many-electron wavefunction
is expressed as y(ny, 1y +-+), thus encoding the amplitudes for dif-
ferent occupations of the orbitals (Box 1). It should be remarked
that there are several non-equivalent ways of defining the occu-
pation number basis states, |ny,n, ... ). The canonical ordering
often adopted in quantum chemistry corresponds to the Jordan—
Wigner mapping, ”~ which transforms annihilation and creation
operators into, respectively, lowering and raising spin operators

6% = (8}‘ + i&; )/2. However, this mapping is not unique, and
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more recent alternatives exist, such as parity or Bravyi—Kitaev
encodings, " both of which have been developed in the context
of quantum simulations.

Overall, this occupation-number formalism and the corre-
sponding Hamiltonian (21) serve as the starting point for the
methods described in this section.

5.1 Fermionic neural quantum states

The many-body amplitudes in the occupation number represen-
tation can be readily expressed in terms of neural networks tak-
ing discrete inputs. Since the antisymmetry constraint is fully
encoded in the Hamiltonian (21), the amplitudes y(n;, n,,...),
do not carry any specific symmetry, and any network architecture
can be used to represent them. This observation allows, for exam-
ple, to directly use NQS representations based on complex-valued
RBMs,’~ originally introduced to study spin systems. In this case,
for a system with L spin-orbitals, the many-body amplitude cor-
responding to a given occupation number takes the compact form

L
<bj + Z u/ijn,.>, (24)

M
L
w(ng,ny...np;0) = eXi % HZcosh
j=1

with parameters 6 = (a;, b;, W};).

This ansatz can be optimized with VMC techniques (Box 3),
in which the occupation numbers are sampled according to the
probability density proportional to |y (ny,n,, ... )|?, and the cor-
responding local energy estimator E,,.(n,n,,...) can be com-
puted taking into account the matrix elements of the Hamilto-
nian (21) in the occupation basis. Optimization of the wave
function ansatz typically relies on the stochastic reconfiguration
approach. A number of works have adopted this simple NQS
wave function and achieved competitive variational results for rel-
atively small basis sets, ”>'"" even in conjunction with quantum
computers. In Fig. 6 (a), we show the dissociation curve of
C,, in the STO-3G basis, using the RBM as described above.

An alternative ML-based variational ansatz for second-
quantized Hamiltonians based on Gaussian process regression has
been also proposed,' " which has reached accuracy comparable to
the NQS approach on model Hamiltonians, but has not yet been
applied to the ab-initio quantum chemistry Hamiltonian.

Solids The second-quantization framework also allows one to
treat solids, using as a basis the Bloch orbitals obtained by solv-
ing the crystalline HF equations.'”” Creation and annihilation op-
erators, éjk and éik’ for electrons in the band i with crystal mo-
mentum k are introduced, and the resulting Hamiltonian is sim-
ilar to Eq. (21), with the noticeable difference that the one- and
two-body matrix elements now depend on the crystal momenta:

K, koksk
t andu,.,, — u 2%

ikl ikl , with the four momenta appear-
ing in the two-body integrals satisfying the conservation of the
total crystal momentum. Using Gaussian-based atomic functions
as the single-particle basis and RBM wavefunctions to represent
the many-body state, ”° applied this approach to study the elec-
tronic structure of solids. In Fig. 6 (b), we show the computed
ground-state energies for graphene crystals as a function of the

lattice constant.
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Fig. 6 | Electronic energies for molecules and solids in second quantization (a) Dissociation curve for N, molecule in the STO-3G basis. The

green stars show results for a restricted Boltzmann machine which represents the electrons in discrete space. Figure adapted from.

(b) Graphene

on a honeycomb lattice solved using the cc-pVDZ basis set. Figure adapted from.

Exact Sampling Fermionic NQS are typically sampled using
the MCMC approach commonly adopted in VMC (Box 2). How-
ever, the mixing rate of the MCMC algorithm is known to be slow
in some cases, such as close-to-phase transitions, and MCMC
simulations can suffer from critical slowing down. A way to cir-
cumvent this limitation is to introduce model wavefunctions ex-
plicitly designed to allow exact sampling of their square modulus,
thus avoiding the need to use MCMC. One such family is au-
toregressive neural network wavefunctions,”” a complex-valued
generalization of the autoregressive models commonly adopted
in deep learning. Such networks represent normalized wavefunc-
tions and allow one to obtain perfectly uncorrelated samples di-
rectly; this is useful as the wavefunction distribution for many
QC problems can be highly multi-modal. The exact sampling ap-
proach was applied to QC hamiltonians in recent work by Bar-
rett et al..'”” Optimizations in how Hamiltonian matrix elements
and the corresponding Monte Carlo estimators are computed have
made it possible to treat much larger systems than were accessi-
ble in the early applications of Choo et al.."”’ Specifically, Zhao
etal.'”’ obtain competitive variational energies, improving on the
CCSD energies of molecules in minimal basis sets. Results for
up to around 50 electrons in 80 orbitals (Na,CO5 at equilibrium)
have been obtained at a relatively modest computational cost.

5.2 ML-assisted selected CI

For many QC problems, although the dimension of the Hilbert
space grows exponentially with system size, the number of rele-
vant configurations in the ground state typically remains sparse.
This suggests that by efficiently selecting the relevant configu-
rations and then diagonalising the Hamiltonian on the reduced
subspace, one can achieve highly accurate results. This set of ap-
proaches is also known as selected CI. Different flavours
of selected CI vary in the way relevant configurations are selected.

One well-known approach is called Monte Carlo CI (MCCI)
and can be briefly summarised as follows:

1. Start from a finite set of configurations .S
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2. By considering single or double excitations starting from
configurations in S}, construct an expanded set Si’ .
Construct the Hamiltonian H, for the expanded set S/ and
diagonalise to obtain the wavefunction coefficients for the
configurations in the set.
Discard the configurations whose coefficient is less than a
given threshold c.;,. The remaining configurations then
form a new set of configurations S, ;.

5. Repeat until convergence.
ML techniques can be used to improve selection of the config-
uration set. One such approach is to perform supervised learn-
ing, '~ where a neural network is trained to predict the wavefunc-
tion coefficients using the data from the MCCI method, i.e., the
wavefunction coefficients of the configurations in the set Si’. Af-
ter training, the network can be queried or sampled to select the
configurations with the largest coefficients. In other words, the
network is used to bootstrap and predict the coefficients of con-
figurations not yet seen in the data set. It was shown in Coe' '~ that
such an approach converges faster than the vanilla MCCI method.

The task of selecting configurations for selected CI can also be
cast as areinforcement-learning task where the state is the current
set of configurations and an agent is trained to perform actions on
the set to iteratively modify the configurations with the aim of
minimising the variational energy. This approach was applied in
Goings et al.' '~ to achieve near-FCI accuracy for small molecules
in a small basis set. Another option is to formulate the problem as
a classification task to decide whether to include a configuration
or not, which is the setup used by Chembot [174].

6 Challenges and outlook

Ab-initio QC with neural-network wavefunctions has only just
emerged as a viable path to highly accurate electronic-structure
methods, yet it already competes on small systems with estab-
lished approaches that have been developed for decades. We
imagine that it may become the methodology with the best trade-
off between efficiency and accuracy for systems with up to one to



two hundred electrons and a nontrivial electronic structure, which
are already too large for exact methods, and for which conven-
tional high-accuracy methods may fail. Before that can happen,
however, several challenges must be addressed.

All reviewed methods are currently in a development stage,
and only limited benchmarking is available. As such, it is not
yet clear whether the excellent accuracy seen so far on small sys-
tems will be maintained across a broader range of chemical sys-
tems and, perhaps more importantly, across system sizes. The
latter is referred to as size consistency and size extensivity [175],
and these have not yet been established for any of the methods
reviewed above. Size consistency and extensivity are crucial for
a method to satisfy, for it to predict interaction energies (energy
differences) accurately, and most conventional QC methods are
size-consistent either exactly by construction, or approximately
to a good degree. It is reasonable to imagine that the fixed net-
work size or the fixed number of Slater determinants in the re-
viewed methods could introduce size-inconsistency. Truncated
determinant expansions are certainly the source of severe size-
inconsistency in conventional methods, and it is yet to be seen
to what degree (perhaps fully?) can the much increased expres-
siveness of the individual determinants parameterized with neural
networks mitigate this issue. One could also imagine scaling of
the network size with system size, but how precisely that would
need to be done is likewise an open question. Certain degree
of size-inconsistency does not necessarily render a method unus-
able, but it certainly makes its reliable application more difficult.
If the current ansatzes suffer from size-inconsistency, any mod-
ifications such that the network size or number of determinants
would need to grow with system size would introduce additional
scaling of computational cost, or, if left untreated, may result in
loss of accuracy with growing system size. Whether this is the
case or not is left for future work to establish.

A related issue is our incomplete understanding of what limits
the accuracy of neural-network ansatzes, and how their success
or failure is related to physical phenomena such as strong corre-
lation. Since the underlying electronic problem is exponentially
hard but the algorithms are polynomial, they must be limited in
accuracy in some ways. It is not currently clear, however, whether
the limitations seen to date are caused by the restricted expressive-
ness of the neural networks or by difficulties in optimization or
both. For instance, while it has been proven that a single general-
ized Slater determinant is in principle sufficient to represent any
antisymmetric function, and that an equivariant neural network
can represent any equivariant generalized orbital, '® it might not
be possible to train it within a polynomially scaling time. We note
that in practice, several generalized determinants are usually nec-
essary to reach high accuracy, suggesting that these proofs do not
translate to practically meaningful results.

Apart from these fundamental issues, there are many practical
challenges. While the formal quartic scaling of backflow-based
variational QMC with system size is favourable compared to tra-
ditional QC methods, the prefactor due to the neural networks is
large. Until very recently, this limited applications to systems no
larger than the benzene molecule (42 electrons), which is three
to four times below our envisaged applicability range, although
results for a 108-electron simulation cell of solid LiH have now
been reported. " The prefactor can be reduced by integrating tra-
ditional QC techniques such as pseudopotentials, *” developing
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more efficient neural-network architectures, or using ML tech-
niques such as pre-training and transfer learning. Specific to the
discrete-basis second-quantized approaches is the issue of basis-
set convergence, where sufficiently large basis sets may increase
the prefactor by up to three orders of magnitude compared to min-
imal basis sets. Another challenge is related to stochastic opti-
mization, which produces noise in the converged energies that is
especially amplified when calculating small energy differences,
and dependent on a particular system and ansatz in a way that is
currently poorly understood. This issue can be often resolved in
practice by averaging individual total energies over multiple op-
timization runs, at the cost of increased computational effort.

We are, however, optimistic that many of these challenges can
be addressed and can be addressed quickly, thanks to the rela-
tive simplicity of the framework based on variational QMC com-
pared to conventional QC approaches and to the rate of inno-
vation in deep learning architectures. Indeed, the simplicity of
the approach has already enabled rapid development of multiple
extensions to the first single-point ground-state calculations on
molecules, including transferable wavefunctions, excited states,
and formulations for periodic systems, all originating from mul-
tiple independent research groups.

The high accuracy that can be reached with variational QMC
with neural-network wavefunctions on small systems makes us
optimistic that these technologies can make progress on quan-
tum systems that were as yet challenging with existing QC ap-
proaches, including strongly-correlated electronic states such as
certain transition states, transition-metal complexes, and many
excited states. On a number of select small test systems, the
novel neural-network architectures reviewed above have already
reached thermochemical (sub-mH) accuracy in ionization poten-
tials and electron affinities, and rival or in some cases even ex-
ceed the accuracy of advanced conventional quantum chemistry
methods. Yet these networks are just a small subset of possible
architectures for representing antisymmetric wavefunctions, and
it is unlikely that the optimal ones were found on the first attempt,
so we expect that significant innovation in the pursuit for better
efficiency/accuracy trade-off lies ahead.

An important aspect of variational QMC is that be solutions
can systematically ranked from better to worse together with other
variational methods. This enables the construction of “leader-
boards” of high-accuracy solutions of quantum states of small
molecules, which may serve to produce high-quality training data
for methods that are computationally more efficient but a priori
less accurate, such as machine-learned density functionals and
neural network potentials.

Another promising aspect is the flexibility of neural network
wavefunctions, which not only leads to high accuracy, but perhaps
more importantly might enable us to get accurate results for non-
standard Hamiltonians, for which no efficient off-the-shelf meth-
ods are available. Examples include Hamiltonians with electron—
photon and electron—phonon interactions which are important for
the computation of certain material properties, superconductivity,
and superfluidity.

Finally, the flexibility of the wavefunction ansatz in principle
also enables to generalize across different nuclear geometries, i.e.
the variational learning over entire potential energy surfaces with
one model, as well as to generalize across chemical space. While
the first steps towards the former goal have already been made and



reviewed in this article, progress on the latter will likely require
development of new neural network architectures. This paradigm

of training large “foundation” models or “emulators”

, which can

later be used for inference at a much reduced cost, has been suc-
cessfully used in nature language processing and protein structure
prediction, and we believe it is also possible to build similar sys-
tems for electronic structure prediction.

Overall, we are confident that ab-initio methods based on
neural-network wavefunctions will become an integral part of the
QC toolbox that will enable straightforward electronic-structure
calculations of complex molecular systems.
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Glossary of

and machine-learning terms

Wavefunction y Eigenfunction of the Schrodinger equa-
tion. Describes the electronic structure of a quantum
state, its square amplitude |y|? is the probability density
to find N electrons anywhere in 3 N -dimensional space.

Energy E Eigenvalue of the Schrodinger equation. The
lowest-lying (ground-state) eigenvalue quantifies the sta-
bility of the nuclear configuration. When evaluated for
different nuclear coordinates R, E(R) is the potential en-
ergy surface used in geometry optimization and molec-
ular dynamics.

Born-Oppenheimer approximation Separating motion of
electrons and nuclei, due to their vastly different weight.

Spin A property of quantum particles. Electrons are
fermions with spin quantum numbers {+%, —%}. The
wavefunction must be antisymmetric (switch sign) when
exchanging electrons of the same spin.

Slater determinant Popular ansatz to model electronic
wavefunctions that is antisymmetric with respect to elec-
tron exchange.

Variational principle Enables to solve the Schrodinger
equation by minimizing the energy E over all antisym-
metric wavefunctions y

Basis set and orbitals Set of fixed functions used to
construct solutions of the Schrodinger equation. For
molecules, atomic orbitals are single functions from the
basis set suitable to locate an electron around a nu-

cleus. Molecular orbitals are weighted combinations of
atomic orbitals, describing the location of an electron in
a molecule.

Hartree-Fock A foundational method to solve the Schro-
dinger equation with one Slater determinant composed
of N single-electron orbitals.

Variational Monte Carlo Numerical approximation
method to solving the Schrodinger equation. Uses the
variational principle and can work with flexible ansatz
functions for y.

Machine learning involving multiple layers
of nonlinear functions.

Principle used for training deep neural
networks by implementing the chain rule of differenti-
ation.

Artificial neural network in which
nodes are connected by edges. Nodes have states that are
updated by computations involving the connected edges
and nodes.

Functions whose output does not
change/changes in the same way in response to group
transformation of the inputs, e.g. rotations, translations,
permutations.

Numerical method to sample a
probability distribution by generating a sequence of ran-
dom variables (RV) in which each RV is generated by
perturbing the previous RV.
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Box 1 | First and second quantization

Computational methods for the electronic Schrodinger
equation can be divided to first-quantized approaches in
real space and second-quantized approaches in a discrete
basis [36, Vol. 2, Appx. U]. In first quantization, one
works with the individual electrons and their coordinates
directly in real space (r; € R3,i=1,...,N)asinEq.(1).
Here, the wavefunction y(r,...,ry) must be an anti-
symmetric function that specifies which electrons occupy
which coordinates.

In second quantization, one has first to introduce a dis-
crete one-electron basis (in practice finite), labeled by k,
which then enables one to work with preformed antisym-
metric many-electron basis states (Slater determinants).
Within this formalism, rather than specifying which elec-
trons occupy which one-electron states, the occupation
numbers (n, € {0,1}, Y, n, = N) specify which one-
electron states are occupied without any reference to a
particular electron. Here, the wavefunction Vpnyw =
y(ny, ny ---) can be an arbitrary tensor (function of the dis-
crete indices n;) without any prescribed (anti)symmetry.
The antisymmetry is instead fully encoded in the Slater
basis states.

This ability to push the antisymmetry from the wave-
function object to the many-electron basis is the main ad-
vantage of second quantization, at the cost of having to
commit to a particular discrete basis. But regardless of the
computational framework, either the wavefunction object
itself (in first quantization) or the many-electron basis (in
second quantization) consists of Slater determinants. In
high-accuracy methods, their number grows rapidly with
system size.

r=(1.7,4.9,3.1) n=(0,1,1,0,1)

First and second quantization. Illustration on N = 3 electrons
in 1D and in a finite basis of size 5. © = (I, I,, I3).
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Box 2 | Variational Monte Carlo

Optimization of wavefunctions with neural networks nat-
urally leads to the variational Monte Carlo (VMC) frame-
work. First, Monte Carlo integration of Eq. (3) can han-
dle ansatzes with arbitrary analytical forms for which an-
alytical integrals are not available. Second, VMC sam-
ples these integrals stochastically which naturally com-
bines with the stochastic gradient descent used for op-
timizing neural networks. In conventional QC, VMC
has been used extensively with real-space first-quantized
approaches’’ and more recently in the discrete-basis
second-quantized setting.

The expectation value of any operator, such as the
Hamiltonian (Eq. 3), can be written as a Monte Carlo in-
tegral over a continuous or discrete basis,

(H), = Eq oo [ErocX: )] - (10)

Here, the expectation value is obtained as an expected
value of local energy E,,.(x) = Ix, H ow(x')/w(x), de-
fined for every basis element X, over the square of the
wavefunction. The local energy is calculated from the
matrix elements H,,, of the Hamiltonian in a given basis.
A straightforward and generally applicable way to ob-
tain the samples is Markov-chain Monte Carlo (MCMC).
MCMC is an iterative procedure, in which a new sam-
ple point, x’, is produced from a current one, X, by mak-
ing a proposal step with probability g(x’|x), and then ac-
cepting or rejecting the proposal with a certain proba-
bility [50, Sec. 2.2]. The resulting Markov chain then
samples |y (x)|?. Variants of MCMC differ in the con-
struction of the proposal steps and g, and include the sim-
plest Metropolis algorithm as well as more sophisticated
flavours such as Langevin Monte Carlo [51, Sec. 1.4].
The VMC formula for the expectation value is exact
in the limit of infinite sample size, N' — oo. Still,
in practice, it incurs a statistical error proportional to

v/ Var[E,,.]/N. While 1/y/ N converges slowly with

sample size, VMC has the great benefit that as the ansatz
converges to the exact eigenstates, the local energy con-
verges to a constant (the exact energy), and as such its
variance vanishes and so does the statistical sampling er-
TOf.




Box 3 | Optimizing neural-network ansatzes

Up to the statistical error, the VMC expectation value for
the energy (Box 2) obeys the variational principle (Eq. 4).
VMC exploits this by varying a parametric wavefunction
ansatz yy so as to minimize the energy. For a sufficiently
expressive ansatz, the variational energy will eventually
approximate the ground state energy of Eq. (1) and the
ansatz will approximate the ground state wavefunction W.

The most straightforward optimization method is gra-
dient descent, where the parameters are iteratively up-
dated in the direction of the negative gradient of the loss
function with respect to the parameters. This gradient can
be expressed as certain expectation values and can be effi-
ciently estimated using Monte Carlo integration (Box 2).

In some cases, the optimization can be sped up and
made more stable with higher-order methods, such as the
stochastic reconfiguration scheme, which takes the cor-
relation between individual variational parameters into
account.”’ Stochastic reconfiguration approximates an
imaginary-time evolution where each iteration tries to ap-
proximate best the state el |w), where 7 is a step size.
It is similar to the natural gradient descent algorithm
that is well-known in the ML community, and where
the correlations between parameters are encoded in the
Fisher information matrix.”” Kronecker-factored approx-
imate curvature (KFAC) approach is an approximate ver-
sion of the natural gradient descent that has been designed
to be efficient specifically for neural networks.
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