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FLA 5.6.
BACKGROUND: Microvascular abnormalities and impaired gas transfer have been observed in
patients with COVID-19. The progression of pulmonary changes in these patients remains
unclear.

RESEARCH QUESTION: Do patients hospitalized with COVID-19 without evidence of archi-
tectural distortion on structural imaging exhibit longitudinal improvements in lung function
measured by using 1H and 129Xe MRI between 6 and 52 weeks following hospitalization?

STUDY DESIGN AND METHODS: Patients who were hospitalized with COVID-19 pneumonia
underwent a pulmonary 1H and 129XeMRI protocol at 6, 12, 25, and 51 weeks following hospital
admission in a prospective cohort study between November 2020 and February 2022. The
imaging protocol was as follows: 1H ultra-short echo time, contrast-enhanced lung perfusion,
129Xe ventilation, 129Xe diffusion-weighted, and 129Xe spectroscopic imaging of gas exchange.

RESULTS: Nine patients were recruited (age 57 � 14 [median � interquartile range] years; six
of nine patients were male). Patients underwent MRI at 6 (n ¼ 9), 12 (n ¼ 9), 25 (n ¼ 6), and
51 (n ¼ 8) weeks following hospital admission. Patients with signs of interstitial lung damage
were excluded. At 6 weeks, patients exhibited impaired 129Xe gas transfer (RBC to membrane
fraction), but lung microstructure was not increased (apparent diffusion coefficient and mean
acinar airway dimensions). Minor ventilation abnormalities present in four patients were
largely resolved in the 6- to 25-week period. At 12 weeks, all patients with lung perfusion data
(n ¼ 6) showed an increase in both pulmonary blood volume and flow compared with
6 weeks, although this was not statistically significant. At 12 weeks, significant improvements
in 129Xe gas transfer were observed compared with 6-week examinations; however, 129Xe gas
transfer remained abnormally low at weeks 12, 25, and 51.

INTERPRETATION:
129Xe gas transfer was impaired up to 1 year following hospitalization in pa-

tients who were hospitalized with COVID-19 pneumonia, without evidence of architectural
distortion on structural imaging, whereas lung ventilation was normal at 52 weeks.
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Take-home Points

Study Question: Do patients hospitalized due to
COVID-19 with no evidence of architectural distor-
tion exhibit longitudinal improvements in 129Xe gas
transfer (RBC:M), to within a normal range, between
6 and 52 weeks following hospitalization?
Results: At 12 weeks, significant improvements in
129Xe gas transfer were observed compared with 6-
week examinations. However, 129Xe gas transfer
remained abnormally low at weeks 12, 25, and 51.
Interpretation: In a cohort of patients with moder-
ate severity disease, 129Xe gas transfer improved but
did not return to within a normal range within 1 year
following hospitalization.
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In patients hospitalized with pneumonia caused by
infection with SARS-CoV-2, the existing literature and
clinical experience suggest that there is considerable
overlap in clinical presentation with typical pneumonia
and ARDS, with patients exhibiting hyperinflammation
and progressive hypoxemia. However, patients with
severe COVID-19 also display evidence of an
inflammatory and thrombotic vasculopathy with
endothelial dysfunction and excessive blood flow to
collapsed lung tissue.1-3 Abnormal pulmonary
vasoregulation has been observed in patients in the acute
phase of COVID-191 and may be a pathophysiological
mechanism contributing to the progressive hypoxemia
seen in these patients.

Abnormalities on chest radiograph or CT scan imaging
at 12 weeks following hospitalization due to COVID-19
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London, London, England; Department of Radiology (J. G. and F. G.),
Oxford NHS Foundation Trust, Oxford, England; GE Healthcare (R. F.
S.), Munich, Germany; University of Madison (K. M. J.), Madison, WI;
and GSK (F. J. W. and A. C.), Stevenage, England.
ISMRM, 12-20.05.2021, online. “Imaging lung structure and function
in acute COVID-19 patients with 129Xe and 1H MRI.” ISMRM, 07-
12.05.2022, London. “Longitudinal lung function assessment of pa-
tients hospitalised with COVID-19 using 1H and 129 Xe lung MRI.”
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are present in some patients, particularly those with
more severe disease who require ICU treatment.4

However, for patients without radiographic
abnormalities, sensitive techniques for monitoring
longitudinal change in lung function are needed.

Lung MRI with hyperpolarized 129Xe gas allows direct,
regionally sensitive measurements of lung ventilation
and function, and it is an emerging method that is used
both clinically and in clinical research, alongside 1H
MRI, to evaluate lung function and abnormalities.5-11 In
addition, 129Xe can image gas diffusion within the lung
airspace (diffusion-weighted MRI [DW-MRI]), and the
derived apparent diffusion coefficient (ADC) and mean
acinar airway dimensions (LmD) provide three-
dimensional in vivo information of the underlying lung
microstructure that is highly sensitive to changes in lung
microstructure in patients with emphysema12 and
fibrotic lung disease.13 In addition, 129Xe is soluble in the
interstitium/membrane (M) and in the RBCs, and the
signal from 129Xe in these dissolved compartments can
be distinguished spectroscopically. The ratio of the 129Xe
MRI signal observed in the lung airspaces (gas), the lung
M, and bound to the RBCs can thus be determined with
magnetic resonance spectroscopic imaging. In
particular, the fractions of the 129Xe signal in the
RBC:M, RBC:gas, and M:gas ratios have been used to
probe gas transfer14,15 and are highly sensitive to gas
transfer limitation and longitudinal change in
interstitial, emphysematous, and pulmonary vascular
diseases.16-18 RBC:M has been shown to correlate highly
with the gas transfer test (TLCO).

6,19

Previous studies have reported reduced RBC:M in
patients with COVID-19,20-23 including in patients with
normal chest CT scan imaging but ongoing dyspnea.21

In patients with residual lung abnormalities on CT
scans, decreased RBC:M may be due to an increase of
xenon uptake in the interstitial lung tissue. However, in
the absence of CT scan abnormalities, we propose that a
decreased RBC:M instead indicates microvascular
(capillary) abnormalities. Therefore, RBC:M in
particular may be a sensitive metric suitable for
longitudinal assessment of regional gas exchange
abnormalities in patients who have had COVID-19 and
have normal structural imaging. It is currently unknown
whether RBC:M improves longitudinally following
COVID-19 pneumonia. Age-related reductions in the
RBC:M ratio may be relevant in other cohorts,24 and
control cohorts well-matched for age are therefore
needed for accurate interpretation of RBC:M in post-
COVID-19 studies. It is also unclear whether patients
[ -#- CHE ST - 2 0 2 3 ]
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with abnormal RBC:M have concurrent abnormalities in
lung perfusion or ventilation.

1H lung MRI is able to assess changes in lung structure
and perfusion. Ultra-short echo time (UTE) imaging
enables good visualization of the lung parenchyma and
has shown excellent agreement with CT scan imaging in
the visualization of lesions in patients with COVID-19.25

Dynamic contrast-enhanced (DCE) 1H lung MRI allows
the assessment of lung perfusion, with high sensitivity
and specificity in detecting perfusion defects without
exposing the participant to ionizing radiation,26 and it is
therefore well suited for patient follow-up studies.
Increased lung perfusion transit times (time to peak)
have been reported in both an acute hospitalized patient
with COVID-19 and in nonhospitalized male patients
with breathlessness who have had COVID-19.27,28
chestjournal.org

FLA 5.6.0 DTD � CHEST5586_proof � 25 April
The current study used a 1H and 129Xe MRI protocol
that combines hyperpolarized 129Xe imaging methods
sensitive to ventilation, lung microstructure (DW-MRI),
and gas exchange (dissolved xenon spectroscopic
imaging) alongside 1H DCE perfusion and UTE lung
structural imaging to assess pathophysiological changes
in patients who had been hospitalized with COVID-19
pneumonia, during the postacute period. The primary
hypothesis of this work was that abnormal imaging and
pulmonary function test (PFT) markers of lung function
would increase to within a normal range over the course
of 1 year in patients without structural abnormalities
seen on CT scan or proton structural imaging. Patients
underwent up to four follow-up MRI examinations at
approximately 6, 12, 24, and 52 weeks following
hospitalization.
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Study Design and Methods
Participants

Patients with acute COVID-19 pneumonia and no previously
diagnosed respiratory disease (excluding mild asthma) were recruited
from [institution name removed] pulmonology and infectious
diseases wards from November 2020 to February 2022 for this
prospective cohort study, prior to or shortly following discharge.
Follow-up 129Xe and 1H lung MRI examinations were acquired at
approximately 6, 12, 24, and 52 weeks following COVID-19
infection. Patients were required to meet the following criteria: (1) a
positive SARS-CoV-2 result from a nasal/pharyngeal or respiratory
sample; (2) hospitalization with a diagnosis of pneumonia (chest
radiograph or CT scan consistent with COVID-19 infection); (3)
development of impaired oxygenation (pulse oximetry saturation #

93% on room air) requiring additional oxygen; and (4) no evidence
of interstitial lung damage on CT scan or MRI structural imaging at
12 weeks following hospital admission, as judged by a clinical chest
radiologist.

Patients with evidence of interstitial lung damage at 12 weeks following
hospital admission were recruited into the parallel UK Interstitial Lung
Disease Consortium (UKILD) study.29 Standard MRI exclusion criteria
were applied to all subjects. In addition, patients were excluded if they
were unable to tolerate a test inhalation of 129Xe gas according to the
supervising clinicians’ judgment or if they had a chest size exceeding
the 129Xe chest coil circumference (76 cm).

Where possible, PFTs were acquired on the same day as the MRI
examination at each visit. Spirometry and transfer factor were
performed, and from these tests, the metrics FEV1, FVC, FEV1/FVC,
TLCO, and carbon monoxide transfer coefficient were calculated and
presented as z scores and % predicted using Global Lung Function
Initiative reference ranges.30,31 This study was approved by the London-
Hampstead Research Ethics Committee (REC reference: 9/LO/1115).

MRI Acquisition

Patients underwent scanning on either an HDx 1.5T (N ¼ 7) or a 450w
1.5T (N ¼ 2) (GE Healthcare) MRI scanner.32 The 129Xe images were
acquired with the patient in a flexible quadrature transmit/receive vest
coil (Clinical MR Solutions). Patients’ vital signs were monitored
throughout the MRI examination. Each patient underwent MRI
examinations on the same scanner for baseline visits and follow-up.
Figure 1 presents an illustrative diagram of the lung MRI methods
used in this study.

129Xe doses were polarized to approximately 30% using a home-built
high-performance spin-exchange optical pumping polarizer.32 This
had regulatory approval for manufacture of hyperpolarized 129Xe for
clinical lung MRI by the UK Medicines and Healthcare Products
Regulatory Agency.

MR imaging was conducted as summarized in the following text
(parameters are detailed in e-Table 1).

A structural 1H scan was acquired following inhalation of a bag of air to
match the lung inflation state of the subsequent xenon sequences. 129Xe
ventilation images were acquired using a three-dimensional imaging
sequence with whole-lung coverage following inhalation of a 1 L
maximum mixture of 129Xe and N2 (titrated if subject height <

160 cm33) and inhaled from functional residual capacity; patients were
coached in the required breathing maneuver prior to their MRI
examination.34

129Xe DW-MRI to assess alveolar microstructural change was acquired
following inhalation of a maximum 1 L mixture of 129Xe and N2

(three-dimensional spoiled gradient echo [SPGR] multiple b-value
sequence with compressed sensing with whole-lung coverage).35

Three Q-dimensional spectroscopic imaging of the gas and dissolved
phase xenon resonances (dissolved xenon in lung M and in blood
RBCs) was acquired by using a maximum 1 L dose of
hyperpolarized 129Xe (TR ¼ 15, flip angle ¼ 22 [three-dimensional
acquisition with whole-lung coverage]).6

1H MRI was acquired by using an eight-element cardiac array (GE
Healthcare). UTE images were acquired with a three-dimensional
radial sequence during 8 min of free-breathing with prospective
respiratory bellows gating on expiration.36

Three-dimensional variable flip angle SPGR images37,38 were acquired
(flip angle ¼ 2�, 4�, 10�, and 30�) to allow for the correction of lung T1

and proton density. DCE lung perfusion MRI was acquired (three-
dimensional volumetric time-resolved SPGR acquisition). A half dose
(0.05 mL/kg) of Gadovist (Bayer) was administered at an injection
rate of 4 mL/s followed by a 20 mL saline flush at 4 mL/s. Patients
3
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Dissolved phase 129Xe MRI

Dissolved phase MRI measures
changes in the proportion of
129Xe in the airspace (gas),
membrane (M), and red blood
cells (RBC).

Lung perfusion

Measures concentration
of gadolinium-based
contrast agent in the
bloodstream.

129Xe Ventilation

Measures density and
distribution of 129Xe in the
airspace.

Contrast-enhanced

lung perfusion

Decrease in
microvascular
perfusion.

129Xe Ventilation

Lungs generally well
ventilated.

Diffusion 129Xe MRI

Lung microstructure
unchanged

Diffusion 129Xe MRI

Measures 129Xe
movement, which is
restricted by acinar
airway dimensions.

Dissolved phase 129Xe MRI

Reduced uptake of xenon in the
red blood cells.
Some patients may also have an
increase of xenon in the
membrane.

p
ri
n
t
&
w
e
b
4
C
=
F
P
O

p
ri
n
t
&
w
e
b
4
C
=
F
P
O

p
ri
n
t
&
w
e
b
4
C
=
F
P
O

Figure 1 – A-B, Illustrative diagram showing how the lung MRI techniques used in this article measure lung perfusion, ventilation, lung microstructure
(acinar airway dimensions), and xenon gas transfer (the transfer of xenon between the airspace, membrane, and RBCs). A, Techniques in a healthy
alveolus. B, Possible interpretation of the findings of this article in patients who have had COVID-19, with reduced RBC:M due to damage to Q34pul-
monary microcirculation but preserved acinar airway dimensions. Q39
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were advised to hold their breath for as long as possible and breathe
shallowly thereafter.

Image Analysis

Qualitative assessments of the UTE 1H structural, 129Xe ventilation,
and DCE lung perfusion images were made by two radiologists with
10 and 14 years of experience, respectively. UTE images were
assessed for parenchymal changes, and ventilation and perfusion
images were assessed for defects.

Metrics of ventilation defect percentage (VDP), low ventilation
percentage (VP), normal VP, and hyper VP for each patient were
calculated by using linear binning (see online supplement). The
coefficient of variation of the segmented lung ventilation images was
also calculated from the 129Xe ventilation images as a marker of
ventilation heterogeneity.
4 Original Research

FLA 5.6.0 DTD � CHEST5586_proof � 25 A
Maps of 129Xe ADC and mean diffusive length scale (LmD) from a
stretched exponential model of 129Xe gas diffusion in the lungs were
calculated on a voxel-by-voxel basis.39

Maps of gas transfer ratios (RBC:M, RBC:gas, and M:gas) were
calculated from three-dimensional spectroscopic imaging. The
transverse relaxation time (T2*) of the RBC and M spectroscopic
peaks was also calculated.

Mean values of all global metrics were calculated for each patient. A
sample size calculation was not performed because this was an
exploratory study.

Global MRI metrics from visits 1, 2, 3, and 4 were compared by using a
Skillings-Mack test due to the presence of missing data40 with pairwise
Wilcoxon tests and a correction for multiple testing,41 implemented by
using R software.42 Data are presented as median (range), unless
otherwise stated.
[ -#- CHE ST - 2 0 2 3 ]
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Mixed linear effect models were set up using a random intercept model
to test the relationship between RBC:M and the following: (1)
pulmonary blood volume; (2) pulmonary blood flow; (3) mean
transit time; (4) VDP; and (5) TLCO z score. IBM SPSS Statistics 27
(IBM SPSS Statistics, IBM Corporation) was used for analysis. A P
value < .05 was considered statistically significant.

Age- and Sex-Matched Healthy Volunteer Metrics

Median ADC and LmD values for an age- and sex-matched control
cohort were determined by retrospective analysis of previously
published data.43 Eleven subjects from this previously published
In-patient recruitment
N = 16

Visit 1 MRI
N = 16

Visit 2 MRI
N = 11

Yes

Yes

Yes

Returned for at least 
1 follow-up visit

12 weeks:
normal CT scan?

Included in final analysis
N = 9

Figure 2 – Flow chart of patient recruitment. UKILD ¼ UK Interstitial Lun

chestjournal.org
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work were selected based on matching median and interquartile
range (IQR) of age and sex ratio from a cohort of 23 subjects while
blinded to MRI metrics; the control cohort had a median age of 63
(40-70) years, and 73% were male.

Median RBC:M, RBC:gas, and M:gas for an age- and sex-matched
control cohort were determined by retrospective analysis of a healthy
cohort data set, with control subjects chosen based on matching
median and IQR of age and sex ratio while blinded to MRI metrics.
Twelve subjects were selected (median age, 57 [41-68] years), and
67% were male.
505
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Results
Of the 16 recruited patients, 14 showed no signs of
interstitial lung damage at 12 weeks and were therefore
included as part of this study. Nine of 14 patients had
follow-up examinations and were included for analysis
(Fig 2).

Six of nine patients were male. Median patient age,
height, and weight were 57 (42-72) years, 173 (170-
191) cm, and 101 (84-112) kg, respectively. Visit 1
(N ¼ 9) occurred 6 (4-12) weeks following hospital
admission; visit 2 (N ¼ 9) occurred 12 (11-22) weeks
following hospital admission; visit 3 (n ¼ 7) occurred
25 (23-28) weeks following hospital admission; and
visit 4 (n ¼ 8) occurred 51 (49-62) weeks following
hospital admission. Patients had been admitted to the
hospital with COVID-19 for 6 (2-15) days. Further
patient demographic data are presented in
Table 1.44,45 No patients received any trial of
pharmacologic treatment for post-COVID-19
symptoms following discharge. Two of the patients
commenced treatment for diabetes during the follow-
up period.

UTE and 129Xe MRI were successfully acquired in all
patients at all visits. DCE lung perfusion imaging was
successfully acquired in six of nine patients at visit 1,
eight of nine patients at visit 2, six of seven patients at
visit 3, and five of eight patients at visit 4. The reasons
for unsuccessful lung perfusion imaging were patients
failing screening (6 visits), patient motion (2 visits), and
technical issues (1 visit).
N = 5
No

No Recruited into UKILD study
n = 2

g Disease Consortium. Q35
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TABLE 1 ] Patient Demographic DataQ26 Q27

Characteristic Group No. of Patients

Demographic characteristics

Age, y < 50 2

50-59 3

60-69 3

70-79 1

Sex Male 6

Female 3

BMI, kg/m2 25-29.9 3

30-39.9 5

$ 40 1

Comorbidities
4C score44

0 4

1 4

3 1

Tobacco use
Q28 history

Never tobacco user 4

Ex-tobacco user 5

Clinical characteristics on admission

Admission SF
ratio

< 200 0

200-299 3

300-399 3

$ 400 3

Clinical characteristics during admission

Maximum
oxygen
requirement
during
hospital stay

< 28% 1

28%-35% 4

40% 2

> 60% 2

CPAP 1

ISARIC 4C
score44

1-4 3

5-8 5

> 8 1

Length of stay, d 1-5 4

6-9 4

> 10 1

Maximum
National Early
Warning Score
2 score45

5-6 4

$ 7 5

Medication
during stay

Oral antibiotics 1

IV antibiotics 2

(Continued)

TABLE 1 ] (Continued)

Characteristic Group No. of Patients

Dexamethasone 9

Remdesivir (Gilead
Sciences)

5

Immunomodulation
therapy

3

Convalescent
plasma

2

Colchicine 2

Aspirin 3

Included in an
interventional

study?

7

Lowest SF ratio
during stay

< 200 2

200-299 3

300-399 4

$ 400 0

Maximum FIO2

during stay
< 28% 1

28%-35% 4

40% 2

> 60% 2

CPAP 1

Clinical characteristics postdischarge

MRC Dyspnoea
Scale (1-5), 6
wk

1 6

2 2

Not available 1

MRC Dyspnoea
Scale (1-5), 3
mo

1 7

2 1

3 1

Not available 0

Readmittance Yes 1 for
general
surgery
unrelated
to COVID-

19

No 8

Ex-tobacco users all reported # 15 pack y. The pulse oximetry saturation/
FIO2 ratio (SF ratio) was calculated by using estimated FIO2 based on flow
rate when delivered by nasal cannulae. ISARIC ¼ International Severe
Acute Respiratory and Emerging Infection Consortium; MRC ¼ Medical
Research Council.
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Figure 3 shows representative slices from the UTE
images, RBC:M maps, 129Xe ventilation images, and
DCE pulmonary blood flow maps for each patient at
[ -#- CHE ST - 2 0 2 3 ]
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Figure 3 – Example of UTE images, RBC:M maps, 129Xe ventilation images, and maps of pulmonary blood flow at visit 1 and visit 2, for each
patient. The white arrow indicates a segmental perfusion defect visible at visit 1, which improves at visit 2. M ¼membrane; PBF ¼ pulmonary blood
flow; UTE ¼ ultra-short echo time.
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visit 1 and visit 2. Figure 4 displays plots of ventilation,
dissolved phase 129Xe, and DCE lung perfusion metrics
for each patient at each visit. Median metrics and
statistical comparisons of metrics at each visit are
presented in Table 2.

129Xe MRI

Ventilation: At visit 1, small ventilation defects were
visible in the lung periphery in four patients (1, 3, 4, and
6). No other patients had visible lung ventilation defects.
At visits 2 and 3, the ventilation defects observed in
patients 1, 3, 4, and 6 had improved, with small defects
still visible, particularly in patient 3. At visit 4, small
peripheral ventilation defects were observed in patients
1, 3, and 6 (e-Fig 1, Fig 3).
chestjournal.org
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Whole lung VDP was calculated for each patient. At visit
1, median VDP was 1.6% (0.6%-3.9%); at visit 2, VDP
was 1.3% (0.7%-2.6%); at visit 3, VDP was 1.2% (0.4%-
2.1%); and at visit 4, VDP was 0.8 % (0.4%-3.7%).

Quantitative metrics of ventilation improved at visits 2,
3, and 4 compared with visit 1; however, this was not
statistically significant following adjustment for multiple
corrections (Table 2).

DW-MRI (Alveolar Microstructure):Median ADC and
LmD at each visit are reported in Table 2. No significant
longitudinal changes in ADC and LmD were seen
between visits. Median ADC and LmD were within the
median � IQR of age- and sex-matched control data
(age- and sex-matched control data: median ADC,
7
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Figure 4 – Spaghetti plots of ventilation, dissolved phase xenon, and dynamic contrast-enhanced lung perfusion metrics at visits 1 to 4. CV ¼ coefficient
of variation of lung ventilation; M ¼ membrane; VDP ¼ ventilation defect percentage.
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0.0360 cm2/s [IQR, 0.005 cm2/s]; median LmD, 289 mm
[IQR, 27 mm]) at all visits (e-Fig 2).

Dissolved Xenon (Gas Exchange): Figure 5 presents
sample RBC:M maps. The global RBC:M ratio
significantly increased at visit 2 compared with visit 1
(Padj ¼ .023). RBC:M at visit 1 was 0.22 (0.15-0.37), and
at visit 2 it was 0.25 (0.18-0.41). No subjects showed a
decrease in RBC:M at visit 2 compared with visit 1 (Figs
4, 5). RBC:M at visits 3 and 4 were 0.25 (0.19-0.44) and
0.23 (0.19-0.44), respectively. At visits 3 and 4, some
patients showed continued improvement (Figs 3, 4),
while others maintained an abnormal RBC:M during the
25- to 51-week period. There were no significant
changes between visits 2, 3, and 4.
8 Original Research
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Figure 6 shows boxplots of the RBC:M, RBC:gas, and
M:gas for patients at each visit, with reference boxplots
of age- and sex-matched control data (control RBC:M
median, 0.39 [IQR, 0.13]; RBC:gas median, 0.0034 [IQR,
0.0006]; M:gas median, 0.0088 [IQR, 0.0021]). The
number of patients who had RBC:M below the median
� IQR of the age- and sex-matched healthy volunteers
was eight of nine at visit 1, seven of nine at visit 2, five of
seven at visit 3, and six of eight at visit 4.

The T2* of the M and RBCs was calculated. M T2*
showed a significant longitudinal decrease across visits,
with lower M T2* at visit 4 compared with visits 1, 2, and
3 (Padj ¼ .023, Padj ¼ .023, and Padj ¼ .047, respectively)
and between visits 1 and 3 (Padj ¼ .031) (Table 2). No
[ -#- CHE ST - 2 0 2 3 ]
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TABLE 2 ] Median Metrics for All MRI Parameters at Visits 1, 2, 3, and 4

Visit 1 Visit 2 Visit 3 Visit 4 P Value Adjusted P Value

No. 9 9 7 8

ADC, cm2/s 0.0344 (0.309-0.0373) 0.0327 (0.0281-0.0386) 0.0340 (0.310-0.364) 0.0338 (0.307-0.0357) . . Q29 Q30
Q31

LmD, mm 281 (260-300) 273 (251-301) 278 (263-290) 279 (263-288) . .

RBC:M 0.22 (0.15-0.37) 0.25 (0.18-0.41) 0.25 (0.19-0.44) 0.23 (0.19-0.44) V1-V2, P ¼ .004
V1-V3, P ¼ .047
V1-V4, P ¼ .039

V1-V2, P ¼ .023*
V1-V3, P ¼ .094
V1, V4, P ¼ .094

RBC:gas 0.0026 (0.0018-0.0039) 0.0030 (0.0019-0.0038) 0.0026 (0.0020-0.0040) 0.0024 (0.0017-0.0038) . .

M:gas 0.0113 (0.0091-0.0125) 0.0114 (0.0081-0.0179) 0.0101 (0.0091-0.0113) 0.0094 (0.0082-0.0104) V1-V4, P ¼ .031
V2-V4, P ¼ .023
V3-V4, P ¼ .031

V1-V4, P ¼ .063
V2-V4, P ¼ .063
V3-V4, P ¼ .063

M T2*, ms 2.58 (2.46-2.68) 2.47 (2.38-2.58) 2.42 (2.36-2.56) 2.22 (1.94-2.40) V1-V2, P ¼ .044
V1-V3, P ¼ .023
V1-V4, P ¼ .008
V2-V4, P ¼ .008
V3-V4, P ¼ .031

V1-V2, P ¼ .053
V1-V3, P ¼ .031*
V1-V4, P ¼ .023*
V2-V4, P ¼ .023*
V3-V4, P ¼ .047*

RBC T2*, ms 2.20 (2.05-2.48) 2.16 (2.01-2.49) 2.16 (2.06-2.32) 2.27 (2.10-2.47) . .

DCE PBV, mL/
100 mL

37.8 (11.7-53.5) 47.6 (15.0-60.2) 45.3 (36.3-58.4) 53.8 (52.46-60.72) . .

SD PBV, mL/
100 mL

18.0 (7.5-28.5) 21.3 (13.0-24.8) 23.8 (17.9-25.7) 21.1 (20.8-22.0) . .

IQR PBV, mL/
100 mL

25.1 (7.8-34.9) 27.8 (10.5-36.1) 35.9 (24.2-41.5) 29.5 (27.0-31.9) . .

DCE PBF, mL/
100 mL/min

76.9 (19.6-107.2) 90.2 (30.7-109.5) 71.1 (60.3-117.7) 98.3 (93.4-116.2) . .

SD PBF, mL/
100 mL/min

45.8 (11.5-58.8) 54.5 (32.0-75.0) 48.6 (35.6-69.5) 54.2 (41.0-65.4) . .

IQR PBF, mL/
100 mL/min

54.0 (14.1-61.3) 59.2 (25.5-102.9) 59.0 (43.2-78.7) 64.8 (54.2-72.4) . .

Median MTT, s 6.5 (5.6-8.0) 7.3 (6.4-8.0) 7.1 (3.5-9.9) 6.9 (2.3 – 7.6) . .

SD MTT, s 1.3 (0.9-1.6) 1.2 (0.6-2.6) 1.3 (0.5-2.2) 0.7 (0.6-0.9) . .

IQR MTT, s 1.3 (1.1-2.0) 1.6 (0.7-3.1) 1.3 (0.6-3.5) 0.7 (0.5-1.1) . .

VDP, % 1.6 (0.6-3.9) 1.3 (0.7-2.6) 1.2 (0.4-2.1) 0.8 (0.4-3.7) V1-V3, P ¼ .016 V1-V3, P ¼ .094

Normal VP, % 76.4 (62.5-77.7) 76.9 (72.3-86.2) 78.9 (67.4-81.5) 81.1 (69.0-82.6) V1-V2, P ¼ .027
V1-V3, P ¼ .031

V1-V2, P ¼ .093
V1-V3, P ¼ .093

Low VP, % 12.5 (10.0-15.4) 11.9 (8.9-13.1) 10.9 (9.1-14.8) 10.6 (10.0-13.7) . .

(Continued)

ch
estjo

u
rn

al.o
rg

9

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
90

0
90

1
90

2
90

3
90

4
90

5
90

6
90

7
90

8
90

9
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

F
L
A

5
.6
.0

D
T
D

�
C
H
E
S
T
55
8
6
_
p
ro
o
f
�

2
5
A
p
ril

2
0
2
3
�

3
:4
5
p
m

�
E
O
:
C
H
E
S
T
-D

-2
2
-0
1
5
9
0

http://chestjournal.org


T
A
B
L
E

2
]

(C
o
n
ti
n
u
ed

)

Vi
si
t
1

Vi
si
t
2

Vi
si
t
3

Vi
si
t
4

P
Va
lu
e

Ad
ju
st
ed

P
Va
lu
e

H
yp

er
V
P,

%
1
1
.7

(9
.5
-1

8
.3
)

1
1
.0

(4
.2
-1

3
.3
)

9
.7

(7
.9
-1

5
.8
)

8
.4

(6
.8
-1

5
.2
)

.
.

Lu
n
g
ve

n
ti
la
ti
o
n

C
V
,
%

2
9
.0

(2
7
.5
-3

7
.1
)

2
8
.8

(2
2
.3
-3

2
.2
)

2
6
.9

(2
5
.6
-3

4
.1
)

2
6
.1

(2
5
.0

-3
3
.3
)

V
1
-V

2
,
P
¼

.0
4
0

V
1
-V

3
,
P
¼

.0
1
6

V
1
-V

4
,
P
¼

.0
4
0

V
1
-V

2
,
P
¼

.0
7
8

V
1
-V

3
,
P
¼

.0
7
8

V
1
-V

4
,
P
¼

.0
7
8

D
at
a
ar
e
pr
es
en
te
d
as

m
ed
ia
n
(r
an

ge
)o

fa
ll
pa
tie

nt
s
w
ith

av
ai
la
bl
e
da
ta

fo
r
ea
ch

vi
si
t.
If
a
Sk
ill
in
gs
-M

ac
k
te
st
de
te
rm

in
ed

th
at

th
er
e
w
as

a
si
gn

ifi
ca
nt

di
ffe

re
nc
e
be
tw

ee
n
at

le
as
tt
w
o
va
ri
ab
le
s,
P
va
lu
es

ar
e
sh
ow

n
fo
r

W
ilc
ox
on

pa
ir
w
is
e
te
st
s.

P
va
lu
es

ar
e
sh
ow

n
pr
io
r
to

an
d
fo
llo
w
in
g
ad
ju
st
m
en
t
fo
r
m
ul
tip

le
te
st
in
g.

AD
C
¼

ap
pa
re
nt

di
ffu

si
on

co
ef
fi
ci
en
t;
CV

¼
co
ef
fi
ci
en
t
of

va
ri
at
io
n;

D
CE

¼
dy
na

m
ic

co
nt
ra
st
-e
nh

an
ce
d;

IQ
R
¼

in
te
rq
ua

rt
ile

ra
ng

e;
Lm

D
¼

m
ea
n
ac
in
ar

ai
rw

ay
di
m
en
si
on
s;
M
¼

m
em

br
an

e;
M
:g
as

¼
m
em

br
an

e
to

ga
s
fr
ac
tio

n;
M
TT

¼
m
ea
n
tr
an

si
tt
im

e;
PB

F
¼

pu
lm

on
ar
y
bl
oo
d
fl
ow

;P
BV

¼
pu

lm
on
ar
y
bl
oo
d
vo
lu
m
e;

RB
C:
ga
s
¼

RB
C
to

ga
s
fr
ac
tio

n;
T 2
*
¼

tr
an

sv
er
se

re
la
xa
tio

n
tim

e;
V
¼

vi
si
t;
VD

P
¼

ve
nt
ila
tio

n
de
fe
ct

pe
rc
en
ta
ge
;
VP

¼
ve
nt
ila
tio

n
pe
rc
en
ta
ge
.

10 Original Research

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

FLA 5.6.0 DTD � CHEST5586_proof � 25 A
other significant changes in the T2* of the RBC or M
were seen (e-Fig 3).

1H MRI

Structural Changes: The UTE image of Patient 3
showed abnormal linear parenchymal changes at visit 1,
which improved but remained abnormal at visits 2 and 3
and were resolved at visit 4. Patients 2, 6, 7, and 8
displayed air trapping on their UTE image at visit 1,
which resolved at visit 2 for patients 6, 7, and 8. Patient 2
continued to have air trapping present at visits 3 and 4.
The UTE images of Patients 1, 4, 5, and 9 were normal at
all visits (e-Table 2).

DCE (Perfusion): Patient 1 showed a segmental
perfusion defect at visit 1 that was resolved at visit 2. No
other patients showed any substantial regional perfusion
defects. Median pulmonary blood volume and flow
increased in all patients (n ¼ 6) at visit 2 compared with
visit 1; however, the increase was not statistically
significant. For the six patients with DCE MRI at visits 1
and 2, median pulmonary blood volume was 37.8
(11.7-53.5) mL/100 mL at visit 1 and 47.6 (15.0-60.2)
mL/100 mL at visit 2, and pulmonary blood flow was
76.9 (19.6-107.2) mL/100 mL/min at visit 1 and 91.1
(30.7-109.5) mL/100 mL/min at visit 2 (Fig 4).

Pulmonary Function Tests

Data were available on PFTs for six of nine patients at
visit 1, six of nine patients at visit 2, seven of seven
patients at visit 3, and seven of eight patients at visit 4;
all z scores and % predicted data are shown in Figure 7.
There was a median of 0 days (mean, 2.8 days; range, 0-
23 days) between MRI and PFTs.

Median TLCO z score was –1.66 (–1.96 to 0.66) at visit 1,
–0.88 (–1.49 to 0.68) at visit 2, –0.47 (–1.51 to 0.90) at
visit 3, and –0.31 (–1.67 to 1.05) at visit 4. Three of six
patients had an abnormal TLCO z score (<1.64) at visit
1. No patients had an abnormal TLCO z score at visit 2 or
3. One patient had an abnormal TLCO z score at visit 4.

One patient (patient 5) had abnormally low FVC at visit
1 and visit 4. No other forced lung volume metrics were
abnormal at any visits.

Linear Mixed-Effect Model of RBC:M

A significant increase in RBC:M was found with
increasing pulmonary blood volume, pulmonary blood
flow, decreasing VDP, and increasing TLCO z score,
using data from all 4 visits (Table 3). No statistically
significant relationship was found between RBC:M and
mean transit time.
[ -#- CHE ST - 2 0 2 3 ]
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Figure 5 – Lung RBC:M maps in three patients with four MRI visits at 6, 12, 25, and 51 weeks following hospital admission. Mean RBC:M at each
visit is shown. M ¼ membrane.
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Discussion
This study used a comprehensive 1H and 129Xe MRI
protocol to assess pathophysiological pulmonary
changes in hospitalized patients with COVID-19 for up
to 1 year following hospitalization. At 6 weeks following
hospitalization, four of nine patients had small
ventilation defects, TLCO z score was abnormal in three
of nine patients, and xenon gas transfer (RBC:M) was
outside the median � IQR of age- and sex-matched
chestjournal.org 1
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healthy subjects in eight of nine patients. At 12 weeks,
improvements were seen in lung ventilation and xenon
gas transfer. However, there was no longitudinal change
in xenon gas transfer between 12 and 52 weeks, and
median 129Xe gas transfer in these patients remained
lower than expected. This indicates that some of the
patients with COVID-19 exhibited continued
abnormalities in 129Xe gas transfer at 12 to 51 weeks
following hospitalization, despite normal lung structural
1
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Figure 6 – Boxplots of xenon gas transfer ratios from patients at visits 1 to 4 as well as metrics from an age- and sex-matched healthy cohort. M ¼
membrane. Open circles denote data > 1.5 interquartile range; star denotes data > 3 interquartile range.
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imaging and ventilation, with six of eight patients
outside the median � IQR of normal age- and sex-
matched patients at 51 weeks.
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Several studies have reported reduced gas transfer to the
RBC in patients hospitalized due to COVID-19.21-23

Because xenon gas transfer depends on both the xenon
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Figure 7 – Spaghetti plots of FEV1 z score, FVC z score, FEV1/FVC z score, KCO z score, and TLCO z score. KCO ¼ carbon monoxide transfer coefficient;
TLCO Q36¼ gas transfer test.
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uptake in the lung tissue and the xenon uptake in the
RBCs, a combination of lung perfusion abnormalities
and/or alveolar/interstitial endothelial changes may be
mechanistically driving the reduced xenon gas transfer
seen in patients following COVID-19. Although not
directly comparable to the results from those studies due
to differences in imaging parameters, our findings are in
accordance with the reporting of significantly lower
RBC:M values between hospital discharge and 24 weeks’
chestjournal.org
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postdischarge in previous studies.20-22 In the current
study, the inclusion of data from age- and sex-matched
healthy control subjects shows that these changes are not
due to age or sex differences between control subjects
and patients in this study. RBC:gas and M:gas did not
show significant longitudinal change once adjusted for
multiple comparisons, implying that the change in
RBC:M was a combined effect of changes in both M and
RBC. A significant reduction in M T2* at visit 2 was also
13
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TABLE 3 ] Effect of Pulmonary Blood Volume, Pulmonary Blood Flow, Mean Transit Time, VDP, and TLCO z Score on
RBC:M Tested Using Linear Mixed-Effect Model Analysis With a Random Intercept

Estimated Coefficient P Value Lower CI Upper CI

Pulmonary blood volume (mL/100 mL) 0.0016 .002 0.0007 0.0025

Pulmonary blood flow (mL/100 mL/min) 0.00067 .015 0.00014 0.00120

Mean transit time (s) 0.0082 .076 –0.00093 0.01729

VDP (%) –0.025 .009 –0.0427 –0.007

TLCO z score 0.048 < .001 0.027 0.069

The Q32estimated coefficients of the models, P values, and CIs are shown in the table. M ¼ membrane; TLCO Q33¼ gas transfer test; VDP ¼ ventilation defect
percentage.
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found. The physiological mechanisms behind changes in
M T2* are not well established and are discussed further
in the online supplement.

We also found that changes in xenon gas transfer
increased significantly with increased TLCO z score,
VDP, and lung perfusion metrics (pulmonary blood
volume and pulmonary blood flow). All patients with
DCE data available displayed an increase in regional
pulmonary blood flow and volume between visits 1 and
2, despite only one having a substantial perfusion defect.
This may indicate microvascular improvements at
12 weeks, and that microvascular recovery may be
partially driving changes in RBC:M in these patients. In
parallel, a concomitant reduction in M signal due to
resolution of postinfection endothelial inflammation
could contribute to the increase in RBC:M with time.

Although we see global correlations between RBC:M,
ventilation, and perfusion, regional heterogeneity in
RBC:M did not visually agree with ventilation or
perfusion heterogeneity; for example, as shown in
Figure 3, Patient 8 has a visually heterogeneous RBC:M
map but no visual concordance with pulmonary blood
flow heterogeneity and homogeneous ventilation on the
similar slices presented. Further work assessing regional
distributions seen in the different functional MR images
available here is warranted to evaluate regional
correlations quantitatively.

In this study, most patients (seven of nine) did not
report significant breathlessness at visit 2 (12 weeks),
despite lower RBC:M than the control reference data.
The two patients who reported breathlessness at visit 2
had the two lowest RBC:M values at that visit. Larger
studies in symptomatic patients are needed to further
investigate links between RBC:M and breathlessness or
other post-COVID-19 symptoms. Fully recovered post-
COVID-19 control groups will be important in further
studies investigating post-COVID-19 breathlessness
with these imaging techniques.
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Median patient ADC and LmD were within the age- and
sex-matched reference range at visits 1 and 2,35 with no
significant change at visit 2, indicating that airway
dimensions were not increased in these nine patients
who had COVID-19 but no signs of interstitial lung
damage on structural imaging. This study excluded
patients with signs of interstitial lung damage, as
previous work has shown that patients with interstitial
lung diseases can have reduced xenon gas transfer,6

alterations in lung microstructure measured using 129Xe
MRI,6 reductions in lung ventilation,46 and reductions in
lung perfusion.47 Although this means that there is
considerable promise for lung MRI to provide
longitudinal biomarkers in patients with signs of
interstitial lung damage, it also suggests that persistent
perfusion, ventilation, gas transfer, and lung
microstructure abnormalities may be mechanistically
related to the visible tissue changes within a cohort with
structural lung abnormalities. Further work using a 1H
and 129Xe protocol in patients with established
pulmonary fibrosis due to COVID-19 on CT scan
imaging is the subject of an ongoing study (UKILD).29

Minor ventilation heterogeneity and defects were
present in this cohort shortly following acute illness;
these defects improved over time, which is consistent
with the findings of Grist et al21 and of Li et al.20 Overall,
the current study and the findings from previous
literature suggest it is unlikely that impaired lung
ventilation is the primary cause of ongoing symptoms
following the acute stage of COVID-19 and that the
pathophysiology is not primarily of the airways.

The main limitation of the current study is the limited
number of participants, which was largely caused by the
challenging nature of recruiting patients for scanning
directly following a recent hospitalization due to
COVID-19 in the first wave of the pandemic. In
addition, not all patients had DCE lung perfusion
imaging or PFTs at all examinations (due to
[ -#- CHE ST - 2 0 2 3 ]
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aerosolization constraints). The numbers recruited limit
correlations with symptoms, activity, and lung function,
as well as the statistical tests used to test for change. All
129Xe acquisitions were acquired at FRC plus 1 L,
resulting in some variability between patients in the lung
inflation state. A final potential source of bias in this
study is that five patients who were potentially eligible
for the study were excluded due to chest size exceeding
the size of the xenon MRI coil.

Interpretation
This study found that in a cohort of patients who were
hospitalized with COVID-19 pneumonia of moderate
severity who had normal CT scan/lung structural
imaging, 129Xe gas transfer improved at 12 weeks but did
not return to within a normal range within 1 year
following hospitalization. Improvements in 129Xe gas
transfer were associated with an increased lung
perfusion on DCE-MRI and increased TLCO z score;
therefore, abnormalities in 129Xe gas transfer may be a
marker of ongoing microvascular abnormalities post-
COVID-19.

TLCO z score was within a normal range for seven of
eight patients with available data at 51 weeks’
posthospitalization. This indicates that 129Xe gas transfer
may be a more sensitive measure of gas exchange in this
population and that it may be able to identify
abnormalities that routine clinical tests overlook.

We believe this to be the first follow-up study of similar
patients with such an extensive range of functional lung
imaging techniques. Our findings show the sensitivity
and complementary nature of functional MRI to follow-
up post-COVID-19 lung pathophysiology in a clinical
setting.
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