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Abstract. We give new proofs that Khovanov homology detects the figure eight knot and
the cinquefoils, and that HOMFLY homology detects 52 and each of the P (−3, 3, 2n+ 1)
pretzel knots. For all but the figure eight these mostly follow the same lines as in previous
work. The key difference is that in honor of Tom Mrowka’s 60th birthday, the arguments
here use instanton Floer homology rather than knot Floer homology.

1. Introduction

Khovanov homology has been proved to detect a handful of the simplest knots, including
the unknot [KM11] and the trefoils T (±2, 3) [BS22b]. Recently, Dowlin [Dow18] constructed
a spectral sequence from Khovanov homology to knot Floer homology, which made it possi-
ble to prove that Khovanov homology also detects the figure eight [BDL+21], the cinquefoils
T (±2, 5) [BHS21], and 52 [BS22a]. In [BS22a] we also used it to prove that reduced HOM-
FLY homology detects each of the P (−3, 3, 2n+ 1) pretzel knots.

In this note, we give alternative arguments for most of these detection results, replacing
knot Floer homology and Dowlin’s spectral sequence with instanton knot homology and
Kronheimer and Mrowka’s spectral sequence from [KM11]. The figure eight detection result
follows quickly from known facts about instanton L-space knots, including a criterion for
their detection due to Li and Liang [LL23]. For T (±2, 5), we apply this criterion together
with the classification of genus-2 instanton L-space knots given in [FRW22, Corollary 1.8].
Our main results are the following, which do not make any use of Heegaard Floer homology.

Theorem 1.1. Let K be a knot whose reduced Khovanov homology Kh(K) over some field
is five-dimensional and supported in δ-grading zero. Then K is the figure eight knot.

Theorem 1.2. Let K be a knot whose reduced Khovanov homology Kh(K) over some field
is five-dimensional and supported in the single δ-grading ±2. Then K = T (±2, 5).

Here the δ-grading on reduced Khovanov homology is defined by δ = q/2 − h, where q
and h are the quantum and homological gradings, respectively.

Theorem 1.3. Let K be a knot whose reduced HOMFLY homology H̄(K;Q) is isomorphic
to H̄(52;Q) as triply-graded vector spaces. Then K = 52.

Theorem 1.4. Let K be a knot, and suppose for some n ∈ Z that H̄(K;Q) is isomorphic
to H̄(P (−3, 3, 2n+ 1);Q) as triply-graded vector spaces. Then K = P (−3, 3, 2n+ 1).

Remark 1.5. We should emphasize that the proofs of Theorem 1.2 and 1.4 are not really
new; they merely replace the parts of the arguments in [BHS21, BS22a] which involve knot
Floer homology. By contrast, the proof of Theorem 1.1 is genuinely different from the one in
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[BDL+21]. We also point out that we do not know how to prove that Khovanov homology
detects 52, as in [BS22a], without appealing to Heegaard Floer homology.

Remark 1.6. Beliakova, Putyra, Robert, and Wagner [BPRW22] recently established a
new spectral sequence relating HOMFLY homology with knot Floer homology. One can
use their construction in place of Dowlin’s spectral sequence, together with our results in
[BS22a], to give additional alternative proofs of Theorems 1.3 and 1.4.

Building on Theorems 1.1 and 1.2, we note that a knot K with dimKh(K) = 5 satisfies
det(K) = 5 if and only if Kh(K) is supported entirely in δ-gradings of a single parity (see
Lemma 2.1). We do not claim here to classify all knots K for which Kh(K) is 5-dimensional
and det(K) = 5, but we do come close by allowing some Heegaard Floer input.

Theorem 1.7. Let K be a knot other than the figure eight or T (±2, 5), and suppose that
dimKh(K;Z/2Z) = 5 and det(K) = 5. Then K is hyperbolic, with Seifert genus 4 and
Alexander polynomial

∆K(t) = t4 − t3 + 1− t−3 + t−4.

Moreover, either K or its mirror is an instanton L-space knot, hence fibered and strongly
quasipositive, with signature ±8.

Remark 1.8. By [BDL+21, Theorem 1], a genus-4 knot satisfying the hypotheses of The-
orem 1.7 cannot be supported in a single δ-grading.

Remark 1.9. The Alexander polynomial appearing in Theorem 1.7 is in fact the Alexander
polynomial of an instanton L-space knot, namely the (5, 2)-cable of the right-handed trefoil.
But this knot K = 13n4639 cannot satisfy the hypotheses of Theorem 1.7, since it is a satel-
lite. Indeed, according to [Ras05, §7.2], we have dimKh(K;Q) = 11, and dimKh(K;Z/2Z)
is even larger, since Kh(K;Q) has nontrivial 2-torsion.

The organization is as follows. In Section 2 we prove Theorems 1.1 and 1.2. In Section 3
we prove Theorem 1.7 by first reducing it to a question about the factorization of the
Alexander polynomial ∆K(t), and then determining enough about the factorization to rule
out all cases except g(K) = 4. Then in Section 4 we prove Theorems 1.3 and 1.4, about the
HOMFLY homology of 52 and the pretzels P (−3, 3, 2n+ 1).

Acknowledgements. We thank the referee for helpful feedback on the original version of
this paper, and for suggesting an analytic proof of Proposition 3.5.

2. The figure eight and the cinquefoils

We begin with the following lemmas, which are certainly well known to experts. In what
follows we let s(K) ∈ 2Z denote the Rasmussen s-invariant [Ras10].

Lemma 2.1. The determinant of a knot K is determined by its δ-graded reduced Khovanov
homology Kh(K;Q). In particular, we have

dimKh(K;Q) ≥ det(K),

and equality holds if and only if Kh(K;Q) is supported entirely in even δ-gradings or entirely
in odd δ-gradings. If in fact it is supported in a single δ-grading σ, then s(K) = 2σ.
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Proof. The claim about s(K) follows from the fact that Kh(K;Q) is supported in one δ-
grading if and only if the unreduced Khovanov homology Kh(K;Q) is “H-thin” [Kho03,
Proposition 3.6], meaning supported in two δ-gradings, in which case these δ-gradings are
necessarily σ ± 1

2 . Then the part of Kh(K;Q) in homological grading h = 0 must be
supported in quantum gradings q = 2(h+ δ) = 2σ ± 1, and so s(K) = 2σ by definition.

For the claim about det(K), it follows from the fact that Kh(K) categorifies the Jones
polynomial [Kho03]:

VK(t) =
∑
q,h∈Z

(−1)htq/2 dimKh
h,q

(K).

Then det(K) is equal to the absolute value of

VK(−1) =
∑
q,h∈Z

(−1)h(−1)q/2 dimKh
h,q

(K)

=
∑

q/2−h even

dimKh
h,q

(K)−
∑

q/2−h odd

dimKh
h,q

(K)

= dimKh
δ≡0 (mod 2)

(K)− dimKh
δ≡1 (mod 2)

(K).

Thus dimKh(K;Q) ≥ det(K) follows immediately from the triangle inequality. Moreover,
the last expression above is equal to ±dimKh(K) if and only if one of the two terms is zero,
or equivalently if and only if Kh(K) is supported entirely in even δ-gradings or entirely in
odd δ-gradings, as claimed. □

Lemma 2.2. If Kh(K;F) is 5-dimensional for some field F, then so is Kh(K;Q), and
moreover the two are supported in the same δ-gradings.

Proof. This follows from two applications of the universal coefficient theorem. First, we
use it to show that either Kh(K;Q) or Kh(K;Z/pZ) is also 5-dimensional, depending on
whether F has characteristic 0 or p > 0 respectively. Then in the case F = Z/pZ, the lemma
follows from the universal coefficient theorem, as applied to Kh(K;Z), and the fact that
dimQKh(K;Q) is odd and neither 1 nor 3, exactly as at the start of [BHS21, §5]. □

We next attempt to use Kh(K;Q) to determine the instanton knot homology KHI (K;Q),
as defined by Kronheimer and Mrowka [KM10b]. This invariant comes equipped with an
Alexander grading

KHI (K) ∼=
g⊕

i=−g

KHI (K, i),

where g = g(K) is the genus of K, each of whose summands are Z/2Z-graded. This
decomposition recovers the Alexander polynomial of K by the relation

(2.1) ±∆K(t) =

g∑
i=−g

χ(KHI (K, i)) · ti,

as proved in [KM10a, Lim10]. (The sign on the left comes from differing conventions for
the Z/2Z grading.). It also satisfies the following properties:

• Symmetry: KHI (K, i) ∼= KHI (K,−i) as Z/2Z-graded vector spaces for all i.
• Genus detection: dimKHI (K, g) ≥ 1.
• Fiberedness detection: dimKHI (K, g) = 1 if and only if K is fibered.
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The symmetry follows from the remark after [KM10b, Proposition 7.1], and the genus de-
tection and fiberedness results are [KM10b, Proposition 7.16] and [KM10a, Proposition 4.1]
respectively.

Proposition 2.3. Let K be a knot for which dimKh(K;Q) = 5. Then KHI (K;Q) has
total dimension 5.

Proof. Kronheimer and Mrowka [KM11, Proposition 1.2] constructed a spectral sequence

Kh(K;Q) =⇒ I♮(K;Q)

which converges to the singular instanton knot homology of the mirror of K. Since the rank
of the latter is invariant under mirroring, this yields a rank inequality

dim I♮(K;Q) ≤ dimKh(K;Q) = 5.

Moreover, we know by [KM11, Proposition 1.4] that I♮(K;Q) ∼= KHI (K;Q). Thus

(2.2) dimKHI (K;Q) ≤ 5.

Equation (2.1) and the fact that ∆K(1) = 1 tell us that the total rank of KHI (K) must
be odd. It cannot be 1, because then K would be the unknot – otherwise the summands
KHI (K, g) and KHI (K,−g) are distinct and contribute at least 1 each to dimKHI (K) –
and it cannot be 3 or else K would be a trefoil [BS22b, Theorem 1.6]. Thus we use (2.2) to
conclude that dimKHI (K) = 5. □

Proposition 2.4. Let K be a knot for which dimKHI (K;Q) = 5. Then exactly one of the
following is true:

• K has Alexander polynomial 1, and in particular det(K) = 1.
• K is the figure eight knot.
• K has genus g ≥ 2 and instanton knot homology

KHI (K;Q) ∼= Qg ⊕Qg−1 ⊕Q0 ⊕Q1−g ⊕Q−g,

where the subscripts denote the Alexander grading of each summand. In this case
either K or its mirror is an instanton L-space knot.

In particular, if det(K) ̸= 1 then K is fibered.

Proof. Supposing first that K is not fibered, then

dimKHI (K, g) + dimKHI (K,−g) ≤ 5,

and both terms on the left are equal and greater than 1 by the symmetry and fiberedness
detection properties, so

dimKHI (K, g) = dimKHI (K,−g) = 2.

By symmetry the remaining Q summand of KHI (K) can only be in Alexander grading zero,
so

KHI (K) ∼= Q2
g ⊕Q0 ⊕Q2

−g.

We apply (2.1) to determine ∆K(t). If KHI (K, g) is supported in a single Z/2Z grading,
then we have

∆K(t) = ±2(tg + t−g)± 1
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for some signs, and this is impossible because there is no choice of signs for which ∆K(1) = 1.
So KHI (K, g) must have a copy of Q in each Z/2Z grading, which by (2.1) tells us that
∆K(t) = 1. Then det(K) = |∆K(−1)| = 1.

Next, supposing that K is fibered of genus 1, then K must be a trefoil or the figure eight.
But if K is a trefoil then dimKHI (K) = 3, so in fact K can only be the figure eight.

Finally, if K is fibered of genus g ≥ 2, then we proved in [BS22b, Theorem 1.7] that
dimKHI (K, g − 1) ≥ 1, so KHI (K) is 5-dimensional and is nonzero at least in the four
distinct Alexander gradings ±g and ±(g− 1). Again by symmetry each of these summands
must be 1-dimensional and the remaining Q summand must be in degree 0, so

KHI (K) ∼= Qg ⊕Qg−1 ⊕Q0 ⊕Q1−g ⊕Q−g

as claimed. Now Li and Liang [LL23, Theorem 1.4] proved that any knot for which KHI
has this form must be an instanton L-space knot, up to mirroring, so this completes the
proof. □

Proposition 2.5. Let K be a knot satisfying dimKh(K;Q) = 5 and det(K) ̸= 1. Then

s(K) =


0 if K is the figure eight knot

2g(K) if K is an instanton L-space knot

−2g(K) if K is an instanton L-space knot,

and exactly one of these cases occurs. We also have g(K) ≥ 2 unless K is the figure eight.

Proof. The case where K is the figure eight is immediate, so we will suppose that K is some
other knot. Proposition 2.3 says that dimKHI (K) = 5, so we can apply Proposition 2.4 to
see that either K or its mirror is an instanton L-space knot, and that g(K) ≥ 2.

Let us suppose that K is an instanton L-space knot, rather than K. Then K is strongly
quasipositive [BS19, Theorem 1.15], so we know from [Pla06, Proposition 4] or [Shu07,
Proposition 1.7] that s(K) = 2g(K). Otherwise K is an instanton L-space knot, so the
same argument says that

s(K) = −s(K) = −2g(K) = −2g(K). □

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Suppose that Kh(K;F) is 5-dimensional and supported in the single
δ-grading σ = 0. Then the same is true of Kh(K;Q) by Lemma 2.2. Lemma 2.1 now
tells us that det(K) = 5 and that s(K) = 2σ = 0, so K must be the figure eight by
Proposition 2.5. □

Proof of Theorem 1.2. Suppose that Kh(K;F) is 5-dimensional and supported in the single
δ-grading σ = 2. Then the same is true of Kh(K;Q) by Lemma 2.2, so Lemma 2.1 says
that det(K) = 5 and that s(K) = 2σ = 4. Thus Proposition 2.5 says that K must be an
instanton L-space knot of genus 2. Such knots are fibered, and in [BLSY21, §2] we gave
a partial characterization of their possible monodromies; more recently, Farber, Reinoso,
and Wang [FRW22, Corollary 1.8] used this to show that K is necessarily T (2, 5). We
remark that if we specifically wanted to work over Z/2Z, then we could finish the proof
that K = T (2, 5) without recourse to [FRW22], using instead the arguments in [BLSY21].
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Now if Kh(K;F) is 5-dimensional and supported in the δ-grading σ = −2, then we apply
the above to its mirror K to conclude that K = T (2, 5), and hence that K = T (−2, 5).
This completes the proof. □

3. Other determinant-5 knots

Here we address the question of whether there are knots K other than the figure eight
and cinquefoils such that dimKh(K;Z/2Z) = 5 and Kh(K;Z/2Z) is supported entirely in
δ-gradings of a single parity.

In this case, Lemma 2.2 and Proposition 2.5 tell us that if K is not the figure eight, then
either K or its mirror is an instanton L-space knot whose genus g(K) = 1

2s(K) is at least 2.
We will see that its branched double cover is a Heegaard Floer L-space, and then use recent
work of Boileau, Boyer, and Gordon [BBG19] to put strong conditions on the Alexander
polynomial of K which rule out all cases except g(K) = 4.

3.1. The Alexander polynomial of a thin knot.

Proposition 3.1. Suppose that Kh(K;Q) is 5-dimensional and that det(K) = 5, but that
K is not the figure eight or T (±2, 5). Then either K or its mirror is an instanton L-space
knot, hence fibered and strongly quasipositive, and its Alexander polynomial is

∆K(t) = tg − tg−1 + 1− t1−g + t−g

where g = g(K) is even and at least 4.

Proof. Proposition 2.3 tells us once again that dimKHI (K) = 5, so that either K or
its mirror is an instanton L-space knot (hence fibered and strongly quasipositive [BS19,
Theorem 1.15]) and

KHI (K;Q) ∼= Qg ⊕Qg−1 ⊕Q0 ⊕Q1−g ⊕Q−g

by Proposition 2.4. This determines the Alexander polynomial ∆K(t) by (2.1): applying
the conditions ∆K(1) = 1 and ∆K(−1) = ±det(K) = ±5, we must have

∆K(t) = (−1)g
(
tg − tg−1 + (−1)g − t1−g + t−g

)
.

In fact, since K is an instanton L-space knot up to mirroring, we can apply [LY21, The-
orem 1.9] to deduce that the nonzero coefficients of ∆K(t) alternate in sign, so g must be
even and then

∆K(t) = tg − tg−1 + 1− t1−g + t−g.

By assumption g is not T (±2, 5), but there are no other instanton L-space knots of genus
2 [FRW22, Corollary 1.8], so then g is at least 4. □

Proposition 3.2. Suppose that Kh(K;Z/2Z) is 5-dimensional and that det(K) = 5, but
that K is not the figure eight or T (±2, 5). Then K has signature σ(K) = ±2g(K), and if
we write h = 1

2g(K), then h is an integer with h ≥ 2, and the polynomial

ph(t) = t4h − t4h−1 + t2h − t+ 1

is a product of cyclotomic polynomials.
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Proof. Lemma 2.2 says that Kh(K;Q) is also 5-dimensional, so Proposition 3.1 tells us
that g(K) is even and at least 4, so that h ∈ Z as claimed; that K is fibered and strongly
quasipositive, after possibly replacing it with its mirror; and that

ph(t) = tg(K)∆K(t),

so that ph(t) is a product of cyclotomic polynomials if and only if ∆K(t) is. Boileau, Boyer,
and Gordon [BBG19, Corollary 1.2] proved that if the branched double cover of a fibered,
strongly quasipositive knot K is a Heegaard Floer L-space, then ∆K(t) is a product of
cyclotomic polynomials; this follows from their observation [BBG19, Proposition 6.1] that
in this case K has signature ±2g(K). Thus it suffices to show that Σ2(K) is a Heegaard
Floer L-space.

We now apply Ozsváth and Szabó’s link surgeries spectral sequence [OS05], and in par-
ticular the inequality

det(K) ≤ dim ĤF (Σ2(K);Z/2Z) ≤ dimKh(K;Z/2Z),

to conclude that dim ĤF (Σ2(K);Z/2Z) = |H1(Σ2(K))| = 5. In other words, the branched
double cover Σ2(K) is a Heegaard Floer L-space, and the proposition follows. □

Proof of Theorem 1.7. Suppose that Kh(K;Z/2Z) is 5-dimensional and supported in δ-
gradings of a single parity. Then the same is true of Kh(K;Q) by Lemma 2.2, and det(K) =
5 by Lemma 2.1. Moreover, since K is not the figure eight by assumption, Proposition 2.5
says that s(K) = ±2g(K) and g(K) ≥ 2.

We apply Proposition 3.2 and see that in fact g(K) is even and at least 4, that σ(K) =
±2g(K), and that the polynomial ph(t) must be a product of cyclotomic polynomials, where
h = 1

2g(K). In Proposition 3.5 we will prove that this is not the case for any h ≥ 3, so
we must have h ≤ 2. But since 2h = g(K) ≥ 4 this leaves only h = 2, hence g(K) = 4 as
claimed. Proposition 3.1 establishes all of the remaining conclusions except hyperbolicity.
The Alexander polynomial and genus prevent K from being a torus knot, so we need only
show that it cannot be a satellite; this requires substantially different techniques, so we
defer it to Proposition 3.4 below. □

We need the following lemma to prove that knots satisfying the hypotheses of Theorem 1.7
cannot be satellites.

Lemma 3.3. Let P ⊂ S1×D2 be a knot, and suppose that there is a branched double cover

S1 ×D2 → S1 ×D2

with branch locus P . Then P is isotopic to the core S1 × {0}.

Proof. Fix a nontrivial torus knot T = T (p, q), and consider the satellite K = P (T ). We
form the branched double cover Σ2(K) by taking a double cover X of S3 \ N(T ), which
may or may not be connected a priori, and gluing it to the branched double cover ΣP of
P ⊂ S1 ×D2. Since the latter has connected boundary, so does X, so X is connected. We
also know that X is Seifert fibered over a disk, since the same is true of S3 \N(T ); and that
it has r = 2 singular fibers since it is not a solid torus. (We recall that the knot complement
has base orbifold D2(|p|, |q|).)

Gluing the solid torus ΣP toX amounts to a Dehn filling ofX, so by [Hei74, Proposition 2]
there are now two possibilities:
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• the Seifert fibration extends to Σ2(K), with at most r + 1 = 3 singular fibers, or
• we have filled the fiber slope, and the resulting Σ2(K) is a connected sum of r
nontrivial lens spaces.

In the latter case, K is a connected sum of r nontrivial knots, because the branched double
cover of a prime knot is prime [HN10, Proposition 5.1]. But as a satellite of a torus
knot, it can only be composite if the pattern P has wrapping number 1, see e.g. [Cro04,
Theorem 4.4.1]. In this case P is a connected sum of the core C0 = S1 × {0} with some
other knot K0 ⊂ S3, and we have

ΣP
∼= Σ2(C0)#Σ2(K0) ∼= (S1 ×D2)#Σ2(K0).

Thus Σ2(K0) ∼= S3, which implies that K0 is unknotted [Wal69] and hence that P is isotopic
to the core C0.

In the remaining case, we know that Σ2(K) is a small Seifert fibered space: it has base
S2 and at most three singular fibers. We can also arrange for π1(Σ2(K)) to be infinite by
taking both p and q to be large. Then a folklore result (see e.g. [Mot17, Proposition 3.3] for
details) says that K must be either a torus knot or a Montesinos knot with three rational
tangles. These are never nontrivially satellite knots – the Montesinos case is due to Oertel
[Oer84, Corollary 4] – so either P is contained in a ball inside S1 × D2, in which case
its branched double cover cannot actually be S1 × D2, or P is isotopic to the core circle
S1 × {0}, as claimed. □

The following is the last remaining claim of Theorem 1.7.

Proposition 3.4. Let K be a knot such that dimKh(K;Z/2Z) = 5 and det(K) = 5. Then
K is not a satellite knot.

Proof. We first show that K is prime: if K ∼= K1#K2, then by the Künneth formula for
reduced Khovanov homology over Z/2Z we have

dimKh(K1) · dimKh(K2) = dimKh(K) = 5,

so dimKh(Ki) = 1 for some i, but then Ki must be the unknot [KM11]. This also implies
in turn that the branched double cover Σ2(K) is prime, as in [HN10, Proposition 5.1].

Now we suppose thatK is a nontrivial satellite, with pattern P ⊂ S1×D2 and companion
C ⊂ S3. By assumption P cannot be isotopic to the core S1 × {0}, and C cannot be the
unknot. We recall from Theorem 1.7 that K (up to mirroring) is fibered and strongly
quasipositive, and from the proof of Proposition 3.2 that Σ2(K) is a Heegaard Floer L-
space. It thus follows from [BBG19, Proposition 6.2 and Remark 6.3] that P must have
winding number 1.

Since P has odd winding number, we can write Σ2(K) as a union

Σ2(K) ∼= X2(C) ∪T 2 ΣP ,

where X2(C) is a connected double cover of the exterior S3\N(C), and ΣP is a double cover
of S1 ×D2 branched over P ; these pieces are glued along their respective torus boundaries.
We note that ∂X2(C) is incompressible since C is a nontrivial knot.

Suppose that ΣP has incompressible boundary as well. Then this torus remains incom-
pressible in Σ2(K). Hanselman, Rasmussen, and Watson [HRW17, Theorem 7.20] classified
the prime, toroidal Heegaard Floer L-spaces Y with |H1(Y )| = 5, and showed in particular
that they are all built by gluing together a pair of trefoil exteriors. In each case there is
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a unique incompressible torus up to isotopy, so we conclude that X2(C) and ΣP are both
trefoil exteriors. In particular we have a double cover

S3 \N(T (±2, 3)) ∼= X2(C) → S3 \N(C).

Gonzalez-Acuña and Whitten [GAW92, Theorem 3.4] proved in this case that either

• C is not a torus knot, and then it must admit a cyclic ±2-surgery, which contradicts
the main result of [KM04]; or

• C is a torus knot T (p, q), and we can write 2 = dpq± 1 for some integer d, which is
also impossible.

Thus ΣP has compressible boundary after all, and we can write

ΣP
∼= (S1 ×D2)#Z

for some closed 3-manifold Z, which may or may not be S3.

Supposing that Z is different from S3, it now follows that

Σ2(P (C)) ∼=
(
X2(C) ∪ (S1 ×D2)

)
#Z

can only be prime if S3 arises as a Dehn filling of X2(C), i.e., if X2(C) is the exterior of some
other knot in S3. Again this is impossible since C is nontrivial [GAW92, Theorem 3.4], so
Σ2(K) ∼= Σ2(P (C)) is not prime, which is a contradiction. So Z ∼= S3, and therefore ΣP is
a solid torus. Lemma 3.3 now tells us that P must be isotopic to a core of S1 ×D2. But in
this case K is not a nontrivial satellite of C after all, so we are done. □

3.2. Factorization of the Alexander polynomial. In this subsection we prove the fol-
lowing, which completes the proof of Theorem 1.7.

Proposition 3.5. Fix an integer h ≥ 1, and define the polynomial

(3.1) ph(t) = t4h − t4h−1 + t2h − t+ 1.

If h ≥ 3, then ph(t) is not a product of cyclotomic polynomials.

Remark 3.6. By contrast, we note that p1(t) = Φ10(t) and p2(t) = Φ10(t) · Φ12(t).

In the proof of Proposition 3.5, we will adapt an algorithm called the “Graeffe” method
[BD89] for recognizing cyclotomic polynomials. The idea is that if

p(t) = td + ad−1t
d−1 + · · ·+ a1t+ a0

has roots α1, α2, . . . , αd, then we can split p into its even and odd parts by writing

p(t) = pe(t
2) + t · po(t2) where

{
pe(t) = a0 + a2t+ a4t

2 + . . . ,

po(t) = a1 + a3t+ a5t
2 + . . . .

Then Graeffe’s root-squaring method says that the polynomial

q(t) = (−1)d
(
pe(t)

2 − t · po(t)2
)

has roots α2
1, α

2
2, . . . , α

2
d. For example, if p(t) = Φn(t) then we will have

(3.2) q(t) =


Φn(t), n odd

Φn/2(t), n even but not a multiple of 4(
Φn/2(t)

)2
, n a multiple of 4.
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We note that if p(t) = ph(t) is the polynomial given in (3.1), then we have

pe(t) = t2h + th + 1, po(t) = −t2h−1 − 1

and so the root-squaring method produces the polynomial

(3.3)
qh(t) = (t2h + th + 1)2 − t(−t2h−1 − 1)2

= t4h − t4h−1 + 2t3h + t2h + 2th − t+ 1.

Before we begin the proof of Proposition 3.5, we will first recall some facts about special
values of cyclotomic polynomials.

Lemma 3.7. For all n ≥ 2, we have

Φn(1) =

{
p n = pe is a prime power

1 otherwise
and Φn(−1) =

{
1 n odd

Φn/2(1) n even.

Proof. We evaluate both sides of

xn−1 + xn−2 + · · ·+ x+ 1 =
∏
d|n
d̸=1

Φd(x)

at x = 1 and at x = −1 to conclude that∏
d|n
d̸=1

Φd(1) = n,
∏
d|n
d ̸=1

Φd(−1) =

{
0 n even

1 n odd.

If n = pe is a prime power, with e ≥ 1, then the first of these implies by induction on e
that Φpe(1) = p, and then it follows that Φn(1) = 1 if n is not a prime power. The second
equation similarly implies by induction that Φn(−1) = 1 for all odd n.

In the remaining cases, we wish to evaluate Φn(−1) where n = 2k is even. We observe
that if k is odd then Φn(x) = Φk(−x), and if k is even then Φn(x) = Φk(x

2). In either case
it follows that Φn(−1) = Φk(1). □

We now begin to determine which cyclotomic polynmoials can divide ph(t).

Lemma 3.8. If n is odd, then Φn(t) does not divide ph(t).

Proof. Suppose that Φn(t) divides ph(t). Then the squares of the primitive nth roots of
unity are also primitive nth roots of unity, so Φn(t) also divides the polynomial qh(t) from
(3.3), and hence it divides the difference

qh(x)− px(h) = 2t3h + 2th = 2th(t2h + 1).

The roots of Φn(t) are all nonzero, so it divides t2h + 1 and hence t4h − 1. But this means
that n is an odd divisor of 4h, so in fact n divides h.

Letting ζ be any root of Φn(t), we have ζn = 1 and therefore ζh = 1. We compute that

0 = ph(ζ) = ζ4h − ζ4h−1 + ζ2h − ζ + 1

= 1− ζ−1 + 1− ζ + 1

and so ζ2 − 3ζ + 1 = 0. But then ζ = 1
2(3±

√
5) is not a root of unity, contradiction. □
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Lemma 3.9. Let n = 2k be twice an odd integer k ≥ 1, and suppose that Φn(t) divides
ph(t). Then n = 10, and h is congruent to either 1 or 2 modulo 5.

Proof. Since Φn(t) divides ph(t), the primitive kth roots of unity must be roots of qh(t), so
Φk(t) divides qh(t). Equivalently, since Φn(t) = Φk(−t) we see that Φn(t) divides qh(−t)
and thus also the difference

qh(−t)− ph(t) = 2t4h−1 + 2(−1)ht3h + 2(−1)hth + 2t

= 2t
(
th−1 + (−1)h

)(
t3h−1 + (−1)h

)
.

Then Φn(t) divides either t
2h−2−1 or t6h−2−1, and hence n divides either 2h−2 or 6h−2.

Suppose first that n divides 2h− 2, and let ζ be a root of Φn(t). Then ζ2h−2 = 1, so

0 = ph(ζ) = ζ4h − ζ4h−1 + ζ2h − ζ + 1

= ζ4 − ζ3 + ζ2 − ζ1 + 1 = Φ10(ζ)

and since ζ is a root of the irreducible Φ10(t), we must have n = 10. In this case 2h− 2 is
a multiple of 10, so h ≡ 1 (mod 5).

Now suppose instead that n divides 6h− 2, and let ζ be a root of Φn(t); then ζ6h−2 = 1.
We note that n is not a multiple of 3 since 6h− 2 is not, so ζ3 is also a primitive nth root
of unity and therefore a root of Φn(t). Since Φn(t) divides ph(t), we have

0 = ph(ζ
3) = ζ12h − ζ12h−3 + ζ6h − ζ3 + 1

= ζ4 − ζ + ζ2 − ζ3 + 1 = Φ10(ζ)

and so once again we must have n = 10. Now 6h − 2 is a multiple of 10, and so h ≡ 2
(mod 5). □

Lemma 3.10. Fix h ≥ 1. If ph(t) is a product of cyclotomic polynomials, then we have

(3.4) ph(t) = Φ10(t) ·
k∏

j=1

Φnj (t)

where each nj is a multiple of 4 but not a power of 2. In particular h must be congruent to
either 1 or 2 modulo 5.

Proof. By assumption we can find integers n0, n1, . . . , nk (k ≥ 0) such that

ph(t) = Φn0(t) · Φn1(t) · . . . · Φnk
(t).

By Lemma 3.8, all of the nj must be even, and then by Lemma 3.9 they must all be either
10 or multiples of 4. Setting t = −1, we have

5 = ph(−1) =
k∏

j=0

Φnj (−1),

and every factor on the right is a nonnegative integer by Lemma 3.7; we order them so that
Φn0(−1) = 5 and Φnj (−1) = 1 for all j ≥ 1.

Now by Lemma 3.7, the integer Φn0(−1) can only be 5 if n0 = 2 · 5e for some e ≥ 1,
and then n0 is not a multiple of 4 so it must be 10. Then Lemma 3.9 guarantees that h is
either 1 or 2 modulo 5. Moreover, we cannot have nj = 10 for any other j ≥ 1, because
then Φnj (−1) would not be 1, so the remaining nj are all multiples of 4.
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Finally, if instead we set t = 1 then ph(1) = 1 implies that Φnj (1) = 1 for all j =
1, 2, . . . , k, so we cannot have nj = 2e because then Lemma 3.7 would tell us that Φnj (1) = 2
instead. □

With Lemma 3.10 in hand, we can now prove Proposition 3.5.

Proof of Proposition 3.5. Suppose that ph(t) is a product of cyclotomic polynomials. Then
Lemma 3.10 says that h ≡ 1 or 2 (mod 5), so h cannot be 3, 4, or 5. We will therefore
require from now on that h ≥ 6, so that 3h ≤ 4h− 6 and hence the polynomial qh(t) from
(3.3) satisfies

qh(t) = t4h − t4h−1 + 2t3h + t2h + 2th − t+ 1

= t4h − t4h−1 +O(t4h−6).

By assumption, ph(t) has the form (3.4). Following (3.2), the polynomial qh(t) must then
equal

Φ5(t) ·

 k∏
j=1

Φnj/2(t)

2

= t4h − t4h−1 +O(t4h−6).

The product being squared on the left is a monic polynomial with integer coefficients: if we
write

k∏
j=1

Φnj/2(t) = t2h−2 +
2h−2∑
i=1

ait
2h−2−i,

then its square has the form k∏
j=1

Φnj/2(t)

2

= t4h−4 +
4h−4∑
i=1

bit
4h−4−i

where b1 = 2a1 and

bi = 2ai +

i−1∑
j=1

ajai−j , i ≥ 2.

The summands on the right occur in pairs ajai−j = ai−jaj for 1 ≤ j ≤ ⌊ i−1
2 ⌋, so it follows

that

bi ≡

{
0, i odd

(ai/2)
2 ≡ ai/2, i even

(mod 2).

Multiplying by Φ5(t) = t4 + t3 + t2 + t+ 1, we see that the t4h−1- and t4h−2-coefficients of

qh(t) = (t4 + t3 + t2 + t+ 1)

(
t4h−4 +

4h−4∑
i=1

bit
4h−4−i

)
are −1 and 0 respectively, so that

−1 = b1 + 1 = 2a1 + 1 =⇒ a1 = −1,

and

0 = b2 + b1 + 1 = (2a2 + a21) + (2a1) + 1 =⇒ a2 = 0.
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But then we also know that the t4h−5-coefficient of qh(t) is 0 by assumption, and yet it is
also

b1 + b2 + b3 + b4 + b5 ≡ a1 + a2 ≡ −1 (mod 2),

which is a contradiction. □

4. HOMFLY homology of nearly fibered knots

In this section we prove that reduced HOMFLY homology detects 52 and each of the
P (−3, 3, 2n+ 1) pretzel knots, where n ∈ Z.

As background, we recall that Khovanov and Rozansky [KR08a] defined for each integer
N ≥ 1 a bigraded slN link homology H̄N (K), where H̄2(K) agrees with Kh(K) up to a
change of grading. In [KR08b] they also defined a triply graded homology theory H̄(K)
whose graded Euler characteristic recovers the HOMFLY polynomial. Rasmussen [Ras15]
constructed for each N ≥ 1 a spectral sequence

(4.1) H̄(K) =⇒ H̄N (K)

which collapses for all large enough N .

Lemma 4.1. Suppose for some knot K and some

J ∈ {52} ∪ {P (−3, 3, 2n+ 1) | n ∈ Z}

that

H̄(K;Q) ∼= H̄(J ;Q)

as triply-graded vector spaces. Then ∆K(t) = ∆J(t), and

dim H̄(K;Q) = dimKh(K;Q) = det(K).

Proof. The claim that ∆K(t) = ∆J(t) follows from the fact that H̄(K) determines the
HOMFLY polynomial of K, and hence its Alexander polynomial. We note by taking t = −1
that this implies that det(K) = det(J).

We now claim that

(4.2) dim H̄(K;Q) = dim H̄(J ;Q) = det(J) = det(K).

It suffices to prove the middle equality. When J = 52 this follows from the fact that
J is a two-bridge knot: Rasmussen proved for each N > 4 that J is “N -thin” [Ras07,
Theorem 1], and hence that the slN homology H̄N (J ;Q) has dimension det(J). We take
N large enough so that the spectral sequence (4.1) collapses for J , and thus conclude that
dim H̄(J ;Q) = det(J). The case J = P (−3, 3, 2n+ 1) is [BS22a, Lemma 9.1], in which we
use an identical argument for the two-bridge knot P (−3, 3, 1) = 61, and then we apply work
of Wang [Wan23] to get the general case.

Combining (4.2) with the case N = 2 of (4.1) and Lemma 2.1, we now see that

det(K) = dim H̄(K;Q) ≥ dim H̄2(K;Q) = dimKh(K;Q) ≥ det(K).

Thus equality must hold throughout, completing the proof. □

Lemma 4.1 is enough to determine the instanton knot homology of such a knot K.
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Lemma 4.2. Suppose for some knot K and some

J ∈ {52} ∪ {P (−3, 3, 2n+ 1) | n ∈ Z}

that

H̄(K;Q) ∼= H̄(J ;Q)

as triply-graded vector spaces. Then dimKHI (K) = det(K), and K has genus 1 and

dimKHI (K, 1) = 2.

Proof. According to Lemma 4.1, we have

∆K(t) = ∆J(t) =

{
2t− 3 + 2t−1, J = 52

−2t+ 5− 2t−1, J = P (−3, 3, 2n+ 1)

and

dimKh(K;Q) = det(K) =

{
7, J = 52

9, J = P (−3, 3, 2n+ 1).

We once again apply Kronheimer and Mrowka’s spectral sequence

Kh(K;Q) =⇒ I♮(K;Q)

of [KM11, Proposition 1.2], together with the isomorphism

I♮(K;Q) ∼= KHI (K;Q)

of [KM11, Proposition 1.4] and the invariance of dimKHI under orientation reversal, to
conclude that

dimKHI (K;Q) ≤ dimKh(K;Q) = det(K).

But the relation (2.1) implies that if we write ∆K(t) =
∑

i ait
i then

dimKHI (K;Q) ≥
∑
i∈Z

|ai| ≥ |∆K(−1)| = det(K),

so if dimKHI (K;Q) ≤ det(K) as well then each inequality must in fact be an equality.

In other words, we have shown that

dimKHI (K, i;Q) = |ai|

for all i ∈ Z, where the ai are the coefficients of ∆J(t). This is zero for all i ≥ 2 and nonzero
for i = 1, so the genus detection property of KHI says that g(K) = 1. And since a1 = ±2
we can also conclude that dimKHI (K, 1) = 2, as claimed. □

Knots satisfying the conclusion of Lemma 4.2 have been completely classified: we achieved

the analogue of this with ĤFK in place of KHI in [BS22a], and then Li and Ye [LY22]
showed that the same conclusion holds for KHI . Specifically, for any such knot the sutured
complement of a genus-1 Seifert surface must be one of two possible sutured manifolds, up to

orientation: for ĤFK this is [BS22a, Theorem 5.1], and then [LY22, Example 2.2] establishes
the same result (with the same sutured manifolds) for KHI . Then [BS22a, Theorem 6.1]
and [BS22a, Theorem 7.1] classify the knots that realize these sutured manifolds, by an
argument that uses no Floer homology whatsoever.
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Proposition 4.3 ([BS22a, LY22]). Suppose that K is a genus-1 knot, and that

dimKHI (K, 1;Q) = 2.

Then up to mirroring, either

• ∆K(t) = 2t− 3 + 2t−1, and K is either 52, 15n43522, or 16n696530; or
• ∆K(t) = −2t+ 5− 2t−1, and K is either some P (−3, 3, 2n+ 1) or 15n115646,

where the knots 15n115646 and 16n696530 are in fact twisted Whitehead doubles Wh±(T2,3, 2)
of the right-handed trefoil.

Using Shumakovitch’s KhoHo program [Shu18], we can compute that

(4.3) dimKh(J ;Q) =


17, J = 15n43522

23, J = 15n115646

25, J = 16n696530.

With this information at hand, we are now ready to prove the remaining results from the
introduction.

Proof of Theorem 1.3. Suppose that H̄(K) ∼= H̄(52). Then Lemmas 4.1 and 4.2 say that

∆K(t) = 2t− 3 + 2t−1,

that dimKh(K;Q) = 7, and that K has genus one, with dimKHI (K, 1;Q) = 2. According
to Proposition 4.3, it follows thatK must be either 52, 15n43522, or 16n696530 up to mirroring.
But the triple grading distinguishes H̄(52) from H̄(52), since they have different signatures
[Ras15, Corollary 5.1], so K cannot be 52. It also cannot be either 15n43522 or 16n696530,
or their mirrors, because by (4.3) we would then have dimKh(K;Q) > 7. Thus K must be
52 after all. □

Proof of Theorem 1.4. Suppose that H̄(K) ∼= H̄(P (−3, 3, 2n + 1)) for some fixed n. Then
Lemma 4.1 says that

∆K(t) = −2t+ 5− 2t−1,

so det(K) = 9, and that

dim H̄(K;Q) = dim H̄2(K;Q) = dimKh(K;Q) = 9.

In particular, when N = 2 the spectral sequence (4.1) collapses, and so by [Ras15, Theo-
rem 1] the bigrading on H̄2(K) is completely determined by the triple grading on H̄(K).
This means that

Kh(K;Q) ∼= Kh(P (−3, 3, 2n+ 1);Q)

as bigraded vector spaces.

Moreover, by Lemma 4.2 we know that K has genus one, with dimKHI (K, 1;Q) = 2.
Proposition 4.3 says that K must therefore be some pretzel knot P (−3, 3, 2m + 1), or
15n115646 or its mirror. (We note that P (−3, 3, 2m+1) is the mirror of P (−3, 3,−2m−1).)
But again by (4.3) the reduced Khovanov homologies of 15n115646 and its mirror are not
9-dimensional, so in fact K cannot be either of these knots. So now we have

K = P (−3, 3, 2m+ 1)
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for some m ∈ Z, and all of these pretzel knots are distinguished by the bigradings on their
Khovanov homologies, by [Sta12, Theorem 4.1] or more generally [HW18, Theorem 3.2].
Thus m = n after all. □
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