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ABSTRACT
The principles of measuring the shapes of galaxies by a model-fitting approach are discussed
in the context of shape-measurement for surveys of weak gravitational lensing. It is argued that
such an approach should be optimal, allowing measurement with maximal signal-to-noise,
coupled with estimation of measurement errors. The distinction between likelihood-based and
Bayesian methods is discussed. Systematic biases in the Bayesian method may be evaluated as
part of the fitting process, and overall such an approach should yield unbiased shear estimation
without requiring external calibration from simulations.The principal disadvantage of model-
fitting for large surveys is the computational time required, but here an algorithm is presented
that enables large surveys to be analysed in feasible computation times. The method and
algorithm is tested on simulated galaxies from the Shear TEsting Program (STEP).

Key words: Gravitational lensing - methods: data analysis - methods: statistical - techniques:
miscellaneous

1 INTRODUCTION

Measurement of the effects of weak gravitational lensing has be-
come a key technique in the arsenal of methods used to measure
the distribution of matter, both associated with individual objects
such as galaxy clusters or individual galaxies, and on large-scales
through the measurement of ‘cosmic shear’. A key advantage of
such measurement is that it directly measures the total matter distri-
bution, generally dominated by the dark matter component, which
may then be related directly to theory without needing to under-
stand the uncertain effects of the physics of baryons in galaxies,
provided one avoids the highly nonlinear regime (White 2004,
Zhan & Knox 2004, Jing 2006). Through the use of photometric
redshifts, three-dimensional analyses (Hu 1999; Bacon & Taylor
2003; Heavens 2003) can be used to further measure both the
cosmological growth of structure and the values of cosmological
parameters (Massey et al. 2007a; Heavens et al. 2006; Tayloret al.
2007; Kitching et al. 2007). Until recently such surveys have been
of limited size, but even so the results obtained provided useful
constraints on cosmological parameters and an important test of
the values deduced from other methods. One long-standing puzzle
has been that the range of values for the power-spectrum normal-
isation parameterσ8 found by weak lensing analyses has tended

⋆ The Scottish Universities Physics Alliance

to be higher than found by some other methods (see the discus-
sion in Spergel et al. 2007), an effect that persists at some level in
the latest studies. For the best fit 3-year WMAP value of the mat-
ter density parameterΩ0 = 0.24, the 3D analysis of Massey et al.
(2007b) finds the valueσ8 = 0.96+.09

−.07, and the 2D analysis of
Benjamin et al. (2007) findsσ8 = 0.84 ± 0.07. These results can
be compared with the 3-year WMAP valueσ8 = 0.76 ± 0.05
(Spergel et al. 2007).

Measurement of the effect of weak gravitational lensing re-
quires the statistical analysis of large samples and is sensitive
to any systematic errors in measured quantities. Possible system-
atic errors in lensing signals introduced by uncertainty inphoto-
metric redshifts has been discussed by Edmondson, Miller & Wolf
(2006). Another fundamental concern with the method is whether
the shapes of galaxies, that are used to deduce the signal, may be
measured in an unbiased manner. The problem of shape measure-
ment in optical imaging data is that galaxy images are convolved
with a possibly-varying point-spread function (PSF) whichmust
be accurately corrected for when deducing galaxy shape. Convolu-
tion with the PSF tends to make galaxy images appear rounder (for
reasonably circularly symmetric PSFs) whereas addition ofpho-
ton shot noise has the systematic effect of tending to make round
galaxies appear less round. These two observational effects thus
tend to work in opposite senses, and are independent of each other,
so that both accurate PSF correction and calibration to remove the
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2 L. Miller et al.

effects of noise on shape are required. Following the seminal pa-
per by Kaiser, Squires & Broadhurst (1995) there have been many
suggestions for possible measurement processes, that are discussed
by Heymans et al. (2006) and Massey et al. (2007b) as part of the
‘Shear TEsting Program’ (STEP). Those papers discuss 18 pub-
lished methods for shear measurement. The existence of so many
suggested methods implies that no consensus has yet emergedon
the best way to measure weak lensing signals, and therefore nat-
urally leads us to ask whether there might in fact be one method
that may be regarded as being optimal. In this paper we investigate
whether a model-fitting approach to galaxy shape measurement can
both achieve this aim of optimal measurement and also be con-
structed such that it is computationally feasible for largesurveys.

In the following we shall suppose that galaxies may be char-
acterised by a measurement of their ellipticitye and that a weak
lensing signal, such as cosmic shear, may be inferred eitherfrom
the mean ellipticity or from some form of cross-correlationof the
ellipticities of different galaxies.

We can stipulate a number of requirements that a weak lensing
measurement technique should satisfy.

(i) Optimal measurement of lensing signal, in the sense of max-
imum signal-to-noise.

(ii) Unbiased measurement of lensing signal.
(iii) Ability to calculate the statistical uncertainties of the mea-

surement.

A standard approach that in principle allows us to meet thesecrite-
ria is that of model-fitting, which is the method discussed inthis pa-
per. We first discuss some general principles, including whether we
should use a frequentist or Bayesian approach and how shear may
be measured in an unbiased way from a Bayesian posterior proba-
bility distribution. However, the principal disadvantageof a model-
fitting approach is that it might be computationally prohibitive for
very large surveys. In section 3 we discuss a novel galaxy shape
model fitting algorithm that allows good estimation of the likeli-
hood surface in a usefully short computational time. We alsodis-
cuss the evaluation of shear sensitivity within the Bayesian frame-
work, that allows individual galaxy contributions to be assessed and
unbiased estimation of shear to be made, fulfilling the second crite-
rion above. Some initial results and further considerations are then
discussed. More detailed results from applying the algorithm to the
STEP simulations are given in a companion paper (Kitching etal.,
in preparation).

2 A MODEL-FITTING APPROACH TO SHAPE
MEASUREMENT

2.1 General considerations

The basic rationale for fitting a model of a galaxy’s surface bright-
ness distribution is that, if the family of models is a good repre-
sentation of the true surface brightness profile, the highest possi-
ble signal-to-noise of the resulting parameters should be obtained.
When model and data agree the model encapsulates the full in-
formation content of the data. Although this has been recognised
previously in weak lensing shape measurement (Bernstein & Jarvis
2002), no implementation of weak lensing shape measurement
methods published to date has this property, because the meth-
ods usually adopt some simplification of the surface brightness
profile, such as assuming that second moments entirely charac-
terise the profile (e.g. Tyson, Wenk & Valdes 1990,Kaiser et al.

1995) or equivalently assuming Gaussian profiles or weights
(e.g. Bridle et al. 2002; Kuijken 1999; Bernstein & Jarvis 2002;
Bardeau et al. 2005). Model-fitting has been used for some time
for detailed determination of galaxy surface brightness profiles and
shapes (e.g. Peng et al. 2003). Kuijken (1999) proposed model-
fitting to averaged galaxy images specifically for weak lensing mea-
surement, and Bridle et al. (2002) proposed a method of measuring
shear by fitting galaxies and PSFs with multiple Gaussian compo-
nents. The latter method has been applied to surveys of weak lens-
ing around galaxy clusters by Bardeau et al. (2005), Bardeauet al.
(2007) and Kneib et al. (2003), among others. A Monte-Carlo
method is used to find best-fitting galaxy model parameters for each
individual galaxy, where Gaussian surface brightness profiles, or
combinations of two Gaussian profiles, are assumed for both galaxy
and PSF. Shear measurement and the computational time required
for that model-fitting method has been evaluated by Heymans et al.
(2006). Recently, sets of basis functions known as ‘shapelets’ have
been used to describe surface brightness profiles (Refregier 2003;
Refregier & Bacon 2003 and the related work of Bernstein & Jarvis
2002) but there is no requirement for the individual shapelet func-
tions to match real galaxy profiles. Moving to a pure model-fitting
approach allows us to choose whichever brightness profiles we like,
and for galaxies it clearly makes most sense to choose eitherex-
ponential or de Vaucouleurs surface brightness profiles. Naturally,
the above statements are qualitative, we don’t knowhow muchim-
provement one obtains by fitting a profile that is closer to theactual
profile, but the principle at least is a sound one, that we expect to
satisfy the first of our criteria from the Introduction.

Either frequentist model-fitting, based on determining the
likelihood function, or Bayesian model-fitting that determines the
posterior probability distribution of model parameters, allow error
estimates to be made, satisfying the third of our criteria. This is
not the case for early versions of weak lensing shear estimators,
although error estimates have been made in some recent meth-
ods (Bernstein & Jarvis 2002; Kuijken 2006; Bridle et al. 2002;
Bardeau et al. 2005).

Finally, we should address the question of whether a method
can be determined to be unbiased. This is a serious issue for weak
lensing studies, where the signal is so small that even a small sys-
tematic bias can have a devastating effect. Evaluation of existing
methods by STEP demonstrate that they are indeed biased, with
significant magnitude-dependent biases that need to be corrected
empirically from comparison with simulations (Heymans et al.
2006; Massey et al. 2007b). We discuss in the next section whyin
principle a Bayesian method should be unbiased provided a cor-
rect choice of prior is made, but note that realistic implementations
result in a quantifiable bias that may be corrected for.

2.2 Bayesian estimation of the sample ellipticity distribution

We have previously mentioned the problem of shape measurement,
that not only is the shape changed by convolution with the PSF, but
also noise biases the measured shape, and in general tends tomake
nearly-circular objects systematically appear more elliptical. We
discuss in this section how a Bayesian method may be formulated
that precisely corrects for this phenomenon, provided we make a
correct choice of prior.

Consider a set of observations ofN galaxies that yields the
surface brightness distribution for each galaxy denoted bya vector
of pixel valuesy. The shape of each galaxy may be characterised by
its two-component ellipticitye: the particular definition we choose
for e in this paper is given in section 2.4 but what follows below
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Bayesian galaxy shape measurement3

applies to any shape estimator that we may choose. If the sample of
galaxies has a probability distribution of intrinsic ellipticities (i.e.
the value of ellipticity that would be measured by the observer in
the absence of degradation by the PSF or by noise)f(e), then the
probability distribution ofy is

n(y) =

Z

f(e)ǫ(y|e)de,

whereǫ(y|e) is the probability distribution fory givene.
For each of these galaxies we can generate a Bayesian poste-

rior probability distribution for its ellipticity

pi(e|yi) =
P (e)L (yi|e)

R

P (e′)L (yi|e
′) de′

where P (e) is the ellipticity prior probability distribution and
L (yi|e) is the likelihood of obtaining theith set of data values
yi given an intrinsic ellipticitye.

We would hope that the true distribution of intrinsic elliptic-
ities can be obtained from the data by considering the summation
over the data:

〈
1

N

X

i

pi(e|yi)〉 =

Z

dy
P (e)L (y|e)

R

P (e′)L (y|e′) de′

Z

f(e′′)ǫ(y|e′′)de
′′

where on the RHS we are integrating over the probability distri-
butions to obtain the expectation value of the summed posterior
probability distribution for the sample. We can see that this will be
achieved if bothǫ(y|e) = L (y|e) andP (e) = f (e), assuming
the likelihood is normalised,

R

L (y|e) dy = 1, from which we
obtain

〈
1

N

X

i

pi(e|y)〉 = P (e) = f(e).

The strength of this result is that we can in principle recover
statistically knowledge of the intrinsic distribution of shapes inde-
pendently of assumptions about the shapes of the likelihoodsur-
faces: in particular the likelihood surfaces for ellipticity measure-
ment must be non-Gaussian, being bounded at|e| < 1, but this
has no effect on the results we expect. This result parallelsthe
analogous result discussed by Edmondson et al. (2006) for the case
of Bayesian photometric redshift estimation. It says that we must
know the mechanism by which data values are generated in or-
der to construct the likelihood function, and that we must know
the expected distribution of intrinsic ellipticities, in which case the
summed posterior probability distribution will recover that intrinsic
distribution. It might be thought that a Bayesian approach then has
a non-useful requirement, that we need to know the answer before
we start, but the point of course is that with the correct choice of
prior we then expect the posterior probability distribution for each
individual galaxy to yield an unbiased estimate of ellipticity, and
those sets of individual posterior probability distributions may then
be used to infer the spatially varying shear arising from gravita-
tional lensing. We discuss in section 5.1 one possible method for
creating the correct prior.

2.3 Frequentist or Bayesian measurement?

So far the framework has been described in a purely Bayesian con-
text, but we can also ask whether there is a frequentist equivalent
of the above formalism: can weak lensing shear be measured using

Figure 1. Illustration of the properties of an ideal likelihood estimator x̂L

(left) and ideal Bayesian estimatorx̂B (right) for the Gaussian example de-
scribed in the text. The top pair of graphs show the correlation between
the input and deduced values. Two regression lines are shownon each,
one being the regression of input on estimated value, the other being the
regression of estimated on input value. The next two pairs show the dis-
tribution of the difference between input and estimated values compared
with either the estimated values (centre) or the input values (bottom). Note
the graph x-axes differ between the centre and bottom panels. For a given
input value, the likelihood estimator yields an unbiased estimate (regres-
sion slope unity) whereas the Bayesian estimator appears biased (regression
slope 2.75). However, for a given estimated value, the likelihood estimator
is biased (regression slope 0.36) and the Bayesian estimator is unbiased.
The Bayesian estimator returns the best estimate of the input value for a
given measurement.

likelihood functions alone? Conversely, are there any disadvantages
to using a Bayesian method?

It is important to recognise that likelihood and Bayesian esti-
mators measure different things. We can illustrate this by consider-
ing a sample of galaxies (say) with some intrinsic propertyx that
we wish to determine from fitting to some measurementsy. We
shall look at the results obtained with either a Bayesian estimator,
x̂B =

R

xp(x|y)dx, or a likelihood estimator,̂xL =
R

xL(y|x)dx
(the general considerations discussed here apply also to maximum
likelihood estimators). Suppose the intrinsic distribution of x has
a normal distribution of variancea2, and that for eachx drawn
from this distribution the measurement process causes a normally
distributed uncertainty of varianceb2. Fig. 1 shows the results ob-
tained in a Monte-Carlo realisation for the illustrative casea = 0.3,
b = 0.4.
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The likelihood estimator is based on the functionL(y|x) and
in Fig. 1 is unbiased in the regression of input on estimated val-
ues. The Bayesian estimator is based on the functionp(x|y) and
is unbiased in the regression of estimated on input values: that is,
for a given set of measurements the Bayesian estimator yields the
best estimate of the input values. The likelihood estimatoryields
a distribution of measured values that is broader than the intrinsic
distribution. Notice however that the Bayesian estimator yields a
distribution that isnarrower, despite the result of section 2.2 that
the summed posterior probability distribution yields the intrinsic
distribution if the correct prior is chosen. This apparent paradox is
resolved by realising that each of the individual estimatedvalues is
associated with its own posterior probability distribution, so that the
sum of the distributions is broader than the distribution ofexpecta-
tion values. While this might seem undesirable, this is inevitable in
any noisy measurement process.

In the case of ellipticity shape measurement, we expect there
to be other reasons why a likelihood estimator might be biased, in
particular at largee values or for low signal-to-noise, where the
boundary|e| < 1 renders the likelihood function asymmetric and
highly non-Gaussian. With no prior, the strong degeneracy between
size and ellipticity in the likelihood fitting can create regions of
high likelihood at extreme values of ellipticity, and giventhe hard
bound|e| < 1 such an estimator cannot be unbiased.

In the frequentist approach, it is also possible to estimateer-
rors for the individual galaxies, and this is important to establish
the contribution to the signal from each galaxy. As in the Bayesian
approach, we expect the information on shear to decrease as the
signal-to-noise (S/N) decreases: even with an unbiased estimator ê
it would be important to quantify this effect and allow for itin the
shear estimation.

A final consideration is that in weak lensing surveys we are
not simply interested in measuring the shapes of individualgalax-
ies, but rather in measuring the systematic lensing shear ina sam-
ple. Usually this is measured from the mean ellipticity: thus it may
be possible to have an ellipticity estimator that is biased but where
the shear estimate from a sample is unbiased, orvice versa. If any
bias were isotropic, corresponding to a bias in the value of|e| but
not in orientation, then we might hope that the bias would aver-
age out. However, even in this case we should notassumethat the
shear estimator〈e〉 is unbiased, since the likelihood functions fore

measurement must be non-Gaussian ande-dependent, any shiftg
in the distribution ofe caused by lensing would lead to bias in the
estimated shear.

However, even the Bayesian method is not immune to the
problem of bias, particularly in a realistic implementation of the
Bayesian method where we are forced to assume a zero-shear prior,
as discussed below. But the bias can be quantified and the method
provides a self-contained framework within which we can work out
all the required quantities. This is the framework that we return to
in the remainder of this paper.

2.4 Bayesian shear estimation and the shear sensitivity

Following Heymans et al. (2006) we assume observed galaxy ellip-
ticity e is related to the intrinsic galaxy ellipticityes in the weak
lensing regime via:

e =
es + g

1 + g⋆es

from Schramm & Kayser (1995); Seitz & Schneider (1997), where
e is represented as a complex variable andg, g⋆ are the reduced

shear and its complex conjugate respectively.e is defined in terms
of the major and minor axes and orientationa, b, θ respectively, as
e = (a − b)/(a + b) exp(2iθ). In this formalism, we expect

〈e〉 = g (1)

for an unbiased sample where〈es〉 = 0, and so〈e〉 for a sample
of galaxies is adopted as our estimator ofg. Note that this result
differs from the other commonly used formalism where ellipticity
is instead defined ase = (a2 − b2)/(a2 + b2) exp(2iθ).

For a population of galaxies,〈e〉 =
R

ef(e)de wheref(e)
is the ellipticity probability distribution for the sample. But in the
Bayesian formalism we can write a similar expression for an indi-
vidual galaxy if we know its Bayesian posterior probabilitydistri-
bution,〈e〉i =

R

ep(e|yi)de. Hence for a sample ofN galaxies
we can evaluate the sample mean as

〈e〉 =
1

N

X

i

Z

epi(e|yi)de =
1

N

Z

e
X

i

pi(e|yi)de.

In practice we shall use the first of these expressions, as estima-
tion of ellipticities for individual galaxies allows errorestimates to
be made for each galaxy, and its contribution to the signal tobe
evaluated.

However, in measuring shear we cannot know in advance the
correct prior to apply, even if we know the intrinsic unsheared el-
lipticity prior distribution, because the amount of shear varies over
the sky in a way that we are attempting to measure. We must there-
fore use a prior that contains zero shear. The effect of this is that
as signal-to-noise decreases, the measured ellipticity distribution
tends to the prior, and in the limit of zero signal-to-noise no shear
signal is recoverable. This is precisely what we should expect of
course: no measurement method can extract a measured shear value
from data with zero signal-to-noise, and a Bayesian method is no
different in that respect. A Bayesian method does however allow us
to estimate the magnitude of this effect for each individualgalaxy.
Consider the Bayesian estimate of ellipticity〈e〉i, defined above,
that is measured for theith galaxy, and express its dependence on
each component of shearg as a Taylor series. For componente1,

〈e1〉i ≃ es
1i + g1∂〈e1〉i/∂g1 + g2∂〈e1〉i/∂g2 + . . . (2)

and similarly for componente2, where numeric subscripts indicate
the components ofe andg. In the weak lensing limit the cross-
terms vanish. If we sum overN galaxies in an unbiased sample we
find

N
X

i

〈e1〉i ≃ g1

N
X

i

∂〈e1〉i/∂g1.

We may optionally multiply both sides in equation 2 by a statistical
weight for each galaxy,wi. Providedwi is uncorrelated withes

i we
may then define a weighted estimate of shear for the sample:

ĝµ ≡

PN
i wi〈eµ〉i

PN
i wi∂〈eµ〉i/∂gµ

(3)

for µ = 1, 2. We shall call∂〈eµ〉i/∂gµ the shear sensitivity. It
is a measure of how much each Bayesian estimate is biased by
the use of the zero-shear prior, and it takes values in the range
0 < ∂〈eµ〉i/∂gµ 6 1, where the lower bound is expected in the
limit of zero signal-to-noise. The upper bound would be attained
in the case of ideal measurement at high signal-to-noise, where we
expect no bias: in this case the Bayesian measure is a good measure
of the true ellipticity, regardless of which prior is assumed, and dif-
ferentiating equation 1 yields unity for the shear sensitivity. The
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weightswi could in principle be tuned for optimal signal-to-noise
in the measurement(s) being made, such as the values of cosmo-
logical parameters. Care should be taken that any weights that are
a function of ellipticity do not introduce bias into shear measure-
ment. Since the shear sensitivity is effectively a measure of how
much information about the effect of lensing is carried by each
galaxy, the weights should themselves also include a dependence
on ∂〈eµ〉i/∂gµ, as well as on the measurement error and on the
redshift-dependent cosmological effect of lensing on eachgalaxy.

The shear sensitivity may be estimated for each galaxy and
for the survey as a whole without recourse to external calibra-
tion from simulations, as described below. Kaiser et al. (1995);
Luppino & Kaiser (1997); Kaiser (2000) and Bernstein & Jarvis
(2002) have emphasised the utility of knowing the shear ‘polar-
izability’ or ‘responsivity’ for individual galaxies, as this not only
allows accurate optimised shear measurement but also allows fu-
ture surveys to be planned and optimised.

The estimator̂gµ is appropriate for a survey where the shear
is uniform over some region (and this is assumed in the STEP sim-
ulations discussed below), but in the more general case we instead
infer the shear correlation function or some related quantity such as
shear variance from a measurement such as〈eiej〉. In this case we
can compute the analogous estimator

〈ĝµgµ〉 =

P

i,j wiwj〈eµ〉i〈eµ〉j
P

i,j wiwj (∂〈eµ〉i/∂gµ) (∂〈eµ〉j/∂gµ)
.

We now discuss possible approaches to calculating the shear
sensitivity, first for normal prior and likelihood distributions, then
for the more general case where the shear sensitivity may be evalu-
ated numerically from the measured likelihood surfaces of individ-
ual galaxies.

2.5 Calculation of shear sensitivity

As an illustration of the calculation of shear sensitivity,suppose
the prior is described by a normal distributionP(e) of variance
a2 and 〈e〉 = 0, and that the likelihoodL(e) for a particular
galaxy also has a normal distribution of varianceb2 centred on
some valuee0. It is straightforward then to show that the Bayesian
posterior probabilityp(e|y) also has a normal distribution of vari-
ancea2b2/(a2 + b2) and expectation value〈e〉 = e0a

2/(a2 + b2).
For perfect measurement of ellipticity (b2 ≪ a2) we expect equa-
tion 1 to hold, so for this galaxy∂〈eµ〉i/∂gµ = ∂e0µ/∂gµ = 1.
For more noisy measurement, we expect

∂〈eµ〉i
∂gµ

=
a2

a2 + b2

∂e0µ

∂gµ
=

a2

a2 + b2
.

The shear sensitivity decreases as the measurement error increases.
The value of the shear sensitivity is also given by the inverse of
the slope of the regression of the intrinsic ellipticity on estimated
ellipticity illustrated in Fig. 1.

The above illustration indicates that it is straightforward to
calculate the shear sensitivity, however in general it would not be
safe to assume normal distributions: not least becausee is defined
such that|e| < 1, so when the measurement error becomes large
L(e) cannot be normally distributed. We discuss here one method
of calculating the shear sensitivity numerically. We should empha-
sise that this can be done entirely internally to the fitting process,
with no need to calibrate shear sensitivity externally fromsimula-
tions.

Consider first the response of the posterior probability distri-
bution to a small amount of shear. The prior probability doesnot

depend on the shear in our implementation. Let us assume thatap-
plying a weak lensing shear shifts the likelihood function by some
small amount,L(e−es) → L(e−es−g) and expand as a Taylor
series:

L(e − e
s − gµ) ≃ L(e − e

s) − gµ
∂L

∂eµ
+ . . . .

Then, substituting into

〈e〉 =

R

eP(e)L(e)de
R

P(e)L(e)de

and differentiating with respect tog we find,

∂〈eµ〉

∂gµ
≃

R

(〈e〉 − e)P(e) ∂L
∂eµ

de
R

P(e)L(e)de

as an estimate of weak lensing shear sensitivity. This expression is
cast in terms of the derivatives of the likelihood surface multiplied
by the prior: it may also be expressed in terms of derivativesof the
prior multiplied by the likelihood:

∂〈eµ〉

∂gµ
≃ 1 −

"

R

(〈e〉 − e)L(e) ∂P
∂eµ

de
R

P(e)L(e)de

#

.

This may be evaluated numerically from the posterior probability
surface for each galaxy, and is preferred over the precedingexpres-
sion in the case where the derivative of the prior is known analyt-
ically. For the case of normal distributions ofP(e) andL(e) the
expression yields the analytic result above.

3 FAST SHAPE MEASUREMENT

3.1 The algorithm

The technique we adopt for measuring〈e〉 and its uncertainty is to
fit model galaxy surface brightness profiles to the data for individ-
ual galaxy images. The simplest galaxy model has six free param-
eters if the form of the surface brightness profile is fixed: central
surface brightness, size, ellipticity and celestial position. The prob-
lem of fitting six parameters to large samples of galaxies is that this
could be a time-consuming task, probably prohibitively so.How-
ever, we can greatly speed up the process if we can marginalise
over any parameters that are not of interest to the weak lensing mea-
surement. It turns out thatfor isolated galaxiesit is straightforward
to marginalise over three of the parameters, central surface bright-
ness and position, if the model fitting is treated in Fourier space,
as described below. And because there exist fast Fourier transform
algorithms this approach can be done in a short amount of compu-
tational time.

We can start by writing the statistic

χ2 =
X

i

»

yi − Cym
i

σi

–2

=
X

i

y2
i

σ2
i

+ A (C − B)2 − AB2,

whereyi is the data value in pixeli, σi is the statistical uncertainty
of that data value,ym

i is a model value for that pixel,C is the model
amplitude and where

A =
X

i

„

ym
i

σi

«2

, B =
X

i

yiy
m
i

σ2
i

/
X

i

„

ym
i

σi

«2

.

We assume the pixel noise is stationary and uncorrelated, which is
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6 L. Miller et al.

appropriate for shot noise in CCD detectors in the sky-noiselimit.
Bright galaxies may make a significant contribution to photon shot
noise, but in this case the non-stationarity of the noise makes it not
possible to work in Fourier space. Hence this algorithm is appropri-
ate for model fitting to faint galaxies in the sky-limited regime. The
method can be generalised to the case where the noise is stationary
but correlated between pixels, and the example of radio interferom-
eter observations is discussed qualitatively in section 5.4.

Then if we adopt a priorP(C) for the model amplitude we

can marginalise the likelihoodL = e−χ2/2 overC:

L = e−
P

y2

i /2σ2

eAB2/2

Z Cmax

Cmin

e−A(C−B)2/2P(C)dC.

We shall adopt a uniform prior forP(C) in the rangeCmin 6 C 6

Cmax. We expectC > 0, but if the galaxy is significantly detected
the Gaussian form of the likelihood causes the value of the prior to
become unimportant at both large and smallC, and we can simplify
the calculation by allowingCmin → −∞ andCmax → ∞, so that

L ≃

r

2π

A
e−

P

y2

i /2σ2

i eAB2/2.

However, although we have eliminated the amplitudeC, L still de-
pends on the model second moment,A =

P

(ym
i /σi)

2. Thus we
need to introduce the model constraintA =constant, achieved by
renormalising each model appropriately. Since for a given dataset
P

y2
i /σ2

i is also fixed, we can writeL ∝ eAB2/2 when maximis-
ing.

We can also rapidly calculate the marginalisation over galaxy
celestial position if we work in Fourier space, writing

yi =
X

k

yke−ik.xi , ym
i =

X

ym
k e−ik.xi .

We can simplify the various summations by assuming that we are
dealing with faint galaxies in weak lensing measurement, such that
σi is dominated by the background photon shot noise and is con-
stant for all pixels. And since the modelym

i is real,ym
k = ym

k
⋆ and

P

i yiy
m
i =

P

k ykym
k

⋆. If we introduce a shiftX into the model
position, the new model becomes

ym
i

′ =
X

k

ym
k e−ik.xie−ik.X

and
X

i

yiy
m
i

′ =
X

k

ykym
k

⋆e−ik.X = h(X)

whereh(X) is the cross-correlation of the datayi with the model
ym

i . So the likelihood becomes

L ∝ exp

»

|h(X)|2

2σ2
P

ym
i

2

–

.

To marginalise overX we need to adopt a priorP(X), but in this
case it cannot be uniform asL →constant as|X | → ∞ and the
marginalised likelihood would not be finite. This problem arises
because, no matter how large a pixel value, it always has a finite
chance of being due to random noise, with the true galaxy being
positioned elsewhere. We shall adopt a prior which is centred on
some assumed galaxy position that has been previously estimated
and which falls off to zero at large distances: this is equivalent to
assuming that a galaxy does indeed exist somewhere near the loca-
tion we have chosen. We shall assume a prior which is symmetric
and centred on the nominal galaxy position, which for convenience

is at the coordinate origin, such as:

P(X)d2
X =

1

2πb2
e−|X |2/2b2d2

X .

The process of model fitting is seen from the above to be one
of cross-correlating the data with a model. Galaxies generally
have smooth centrally-concentrated surface brightness distributions
which are convolved with near-Gaussian PSFs in an observed im-
age. The model is also smooth, centrally concentrated and con-
volved with the same PSF. From the central limit theorem sucha
cross-correlation should be well represented by a two-dimensional
Gaussian distribution,

h(X) = h0 exp
h

−(X − X0)C
−1(X − X0)

T
i

whereC−1 is the inverse covariance matrix and some shiftX0

of the maximum from the origin is allowed. In what follows we
assume circular symmetry for simplicity, although this assump-
tion may be removed without affecting the final result (a two-
dimensional Gaussian distribution may always be transformed to a
circularly-symmetric distribution by a coordinate transformation).
If the cross-correlation function has the formh = h0 exp[−|X −
X0|

2/s2] then

L ∝
1

2πb2

Z ∞

0

exp
h

βe−|X−X0|
2/s2

i

e−|X |2/2b2d2
X ,

where

β =
h2

0

2σ2
P

ym
i

2
.

We could evaluate this by, for example, expanding the first expo-
nential as a Taylor series and hence obtaining a series solution for
the marginalised likelihood. We could also evaluate it purely nu-
merically, but this would require evaluation of the cross-correlation
function on an extremely fine grid in order to achieve adequate ac-
curacy. Either of these approaches would be computationally ex-
pensive, and an alternative is to find an approximate value ofthe
integral by writing

L ∝
1

2πb2

Z ∞

0

n

exp
h

βe−|X−X0|
2/s2

i

− 1 + 1
o

e−|X |2/2b2d2
X .

If b ≫ s,

L ∝ 1+
1

2πb2
e−|X0|

2/2b2
Z ∞

0

n

exp
h

βe−|X−X0|
2/s2

i

− 1
o

d2
X

and changing variables to a polar system centred onX0,

L ∝ 1 +
s2

b2
e−|X0|

2/2b2
Z ∞

0

n

exp
h

βe−r2
i

− 1
o

rdr

∝
s2eβ

2βb2
e−|X0|

2/2b2 β ≫ 1. (4)

approximately, where the constant of proportionality has no model
dependency providedA is held invariant (we could obtain a simi-
lar result more exactly if we were to adopt a top-hat prior forthe
galaxy position). If the widths, amplitudeh0 and centroidX0 of
the cross-correlation function can be measured, the marginalised
likelihood may be estimated from equation 4.1 In the more gen-
eral case, where the cross-correlation function is approximated by

1 It may seem that the requirement for a prior on position may beremoved
by allowing b → ∞. However, this is an artefact of the approximation.
There is no clear way of identifying a value forb, but it should be set suffi-
ciently small that confusion from other nearby galaxies is eliminated.
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a bivariate Gaussian with widthss1 ands2 in the two principal di-
rections, then equation 4 is modified bys2 → s1s2.

3.2 Implementation

Using the above, the likelihood may be estimated for a given set
of model parameters, marginalised over the ‘uninteresting’ position
and brightness of the galaxy. If we choose either an exponential disc
or a de Vaucouleurs model for the surface brightness, the free pa-
rameters are the scale-length and two ellipticity valuese, or equiv-
alently the scale-length, the axial ratio and the orientation. The val-
ues ofe are restricted to lie in the range|e| < 1, and for faint
galaxies the probabilityp(e) is broad, making a grid search ine an
easy and not-too-expensive approach. The resulting likelihood may
be numerically marginalised over the galaxy scale-length,which
is also ‘uninteresting’ for weak lensing measurement, to obtain a
likelihood surface that is a function of ellipticity alone.

To evaluate the cross-correlation functionh(X) (returning
now to the general case where we do not assume circular symme-
try) we can use the fast Fourier transform method, which proceeds
as follows:

(i) Generate a series of 2D galaxy surface brightness modelson
a three-dimensional grid in parameter space of scale-length and
ellipticity. These models can be discrete Fourier transformed and
those transforms stored for use with all the galaxies. The choice
of a grid of models allows a considerable multiplex gain to bere-
alised: the models can be pre-generated on that grid and the same
set used for fitting to every galaxy.

(ii) Estimate the surface brightness profile of the PSF on the
same pixel scale as the models. Usually this would be done by
stacking images of stars from the region of an image as the galax-
ies being measured. The PSF can also be Fourier transformed and
stored. If the PSF varies over an image or between images, theim-
age may be divided into zones over which the PSF is approximately
invariant, and the Fourier transform of the PSF for each zonestored
separately. If a mathematical model for the varying PSF is known
this may also be used to generate a smoothly varying PSF (e.g.
Rhodes et al. 2007).

(iii) Estimate the rms noise in each pixel from the entire image.
(iv) Identify a set of nominal galaxy positions to be measured,

most likely from a separate image analysis tool such as SExtractor
(Bertin & Arnouts 1996).

(v) In turn for each galaxy, extract a sub-image centred on that
galaxy, Fourier transform it, and temporarily store the result.

(vi) For this galaxy, take each possible model in turn, multiply
by the transposed PSF and model transforms to carry out the cross-
correlation, measure the amplitude, width and position of the maxi-
mum of the resulting cross-correlation, and hence evaluatethe like-
lihood for this model and galaxy. Repeat for all models on thegrid
(or for a subset of models if a more intelligent maximum-likelihood
or MCMC search algorithm is being employed).

(vii) Numerically marginalise over the scale-length parameter.
In the implementation described here we adopt a uniform prior for
the distribution of galaxy scale-length. This could be replaced by a
prior close to the actual distribution of galaxy sizes, although such
a prior would need to be magnitude-dependent.

(viii) Discard the extracted data when all models have been ex-
plored, and repeat for the next galaxy.

The result is a grid of likelihood values in ellipticity parameter
space which thus defines the probability surfacep(e). The reduced
shear may then be directly estimated from〈e〉, and the uncertainty

in individual e values may be estimated from the width of the like-
lihood surface.

There is a significant multiplex gain obtained by Fourier-
transforming the models, the PSFs and the data and storing the
results. The time-consuming step then is the cross-correlation,
which comprises some multiplications and a single inverse Fourier
transform to obtain the cross-correlation function. It is this multi-
plex gain, combined with the elimination of three parameters by
marginalisation, that yields a fast fitting algorithm.

The algorithm is approximate, in the sense that we require the
cross-correlation amplitude to be high enough thatβ ≫ s2/2b2,
and also in that we assume the core of the cross-correlation function
can be adequately modelled as a Gaussian, and we have assumed
that the pixel noise is invariant. This latter constraint may impose
a maximum brightness limit on galaxies that may be fitted, as the
pixel noise is not invariant in the case where the galaxy itself makes
a significant contribution to the noise. For a fixed size of extracted
region around each galaxy, there is also a maximum galaxy size
that can be adequately measured. Larger sizes are possible at the
expense of greater computation time.

We note that, in this method, the final PSF that is used is it-
self a convolution of PSF components arising from the atmosphere,
telescope and the pixel response of the detector. We do not need to
distinguish the origin of the final PSF that is used, the method takes
a galaxy model and convolves that with an estimate of the final
PSF in order to cross-correlate with the data. Ultimately however
this, and all shape measurement methods, are limited by the extent
to which the sampled data fully encapsulate the informationin the
sky: the effect of sampling is to alias spatial frequencies higher than
the Nyquist sampling frequency. This affects both the creation of
the stacked PSF and the model-fitting itself. If astronomical obser-
vations were band-limited this would not be a problem, but inreal-
ity some aliasing is inevitable. Poorly sampled observations should
ideally be “dithered” in order to reduce such aliasing effects.

4 RESULTS

4.1 Tests on simulated galaxy images

The algorithm has been implemented and tested on simulations
provided for the ‘Shear TEsting Program’, STEP (Heymans et al.
2006; Massey et al. 2007b). Images of galaxies were simulated for
the Canada-France-Hawaii telescope with pixel scale0.206′′ . The
simulations used here to demonstrate basic shape measurement are
those with an isotropic PSF of FWHM0.9′′ and zero lensing shear
(tests of shear measurement in the companion paper will cover all
the simulated PSF shapes and shear values). Simulated galaxies
with a mixture of bulge/disc components were used but all were
fitted with a single exponential surface brightness profile.

As here we are testing the Bayesian method, and not our abil-
ity to locate galaxies, we use as input galaxy positions those that
were used when making the simulations. We also adopt as the prior
P(e) the input ellipticity distribution used in the simulations.

For these tests the size of each subimage was 32 pixels square.
The choice of subimage size is a compromise between (i) having
the subimage large enough that the galaxy surface brightness distri-
bution is not unduly truncated and (ii) not allowing the computation
time to become excessively long. In our initial implementation we
have also required that only a single galaxy should occupy each
subimage, thereby eliminating close pairs. The choice of 32pixels
for the STEP galaxies ensured that the subimage was larger than
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Figure 2. Comparison of Bayesian posterior probabilityp(e) (left) and
likelihoodL(e) (right) surfaces for two individual galaxies. The grey-scale
is logarithmic showing a range of 5 in∆logL below the maximum value
(shown as white) in each case. The upper panel shows results from fitting
to a magnitude24.17 simulated STEP galaxy, the lower panel a magnitude
23.15 galaxy. Solid lines show the two parameter1-σ and2-σ contours.
The cross shows the input ellipticity value.

the half-light diameter in every case. In principle, the subimage size
could be a function of galaxy size or brightness, but this sophisti-
cation would introduce some complexity into the code and hasnot
been tested here.

The likelihood was evaluated on a cartesian grid ine, sam-
pling at intervals of 0.1 out to a maximum axial ratioa/b = 10.
The resulting galaxy shapes were found to be consistent for elliptic-
ity grid intervals less than 0.1 for these STEP galaxies. Thechoice
of grid interval may need to be adjusted for different surveys.

The PSF was created by stacking stars from the simulation, al-
lowing sub-pixel registration using sinc-function interpolation. Ul-
timately any shear measurement survey will be limited by theac-
curacy to which the PSF is known. Systematic PSF errors will of
course cause a systematic error in estimated shear, and if the PSF
varies on some angular scale within a survey this will imprint a
signal on that scale on the shear power spectrum. This concern is
common to all methods of shape and shear measurement, and we
do not specifically address this problem here.

An assumption of the fast fitting algorithm is that we are fitting
to individual galaxies, and hence close pairs of galaxies cannot be
fitted with this algorithm. In practice one could identify such close
pairs in the data at the galaxy-detection stage, and on thosegalaxies
we could use a fitting algorithm that fits multiple components. In
this case the full six parameters per galaxy would need to be fitted,
with marginalisation over uninteresting parameters beingcarried
out post-fitting. There would still be a significant speed advantage
to be gained by using the fast fitting algorithm on the more isolated
galaxies however. In this paper we focus on testing the Bayesian
method and the fast fitting algorithm, and hence in the results pre-
sented here we exclude cases where multiple objects are identi-
fied within a single galaxy sub-image. This procedure excludes

Figure 3. Tests on the STEP 1 simulated galaxy sample, as a function of
galaxy apparent magnitude. Each graph shows the expectation value of the
Bayesian estimate of componente1 (x-axis) plotted against the input value
(y-axis). Results for componente2 are similar and are not shown. Left-hand
panels show individual simulated galaxies, right-hand panels show results
binned in intervals of the measured ellipticity. Two magnitude ranges are
shown,m > 22 (upper panels) andm 6 22 (lower panels). The solid
lines have a slope of unity, the dashed lines on the left-handpanels show
the least-squares regression of input values on estimated values. The mean
error on individual measured ellipticities is shown on the left-hand panels.
Vertical error bars on the right-hand panels indicate the error in the mean
input values in each interval of measured values.

13 percent of galaxies in the STEP simulations. Some rejection of
close pairs is required in most other methods of shape estimation
also: in future, development of a fast multiple-component fitting al-
gorithm might allow this constraint to be relaxed. We also test the
fit returned by the fast fitting algorithm to determine whether the fit-
ted centroid of a galaxy is within a reasonable range of the nominal
position, given the prior on the galaxy position: this wouldiden-
tify some of the cases of multiple galaxies. The criterion adopted is
that the fitted galaxy position should lie within3σ of the nominal
position, whereσ2 is the prior position variance, and this excludes
9 percent of the initial simulated galaxy sample but no others that
are excluded by the ‘close pairs’ criterion.

Fig. 2 shows the posterior probability surfaces that resultfrom
fitting to two of the simulated galaxies. For completeness wealso
show the likelihood surfaces, which are broader and more biased
away from the nominal value of ellipticity.

Fig. 3 shows the results for each galaxy in the simulations
(only the first component of ellipticity,e1, is shown, similar results
are obtained fore2). At bright magnitudes there is good correspon-
dence between input and measured ellipticity values. The slope ap-
pears slightly steeper than unity, but with a value for the slope of
1.04 ± 0.08 the departure from unity is not very significant.

At fainter magnitudes, as the signal-to-noise decreases, an in-
creasing fraction of galaxies with a given value of the Bayesian
measure are drawn from a wider range of input ellipticities,as ex-
pected from the earlier discussion. The slope of the relation be-
tween input and measured values is again close to unity, withvalue
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Figure 4. The summed posterior probability distribution of measuredellip-
ticity valuese1 (top) ande2 (bottom) as a function of apparent magnitude.
The priorP(e) is also shown for comparison as a dashed line. The magni-
tude ranges of the simulated galaxies arem 6 22 (left panels) andm > 22
(right panels).

0.93 ± 0.11. At all magnitudes the summed posterior probability
distribution is a faithful reproduction of the distribution of the in-
put prior distribution (Fig. 4) as expected from section 2.2. There is
also no detectable correlation between estimated values ofe1 and
e2 in this simulated galaxy sample.

We can also investigate the effect of measurement uncertainty
in the prior positions of the galaxies. A random position uncertainty
drawn from a normal distribution was introduced to each galaxy
and the shapes remeasured. The prior assumed in the fitting was a
normal distribution of rms 3 pixels throughout. In the results, no
change was found in the slope of Fig. 3 for rms position uncertain-
ties as large as 10 pixels. The scatter about the mean relation did
not change for rms uncertainties less than 3 pixels and increased by
4 percent for rms uncertainties as large as 10 pixels. This test indi-
cates that the results are not sensitive to uncertainties ingalaxy po-
sition measurement. We would recommend that the position prior
that is chosen should match the actual position uncertaintyfor the
faintest galaxies that are reliably fitted.

Tests of the algorithm, again using the full suite of STEP simu-
lations specifically to measure the shear values recovered,are made
in the companion paper (Kitching et al. in preparation).

4.2 Speed

The algorithm has been implemented in the C programming lan-
guage 2 for use on desktop computing systems, with discrete
fast Fourier transforms being supplied by the FFTW library
(Frigo & Stevens 2005)3. The computational speed per galaxy ob-
viously depends on the computing system being used as well as
on issues such as the extent to which the multiplex advantageof
having many galaxies per PSF function can be exploited. In the
simulations described above, using readily available 2 GHzdesk-
top PCs in 2007 and evaluating the likelihood surfaces on a grid
of sampling interval 0.1 ine, we found computation times around

2 The codelensfitis available on request from the authors: modification to
the data input stages is likely to be required for any particular survey.
3 http://www.fftw.org

1.0 s per galaxy, implying that a survey of107 galaxies could be
analysed in a few months on a single standard desktop PC. The
computation time scales inversely with the square of the sampling
in ellipticity and increases approximately asm2 log m for subim-
ages of sizem × m.

5 FURTHER CONSIDERATIONS

5.1 The ellipticity prior

A number of studies have been made of the distribution
of galaxy ellipticities (e.g. Lambas, Maddox & Loveday 1992;
Brainerd, Blandford & Smail 1996; Ebbels, Kneib & Ellis 1999;
Bernstein & Jarvis 2002). These studies find a wide variationin
distribution of axial ratios, which appears strongly dependent on
apparent magnitude, presumably largely as a result of the chang-
ing mix of galaxies with brightness and redshift. The distribution
of ellipticities at the faint magnitudes probed by ongoing and fu-
ture weak lensing surveys is even less well-known, and the best
estimate would come from the lensing data itself. For a sufficiently
large survey the prior estimate could also be allowed to be a func-
tion of galaxy brightness, redshift or colour, if that information
were available. One way to estimate the ellipticity prior may be to
adopt an iterative approach: evaluate the summed posteriorproba-
bility distribution starting from an initial guess of the prior distri-
bution; then iteratively adjust the assumed prior until thesummed
posterior and prior distributions agree. We would expect this to be
a stable iteration in the absence of sampling noise, becauseif the
prior is initially assumed distributed to values that are smaller than
are required to explain the data, the next iteration will adjust the
prior to be distributed to large values, andvice versa. Such an ap-
proach might however be unstable with small surveys where sam-
pling noise might be important.

In the case of lensing shear estimation, the ellipticity prior
should also include the shear effect, and should not just be the in-
trinsic pre-sheared distribution. As the shear varies on relatively
small scales, and we are unlikely to have sufficient number of
galaxies to measure accurately the ellipticity distribution in small
regions, we suggest that correct generation of the prior should be to
force the prior to be circularly symmetric, centred on〈e〉 = 0, and
to be obtained from the large numbers of galaxies that comprise the
full survey. In this way ‘false’ shear variation arising from noise on
the prior would be avoided, but the resulting shear values would be
slightly biased to low values, in a magnitude-dependent way. This
bias has already been discussed in section 2.4 and a method ofcor-
recting for the bias using the shear sensitivity has been described.

5.2 Choice of model surface brightness profile

A key advantage of the model-fitting approach over other methods
is that a surface brightness profile may be chosen that accurately
represents the actual profiles of galaxies. Two obvious choices of
profile are exponential or de Vaucouleurs. In fact, it is notoriously
difficult to choose between these profiles when fitting to faint galax-
ies, so we do not expect the accuracy of the weak lensing mea-
surement to depend strongly on which of these profiles is chosen.
Some greater freedom in profile could be allowed by adding the
Sérsic index as a free parameter, allowing exponential andde Vau-
couleurs models to be treated as special cases of this generalised
profile (e.g. Dunlop et al. 2003), however it is unlikely thatthe ad-
dition of an extra parameter can be justified on evidence grounds.
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A similar consideration is that galaxies generally are composed of
bulge and disc components, which when viewed at an inclined an-
gle may present differing ellipticities: accurate modelling of galax-
ies requires both components to be fitted, but again, for generic
shape measurement of faint galaxies where information at this level
of sophistication is not present in the data, this seems unwarranted.

5.3 Addition of multiple images or wavebands

It may be that a weak lensing survey comprises multiple images of
the same region of sky, but taken at different times and hencewith
differing PSFs, and possibly in different wavebands. The latter is
likely if broad-band optical photometric redshifts are also being
estimated from the same data that is being used for shape measure-
ment. Clearly one would like to optimally estimate galaxy shape
from the combination of all this data, but it would not be optimal
simply to co-add the data, because of the differing PSFs in each im-
age. The model-fitting algorithm described above allows a natural
way to optimally include all the data, since all we need do is add
the likelihoods for the models fitted to each galaxy. In doingthis,
we should take care that the nominal galaxy positions are thesame
in each image, so the optimal way to proceed would be to co-add
images for the purpose of detecting and measuring nominal galaxy
positions only, and then fitting each individual image with models
convolved with the appropriate PSF and adding the resultinglikeli-
hoods. Images with a mixture of seeing qualities are thus optimally
combined for the shape measurement.

5.4 Weak lensing from radio interferometer data

It is clear that in large future optical surveys systematic uncertain-
ties in PSF correction will be a dominating concern, indeed this is
a significant factor in the case for space-based weak lensingmis-
sions. Ground-based optical PSFs vary temporally and very often
on spatial scales comparable to those on which the cosmic shear
signal is detectable. Even HST lensing studies suffer significantly
from PSF variation (Rhodes et al. 2007; Schrabback et al. 2007).
In principle radio interferometers have precisely known PSFs, be-
ing determined by the antenna positions (note that full 3D knowl-
edge of antenna positions is required, to allow for curvature of the
Earth and natural height variations). The PSF varies with hour an-
gle and declination, but in a completely deterministic way.Other
effects such as bandwidth and sampling-time smearing can also be
precisely computed and incorporated into the shape measurement
process (Chang et al. 2004). Because interferometer measurement
are made in the Fourier domain, and because the noise also orig-
inates in that domain (being associated with individual antennas)
it makes sense to measure galaxy shapes in Fourier space (in the
image plane the noise is correlated between pixels, effectively be-
ing also convolved with the PSF). Chang & Refregier (2002) and
Chang et al. (2004) have already shown how a shapelets (Refregier
2003; Refregier & Bacon 2003) based approach can be extended
to the Fourier domain. The Bayesian algorithm presented in this
paper already operates in the Fourier domain, so it should beeas-
ily adapted for radio interferometer data, which will be particularly
relevant for future deep radio surveys such as those proposed for
the Square Kilometer Array.

6 CONCLUSIONS

We have argued that a model-fitting approach to galaxy shape mea-
surement should provide an optimum approach to shape measure-
ment for large weak-lensing surveys, with the advantages that the
signal-to-noise of the shape measurement should be optimised and
random measurement errors can be estimated. We have furtherar-
gued that a Bayesian estimation process allows unbiased shape es-
timation to be made, although even in a realistic implementation of
a Bayesian method there is a bias in recovered shear values intro-
duced by the presence of the prior probability distribution. This bias
may be calculated from the measured likelihood surfaces, however,
and in this paper we have spent some time discussing the calcula-
tion of the ‘shear sensitivity’. Overall this approach to shape mea-
surement should provide a framework for shear measurement that
does not need external calibration by comparison with simulations.

A traditional disadvantage of model-fitting is that it may be
computationally time-consuming, and in this paper we present a
fast algorithm for measuring the shapes of individual galaxies.
The algorithm makes use of analytic marginalisation over surface
brightness amplitude, and by working in Fourier space enables
rapid marginalisation over galaxy position. The algorithmhas been
tested and has an adequate speed on current generations of comput-
ers for use with large ongoing and planned weak-lensing surveys.
Close pairs of galaxies are not treated by the algorithm, butpro-
vided such close pairs can be identified in the data a separatefitting
process may be applied to those.

The Bayesian method and fast fitting algorithm have been
tested on simulated galaxies created for the Shear TEsting Program
(STEP: Heymans et al. 2006; Massey et al. 2007b) and promising
results on the measurement of individual galaxy ellipticities have
been obtained. A companion paper (Kitching et al. in preparation)
will test the measurement of weak lensing shear in the STEP simu-
lations.
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