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Abstract

We derive a priori bounds for the �4 equation in the full sub-critical regime
using Hairer’s theory of regularity structures. The equation is formally given by

(∂t − �)φ = −φ3 + ∞φ + ξ, (�)

where the term +∞φ represents infinite terms that have to be removed in a renor-
malisation procedure. We emulate fractional dimensions d < 4 by adjusting the
regularity of the noise term ξ , choosing ξ ∈ C−3+δ . Our main result states that if φ

satisfies this equation on a space–time cylinder D = (0, 1) × {|x | � 1}, then away
from the boundary ∂D the solution φ can be bounded in terms of a finite number of
explicit polynomial expressions in ξ . The bound holds uniformly over all possible
choices of boundary data for φ and thus relies crucially on the super-linear damp-
ing effect of the non-linear term −φ3. A key part of our analysis consists of an
appropriate re-formulation of the theory of regularity structures in the specific con-
text of (*), which allows us to couple the small scale control one obtains from this
theory with a suitable large scale argument. Along the way we make several new
observations and simplifications: we reduce the number of objects required with
respect to Hairer’s work. Instead of a model (	x )x and the family of translation
operators (
x,y)x,y we work with just a single object (Xx,y) which acts on itself for
translations, very much in the spirit of Gubinelli’s theory of branched rough paths.
Furthermore, we show that in the specific context of (*) the hierarchy of continuity
conditions which constitute Hairer’s definition of a modelled distribution can be
reduced to the single continuity condition on the “coefficient on the constant level”.
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1. Introduction

The theory of regularity structures was introduced in Hairer’s groundbreaking
work [23] and has since been developed into an impressive machinery [6,8,12] that
systematically yields existence and uniqueness results for a whole range of singu-
lar stochastic partial differential equations from mathematical physics. Examples
include the KPZ equation [15,22], the multiplicative stochastic heat equation [26],
as well as reversible Markovian dynamics for the Euclidean �4 theory in three
dimensions [23], in “fractional dimension d < 4” [6], for the Sine-Gordon model
[13,28], for the Brownian loop measure measure on a manifold [7] and for the
d = 3 Yang–Mills theory [11].

A serious limitation of this theory so far is that these existence and uniqueness
results only hold for a short time, and this existence time typically depends on the
specific realisation of the random noise term in the equation. Most applications are
furthermore limited to a compact spatial domain such as a torus. The reason for
this limitation is that the whole machinery is set up as the solution theory for a
mild formulation in terms of a fixed-point problem, and that specific features of the
non-linearity, such as damping effects or conserved quantities, are not taken into
account. With this method, global-in-time solutions can only be obtained in special
situations, for example if all non-linear terms are globally Lipschitz [24] or if extra
information on an invariant measure is available [14,25].

This article is part of a programme to derive a priori bounds within the regularity
structures framework in order to go beyond short time existence and compact spatial
domains. We focus on the �4 dynamics which are formally given by the stochastic
reaction diffusion equation

(∂t − �)φ = −φ3 + ξ, (1.1)

where ξ is a Gaussian space–time white noise over R×R
d . A priori bounds for this

equation have recently been derived by several groups for the two dimensional case
d = 2 [32,34] and the more difficult case d = 3 [2,18,19,30,31]. In this article we
obtain bounds throughout the entire sub-critical regime, formally dealing with all
“fractional dimensions” up to (but excluding) the critical dimension d = 4. Here we
follow the convention of [6] to emulate fractional dimensions d < 4 by adjusting
the regularity assumption on ξ , and assuming that it can only be controlled in a
distributional parabolic Besov–Hölder space of regularity −3 + δ for an arbitrarily
small δ > 0. Connecting back to the �4 dynamics driven by space–time white
noise, δ = 0− mimics the scaling of the equation with d = 4 and δ = 1/2− gives
us back equation with d = 3.

Our analysis is based the method developed in the d = 3 context in [30] where
it was shown that if φ solves (1.1), on a parabolic cylinder, say on

D = (0, 1) × {|x | < 1}, (1.2)

where |x | = max{|x1|, . . . , |xd |} denotes the supremum norm on R
d , then it can

be bounded on any smaller cylinder DR = (R2, 1) × {|x | < 1 − R} only in terms
of the distance R and the realisation of ξ when restricted to a small neighbourhood
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of D. This bound holds uniformly over all possible choices for φ on the parabolic
boundary of D, thus leveraging on the full strength of the non-linear damping
term −φ3. This makes the estimate extremely useful when studying the large scale
behaviour of solutions, because given a realisation of the noise, any local function of
the solution (for example a localised norm or testing against a compactly supported
test-function) can be controlled in a completely deterministic way by objects that
depend on the noise realisation on a compact set, without taking the behaviour of
solution elsewhere into account.

Our main result is the exact analogue valid throughout the entire sub-critical
regime.

Theorem 1.1. (Theorem 9.1 below) Let δ ∈ (0, 1
2 ) and let ξ be of regularity−3+δ.

Let {X•τ : τ ∈ W,V} be a local product lift of ξ .
Let φ solve

(∂t − �)φ = −φ◦X3 + ξ on D, (1.3)

where φ◦X3 refers to the renormalised cube sub-ordinate to X.
Then v := φ −∑τ∈W X•I(τ ) satisfies

‖v‖DR � C max
{ 1

R
, [X; τ ] 1

δm�(τ) , τ ∈ T�,m� �= 0
}

uniformly in the choice of the local product, where ‖ • ‖DR denotes the supremum
norm on DR and m�(τ ) is the number of noises in τ , and the set of trees T� is
defined in (4.2).

Here the “local product” denotes a finite number of functions/distributions X•τ ,
each of which is constructed as a polynomial of degree m�(τ ) in ξ , see Sect. 3.
Local products correspond tomodels [23, Definition 2.17] in the theory of regularity
structures, but we use them slightly differently and hence prefer a different name and
notation. The functions / distributions X•τ are indexed by two sets W and V . Here
W contains the most irregular terms so that after their subtraction the remainder v

can be bounded in a positive regularity norm. The semi-norms [X; τ ] are defined
in (5.11) and they correspond to the order bounds on models [23, Equation (2.15)].
The renormalised cube sub-ordinate to a local product is defined in Definition 7.1.
This notion corresponds exactly to the reconstruction with respect to a model / local
product X• of the abstract cube in [23].

When analysing an equation within the theory of regularity structures, one pro-
ceeds in two steps: in a probabilistic step a finite number of terms in a perturbative
approximation of the solution are constructed - these terms are referred to as the
model already mentioned above. The terms in this expansion are just as irregular as
φ itself, and their construction a priori poses the same problem to define non-linear
operations. However, they are given by an explicit polynomial expression of the
Gaussian noise ξ and they can thus be analysed using stochastic moment calcu-
lations. It turns out that in many situations the necessary non-linear operations on
the model can be defined despite the low regularity due to stochastic cancellations.
However, this construction does require renormalisation with infinite counterterms.
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In the second analytic step the remainder of the perturbative expansion is
bounded. The key criterion for this procedure to work is a scaling condition, which
is called sub-criticality in [23], and which corresponds to super-renormalisability
in Quantum Field Theory. This condition states, roughly speaking, that on small
scales the non-linearity is dominated by the interplay of noise and linear operator.
As mentioned above, in the context of (1.1) this condition is satisfied precisely for
ξ ∈ C−3+δ if δ > 0. Sub-criticality ensures that only finitely many terms in the ex-
pansion are needed to yield a remainder that is small enough to close the argument.

It is important to note that while subcriticality ensures that the number of terms
needed in the model is finite, this number can still be extremely large and typically
diverges as one approaches the threshold of criticality. A substantial part of [6,8,12]
is thus dedicated to a systematic treatment of the algebraic relations between all of
these terms and their interaction, as well as the effect of renormalising the model on
the original equation. The local-in-time well posedness theory for (1.1) for all sub-
critical ξ ∈ C−3+δ , which was developed in [6], was one of the first applications
of the complete algebraic machinery.

The three dimensional analysis in [30] was the first work that used regularity
structures to derive a priori bounds. All of the previous works mentioned above
[2,18,19,31] were set in an alternative technical framework, the theory of paracon-
trolled distributions developed in [20]. These two theories are closely related: both
theories were developed to understand the small scale behaviour of solutions to
singular SPDEs, and both separate the probabilistic construction of finitely many
terms in a perturbative expansion from the deterministic analysis of a remainder.
Furthermore, many technical arguments in the theory of regularity structures have
a close correspondent in the paracontrolled distribution framework. However, up to
now paracontrolled distributions have only been used to deal with equations with a
moderate number of terms in the expansion (for example (1.1) for d � 3 [10] or the
KPZ equation [21]). Despite efforts by several groups (see for example [3,4]) this
method has not yet been extended to allow for expansions of arbitrary order. Thus
for some of the most interesting models mentioned above, for example the Sine-
Gordon model for β2 just below 8π , the reversible dynamics for the Brownian loop
measure on a manifold, the three-dimensional Yang–Mills theory, or the �4 model
close to critical dimension considered here, even a short time existence and unique-
ness theory is currently out of reach of the theory of paracontrolled distributions.

The analysis in [30] was based on the idea that the large and small scale be-
haviour of solutions to singular SPDEs should be controlled by completely different
arguments: for large scales the irregularity of ξ is essentially irrelevant and bounds
follow from the strong damping effect of the non-linearity −φ3. The small scale
behaviour is controlled using the smoothing properties of the heat operator. This
philosophy was implemented by working with a suitably regularised equation which
could be treated with a maximum principle and by bounding the error due to the
regularisation using regularity structures.

However, this analysis did not make use of the full strength of the regularity
structure machinery. In fact, the three-dimensional �4 equation is by now consid-
ered as one of the easiest examples of a singular SPDE, because the model only
contains a moderate number of terms, only five different non-trivial products need
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to be defined using stochastic arguments and only two different divergences must be
renormalised. The interplay of these procedures is not too complex and no advanced
algebraic machinery is needed to deal with it. Instead, in [30] the few algebraic rela-
tions were simply treated explicitly “by hand". The main contribution of the present
article is thus to implement a similar argument when the number of terms in the
model is unbounded, thus combining the analytic ideas from [30] with the alge-
braic techniques [6,8]. For this it turns out to be most convenient to re-develop the
necessary elements of the theory of regularity structures in the specific context of
(1.1), leading to bounds that are tailor-made as input for the large-scale analysis.

Along the way, we encounter various serious simplifications and new observa-
tions which are interesting in their own right:

• As already hinted at in Theorem 1.1 we make systematic use of the “generalised
Da Prato–Debussche trick” [6,14]. This means that instead of working with φ

directly, we remove the most irregular terms of the expansion leading to a
function valued remainder. This was already done in [6] but only in order to
avoid a technical problem concerning the initial conditions. For us the remainder
v is the more natural object, observing that for all values of δ > 0 it solves an
equation of the form

(∂t − �)v = −v3 + · · · (1.4)

where . . . represents a large number of terms (the number diverges as δ ↓ 0)
which involve renormalised products of either 1, v or v2 with various irregu-
lar “stochastic terms”. For each δ > 0, v takes values in a positive regularity
Hölder norm (that is it is a function) and so an un-renormalised damping term
−v3 appears on the right hand side. Of course, the Hölder regularity of v is not
enough to control many of the products appearing in . . ., and a local expansion
of v is required to control these terms. However, we are able to show that for
each fixed value of δ all of these terms are ultimately of lower order relative to
(∂t − �)v and v3.

• One of the key ideas in the theory of regularity structures ispositive renormalisa-
tion and the notion of order. For most of the analysis, the functions/distributions
from the model need to be centered around a base-point x , that is one works
with functions/distributions that depend on the usual “running variable” as well
as on the base-point. In Hairer’s work, these objects are denoted by 	x . A
good description of their behaviour under a change of base-point x is key to the
analysis, and in Hairer’s framework this is encoded in a family of translation
operators 
x,y . There is a close relationship between these 	x and 
x,y maps
and some generic identities relating them were found in [5]. Our observation is
that - at least in the context of Equation (1.4)—most of the matrix entries for

x,y coincide with entries for 	x evaluated at y. Therefore we can work with
just a single object X• (corresponding to 	 in [23]) and its re-centered version
X•,• that acts on itself for translation. A price to pay for this is that some care
is needed for trees that involve derivatives.
With this choice our framework is highly reminiscent of Gubinelli’s work on
branched rough paths [17], the only real difference being the introduction of
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some (linear) polynomials, first order derivatives, and the flexibility to allow
for non-canonical products.

• As in [23] we use the model/local product to build a local approximation of v

around any base-point x . This takes the form

v(y) ≈
∑

τ∈V
ϒx (τ )Xy,xI(τ ),

with a well-controlled error as y approaches x . In order to use this local ex-
pansion to control non-linearities two key analytic ingredients are needed: the
first is the order bound discussed above, and the second is a suitable continu-
ity condition on the coefficients ϒx (τ ). In [23] these conditions are encoded
in a family of model-dependent semi-norms, which make up the core of the
definition of a modelled distribution [23, Definition 3.1]. It turns out however,
that the coefficients ϒx (τ ) that appear in the expansion of the solution v are
far from generic: up to signs and combinatoric factors they can only be either
1, v(x), v(x)2, or vX(x) (a generalised derivative of v). Furthermore, there is a
simple criterion (Lemma 6.8) to see which of these is associated to a given tree
τ . This fact was already observed in [6] and was called coherence there. Here
we observe that the various semi-norms in the definition of a modelled distri-
bution are in fact all truncations of the single continuity condition on the first
coefficient ϒ(1) = v. This observation is key for our analysis, as this particular
semi-norm is precisely the output of our Schauder Lemma.

• Our deterministic theory cleanly separates the issues of positive and negative
renormalisation in the context of (1.1). Indeed, we can derive a priori bounds un-
der extremely general assumptions on the specific choice of the local product X

which seems quite a bit larger and simpler than the space of models given in [8].
The key information contained in X is how certain a priori unbounded products
should be interpreted. Our definition of a local product allows for these interpre-
tations to be completely arbitrary! We can then always define the centered ver-
sion of X (or path) and the only assumption where the various functions interact
is in the assumption that these centered products satisfy the correct order bound.
We do however include a Sect. 8 in which we introduce a specific class of local
products for which the renormalised product φ◦X3 appearing in (1.3) is still a
local polynomial in φ and its spatial derivatives. Our approach in this section
is to apply a recursive negative renormalisation that commutes with positive
renormalisation, similar to [5]. Finally, the class of local products described in
Sect. 8 also contains local products that correspond to the BPHZ renormalised
model [8,12].

1.1. Conventions

Throughout we will work with functions/distributions defined on (subsets of)
R × R

d for an arbitrary d � 1. We measure regularity in Hölder-type norms that
reflect the parabolic scaling of the heat operator. For example, we set

d((t, x), (t̄, x̄)) = max
{√

|t − t̄ |, |x − x̄ |
}
, (1.5)
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and for α ∈ (0, 1), we define the (local) Hölder semi-norm [•]α accordingly as

[u]α := sup
d(z,z̄)<1

|u(z) − u(z̄)|
d(z, z̄)α

. (1.6)

Distributional norms, that is Hölder type norms for negative regularity α < 0 play
an important role throughout. These norms are defined in terms of the behaviour
under convolution with rescaled versions of a suitable compactly supported kernel
�. For example, for α < 0 we set

[ξ ]α = sup
L�1

∥
∥
∥(ξ)L

∥
∥
∥L−α, (1.7)

where ‖ • ‖ refers to the supremum norm on R × R
d and the operator (•)L denotes

convolution with a compactly supported smooth kernel�L (x) = L−d−2�
(
x0
L2 , x̄

L

)
,

where x = (x0, x̄). Just as in [30] we work with a specific choice of �, but this
is only relevant in the proof of the Reconstruction Theorem, Lemma A.1. These
topics are discussed in detail in Appendix A.

In the case of space–time white noise, the quantity in (1.7) is almost surely not
finite, but our analysis only depends on the noise locally: a space–time cut-off can
be introduced. Throughout the paper we also make the qualitative assumption that
ξ and all other functions are smooth. This corresponds to introducing a regularisa-
tion of the noise term ξ (for example by convolution with a regularising kernel at
some small scale—in field theory this is called an ultra-violet cut-off). This is very
convenient, because it allows to avoid unnecessary discussions about how certain
objects have to be interpreted and in which sense partial differential equations hold.
We stress however that our main result, Theorem 9.1, is a bound only in terms of
those low-regularity norms (Definition 5.7) which can be controlled when the reg-
ularisation is removed in the renormalisation procedure. Even though all functions
involved are smooth, we will freely use the term “distribution” to refer to a smooth
function that can only be bounded in a negative regularity norm.

2. Overview

As stated in the introduction a large part of our analysis consists of a suitable
re-formulation of elements of the theory of regularity structures. The key notions
we require are local products, the renormalised product sub-ordinate to a local
product, as well as the relevant norms that permit us to bound these renormalised
products. We start our exposition with an overview over these notions and how they
are interconnected. The exposition in this section is meant to be intuitive and rather
“bottom up”. The actual analysis begins in Sect. 3.

2.1. Subcriticality

The starting point of our analysis is a simple scaling consideration: assume φ

solves
(∂t − �)φ = −φ3 + ξ (2.1)
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for ξ ∈ C−3+δ . Schauder theory suggests that the solution φ is not better than
C−1+δ . In this low regularity class no bounds on φ3 are available, but as we will
see below, the notion of product we will work with has the property that negative
regularities add under multiplication. Therefore we will obtain a control on (a renor-
malised version of) φ3 as a distribution in C−3+3δ . Despite this very low regularity,
for δ > 0, the term φ3 is still more regular than the noise ξ . This observation is the
core of Hairer’s notion of sub-criticality (see [23, Assumption 8.3]) and suggests
that the small-scale behaviour of φ and φ3 can ultimately be well understood by
building a perturbative expansion based on the linearised equation.

2.2. Trees

We follow Hairer’s convention to index the terms in this expansion by a set
of trees. This is not only a convenient notation that allows to organise which term
corresponds to which operation, but also allows for an efficient organisation of
the relations between these terms. We furthermore follow the convention to view
trees as abstract symbols which form the basis of a finite-dimensional vector space.
The trees are built from a generator symbol � (which represents the noise ξ and
graphically are the leaves of the tree) followed by applying the operator I(·) (which
represents to solving the heat equation and graphically corresponds to the edges of
the tree) and taking products of trees (which represents to some choice of point-wise
product and graphically corresponds to joining two trees at their root). To carry out
the localisation procedure, discussed in Sect. 2.4 below, along with �, additional
generators {1,X1, . . . ,Xd} are used in our construction of trees.

We associate concrete meaning to trees via an operator X• which we call a
“local product”, see Definition 3.8. Even though this may seem somewhat bulky
initially, it turns out to be extremely convenient as the concrete definition of X• on
the same tree may change during the renormalisation procedure and because, the
local product also appears in a centered form denoted by X•,•; see Sect. 2.6 below.

2.3. Subtracting the most irregular terms

The first step of our analysis consists of subtracting a finite number of terms
from φ to obtain a remainder v which is regular enough to be bounded in a positive
Hölder norm. The regularity analysis in Sect. 2.1 suggests that the regularity of φ

can be improved by removing ξ from the right hand side of (2.1). We introduce the
first graph, I(�) or graphically , and impose that X• acts on this symbol yielding
a function that satisfies

(∂t − �)X• = ξ. (2.2)

We set ṽ := φ − X• so that ṽ solves

(∂t − �)ṽ = −φ3 = −(ṽ3 + 3ṽ2
X• + 3ṽ

(
X•
)2 + (X•

)3)
. (2.3)

Of course the problem of controlling the cube of a distribution of regularity −1+
δ has not disappeared, but instead of φ3 one now has to control (X• )3 and (X• )2.
At this point one has to make use of the fact that X• is known much more explicitly
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than the solution φ, and can thus be analysed using explicit covariance calculations.
We do not discuss these calculations here, but rather view these products as part of
the given data: we introduce two additional symbols I(�)I(�)I(�) or graphically

, and similarly I(�)I(�) or and assume that X acts on these additional symbols
yielding distributions which are controlled in C−3+3δ and C−2+2δ . We stress that
only the control on these norms enters the proof of our a priori bound, and no
relation to X• needs to be imposed (see however Sect. 8 below). Instead of (2.3)
we thus consider

(∂t − �)ṽ = −(ṽ3 + 3ṽ2
X• + 3ṽX• + X•

)
. (2.4)

Note that the most irregular term on the right hand side is X• ∈ C−3+3δ so that
we can expect ṽ ∈ C−1+3δ that is we have gained 2δ differentiability with respect
to φ. We mention at this point, that we will always work with interior Schauder
regularity estimates permitting us to largely avoid having to deal with estimating
the behaviour near the boundary. For δ > 1

3 (which corresponds to dimensions
“d < 3 1

3 ”) ṽ is thus controlled in a positive order Hölder norm. For smaller δ

we proceed to subtract an additional term to again remove the most irregular term
from the right hand side as above. We define a new symbol I(I(�)I(�)I(�)) or
graphically , postulate that X• acts on this symbol yielding a distribution which
solves

(∂t − �)X• = X• , (2.5)

and define a new remainder ˜̃v := ṽ + X• = φ − X• + X• which takes values
in C−1+5δ . In general, for any δ > 0 we denote by W the set of trees of order
< −2 (for these trees, order is the same as the regularity of the local product on this
tree. Below, in Sect. 2.6 we will encounter additional trees for which these notions
differ) and define

v := φ −
∑

w∈W
(−1)

m(w)−1
2 X•I(τ ), (2.6)

where m(w) denotes the number of “leaves” of the tree w (all trees in W have an
odd number of leaves, see Sect. 3). Then v takes values in a Hölder space of positive
regularity. The remainder equation then turns into

(∂t − �)v = −v3 (2.7)

− 3
∑

w∈W
(−1)

m(w)−1
2 v2

X•I(w)

− 3
∑

w1,w2∈W
(−1)

m(w1)+m(w2)−2
2 vX•(I(w1)I(w2))

−
∑

w1,w2,w3∈W
I(w1)I(w2)I(w3)/∈W

(−1)
m(w1)+m(w2)+m(w3)−3

2 X•(I(w1)I(w2)I(w3)).

For the constraint in the last sum, note that if τ = I(w1)I(w2)I(w3) ∈ W , one
would have removed I(τ ) from the remainder v in (2.6).
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We stress that the structure of this equation is always the same in the sense that
(∂t − �)v = −v3 is perturbed by a large number of irregular terms (the number
actually diverges as δ → 0). Bounding these irregular terms forces us to introduce
additional trees as we will see below, but ultimately we will show that all of these
terms are of lower order with respect to (∂t − �)v = −v3.

2.4. Iterated fFreezing of coefficients

We now discuss the remainder equation (2.7) in more detail, writing it as

(∂t − �)v = −v3 − 3v2
X• − 3vX• − ϒ(τ0)X•τ0 − . . . , (2.8)

where we are isolating the most irregular terms in each of the three sums appearing
on the right hand side of (2.7). The most irregular term in the sum on the second
line of (2.7) is −3v2

X• and the most irregular term in the third line is −3vX• .
For the last line, the precise form of the most irregular term depends on δ and there
could be multiple terms of the same low regularity. Here we just keep track of one
of them, simply denote it by X•τ0 and also leave the combinatorial prefactor ϒ(τ0)

implicit. We remark that X•τ0 is always a distribution of regularityC−2+κ for some
κ ∈ (0, 2δ). To simplify the exposition we disregard all of the (many) additional
terms hidden in the ellipses . . . for the moment.

We recall the standard multiplicative inequality

‖ f g‖C−β � ‖ f ‖Cα‖g‖C−β

for α, β > 0 which holds if and only if α − β > 0. In view of the regularity
X• ∈ C−2+2δ we would thus require v ∈ Cγ for γ > 2 − 2δ in order to
have a classical interpretation of the product vX• on the right hand side of (2.8).
Unfortunately, v is much more irregular: it is governed by the irregularity of the
term X•τ0 of regularity C−2+κ on the right hand side of the equation, and therefore
by Schauder theory we can only expect v to be of class Cκ .

The solution to overcome this difficulty presented in [23] amounts to an “iterated
freezing of coefficient” procedure to obtain a good local description of v around
a fixed base-point: we fix a space–time point x and rewrite the third, and most
irregular term on the right hand side of (2.8) as

vX• = v(x)X• + (v − v(x))X• (2.9)

and use this to rewrite the equation (2.8) as

(∂t − �)(v + 3v(x)X• + ϒ(τ0)X•I(τ0))

= −v3 − 3v2
X• − 3(v − v(x))X• − · · · (2.10)

where we have introduced new symbols and I(τ0) and postulated that X acts on
these symbols to yield a solution of the inhomogeneous heat equation with right
hand sides X• and X•τ0. The worst term on the right hand side is now X• so
that the left hand side can at best be of regularity 2δ. However, near the base-point
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we can use the smallness of the pre-factor |v(•) − v(x)| � [v]κd(•, x)κ to get the
better estimate

|U (y, x)| :=
∣
∣
∣v(y) − (v(x) − 3v(x)Xy,x − ϒ(τ0)Xy,xI(τ0)

)∣∣
∣

� d(y, x)2δ+κ , (2.11)

where have used the short-hand notation

Xy,x := Xy − Xx

Xy,xI(τ0) := XyI(τ0) − XxI(τ0). (2.12)

This bound in turn can now be used to get yet a better approximation in (2.9):
we write

(v(y) − v(x))Xy

= (U (y, x) − 3v(x)Xy,x − ϒ(τ0)Xy,xI(τ0)
)
Xy . (2.13)

At this point two additional non-classical products appear in the second and third
term on the right hand side, and as before they are treated as part of the assumed
data: we introduce two additional symbols and I(τ0)I(�)I(�) and assume that
X acts on these symbols yielding distributions which we interpret as playing the
roles of the products Xy Xy + and XyI(τ0)Xy . Similarly, we introduce the
base-point dependent versions as

Xy,x := Xy − Xx Xy

Xy,xI(τ0)I(�)I(�) := XyI(τ0)I(�)I(�) − XxI(τ0)Xy . (2.14)

Our full prescription defining basepoint dependent trees will require the algebraic
framework given in Sect. 4, but for now we motivate the formulae above as follows
- for products of trees we only need to recenter “branches” of positive degree. For
instance, the first line above can be written Xy,x = Xy,x Xy .

With these recenterings defined, (2.13) becomes re-interpreted as

(v(y) − v(x))Xy

= U (y, x)Xy − 3v(x)Xy,x − ϒ(τ0)Xy,xI(τ0)I(�)I(�). (2.15)

The last two terms on the right hand side can now again be moved to the left hand
side of the equation suggesting that near x we can improve the approximation (2.10)
of v(y) by considering

Ũ (y, x) := U (y, x) + 3v(x)Xy,x + ϒ(τ0)Xy,xI(I(τ0)I(�)I(�)) (2.16)

where

Xy,x := Xy − Xx − Xx
(
Xy − Xx

)

Xy,xI(I(τ0)I(�)I(�)) := XyI(I(τ0)I(�)I(�)) − XxI(I(τ0)I(�)I(�))

− XxI(τ0)
(
Xy − Xx

)
. (2.17)
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with the improved estimate |Ũ (y, x)| � d(y, x)4δ+κ , thus gaining another 2δ with
respect to U (y, x).

The whole procedure can now be iterated: in each step an improved approxi-
mation of v is plugged into the product vX• which in turn yields an even better
local approximation of v near x . At some point, additional terms have to be added:

• In order to get a local description of order > 1, “generalized derivatives” vXi

of v appears, that is a term
∑d

i=1 vXi (x)(yi − xi ) has to be included.
• The term −3v2

X on the right hand side of the remainder equation (2.8) has
regularity −1 + δ, so once one wishes to push the expansion of v to a level
> 1 + δ, one also has to “freeze the coefficient” v2, that is write

v2
X = v2(x)X + (v2 − v2(x))X

= v2(x)X + 2v
(− 3v(x)X•,x − ϒ(τ0)X•,xI(τ0)

)
X + · · ·

leading to additional terms on the left hand side.
• Of course, the various terms which were hidden in . . . in (2.8) above have

to be treated in a similar way leading to (many) additional terms in the local
description of v.

Ultimately, we iterate this scheme until we have a local description an order γ ,
that has to satisfy γ > 2 − 2δ. The threshold is determined by the product vX• :
namely X• is of regularity −2 + 2δ and the constraint is that γ − 2 + δ has to
be positive. Note that this corresponds exactly to the regularity of v that would be
classically required to control vX• .

2.5. Renormalised products

The previous discussion thus suggests that we have a Taylor-like approximation
of v near the base-point x

v(y) ≈ v(x) +
d∑

i=1

vXi (x) · (yi − xi ) +
∑

τ∈Vprod

ϒx (τ )Xy,xI(τ ) (2.18)

for coefficients ϒx and with an error that is controlled by � d(x, y)γ . Here Vprod
denotes the set of trees appearing in the recursive construction described above. We
unify our notation by also writing the first two terms with “trees” and set

Xy,xI(1) = 1Xy,xI(Xi ) = yi − xi
ϒx (1) = v(x)ϒx (Xi ) = vXi (x),

thus permitting to rewrite (2.18) as

v(y) ≈
∑

τ∈V
ϒx (τ )Xy,xI(τ ), (2.19)

where V = Vprod ∪ {1,X1, . . . ,Xd}.
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Of course, up to now our reasoning was purely formal, because it relied on
all of the ad hoc products of singular distributions that were simply postulated
along the way. We now turn this formal reasoning into a definition of the prod-
ucts sub-ordinate to the choices in the local product X. More precisely, we define
renormalised products such as

v ◦X X• (x) :=
∑

τ∈V
ϒx (τ )Xx,x (I(τ ) ),

v ◦X v ◦X X• (x) :=
∑

τ1,τ2∈V
ϒx (τ1)ϒx (τ2)Xx,x (I(τ1)I(τ2) ). (2.20)

Our main a priori bound in Theorem 9.1 holds for the remainder equation interpreted
in this sense, under very general assumptions on the local product X. However,
under these very general assumptions it is not clear (and in general not true) that
the renormalised products are in any simple relationship to the usual products. In
Sect. 8 we discuss a class of local products for which the renormalised products
can be re-expressed as explicit local functionals of usual products. In particular,
for those local products we always have

φ◦X3(y) := v3 + 3v ◦X X• + v ◦X v ◦X X• + X•

= φ3(y) − aφ2(y) − bφ(y) − c −
d∑

i=1

di∂iφ(y),

for real parameters a, b, c, di . This class of local products contains the examples
that can actually be treated using probabilistic arguments.

2.6. Positive renormalisation and order

One of the key insights of the theory of regularity structures is that the renor-
malised products defined above can be controlled quantitatively in a process called
reconstruction, and the most important ingredient for that process are the defini-
tions of suitable notions of regularity / continuity for the local products X and the
coefficients ϒ . We start with the local products.

The base-point dependent or centered versions of the local product, Xy,x that
appear naturally in the expansions above (for example in (2.12), (2.14), (2.17)) are
in fact much more than a notational convenience. The key observation is that their
behaviour as the running argument y approaches the base-point x is well controlled
in the so-called order bound. For Xy,x defined in (2.12) we have

|Xy,x | = |Xy − Xx | � d(y, x)2δ, (2.21)

which amounts to the Hölder regularity of X• . The order bounds become more

interesting in more complex examples: for Xy,x defined in (2.17) we have

|Xy,x | := ∣∣Xy − Xx − Xx
(
Xy − Xx

)∣
∣ � d(y, x)4δ. (2.22)
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The remarkable observation here is that the function Xy is itself only of regularity
2δ, so that this estimate expresses that the second term −Xx

(
Xy −Xx

)
exactly

compensates the roughest small scale fluctuations. The exponent 4δ is defined as

the order of the tree simply denoted by | |. Analogously, for the tree Xy,x

defined in (2.14) we have the order | | = −2 + 4δ exceeding the regularity of
the distribution Xy which is only −2 + 2δ, the same as the regularity of Xy .
As these quantities are distributions the order bound now has to be interpreted by
testing against the rescaled kernel �T

∣
∣
∣

∫

�T (y − x)Xy,x dy
∣
∣
∣ � T−2+4δ. (2.23)

This notion of order of trees has the crucial property that it behaves additive un-
der multiplication - just like the regularity of distributions discussed above. This
property is what guarantees that for sub-critical equations the number of trees with
order below any fixed threshold is always finite.

2.7. Change of base-point

As sketched in the discussion above, the base-point dependent centered local
products X•,• are defined recursively from the un-centered ones. For what follows,
a good algebraic framework to describe the centering operation and the behaviour
under the change of base-point is required. It turns out that both operations can be
formulated conveniently using a combinatorial operation called the coproduct �

(note that this � has nothing to do with the Laplace operator, it will always be clear
from the context which object we refer to). This coproduct associates to each tree a
finite sum of couples (τ (1), τ (2)) where τ (1) is a tree and τ (2) is a finite list of trees.
Equivalently, the coproduct can be seen as a linear map

� : T� → Vec(T�) ⊗ Alg(Tcen),

where T� and Tcen are sets of tree that we will define later (see (4.2) for the former
and Sect. 4.3 for the latter), Vec(A) is the free vector space generated by the set A,
respectively, and Alg(A) is the free non-commutative unital algebra generated by
A (that is, Alg(A) consists of linear combinations of words in elements of A, where
the product on words is concatenation and the unit is given by the empty word).

This coproduct is defined recursively, reflecting exactly the recursive positive
renormalisation described above in Sect. 2.4. For example

� := ⊗ I(1) + I(1) ⊗
� := ⊗ I(1) + I(1) ⊗ + ⊗

so that for example the first definitions of (2.12) and (2.16) turn into

Xy,x := (Xy ⊗ X
cen
x )�

Xy,x := (Xy ⊗ X
cen
x )� ,
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that is the different terms in the coproduct correspond to the different terms ap-
pearing in the positive renormalisation, and for each pair τ 1 ⊗ τ 2, the first tree τ 1

corresponds to the “running variable y” and τ 2 to the value of the base-point. Here
X

cen
x : Alg(Tcen) → R is a multiplicative map that associates to a given τ ∈ Tcen

a corresponding quantity for recentering about x . These quantities can be defined
recursively to match this definition for example

X
cen
x I(1) = 1 X

cen
x = −Xx X

cen
x = −Xx + Xx Xx .

This way of codifying the relation between the centered and un-centered local
products is useful, for example when analysing the effect of the renormalisation
procedure (Sect. 8) but even more importantly they give an efficient way to de-
scribe how Xy,x behave under change of base-point. It turns out that we obtain the
remarkable formula for all τ ∈ TRHS ∪ TLHS

Xy,z(τ ) = (Xy,z̄ ⊗ Xz̄,z)�τ, (2.24)

that is the centered object Xy,z acts on itself as a translation operator!

2.8. Continuity of coefficients

With this algebraic formalism in hand, we are now ready to describe the correct
continuity condition on the coefficients. This continuity condition is formulated
in terms of the concrete realisation of the local product, in that an “adjoint” of
the translation operator appears. In order to formulate it, we introduce another
combinatorial notation C+(τ̄ , τ ), which is defined recursively to ensure that

�I(τ ) =
∑

τ̄∈V∪W
I(τ̄ ) ⊗ C+(τ̄ , τ ).

We argue below that the correct family of semi-norms for the various coefficients
ϒ(τ) is given by

sup
d(x,y)�1

1

d(x, y)γ−|τ |

∣
∣
∣
∣
∣
∣
∣
∣

ϒx (τ ) −
∑

τ̄∈V|τ̄ |<γ

ϒy(τ̄ )Xy,xC+(τ, τ̄ )

∣
∣
∣
∣
∣
∣
∣
∣

. (2.25)

The Reconstruction Theorem (see Lemma A.1 for our formulation) implies that the
renormalised products (2.20) can be controlled in terms of the semi-norms (2.25)
and the order bounds (for example (2.23)). Reconstruction takes as input the whole
family of semi-norms (2.25), but it turns out that in our case, it suffices to deal
with a single semi-norm on the coefficients: the coefficients ϒx (τ ) that appear in
the recursive freezing of coefficients described in Sect. 2.4 are far from arbitrary.
It is very easy to see that (up to combinatorial coefficients and signs) the only
possible coefficients we encounter are v, v2, vX, and 1. It then turns out that all of
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the semi-norms (2.25) are in fact truncations of the single continuity condition on
the coefficient v itself. This semi-norm can then be easily seen to be

sup
d(x,y)�1

1

d(x, y)γ

∣
∣
∣
∣
∣
∣
∣
∣

v(x) −
∑

τ∈V|τ |<γ

ϒy(τ )Xy,xI(τ )

∣
∣
∣
∣
∣
∣
∣
∣

, (2.26)

which measures precisely the quality of the approximation (2.19) at the starting
point of this discussion.

2.9. Outline of paper

A large part of this article is concerned with providing the details of the ar-
guments sketched above in a streamlined ”top-down” way: The set of trees, their
order and local products are defined in Sect. 3, while Sect. 4 provides a system-
atic treatment of combinatorial properties of the coproduct. The centering of local
products and the change of base point formula (2.24) are discussed in Sect. 5, while
Sect. 6 contains the detailed discussion of the coefficients ϒ sketched above in
Sect. 2.5. The renormalised products in the spirit of (2.20) are defined in Sect. 7. As
already announced above, Sect. 8 contains the discussion of a special class of local
products, for which the renormalised product can be expressed in a simple form.
The actual large-scale analysis only starts in Sect. 9, where the main result is an-
nounced. This section also contains a detailed outline of the strategy of proof. The
various technical Lemmas that constitute this proof can then be found in Sect. 10.
Finally, we provide two appendices in which some known results are collected:
Appendix A discusses norms on spaces of distributions in the context of the re-
construction theorem. Appendix B collects different variants of classical Schauder
estimates.

3. Tree Expansion and Local Products

The objects we refer to as trees will be built from

• a set of generators {1,X1, . . . ,Xd , �}, which can be thought of as the set of
possible types of leaf nodes of the tree

• applications of an operator I, τ �→ I(τ ) adds a new root vertex to τ which is
connected to the old root by an edge,

• a tree product, which joins roots of trees at a common node.

As an example, we have

� = •, I[�]2 = , I(�)I(I(�))I(�) = ,

I(�)I(I(�)2I(Xi ))I(�) =
i

, and I(1)I(I(�)3)I(1) = 00 .
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In particular, when drawing our trees pictorially we decorate the leaf nodes with a
• for an instance of �, 0 for an instance of 1, and j ∈ {1, . . . , d} for an instance
of X j . Notice that we do not decorate internal (non-leaf) nodes and have the root
node at the bottom.

Our tree product is non-commutative which in terms of our pictures means that
we distinguish between the ways a tree can be embedded in the plane. For example,
the following trees are treated as distinct from the trees above:

I(�)I(I(�)I(Xi )I(�))I(�) =
i

and I(I(�)3)I(1)I(1) = 0 0
.

Remark 3.1. We work with a non-commutative tree product to remove nearly all
combinatorial factors from key algebraic relations in our framework, this greatly
simplifies their statements and proofs.

Whenever we map trees over to concrete functions and or distributions this
mapping will treat identically any two trees that coincide when one imposes com-
mutativity of the tree product.

We say a tree τ is planted if it is of the form τ = I(τ̃ ) for some other tree τ̃ , some
examples would be

,

0

, and .

We take a moment to describe the intuition behind these trees. The symbol � will
represent the driving noise, we will often call nodes of type � noise leaves/nodes.
Regarding the operator I, when applied to trees different from {1,X1, . . . ,Xd}, I
will represent solving the heat equation, that is

“(∂t − �)I(τ ) = τ”.

However, we think of the trees as algebraic objects so such an equation is only
given here as a mnemonic and will be made concrete when we associate functions
to trees in Sect. 3.2.

The symbols {1,X1, . . . ,Xd} themselves will not correspond to any analytic
object, but the trees {I(1), I(X1), . . . , I(Xd)} will play the role of the classical
monomials, that is I(1) corresponds to 1 and I(X j ) corresponds to the monomial
z j .

Remark 3.2. Encoding polynomials as branches of a tree instead of the standard
convention of treating them as node decorations is more consistent with our non-
commutative approach - for example we want to treat

I(τ1)I(τ2)I(X1) and I(τ1)I(X1)I(τ2)

as different trees. If we treated X1 as a decoration at the root of the tree then both
trees would be the same. This convention is also compatible with viewing every
unplanted tree as a tree product of three factors, and in later inductive algebraic
arguments it is convenient to think of the {1,X1, . . . ,Xd} as leaves.
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We define T all
RHS to be the smallest set of trees containing {1,X1, . . . ,Xd , �} ⊂

T all
RHS and such that for every τ1, τ2, τ3 ∈ T all

RHS one also has I(τ1)I(τ2)I(τ3) ∈
T all
RHS. The trees in T all

RHS\{1,X1, . . . ,Xd} will be used to write expansions for
the right hand side of (1.1). We remark that non-leaf nodes in T all

RHS have three
offspring, for instance I(�)2I(1) ∈ T all

RHS but = I(�)2 �∈ T all
RHS. However,

the three different permutations of I(�)2I(1) will play the role of that did in
expressions like (2.4), and as an example of how this simplifies our combinatorics
we remark that this allows us to forget about the “3” that appears in (2.4).

We also define a corresponding set of planted trees T all
LHS = {I(τ ) : τ ∈ T all

RHS}.
The planted trees in T all

LHS will be used to describe an expansion of the solution φ

to (1.1).
At certain points of our argument the roles of the planted trees of T all

LHS and the
unplanted trees of T all

RHS will be quite different. For this reason we will reserve the
use of the greek letter τ (and τ̄ , τ̃ , etc.) for elements of T all

RHS. If we want to refer to
a tree that could belong to either T all

LHS or T all
RHS we will use the greek letter σ .

3.1. The order of a tree and truncation

We give a recursive definition of the order | · | on T all
RHS∪T all

LHS as follows. Given
I(τ ) ∈ T all

LHS we set |I(τ )| = |τ | + 2. Given τ ∈ T all
RHS we set

|τ | :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2, τ = 1,
−1, τ = Xi , i ∈ {1, . . . , d}
−3 + δ, τ = �,
∑3

i=1 |I(τi )| = 6 +∑3
i=1 |τi |, τ = I(τ1)I(τ2)I(τ3).

The values of −2 and −1 for homogeneities of the trees 1 and Xi may seem a bit
odd but this is just due to the convention that it is I(1) and I(Xi ) that actually play
the role of the classical monomials and we want |I(1)| = 0 and |I(Xi )| = 1.

It will be helpful throughout this article to have notation for counting the number
of occurrences of a certain leaf type in a tree. We define the functionsm1, mxi , m� :
T all
RHS → Z�0 which count, on any given tree, the number of occurrences of 1, Xi

and � as leaves in the tree.
We also set mx = ∑d

i=1 mxi for the function that returns the total number of
{X1, . . . ,Xd} leaves and m = m1 + mx + m� which returns the total number of
leaves of the given tree.

One can easily check that, for τ ∈ T all
RHS,

|τ | = −3 + m�(τ )δ + m1(τ ) + 2mx(τ ) . (3.1)

We will only work with a finite set of trees in our analysis, and we clarify the
different roles that they play in our construction by organizing them into various
subsets. We define the following subsets of T all

RHS:

Poly := {X1, . . . ,Xd , 1},
W := {τ ∈ T all

RHS : |τ | < −2}, Wprod := W\{�},
V := {τ ∈ T all

RHS, −2 � |τ | � 0}, Vprod := V\Poly.
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As a mnemonic, Wprod (resp Vprod), is the set of those trees in W (resp V) which
are themselves the tree product of three planted trees.

The infinite sets T all
RHS and T all

LHS will not appear in what follows and we instead
work with the finite subsets

TRHS := W ∪ Vprod and TLHS := I(TRHS) ∪ I(Poly), (3.2)

where above and in what follows we write I(A) = {I(τ ) : τ ∈ A}.
We now describe the roles of the sets Poly, W , and V introduced above.
The set W consists of those trees that appear in our expansion of the right

hand side of (1.1) that have the lowest orders. When “subtracting the most irregular
terms” as described in Sect. 2.3 we will be subtracting the trees of I(W) which
are all of negative order themselves. In particular, the trees of W will appear in
tree expansions for the right hand side of (1.1) but will not appear by themselves
on the right hand side of the remainder equation. Other than possibly requiring
renormalisation, the trees of Wprod behave simply in our algebraic framework
because they do not require any recentering. We will see that they appear with a
constant coefficient in our expansion of the right hand side of (1.1) and do not
include any of the generators in Poly. The letter chosen for this set refers to the fact
that these trees are seen in the more classical “Wild expansion” for the right hand
side of (1.1), that is a naive iterative perturbation expansion.

On the other hand, the trees of Vprod will appear on the right hand side of
expansions of both (1.1) and the remainder equation (hence why we call it V). We
do not include |τ | > 0 in τ ∈ Vprod since we only need to expand the right hand
side of the remainder equation up to order 0.

While the trees in V are less singular than those in W , they behave more com-
plicated in our algebra - in particular all the trees in Vprod will require recentering.

Our remainder will then be described by an expansion in terms of trees of I(V)

As mentioned earlier, the trees of Poly will not, by themselves, play a role in our
expansions, but in our expansion of the remainder the trees in I(Poly) will come
with unknown, space–time dependent coefficients which we think of as “generalised
derivatives”and the trees in I(V) come with coefficients which are monomials in
these generalised derivatives.

Assumption 3.3. For the rest of the paper, we treat δ > 0 as fixed, and assume,
without loss of generality for the purposes of our main theorem, that δ has been
chosen so that {|τ | : τ ∈ W ∪ Vprod} does not contain any integers.

We have the following straightforward lemma.

Lemma 3.4. The setsW and V are both finite.

Proof. From the formula (3.1), one can see that τ ∈ W if and only if m1(τ ) =
mx(τ ) = 0 and m�(τ ) < δ−1. Similarly for τ ∈ Vprod, one has

(m1(τ ),mx(τ )) ∈ {(0, 0), (1, 0), (2, 0), (0, 1)},
and m�(τ ) < δ−1(3 − m1(τ ) − 2mx(τ )). ��
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Remark 3.5. Clearly Lemma 3.4 would be false for δ = 0, that is when the equation
is critical.

We also have the following lemma describing the trees in Wprod.

Lemma 3.6. For any τ ∈ T all
RHS \ {�}, |τ | � −3 + 3δ > |�| = −3 + δ. Moreover,

for any w ∈ Wprod, one has

w = I(w1)I(w2)I(w3) (3.3)

where w1, w2, w3 ∈ W .

Proof. The first statement about |τ | is a simple consequence of (3.1) and the con-
straint that m�(τ ) � 3. For the second statement, we write w = I(τ1)I(τ2)I(τ3)

with τ1, τ2, τ3 ∈ T all
RHS. Then we have, by bounding the orders of τ2 and τ3 from

below,

|w| = 6 + |τ1| + |τ2| + |τ3| � |τ1| + 2δ.

Then, the condition that |w| � −2 forces |τ1| < −2 so we have τ1 ∈ W and clearly
the same argument applies for τ2, τ3. ��

Our various tree expansions will be linear combinations of trees in TRHS or
TLHS and we define tree products of such linear combinations by using linearity.
However, here we implement a truncation convention that will be in place for the
rest of the paper. Namely, given σ1, σ2, σ3 ∈ TLHS if |σ1| + |σ2| + |σ3| > 0, we
enforce that

σ1σ2σ3 := 0 . (3.4)

Imposing (3.4) is important for analytic reasons (since one doesn’t expect infinite
tree expansions to converge). in fact, the key algebraic identities for coproducts we
prove (such as Lemma 4.5) hold whether or not one makes the truncation (3.4),
which is a consequence of how our coproducts behave with respect to degrees (see
(4.7)).

In particular, with these conventions an important identity for us will be

( ∑

τ∈V∪W
I(τ )

)3 =
∑

τ∈Vprod∪Wprod

τ . (3.5)

Above, on the left, the (•)3 indicates a three-fold tree product. To verify the
identity above, note that for τ1, τ2, τ3 ∈ V � W , one has τ = I(τ1)I(τ2)I(τ3) ∈
τ ∈ Vprod∪Wprod if and only if |τ | > 0. The non-commutativity of the tree product
means we see no combinatorial coefficients in (3.5).
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3.2. Local products

In this section we begin to specify how trees are mapped into analytic expres-
sions. Our starting point for this will be what we call a local product and will be
denoted by X. Each local product X should be thought of as a (minimal) description
of how products of planted trees should be interpreted at a concrete level.

We will view local products as being defined on a relatively small set of trees
and then canonically extended to all of TRHS ∪ TLHS (and in the sequel, to larger
sets of trees that will appear).

Definition 3.7. We define Q ⊂ Vprod ∪ Wprod to consist of all trees

τ = I(τ1)I(τ2)I(τ3) ∈ Vprod ∪ Wprod,

satisfying the following properties:

• τ1, τ2, τ3 �∈ {X1, . . . ,Xd}.
• At most one of the trees τ1, τ2, τ3 is equal to 1.

Note that Wprod ⊂ Q. The set Q includes all “non-trivial” products of trees,
namely those corresponding to classically ill-defined products of distributions. Our
philosophy is that once a local product X is specified on the noise � and all these
non-trivial products then we are able to define all other products that appear in our
analysis—see the section immediately following. Describing a minimal set of data
as above will be useful when we describe the renormalisation of local products in
Sect. 8.3.

We impose the first of the two constraints stated above because multiplication by
the tree I(Xi ) corresponds to multiplication of a distribution/function by zi which
is always well-defined—so we enforce that this product is not deformed. We impose
the second of the two constraints above since a tree of the form I(1)I(τ )I(1) (or
some permutation thereof) does not represent a new non-trivial product because
the factors I(1) corresponds to the the classical monomial 1.

There is a natural equivalence relation ∼ on TRHS ∪ TLHS where τ ∼ τ ′ if
and only if τ and τ ′ are the same modulo non-commutativity. More precisely,
∼ is the smallest equivalence relation on TRHS ∪ TLHS with the properties that
τ ∼ τ̄ → I(τ ) ∼ I(τ̄ ) and, for any permutation θ on three elements, σ1σ2σ3 ∼
σθ(1)σθ(2)σθ(3).

Definition 3.8. A local product is a map X : Q∪ {�} → C∞(R × R
d), which we

write τ �→ X•τ .
We further enforce that if τ, τ̄ ∈ X satisfy τ ∼ τ̄ then X•τ = X•τ̄ .

3.3. Extension of local products

We now describe how any local product X is extended to TRHS ∪ TLHS, this
procedure will involve induction in me(σ ) +mx(σ ) where me(σ ) is the number of
edges of σ .
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We start by defining, for any function f : R × R
d → R, (L−1 f ) to be the

unique bounded solution u of

(∂t − �)u = ρ f. (3.6)

where ρ is a smooth cutoff function with value 1 in a neighbourhood of the parabolic
cylinder D (defined in (1.2) above) and vanishes outside of {z; d(z, 0) < 2}.

We now describe how we extend X to Vprod\Q. If τ = I(τ1)I(τ2)I(τ3) ∈
Vprod\Q then precisely one of the following conditions holds

(1) Exactly one of the τ1, τ2, τ3 belong to the set {Xi }di=1.
(2) Two of the factors τ1, τ2, τ3 are equal to 1.

In the first case above we can assume without loss of generality that τ1 = Xi , then
we set

Xzτ = ziXz(I(1)I(τ2)I(τ3)).

In the second case above we can assume without loss of generality that τ1 = τ2 = 1,
then we set

Xzτ = (L−1
X•τ3)(z).

Next we extend any local product X to TLHS by setting, for any I(τ ) ∈ TLHS,

XzI(τ ) =

⎧
⎪⎨

⎪⎩

zi if τ = Xi

1 if τ = 1
(L−1

X•τ)(z) otherwise.

(3.7)

Finally, we extend by linearity to allow X to act on linear combinations of
elements of TRHS∪TLHS. Adopting the language of rough path theory and regularity
structures, given smooth noise ξ : R × R

d → R we say a local product X is a lift
of ξ if Xz� = ξ(z). Without additional constraints lifts are not unique.

Definition 3.9. We say a local product X is multiplicative if, for every

I(τ1)I(τ2)I(τ3) ∈ Q,

one has
XzI(τ1)I(τ2)I(τ3) = XzI(τ1)XzI(τ2)XzI(τ3) , (3.8)

where on the right hand side we are using the extension of X to planted trees.

The following lemma is then straightforward to prove.

Lemma 3.10. Given any smooth ξ : R × R
d → R there is a unique multiplicative

lift of ξ into a local product, up to the choice of cut-off function ρ.

Multiplicative local products will not play a special role in our analysis but we will
use them at several points to compare our solution theory for (1.1) to the classical
solution theory.
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4. The Coproduct

As discussed in Sect. 2.4, local products X• enter in our analysis in a centered
form which depends on the choice of a basepoint x . The construction of these
centered objects is given in Sect. 5. As a preliminary step, in this section we define
a combinatorial operation on trees, called the coproduct, which plays a central role
in this construction.

4.1. Derivative edges

For trees σ with |σ | ∈ (1, 2) we will need the centering procedure to gen-
erate first order Taylor expansions in spatial directions. In order to encode these
derivatives at the level of our algebraic symbols we introduce a new set of edges
I+
i , i = 1 . . . d and also define the sets of trees

V>1 = {τ ∈ Vprod : −1 < |τ | < 0}, (4.1)

T� =: TRHS ∪ TLHS ∪ {I+
i (τ ) : 1 � i � d, τ ∈ V>1 ∪ {Xi }

}
. (4.2)

As a mneumonic, T� is the set of trees on which we will apply �. Given 1 � i � d
and τ ∈ V>1 ∪ {Xi }di=1, we also call I+

i (τ ) a planted tree. The order of these new
planted trees introduced here is given by |I+

i (τ )| = |τ | + 1. We also adopt the
shorthand that, for 1 � i � d,

I+
i (X j ) = 0 for j �= i, I+

i (1) = 0, and I+
i (τ ) = 0 for all τ ∈ Vprod\V>1.

We emphasise that these new edges will only ever appear as the bottom edge of a
planted tree. Graphically we distinguish these edges by writing an index by them.
For example,

I+
i (X j ) = i

j

= 0 if i �= j, I+
j (I(�)I(�)I(Xi )) = j

i

.

At an analytic level, the role of I+
i (X j ) is the same as that of I(1) but distinguishing

these symbols will be important - see Remark 6.11.

4.2. Algebras and vector spaces of trees

We now give some notation for describing the codomain of our coproduct �.
Given a set of trees T we write Vec(T ) for the vector space (over R) generated by
T .

Given a set of planted trees T we write Alg(T ) for the unital non-commutative
algebra (again over R) generated by T . We will distinguish between the tree product
introduced in Sect. 3 and the product that makes Alg(T ) an algebra, calling the
the latter product the “forest product” (note that the truncation (3.4) is applied
for the tree product but not the forest product). While both the tree product and
forest product are non-commutative, the roles they play are quite different—see
Remark 4.2
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We will write · to denote the forest product when using algebraic variables for
trees, that is given σ, σ̃ ∈ T , we write σ · σ̃ for the forest product of σ and σ̃ . As a
real vector space Alg(T ) is spanned by products σ1 ·σ2 · · · σn with σ1, . . . , σn ∈ T .
We call such a product σ1 · σ2 · · · σn a “forest”. The unit for the forest product is
given by the “empty” forest and is denoted by 1.

Graphically, we will represent forest products just by drawing the corresponding
planted trees side by side, for instance writing

i

j

i i

.

4.3. Coproduct

We define another set of trees

Tcen := I(V) ∪ {I+
i (τ ) : τ ∈ V>1 ∪ {Xi }, 1 � i � d} . (4.3)

As a mnemonic, Tcen are the trees that are used to implement recentering. Our
coproduct will be a map

� : T� → Vec(T�) ⊗ Alg(Tcen).

Our definition of � will be recursive. The base cases of this recursive definition
are the trees in w ∈ W and planted trees I(w), w ∈ W , and the elementary trees
I(1), I(Xi ) and I+

i (Xi ):

�I(1) = I(1) ⊗ I(1), (4.4)

�I(Xi ) = I(1) ⊗ I(Xi ) + I(Xi ) ⊗ I+
i (Xi ),

�I+
i (Xi ) = I+

i (Xi ) ⊗ I+
i (Xi ),

�w = w ⊗ 1, �I(w) = I(w) ⊗ 1, w ∈ W.

Note that in the last line, the 1 appearing is the unit element in the algebra and
should not be mistaken for 1 ∈ Poly. The first and third definitions are compatible
with the fact that I(1) and I+

i (Xi ) are represent the constant function 1, and so
the coproduct acts trivially on them. For the second line we note that to recenter a
linear monomial, one subtracts the same monomial evaluated at the basepoint (the
first term on the RHS) while the second term gives the monomial evaluated on the
active space–time argument (the I+

i (Xi ) being a way to represent the constant 1
again, see Remark 6.11). Finally, the last line of (4.4) comes from the fact that trees
W , as they are built up iteratively from smaller trees, never involve trees of positive
degree - from the algebraic point of view they behave just like the noise �.

The recursive part of our definition is then given by

�I(τ ) = I(1) ⊗ I(τ ) + I(Xi ) ⊗ I+
i (τ ) + (I ⊗ Id)�τ, τ ∈ Vprod,

�I+
i (τ ) = I+

i (Xi ) ⊗ I+
i (τ ) + (I+

i ⊗ Id)�τ, τ ∈ V>1, (4.5)

�(I(τ1)I(τ2)I(τ3)) = �(I(τ1))�(I(τ2))�(I(τ2)),
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I(τ1)I(τ2)I(τ3) ∈ Vprod,

where, on the right hand side of the last line above we are referring to the natural
product [Vec(TLHS) ⊗ Alg(Tcen)]⊗3 → Vec(TRHS) ⊗ Alg(Tcen). This product is
just given by setting

3⊗

i=1

(I(τi ) ⊗ ai ) �→ I(τ1)I(τ2)I(τ3) ⊗ (a1 · a2 · a3) , (4.6)

and then extending by linearity. We also make note of the fact that, in the first and
second lines of (4.5), we are using our convention of Einstein summation - since i
does not appear on the left hand side then the i on the right hand side is summed
from 1 to d.

In the first (resp. second) line of (4.5), the first two terms (resp. first term) on
the RHS recenter the outermost integration, while the last term RHS recursively
attempts to recenter earlier integrations.

We also note that a term σ ′ ⊗ f appears in the expansion of �σ then one has

|σ ′| � |σ | and |σ | = |σ ′| + | f |. (4.7)

One can verify that it is indeed the case that � mapsT� into Vec(T�)⊗Alg(Tcen)

by checking inductively, using (4.4) for the bases cases and (4.5) for the inductive
step. We also have the following lemma on how � acts on subsets of T�.

Lemma 4.1. For X = TLHS, TRHS, Vprod or Tcen the map � maps X into
Vec(X) ⊗ Alg(Tcen).

Proof. The first two statements are immediate consequences of our definitions. We
turn to proving the third statement, where we proceed by induction in the number
of edges of τ ∈ V . The base case(s) where τ has three edges are easily verified by
hand. For the inductive step, we write τ = I(τ1)I(τ2)I(τ3). Now, if τ1, τ2, τ3 ∈ W
one can check that the last line of (4.5) gives us that �τ = τ ⊗1 and we are done. On
the other hand, if we have τi ∈ V for some i then �I(τ ) ∈ Vec(I(V))⊗ Alg(Tcen)

and so we are done by combining the last line of (4.5) with (3.3).
Finally, the fourth statement is immediate by inspection for planted trees Tcen \

I(Vprod) while for planted trees inI(Vprod) it follows from using the third statement
for τ in the first line of (4.5). ��
We extend � to sums of trees of linearity, so that � : Vec(T�) → Vec(T�) ⊗
Alg(Tcen).

Remark 4.2. The two products we have introduced on trees, the tree product and the
forest product, play different roles in our framework: the tree product represents a
point-wise product of functions/distributions which may not be defined canonically.
Therefore we do not enforce that local products act multiplicatively with respect
to the tree product. On the other hand, any map on trees that is applied to a forest
is extended multiplicatively - we do not allow for any flexibility in how forest
products are interpreted at a concrete level. In particular, the trees in the forests
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that � produces in the right factor of its codomain are all of non-negative order
and should be thought of as being associated to products of base-point dependent
constants rather than a point-wise product of space–time functions/distributions.

Example 4.3. We show one pictorial example. The value of our parameter δ in-
fluences the definition of the set Vprod and whether I+

i (τ ) vanishes or not for
τ ∈ Vprod, therefore most non-trivial computations of � we would present are
valid only for a certain range of the parameter δ.

For the example we present below, we restrict to 3
7 > δ > 1

3 and therefore

1 > | | > 0 and 2 >

∣
∣
∣

∣
∣
∣ = −1 + 7δ > 1. We then have, using Einstein’s

convention for the index i ∈ {1, . . . , d} (when an index i appears twice on one side
of an equation, it means a summation over i = 1 . . . d)

� =
0

⊗ +
i

⊗ i + (I ⊗ Id)� .

Now we have � = (� )(
�
)(

�
)
, along with � = ⊗ 1 and

� =
0

⊗ + (I ⊗ Id)
(
�
)3

.

Putting this all together gives

� =
0

⊗ +
i

⊗ i +
00

⊗

+
0

⊗ +
0

⊗ + ⊗
0

.

We show now the example of an unplanted tree in the case δ < 1
3 and therefore

| | < 0. On the other hand, we always have |
i

| = 1+2δ > 1. With Einstein’s
convention for the index j ∈ {1, . . . , d}

�
i = 0 ⊗

i

+ j ⊗ j

i

+ 0 ⊗
i

+ i ⊗ i

i

.

Remark 4.4. The last formula in (4.5) for τ ∈ Vprod is also valid for τ ∈ Wprod
where it is trivial. The first formula of (4.5) can also be extended to τ ∈ V if one
adopts the convention that �Xi = �1 = 0. We chose not to do this since the trees
of Poly do not, by themselves, play a role in our algebraic expansions and analysis
except when they appear in a larger tree.

We extend � to forests of planted trees by setting �1 = 1 ⊗ 1 and, for any forest
σ1 · · · σn , n � 1,

�(σ1 · · · σn) = (�σ1) · · · (�σn),
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where on the right hand side we use the forest product to multiply all the factors
components-wise. We extend to sums of forests of planted trees by additivity so
that � : Alg(TLHS) → Alg(TLHS) ⊗ Alg(Tcen) and, by Lemma 4.1, we also have
that � maps Alg(Tcen) into Alg(Tcen) ⊗ Alg(Tcen).

While a single application of � will be used for centering objects around a
basepoint, we will see in Sect. 5 that a double application of � will be used for
describing the behaviour when changing this basepoint. This is our reason for also
defining � on the planted trees of Tcen \ TLHS. It will be important below to know
that the two ways of “applying � twice” agree, this is encoded in the following
lemma:

Lemma 4.5. � satisfies a co-associativity property: for any σ ∈ TRHS ∪ TLHS,

(� ⊗ Id)�σ = (Id ⊗ �)�σ , (4.8)

where both sides are seen as elements ofVec(TRHS∪TLHS)⊗Alg(Tcen)⊗Alg(Tcen).

Proof. We argue by induction in the size of σ . The cases where σ = I(1), or
I(Xi ) are straightforward to check. Note that by multiplicativity of � with respect
to the tree product it suffices to establish the inductive step for σ = I(τ ) for some
τ ∈ Vprod ∪ Wprod. The case where τ ∈ Wprod is trivial so we walk through the
verification of the identity when τ ∈ Vprod. On the left we have

(� ⊗ Id)�I(τ ) = (� ⊗ Id)
[
I(1) ⊗ I(τ ) + I(Xi ) ⊗ I+

i (τ ) + (I ⊗ Id)�τ
]

= I(1) ⊗ I(1) ⊗ I(τ ) + I(Xi ) ⊗ I+
i (Xi ) ⊗ I+

i (τ )

+ I(1) ⊗ I(Xi ) ⊗ I+
i (τ ) + I(1) ⊗ ((I ⊗ Id)�τ

)

+ I(X j ) ⊗ ((I+
j ⊗ Id)�τ

)+ (I ⊗ Id ⊗ Id)(� ⊗ Id)�τ.

On the right we have

(Id ⊗ �)�I(τ ) = (Id ⊗ �)
[
I(1) ⊗ I(τ ) + I(Xi ) ⊗ I+

i (τ ) + (I ⊗ Id)�τ
]

= I(1) ⊗ I(1) ⊗ I(τ ) + I(1) ⊗ I(X j ) ⊗ I+
j (τ )

+ I(1) ⊗ ((I ⊗ Id)�τ
)+ I(Xi ) ⊗ I+

i (Xi ) ⊗ I+
i (τ )

+ I(Xi ) ⊗ ((I+
i ⊗ Id)�τ

)+ (I ⊗ Id ⊗ Id)(Id ⊗ �)�τ.

All the terms in the expression for the left and right hand sides can be immediately
matched except for the very last terms, but these are seen to be identical by using
our induction hypothesis, which is

(Id ⊗ �)�τ = (� ⊗ Id)�τ.

��
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4.4. Useful relations on trees

We introduce two (reflexive and antisymmetric) relations on unplanted trees
TRHS, which we denote � and ⊂.

Definition 4.6. Given τ̄ , τ ∈ TRHS we have τ̄ � τ if and only if one can obtain τ

from τ̄ by replacing occurrences of the generators 1 in τ̄ with appropriately chosen
trees τ1, . . . τm1(τ̄ ) ∈ TRHS and, for every 1 � i � d, occurrences of Xi with trees
τ1, . . . , τmXi (τ̄ )

∈ TRHS\{1,X j , j �= i}.
Example 4.7. We give two pictorial examples:

00 �
i

,

i

00 � i .

Definition 4.8. Given τ̄ , τ ∈ TRHS we have τ̄ ⊂ τ if and only if τ̄ = τ or τ̄ appears
in the inductive definition of τ , that is the expression I(τ̄ ) should appear at some
point when one writes out the full algebraic expression for τ .

Example 4.9. We give an example below.

,
i ⊂ i

We also use the notation < and � to refer to the non-reflexive (strict) relations
corresponding to � and ⊂.

One can get an intuition of how the coproduct works with the idea of cutting
branches: on the left-hand side of �τ we have trees τ̄ � τ , and on the right-hand
side, we have the trees I(τ̃ ) or I+

i (τ̃ ) where τ̃ ⊂ τ has been cut from τ to obtain
τ̄ . We formalise this in the following section.

4.5. Another formula for �

Given τ ∈ TRHS, one can think of �τ as a linear combination of terms where
one sums over ways to “chop off” planted subtrees of τ of positive order, which
each term being a tensor product of the “pruned tree” with a forest of “cuttings”.

In this section we will start by going the other direction - given another tree
τ̄ ∈ TRHS we will define a forest C+(τ̄ , τ ) of planted trees that consists of the
cuttings that must have been chopped off from τ by � to be left with τ̄ as the pruned
tree. If it is not possible to obtain τ̄ from τ then one will have C+(τ̄ , τ ) = 0. With
this intuitive picture in place, we now turn to giving precise definitions.

We write Fcen for the collection of all finite, non-commutative words in Tcen,
including the empty word. In particular, Fcen is a vector space basis for Alg(T�).
We define a map C+ : TRHS × TRHS → Fcen � {0} recursively. The recursion is
given in the following table:

Here p+ is the projection on trees of positive order. In particular, for δ < 1, one
has p+I(�), I+

i (�) = 0. Note also that C+(�,�) = 1, which is the unit element
in the algebra of trees, not to be mistaken for 1.
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Table 1. This table gives a recursive definition of C+(τ̄ , τ )

τ \ τ̄ 1 Xi � I(τ̄1)I(τ̄2)I(τ̄3)

1 I(1) 0 0 0
X j I(X j ) I+

i (X j ) 0 0
� 0 0 1 0
I(τ1)I(τ2)I(τ3) p+I(τ ) I+

i (τ ) 0 C+(τ̄1, τ1) · C+(τ̄2, τ2) · C+(τ̄3, τ3)

Possible values of τ are displayed in the first column, while possible values of τ̄ are shown
in the first row. The corresponding values of C+(τ̄ , τ ) are shown in the remaining fields

Example 4.10. We give two pictorial examples

C+( 00 ,
i

) =
⎧
⎨

⎩

i

if δ > 1
3

0 else.

and

C+(
j
,

i

) = j

i

.

We explain how this can be understood in the language of “cuts”. There are three
types of cutting procedures that can be applied to a tree σ .

(1) One cuts an I-branch and takes the attached planted tree, leaving behind an
I(1).

(2) One cuts an I branch and takes the attached planted tree, with its “trunk”
becoming a derivative I+

k , and leaving behind a I(Xk). Note that this only
occurs when one the tree τ ⊂ σ attached to this I branch belongs to V>1.

(3) One cuts an I+
i branch (which must be the trunk of σ ) and takes the all of σ ,

leaving behind an I+
i (Xi ).

If δ > 1
3 , the tree 00 is obtained from

i

by performing the first type of

cut on the leftmost and rightmost I branches of
i

connected to the root,

leaving behind 00 .
In the second example, one performs the second type of cut on the rightmost

I branch connected to the root of
i

, generating an I+
j trunk on the planted

tree taken and leaving behind an I(X j ) on j .

Some immediate properties of these forests C+(τ, τ̄ ) are given in the following
lemma:

Lemma 4.11. Let τ, τ̄ ∈ TRHS. Then we have

C+(τ̄ , τ ) �= 0 ⇒ τ̄ � τ, (4.9)

I(τ ′) ∈ C+(τ̄ , τ ) or I+
i (τ ′) ∈ C+(τ̄ , τ ) ⇒ τ ′ ⊂ τ.
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Under the assumption that C+(τ̄ , τ ) �= 0 we have

m�(τ ) = m�(τ̄ ) + m�(C+(τ̄ , τ )) m1(τ̄ ) + mx(τ̄ ) = �(C+(τ̄ , τ )), (4.10)

m1(τ ) = m1(C+(τ̄ , τ )), mx(τ ) = mx(C+(τ̄ , τ )),

where �(C+(τ̄ , τ )) is the number of trees in C+(τ̄ , τ ) (including multiplicity) and
we extend the functions m1, mx and m� to forests of the planted trees by summing
over the individual planted trees in the forest.

The next lemma finally gives the expression of the coproduct � in terms of
C+. This expression is used throughout the paper without explicit reference to this
lemma.

Lemma 4.12. For any τ ∈ V ∪ W ,

�I(τ ) =
∑

τ̄∈V∪W
I(τ̄ ) ⊗ C+(τ̄ , τ ). (4.11)

In particular, one has the formulae

�I(τ ) =
{
I(τ ) ⊗ 1 if τ ∈ W ,
∑

τ̄∈V I(τ̄ ) ⊗ C+(τ̄ , τ ) if τ ∈ V .
(4.12)

Moreover, for any τ ∈ TRHS,

�τ =
∑

τ̄∈V∪W
τ̄ ⊗ C+(τ̄ , τ ) = τ ⊗ 1 +

∑

τ̄∈V
τ̄ �=τ

τ̄ ⊗ C+(τ̄ , τ ) . (4.13)

Proof. We prove (4.12) by induction, with the base cases given by τ ∈ Poly ∪ W
which we check now:

�I(1) = I(1) ⊗ I(1) and C+(τ̄ , 1) = I(1)δ{τ̄=1}.

Since I+
j (Xi ) = 0 for j �= i , we also have �I(Xi ) = I(1) ⊗ I(Xi ) + I(Xi ) ⊗

I+
i (Xi ) and C+(τ̄ ,Xi ) = I(Xi )δ{τ̄=1} + I+

i (Xi )δ{τ̄=Xi }.
Finally, for τ = w ∈ W , we have to show that the sum in the right-hand side

of (4.11) contains only one term. Indeed, for any w′ � w, we also have w′ ∈ W ,
hence |I(w′)| < 0 and C+(τ̄ , w) = δ{τ̄=w}.

We now prove the inductive step for τ = I(τ1)I(τ2)I(τ3) ∈ Vprod, with the
induction hypothesis �I(τk) =∑τ̄k

I(τ̄k) ⊗C+(τ̄k, τk), for k = 1, 2, 3. We have
that C+(1, τ ) = p+I(τ ) = I(τ ) since τ ∈ Vprod and C+(Xi , τ ) = I+

i (τ ) =
I+
i (τ )δ{τ∈V>1}, and from the definition of �, we have

�I(τ ) = I(1) ⊗ I(τ ) + I(Xi ) ⊗ I+
i (τ )

+
∑

τ̄1,τ̄2,τ̄3

I(I(τ̄1)I(τ̄2)I(τ̄3)) ⊗ C+(τ̄1, τ1)C+(τ̄2, τ2)C+(τ̄3, τ3).

Furthermore, for any τ̄ � τ ∈ Vprod, we have that either τ̄ = τ or m1(τ̄ ) +
mx(τ̄ ) � 1 therefore |τ̄ | � −2. Hence the sum can be restricted to trees τ̄ =
I(I(τ̄1)I(τ̄2)I(τ̄3)) ∈ Vprod. This concludes the proof of (4.11)
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Finally, we prove (4.13). This is immediate if τ = W , otherwise one has
τ = I(τ1)I(τ2)I(τ3) ∈ Vprod and one obtains the desired result by combining
(4.12) and the multiplicativity of � with respect to the tree product as described in
the last line of (4.5). ��

5. From Local Products to Paths

5.1. Definition of paths and centerings

For any choice of local product X, we will define two corresponding families
of maps, a path (Xz,x : T� → R; z, x ∈ R × R

d) and a centering (Xcen
z : Tcen →

R; z ∈ R × R
d) where Tcen is defined in (4.3).

Both the path and the centering are defined through an inductive procedure that
intertwines these two families of maps.

One particular aim of our definitions will be to allow us to obtain the formula

Xz,xI(τ ) = (Xz ⊗ X
cen
x )�I(τ ) for any τ ∈ Vprod, (5.1)

where we are extending X
cen
x to act on forests of planted trees by multiplicativity.

As we discussed in Sect. 2, we define

Xz,xI(1) := 1 and Xz,xI(Xi ) := zi − xi , (5.2)

and
Xz,xτ := Xzτ, Xz,xI(τ ) := XzI(τ ) for any τ ∈ W. (5.3)

With our definition (5.3) it is immediate that (5.1) holds for τ ∈ W . For τ ∈ Vprod
we define

Xz,xI(τ ) := L−1(X•,xτ)(z) − L−1(X•,xτ)(x) − 1τ∈V>1(zi − xi )ν
(i)
τ (x) , (5.4)

for which one must take as input the definition of X•,xτ and

ντ (x) = (ν(i)
τ (x))di=1 := ∇(L−1(X•,xτ))(z)|z=x , (5.5)

where ∇ denotes the spatial gradient. For the centering we will define

X
cen
x I(1) := 1, X

cen
x I(Xi ) := −xi , X

cen
x I+

i (Xi ) := 1,

X
cen
x I(τ ) := −L−1(X•,xτ)(x) + 1τ∈V>1xiν

(i)
τ (x) for any τ ∈ Vprod,

X
cen
x I+

i (τ ) := −ν(i)
τ (x) for any τ ∈ V>1.

(5.6)

The formulae above are inductive, we remark that for τ ∈ Vprod one needs to be
given X•,yτ in order to define X

cen
y I(τ ) and, if τ ∈ V>1, that same input is needed

to define X
cen
y I+

i (τ ). Note that since 1 ∈ Alg(Tcen) is the “empty product” we have
X

cen
x 1 = 1.

Finally, to handle the tree products that appear in the remainder equation we
define

Xz,xτ := (Xz ⊗ X
cen
x )�τ for all τ ∈ Vprod. (5.7)

Again, the formula above is an inductive definition - a sufficient condition for
specifying the right hand side above is that we already know X•,x for every τ̄ ∈
Vprod for τ̄ � τ .
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Remark 5.1. Note that if (5.7) is extended to τ ∈ W it agrees with the definition
given in (5.3).

Lemma 5.2. If one adopts the inductive set of definitions (5.2), (5.4), (5.3), and
(5.6), to determine the path on TRHS ∪ TLHS and the centering on Tcen then (5.1)
holds for every τ ∈ V ∪ W .

Proof. The fact that (5.1) holds for every τ ∈ W ∪ I(W) ∪ I(Poly) is immediate.
Now suppose that τ ∈ Vprod, we can then rewrite (5.4) as

Xz,xI(τ ) = L−1(X•,xτ)(z) − 1τ∈V>1 ziν
(i)
τ (x) + X

cen
x I(τ ).

We also have
L−1(X•,xτ)(z) = L−1[(X• ⊗ X

cen
x )�τ ](z)

= [(L−1
X•·)(z) ⊗ X

cen
x ]�τ

= (Xz ⊗ X
cen
x )(I ⊗ Id)�τ.

The desired claim follows upon observing that

−1τ∈V>1 ziν
(i)
τ (x) = (Xz ⊗ X

cen
x )(I(Xi ) ⊗ I+

i (τ )),

and X
cen
x I(τ ) =(Xz ⊗ X

cen
x )(I(1) ⊗ I(τ )) .

��
At this point we have finished the inductive definition of the path on the trees of
TRHS ∪ TLHS and of the centering on the trees of Tcen. What is left is to define the
path on the trees of {I+

i (τ ) : 1 � i � d, τ ∈ V>1 ∪ {Xi }}.
In keeping with our convention of thinking of I+

i (Xi ) as acting like I(1) for
all analysis, we set

Xz,xI+
i (Xi ) := 1.

Our definition for the action of a path X•,• on a tree I+
i (τ ) for τ ∈ V>1 is motivated

by the fact that such trees are not really part of our tree expansions but instead only
appear in order to encode change of base-point operations.

In particular, Xu,xI+
i (τ ) will play a role in how we relate centering at u versus

centering at x and the identity we will be aiming for is Chen’s relation (5.10).
The key identity we would like to hold is that, for any z, x ∈ R × R

d ,

X
cen
x I+

i (τ ) = (Xcen
z ⊗ Xz,x

)
�I+

i (τ ). (5.8)

Note that in the above equation we are using our convention of extending Xz,x

to forests of planted trees by multiplicativity.
Expanding the action of � in (5.8) gives us an inductive procedure for defining

X•,•I+
i (τ ) for τ ∈ V>1. Namely, we will define, for any τ ∈ V>1,

Xz,xI+
i (τ ) := X

cen
x I+

i (τ ) − (Xcen
z ◦ I+

i ⊗ Xz,x )�τ

= −ν(i)
τ (x) +

∑

τ̄∈V>1

ν
(i)
τ̄ (z)Xz,xC+(τ̄ , τ ). (5.9)
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We then see that, in order to define Xz,xI+
i (τ ) it suffices to have defined X•,x (τ ),

X•,x (τ̄ ) for every τ̄ ∈ Vprod with τ̄ < τ , along with Xz,xI(τ̃ ) and Xz,xI+
i (τ̃ ) for

every τ̃ � τ .

Remark 5.3. We take a moment to draw parallels between our definitions and
those found in the theory of regularity structures. Those unfamiliar with the theory
of regularity structures can skip this remark.

In our context, the local product Xz plays the role of the “un-recentered”�(•)(z)
map in the theory of regularity structures.

The corresponding path Xz,x sometimes plays the role of the map (	x•)(z)
and sometimes plays a role more analogous to γz,x (•) where γz,x is as in [23,
Section 8.2], that is it is the character that defines 
z,x .

• For σ ∈ W ∪ I(W) the path Xz,xσ plays the role of (	xσ)(z) or equivalently
(�σ)(z).

• For τ ∈ Vprod,
– Xz,xτ plays the role of (	xτ)(z).
– Xz,xI(τ ) plays the role of (	xI(τ ))(z) and γz,x (I(τ )). In particular these

two quantities are the same and in our context this means that the definition
(5.4) is actually compatible with the formula (5.8) - see (5.12).

• For τ ∈ V>1 and 1 � i � d, Xz,xI+
i (τ ) plays the role of γz,x (Ii (τ )) which in

general has a different value than (	xIi (τ ))(z). This is why we cannot define
Xz,xI+

i (τ ) with some formula that is analogous to (5.4).

5.2. Properties of paths and centerings

The first property we will investigate is Chen’s relation.

Definition 5.4. We say a local product satisfies Chen’s relation on σ ∈ TRHS∪TLHS
if, for every z, u, x ∈ R × R

d ,

(Xz,u ⊗ Xu,x )�σ = Xz,xσ . (5.10)

Remark 5.5. We use Chen’s relation to study the change of base-point operation
for tree expansions, and the sole role of I+

i (τ ) for τ ∈ V>1 is to describe this
procedure.

Therefore we are not interested in Chen’s relation (5.10) for the case where
σ = I+

i (τ ) and instead I+
i (τ ) plays the role of an intermediate object in the

expansion of (5.10).

The following lemma is straightforward because of the trivial structure of the co-
product in those cases:

Lemma 5.6. Any local product automatically satisfies Chen’s relation on every
σ ∈ W ∪ I(W) ∪ I(Poly) ∪ {I+

i (Xi )}di=1.

We also define semi-norms to capture our notion of order bounds, using the convolu-
tion with an approximation of unity denoted by (·)L as introduced in equation (1.7).
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Definition 5.7. Given a local product X and σ ∈ T�, we define

[X; σ ] :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup
x∈R×Rd

sup
L∈(0,1]

∣
∣
∣
(
X•,xσ

)
L(x)

∣
∣
∣L−|σ | for σ ∈ TRHS ∪ I(W) ,

sup
z,x∈R×Rd
d(z,x)∈(0,1)

|Xz,xσ |d(z, x)−|σ | for σ ∈ Tcen .

(5.11)
We say X satisfies an order bound on σ if [X; σ ] < ∞.

For any forest of planted trees σ1 · · · σn , n ∈ Z�0, we write

[X; σ1 · · · σn] :=
n∏

j=1

[X; σ j ].

We also write [X; 0] := 0.

Remark 5.8. We note that for any σ ∈ I(Poly) ∪ {I+
i (Xi )}di=1 we have the bound

[X; σ ] � 1 uniformly over local products X.
Since we are working in the smooth setting, it is also true that any local product

X satisfies an order bound on τ ∈ TRHS (and I(τ ) ∈ I(W)). However, it is not
obvious and in general not true, that these bounds remain finite, when one passes to
the rough limit, where ξ is genuinely only a C−3+δ distribution. In the application
to stochastic PDE, these bounds can be controlled in the limit, but this requires
additional probabilistic arguments as well as a renormalisation procedure.

Since we have Lemma 5.6 we now verify that our definitions automatically guar-
antee that any local product satisfies Chen’s relation on any τ ∈ I(V) ∪ Vprod.

We now turn to showing the desired statements about Chen’s relation.

5.2.1. Proving Chen’s Relation It is useful to introduce a stronger, partially
factorized version of Chen’s relation.

Definition 5.9. Given I(τ ) ∈ I(V) we say a local product X satisfies the strong
Chen’s relation on I(τ ) if, for every x, y ∈ R

d , one has the identity

X
cen
y I(τ ) =(Xcen

x ⊗ Xx,y
)
�I(τ ). (5.12)

We remark that it is trivial to check that any local product satisfies strong Chen’s
relation on I(τ ) ∈ I(Poly). The following lemma is half of our inductive step for
proving Chen’s relation.

Lemma 5.10. Suppose a local product X satisfies Chen’s relation on τ ∈ Vprod,
then X satisfies strong Chen’s relation on I(τ ).
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Proof. Expanding both sides of (5.12) gives

L−1(
X•,yτ

)
(y) + y jX

cen
y I+

j (τ )

= L−1(X•,yτ)|yx + (yi − xi )X
cen
y I+

i (τ )

+ xk
(
X

cen
y I+

k (τ ) −
∑

τ̃∈Vprod

(Xcen
x I+

k (τ̃ ))Xx,yC+(τ̃ , τ )
)

−
∑

τ̃∈Vprod

(
X

cen
x I(τ̃ )

)(
Xx,yC+(τ̃ , τ )

)

(5.13)

Each of the three lines on the right hand side above come from one of the three
terms on the right hand side of the first line of (4.5).

Doing the explicit cancellations lets us simplify (5.13) to

0 = L−1(X•,yτ)(x) + xk
∑

τ̃∈Vprod

(Xcen
x I+

k (τ̃ ))Xx,yC+(τ̃ , τ )

+
∑

τ̃∈Vprod

(
X

cen
x I(τ̃ )

)(
Xx,yC+(τ̃ , τ )

) (5.14)

We then obtain (5.14) by using our assumption on Chen’s relation for τ to write

L−1(X•,yτ)(x) = L−1
(
(X•,x ⊗ Xx,y)�τ

)
(x)

=
∑

τ̃∈Vprod

(
L−1

X•,x (τ̃ )
)
(x)
(
Xx,yC+(τ̃ , τ )

)
,

and then recalling that for any τ̃ in the above sum one has

L−1(X•,x τ̃
)
(x) = −X

cen
x I(τ̃ ) − xkX

cen
x I+

k (τ̃ ).

��
The following lemma is the second half of our inductive step:

Lemma 5.11. Fix τ ∈ Vprod and suppose X is a local product satisfying the strong
Chen property on I(τ̄ ) for every τ̄ � τ . Then X satisfies Chen’s relation on τ .

Proof. We have

(Xx,y ⊗ Xy,z)�τ = (Xx ⊗ X
cen
y ⊗ Xy,z)(� ⊗ Id)�τ

= (Xx ⊗ X
cen
y ⊗ Xy,z)(Id ⊗ �)�τ

= (Xx ⊗ X
cen
z )�τ

= Xx,zτ .

In the first equality we used our identity (5.7) for Xx,y and in the second we used
the co-associativity property of Lemma 4.5.

For the third equality we used the fact that � is multiplicative over forests of
planted trees so we can use either Lemma 5.10 or (5.8) for the planted trees that
appear in the forests that appear on the right factor of �τ . Fix τ̃ �∈ {1,X1, . . . ,Xd}.
Then for any I(τ̄ ) ∈ C+(τ̃ , τ ) one has τ̄ � τ so one can use Lemma 5.10 for these
factors. For the factors I+

i (τ̄ ) ∈ C+(τ̃ , τ ) one can just use (5.8). ��
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Putting together these two lemmas for our inductive step, combined with Lemma 5.6
which gives us the base cases for our induction, we arrive at the following propo-
sition.

Proposition 5.12. Any local product X satisfies Chen’s relation on TRHS ∪ TLHS.

6. Modelled Distribution

With the definition of local products and their associated paths in place, we now
show how to use them to give a good local approximation to the solution v of the
remainder equation. As explained above in (2.19), we seek a local approximation
to v of the form

v(y) ≈ Xy,x�(x) =
∑

τ∈V
�x (τ )Xy,xI(τ ) (6.1)

for suitable coefficients � ∈ C∞(R × R
d ; Vec(V)) (which we interchangeably

view as a map � : V → C∞ taking τ �→ �•(τ )) and with an error of order
� d(x, y)γ . In this section we first introduce a family of seminorms that measure the
regularity of the coefficient map � and that ultimately permit to bound renormalised
products. Subsequently, we turn to a specific choice of coefficients � (denoted by
ϒ , see Definition 6.7) which arise in “freezing of coefficient procedure” described
in Sect. 2.4. The main result of this section, Theorem 6.12, shows a close connection
between the various seminorms for this specific choice of coefficient.

In order to motivate the regularity condition we rewrite equation 6.1 for another
base-point x̄ (but for the same argument y)

v(y) ≈
∑

τ̄∈V
�x̄ (τ̄ )Xy,x̄I(τ̄ ), (6.2)

then use Chen’s relation (5.10) and Lemma 4.12 in the form

Xy,x̄I(τ̄ ) =
∑

τ∈V
Xy,xI(τ )Xx,x̄C+(τ, τ̄ )

to rewrite the right hand side of (6.2) and compare the resulting expression to (6.1),
arriving at
∣
∣
∣
∣
∣

∑

τ∈V

(

�x (τ ) −
∑

τ̄∈V
�x̄ (τ̄ )Xx,x̄C+(τ, τ̄ )

)

Xy,xI(τ )

∣
∣
∣
∣
∣
� d(x, y)γ + d(x̄, y)γ .

(6.3)

Specialising this inequality to those y for which d(x̄, y) ≈ d(x, y) ≈ d(x, x̄) ≈ d
yields the estimate

∣
∣
∣
∣
∣

∑

τ∈V

(

�x (τ ) −
∑

τ̄∈V
�x̄ (τ̄ )Xx,x̄C+(τ, τ̄ )

)

Xy,xI(τ )

∣
∣
∣
∣
∣
� dγ . (6.4)
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In view of the the order bound (5.11)

|Xy,xI(τ )| � d |τ |+2,

the following definition is natural:

Definition 6.1. Let X• be a local product and X•,• be the path constructed from
X•. Then for � ∈ C∞(R × R

d ; Vec(V)) for τ ∈ V and 0 < γ < 2 we define

U τ
γ−2(y, x) := �y(τ ) −

∑

τ̄∈V|τ̄ |<γ−2

�x (τ̄ )Xy,xC+(τ, τ̄ ), (6.5)

and the seminorm

[U τ ]γ−|τ |−2 := sup
d(x,y)�1

1

d(x, y)γ−|τ |−2

∣
∣U τ

γ−2(y, x)
∣
∣. (6.6)

It is important to observe that the semi-norm [U τ ]γ−|τ |−2 involves the coefficients,
�τ̄ as well as the paths X•,• on all symbol τ̄ for which C+(τ, τ̄ ) does not vanish,
and that all of these trees τ̄ satisfy τ � τ̄ . Also, for τ = 1, in view of the identity
C+(1, τ̄ ) = τ̄ and |1| = −2 the quantity [U 1]γ measures exactly the size of the
error in the expression (6.1) at the beginning of this discussion.

Remark 6.2. The definition of the semi-norm corresponds exactly to Hairer’s def-
inition of a modelled distribution, [23, Definition 3.1]. In Hairer’s notation the
expression |U τ

γ−2(y, x)| becomes

‖�(x) − 
xy�(y)‖I(τ ).

The following lemma relates the notion of classical derivative with the generalised
derivatives that appear in the modeled distribution:

Lemma 6.3. Let 1 < γ < 2. Fix a local productX and� ∈ C∞(R×R
d ; Vec(V)).

Then, for 1 � i � d,

�x (Xi ) = ∂i

⎛

⎜
⎝�y(1) −

∑

τ̄∈Vprod|τ̄ |<−1

�x (τ̄ )Xy,xC+(1, τ̄ )

⎞

⎟
⎠
∣
∣
∣
y=x

, (6.7)

where the partial derivative ∂i acts in the variable y.

Proof. Note that by assumption we have that that |U 1
γ−2(y, x)| � d(y, x)γ and

since γ > 1 it follows that
(
∂iU

1
γ−2(y, x)

)∣
∣
y=x = 0.

We obtain the desired result by plugging in the definition of U 1
γ−2(y, x) and recall-

ing that
(
∂iXy,xC+(1, 1)

)∣
∣
y=x = (∂iXy,xI(1)

)∣
∣
y=x = 0,

(
∂iXy,xC+(1,X j )

)∣
∣
y=x = (∂iXy,xI(X j )

)∣
∣
y=x = δ{ j=i},

and
(
∂iXy,xC+(1, τ̄ )

)∣
∣
y=x = 0 for τ̄ ∈ Vprod with |τ̄ | > −1.

In the last statement we are using that |Xy,xC+(1, τ̄ )| � d(y, x)|τ̄ |+2. ��
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Remark 6.4. While all of our analysis is performed in the smooth setting, we
remark that conclusion of Lemma 6.3 also holds in the limit to the rough setting if,
for U 1

γ−2(y, x) defined as in (6.5), we have [U 1]γ < ∞.

We now introduce some short-hand notation that will be very useful in the fol-
lowing calculations. First, for a given local product X, for� ∈ C∞(R×R

d ; Vec(V))

and γ ∈ (0, 2) we denote by

Vγ (y, x) :=
∑

τ∈V,
|τ |<γ−2

�x (τ )Xy,xI(τ ) . (6.8)

We also introduce a truncated “square” and a “spatial derivative”:

V 2
γ (y, x) :=

∑

τ1,τ2∈V,
|τ1|+|τ2 |<γ−4

�x (τ1)�x (τ2)Xy,xI(τ1)Xy,xI(τ2) , (6.9)

V ∂,i
γ (y, x) :=

∑

τ∈V>1,|τ |<γ−1

�x (τ )Xy,xI+
i (τ ) . (6.10)

Note that due to the choice of index set V 2
γ (y, x) does not coincide with the point-

wise square (Vγ (y, x))2. V ∂,i
γ can be thought of as a term by term derivative of Vγ ,

mapping I(τ ) �→ I+
i (τ ), where we recall that I+

i (τ ) = 0 if V \ V>1.
Recalling the definition (6.5) specialised to τ = Xi as well as the identity

C+(Xi , τ ) = I+
i (τ ) for τ ∈ V>1 and = 0 otherwise (see Table 1) we have the

identity
UXi

γ (y, x) = �y(Xi ) − V ∂,i
γ−1(y, x). (6.11)

A first nice observation is a control for the “three point continuity operator” for
Vγ (the left-hand side of (6.12) below) in terms of the U τ

γ−2 and X•,•. This “three
point continuity operator” corresponds exactly to Gubinelli’s δ operator [16,17].
In our calculations this quantity is needed to bound derivatives (see (6.17) below)
and as input to the Schauder lemmas presented in Sect. B.

Lemma 6.5. Let X• be a local product. Let � ∈ C∞(R × R
d; Vec(V)) and let V

be defined as in (6.8). Then for any space–time points x, y, z ∈ R × R
d we have

Vγ (z, x) − Vγ (z, y) + Vγ (y, y) − Vγ (y, x)

= −
∑

τ∈V\{1},
|τ |<γ−2

U τ
γ−2(y, x) Xz,yI(τ ) . (6.12)

Proof. We re-organise the terms on the left hand side of (6.12) to write

Vγ (z, x) − Vγ (z, y) + Vγ (y, y) − Vγ (y, x)

=
∑

τ̄∈V,
|τ̄ |<γ−2

�x (τ̄ )
(
Xz,xI(τ̄ ) − Xy,xI(τ̄ )

)
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−
∑

τ∈V,
|τ |<γ−2

�y(τ )
(
Xz,yI(τ ) − Xy,yI(τ )

)
. (6.13)

We use Chen’s relation (5.10) for the terms in the first sum on the right hand

Xz,xI(τ̄ ) − Xy,xI(τ̄ ) =
∑

τ∈V|τ |<γ−2

(
Xz,yI(τ ) − Xy,yI(τ )

)
Xy,xC+(τ, τ̄ ) .

Plugging this into the first term on the right hand side of (6.13), exchanging the
summation in τ and τ̄ gives

Vγ (z, x) − Vγ (z, y) + Vγ (y, y) − Vγ (y, x)

=
∑

τ∈V,
|τ |<γ−2

((
Xz,yI(τ ) − Xy,yI(τ )

)( ∑

τ̄∈V,
|τ̄ |<γ−2

�x (τ̄ )Xy,xC+(τ, τ̄ ) − �y(τ )
))

.

Finally, noting that Xz,yI(1) − Xy,yI(1) = 0 and Xy,yI(τ ) = 0 for τ ∈ V\{1}
leads to the desired expression (6.12). ��

The next lemma gives relations between V , V 2 and V ∂,i . These will be used
heavily in Sect. 10.

Lemma 6.6. Truncation: for 0 < β < γ < 2, Vγ−β is a truncation of Vγ

�y(1) − Vγ (y, x) = �y(1) − Vγ−β(y, x)

−
∑

γ−β−2�|τ |<γ−2

�x (τ )Xy,xI(τ ) . (6.14)

Multiplication: for 0 < γ < 1, V 2
γ is a truncation of (Vγ )2:

�y(1)2 − V 2
γ (y, x) = �y(1)(�y(1) − Vγ (y, x)) (6.15)

+
∑

−2�|τ |<γ−2

�x (τ )Xy,xI(τ ) (6.16)

(�y(1) − Vγ−|τ |−2(y, x)).

Derivative: To control derivativesweuse the following reorganisationof Lemma6.5:
for 1 < γ < 2 we have

Vγ (z, x) − Vγ (z, y) + Vγ (y, y) − Vγ (y, x) (6.17)

+
d∑

i=1

(
�y(Xi ) − V ∂,i

γ−1(y, x)
)
(y − z)i = −

∑

τ∈Vprod,|τ |<γ−2

U τ
γ−2(y, x) Xz,yI(τ ).

This last identity (6.17) will be combined with Lemma A.3 to give a bound on V ∂,i

below.
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Proof. The first two identities are immediate. In the third one, we use the identity
(6.11) and rewrite the term corresponding to τ = Xi , for which Xz,yXi = (y− z)i .
��
We introduce in the following definition a coefficient map ϒ depending on some
real valued functions v1 and vXi , i = 1 . . . d, on R × R

d :

Definition 6.7. Given real parameters v1, vXi , i = 1 . . . d and τ ∈ V � W we set

ϒ(τ)[v1, vX] :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v1, τ = 1,
vXi , τ = Xi ,

1, τ = �,

−∏3
i=1 ϒ(τi )[v1, vX], τ = I(τ1)I(τ2)I(τ3),

(6.18)

where we adopt, above and in what follows, the notation convention vX = (vXi )
d
i=1.

We may omit the parameters [v1, vX] from the notation when there is no possible
confusion, We usually work in the case where v1 and vX are functions of spacetime
R × R

d in which case we use the shorthand: ϒ(τ)[v1(z), vX(z)] =: ϒz(τ ).
We extend ϒ to planted trees, in particular we set ϒ(I(τ )) := ϒ(τ) for τ ∈

W ∪V and ϒ(I+
i (τ )) = ϒ(τ) for τ ∈ V>1 ∪ {Xi }di=1. We also extend ϒ to forests

of planted trees by multiplicativity.

We give an explicit formula for ϒ in the next lemma.

Lemma 6.8.

ϒ(τ)[v1, vX] = (−1)
m(τ )−1

2 v
m1(τ )
1

d∏

i=1

v
mxi (τ )

Xi
.

Proof. We prove this by induction in m(τ ), the base cases being immediate from
the first three lines of (6.18). For the inductive step, write τ = I(τ1)I(τ2)I(τ3)

and observe that

ϒ(τ)[v1, vX] = −
3∏

j=1

ϒ(τ j )[v1, vX] = −
3∏

j=1

(−1)
m(τ j )−1

2 v
m1(τ )
1

d∏

i=1

v
mxi (τ j )

Xi
.

The first equality is the last line of (6.18) and the second equality comes from the
inductive hypothesis. The result then follows since m(τ ) = ∑3

j=1 m(τ j ) and the
same is true of mxi . ��
Note that since we only consider trees of negative order, we always have m1(τ ) +
2mx(τ ) < 3. In particular only ±v1, ±v2

1 , ±vXi or ±1 can appear and these
possibilities correspond, respectively, to m1(τ ) = 1, m1(τ ) = 2, mxi (τ ) = 1, and
m1(τ ) = mx(τ ) = 0.

Assumption 6.9. For the remainder of the paper, we will always assume that the
coefficient map � ∈ C∞(R × R

d; Vec(V)) is of the form

�z(•) = ϒ(•)[v1(z), vX(z)] = ϒz(•) for some v1, vX . (6.19)

We enforce the relation (6.19) for the rest of the article, in particular this is implicit
in any use of the notation U τ .
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The following identities are the main motivation behind our definition of ϒ :

Lemma 6.10. One has

−
( ∑

τ∈V∪W
ϒ(τ)I(τ )

)3 =
∑

τ∈Vprod∪Wprod

ϒ(τ)τ . (6.20)

We also have for any τ ∈ V, τ̄ ∈ Vprod such that C+(τ, τ̄ ) �= 0,

ϒ(τ̄ ) = (−1)
m(τ )−1

2 ϒ(C+(τ, τ̄ )), (6.21)

where ϒ acts on forests multiplicatively.

Proof. For the equality (6.20), we recall the bijective correspondence (τ 1, τ 2, τ 3) �→
τ between τ1, τ2, τ3 ∈ V � W and τ = I(τ1)I(τ2)I(τ3) ∈ τ ∈ Vprod ∪ Wprod.
The result then follows by combining this with the last line of (6.18).

The identity (6.21) follows from Lemma 6.8 and Lemma 4.11. ��
Remark 6.11. The coproduct plays a central role in algebraically encoding the
terms that appear in our centering procedure, but the precise choices (4.4) and (4.5)
were motivated by (4.8) and (4.10).

The key content of (4.10) is that for any τ ∈ V and any σ ⊗σ1 · · · σn appearing
in the expansion of �I(τ ), the precise number of Xi and 1 generators appearing
in the forest σ1 · · · σn and in τ coincide. This in turn is needed for the crucial
relation (6.21). For this reason we have to work with the different algebraic objects
I(1), I+

i (Xi ), and the empty forest 1 - even though all these symbols are treated
identically at an analytic level.

For instance, one might be tempted to set �I(1) = I(1) ⊗ 1 but this would
break (4.10) since the number of 1’s in the empty forest 1 is zero while the number
in 1 is one. Similarly, one cannot include I(Xi )⊗1 or I(Xi )⊗I(1) in the expansion
of �I(Xi ). Finally, we have to write the term I+

i (Xi ) ⊗ I+
i (τ ) in the second line

of (4.5) instead of, say, I(1) ⊗ I+
i (τ ), because of our earlier choices and (4.8).

The key result of this section is the observation that under the structure assumption
described in Remark 6.9, all continuity conditions are controlled by the condition on
1 andXi . This follows from the bounds established in Lemma 6.6 and the following
theorem which uses the structure of ϒ .

Theorem 6.12. For τ ∈ TRHS ∪ TLHS, the quantity U τ
γ (y, x) takes the following

form

U τ
γ (y, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−1)
m(τ )−1

2 (v1(y) − Vγ−|τ |(y, x)) if m1(τ ) = 1,

(−1)
m(τ )−1

2 (v1(y)2 − V 2
γ−|τ |(y, x)) if m1(τ ) = 2,

(−1)
m(τ )−1

2 (vXi (y) − V ∂,i
γ−|τ |(y, x)) if mxi (τ ) = 1,

0 if m1(τ ),mx(τ ) = 0.

(6.22)
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Proof. From Lemma 6.10, we have

ϒ(τ̄ )C+(τ, τ̄ ) = (−1)
m(τ )−1

2 ϒ(C+(τ, τ̄ ))C+(τ, τ̄ ).

This allows to write:

U τ
γ (y, x) = ϒy(τ ) − (−1)

m(τ )−1
2

∑

|τ̄ |<γ

ϒx (C+(τ, τ̄ ))Xy,xC+(τ, τ̄ ).

We can use Lemma 4.11 to study the different cases:

• If m1(τ ) = 1 and C+(τ, τ̄ ) �= 0 then there exists a unique τ̃ ∈ V such that
C+(τ, τ̄ ) = I(τ̃ ). Conversely, for each τ̃ ∈ V with |τ̃ | < γ − |τ | − 2, there
exists a unique τ̄ ∈ V with |τ̄ | < γ − 2 such that C+(τ, τ̄ ) = I(τ̃ ). Indexing
the sum over this τ̃ gives the expression of Vγ−|τ |.

• If mxi (τ ) = 1 and C+(τ, τ̄ ) �= 0 then there exists a unique τ̃ ∈ V such that
C+(τ, τ̄ ) = I+

i (τ̃ ). Indexing the sum over this τ̃ gives the expression of V ∂,i
γ−|τ |.• If m1(τ ) = 2 and C+(τ, τ̄ ) �= 0 then there exists a unique non-commutative

couple (τ̃1, τ̃2) ∈ V2 such that C+(τ, τ̄ ) = I(τ̃1) ·I(τ̃2). Indexing the sum over
these τ̃1, τ̃2 gives the expression of V 2

γ−|τ |, using also the multiplicative action
of X on forests of planted trees.

We finally see that we get the correct order using the fact that |τ |+ |C(τ, τ̄ )| = |τ̄ |.
��

Lemma 6.3 above showed that the continuity condition on a modelled distribution
enforces the relation (6.7) between the coefficients �z(Xi ) and the other coef-
ficients. Since we are now imposing the structural condition (6.19), we see that
all the left hand side of (6.7) is given by vXi (x) and the right hand side of (6.7)
has no dependence on vX(x) - therefore the continuity condition combined with
(6.19) determines vX(x) = (vXi (x))

d
i=1 as a function of v1 and the local prod-

uct X along with associated derivatives. For future use we encode this as a map
(v1, X) �→ DX

i v1 = vXi .

Definition 6.13. Given a local product X and a smooth function v : R × R
d
x → R

we define DXv = (DX

i v)di=1, DX

i v : R × R
d → R by setting, for 1 � i � d,

(DX

i v)(x) =
∑

τ̄∈Vprod|τ̄ |<−1

ϒx (τ̄ )
(
∂iXy,xC+(1, τ̄ )

)∣
∣
y=x − ∂iv(y)

∣
∣
y=x ,

where the partial derivatives above acts in the dummy variable y and the ϒx (·)
coefficients above are defined using the parameter v(x) = v1(x). Note that we do
not need to specify a parameter vX(x) for the ϒx map above since every τ̄ appearing
in this sum satisfies mx(τ̄ ) = 0.
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7. Renormalised Products of Tree Expansions

In this section we define renormalised “point-wise” products, taking as input a
local product and tree expansions. Fix some smooth noise ξ and let X be a lift of ξ .
Upon fixing the choice of X we will arrive at an analogue of equation (1.1) which
we now describe. The solution to this yet to be identified equation will be written
in the form

φ(z) = v(z) +
∑

τ∈W
(−1)

m(τ )−1
2 XzI(τ )

=
∑

τ∈W∪{1}
ϒz(τ )Xz,zI(τ )

=
∑

τ∈W∪V
ϒz(τ )Xz,zI(τ ) . (7.1)

Above, in passing from the first to second line, we have used the definition of ϒ on
W in Lemma 6.8 as well as the fact that Xz,zI(τ ) = XzI(τ ) for τ ∈ W . In passing
to the last line we used the simple observation that for τ ∈ V \ {1}, Xz,zI(τ ) = 0.
This trivially gives the identity

φ3(z) =
∑

τ1,τ2,τ3∈W∪V
ϒz(τ1)ϒz(τ2)ϒz(τ3)Xz,zI(τ1)Xz,zI(τ2)Xz,zI(τ3)

= −
∑

τ1,τ2,τ3∈W∪V
ϒz(I(τ1)I(τ2)I(τ3))Xz,zI(τ1)Xz,zI(τ2)Xz,zI(τ3) .

(7.2)

The renormalisation now consists of replacing each of the point-wise products
Xz,zI(τ1)Xz,zI(τ2)Xz,zI(τ3) which in general we do not control by the terms
Xz,zI(τ1)I(τ2)I(τ3) which we control by assumption. The following definition
extends this idea to more general expansions:

Definition 7.1. Fix a local product X. Suppose we are given, for 1 � i � 3, smooth
functions θ(i)(z) : R × R

d → R and �(i) : R × R
d → Vec(TLHS) with

θ(i)(z) = Xz,z�
(i)(z) =

∑

τ∈V∪W
�(i)

z (τ )Xz,zI(τ ) . (7.3)

Then, we define

(θ(1) ◦X θ(2) ◦X θ(3))(z)

=
∑

τ=I(τ1)I(τ2)I(τ3)∈Vprod∪Wprod

�(1)
z (τ1)�

(2)
z (τ2)�

(3)
z (τ3)Xz,zτ.

(7.4)

In the case where there is a single function θ(i) = θ and a single corresponding
tree expansion �(i) = � then we just write θ◦X3 for the left hand side of (7.4).

We adopt the convention that when θ(i)(z) = Xz,zI(τ ) = XzI(τ ), where
τ ∈ W , appears as a factor in a local product, we will implicitly take�(i)(z) = I(τ ).
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We remark that, with the generality we allow in the definition of local products,
there is no reason to expect that (θ(1)◦Xθ(2)◦Xθ(3))(z) is given by some polynomial
in the functions θ(i)(z) and their spatial derivatives. However, a trivial case where
there is such a correspondence is in the case of a multiplicative local product in
which case one clearly has (θ(1) ◦X θ(2) ◦X θ(3))(z) = θ(1)(z)θ(2)(z)θ(3)(z).

Remark 7.2. An important observation about the importance of these tree expan-
sions is the following. In (7.3), the contribution on the two right hand sides from
τ ∈ V \ {1} vanishes due to the order bound for any local product.

Similarly, if the local product X is multiplicative then none of the terms involving
either τ1 or τ2 or τ3 ∈ V contribute to the value of the renormalised product.

However, if the X is not multiplicative then it can certainly be the case that
these terms from τ ∈ V\{1} contribute to the value of the renormalised product even
though they do not contribute to the value of the θ(i)(z). At the same time, in the end
we only need to keep products of treesI(τ1)I(τ2)I(τ3) with |I(τ1)I(τ2)I(τ3)| < 0
in our analysis of renormalised products. This motivates our truncation convention
for tree products described at the end of Sect. 3.1.

We can now specify the equations we obtain a priori bounds for.

Definition 7.3. Fix a local product X. Then we say the solution of the �4 equation
driven by X is a smooth function φ : R × R

d → R solving

(∂t − �)φ = φ◦X3 + ξ . (7.5)

Here we write ξ = Xz� and the tree expansion � for φ used to define φ◦X3 is
defined by

�(z) =
∑

τ∈V∪W
ϒz(τ )I(τ ),

where ϒ is defined as in Definition 6.7 and the parameter v1(z) is given by

v1(z) = φ(z) −
∑

τ∈W
ϒz(τ )XzI(τ ) , (7.6)

while we set parameter vX = DXv1 as given in Definition 6.13.

Definition 7.4. Fix a local product X. We say that a smooth function v : R×R
d →

R solves the �4-remainder equation driven by X if it satisfies

(∂t − �)v = −
(
v3 + 3

∑

τ∈W
(−1)

m(τ )−1
2 v ◦X v ◦X X•I(τ )

+ 3
∑

τ1,τ2∈W
(−1)

m(τ1)+m(τ2)−2
2 v ◦X X•I(τ1) ◦X X•I(τ2)

−
∑

τ1,τ2,τ3∈W
|τ1|+|τ2 |+|τ3|>−8

(−1)
m(τ1)+m(τ2)+m(τ3)−3

2 X•I(τ1)I(τ2)I(τ3)
)
.

(7.7)
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Here, the tree expansion that governs v is given by

V (z) =
∑

τ∈V
ϒz(τ )I(τ )

where ϒz is defined as in Definition 6.7 using the function v(z) and the parameters
v1 = v and vX = DXv.

The following statement is then straightforward.

Lemma 7.5. There is a one to one correspondence between solutions in the sense
of Definition 7.3 to those of Definition 7.4, the correspondence is given by taking
φ which is a solution in the sense Definition 7.3 and mapping it to v = v1 which
will be a solution in the sense of (7.6).

8. A Useful Class of Local Products

This section is somewhat orthogonal to the main result of this paper. Here we
present a particular subset of local products which are defined in terms of recursive
procedure that guarantees that the renormalised product appearing in (7.5) is a local
polynomial in φ and its derivatives. This class of local products also includes those
that satisfy the necessary uniform stochastic estimates in order to go to the rough
setting, namely the BPHZ renormalisation of [8,12]—see also Remark 9.8.

8.1. Another derivative edge

Our class of local products will, for δ sufficiently small, allow the renormalised
product φ◦X3 to involve spatial derivatives ∂iφ for 1 � i � d.

To describe the generation of these derivatives in terms of operations on trees
we will introduce yet another set of edges {I−

i }di=1 and another set of planted trees

T −
LHS = TLHS ∪ {I−

i (τ ) : τ ∈ TRHS, 1 � i � d} ∪ {I+
i (Xi ) : 1 � i � d}.

We also adopt the notational convention that

I−
i (Xi ) = I+

i (Xi ), I−
i (1) = 0, and I−

i (X j ) = 0 if i �= j.

Both the new set of edges {I−
i }di=1 and the set of edges {I+

i }di=1 introduced in
Sect. 4 should be thought of as representing a spatial derivative of a solution to a
heat equation. However these two sets of edges play different roles in our argument:
a symbol I+

i (τ ) for τ ∈ V>1 is used to describe centering terms while the terms
I−
i (τ̃ ) for τ̃ ∈ TRHS are only used for derivatives generated by our choice of renor-

malisation procedure - our original non-linearity −φ3 didn’t include derivatives
of φ but if our renormalisation produced a new term involving ∂iφ (which could
occur) then these symbols I−

i (τ̃ ) are needed to model this term.
In particular, since the renormalised product associated to a local product X is

defined in terms of the path built from it, it will be useful to extend this path to act
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on such I−
i (τ̃ ) trees and the natural action to choose here will be different than the

action of the path on I+
i (τ ) trees.

Another difference between these two sets of derivative edges is that while we
adopted the convention that, for any τ ∈ TRHS\V>1, one has I+

i (τ ) = 0. We do
not adopt the same convention for I−

i (τ ).
For convenience we will treat the symbols I−

i (Xi ) and I+
i (Xi ) as the same and

also adopt the convention that I−
i (1) = 0. We also extend our notion of order to

T −
LHS by setting, for τ ∈ TRHS, |I−

i (τ )| = |τ | + 1.
We extend any local product X to the new trees we have added in T −

LHS by
setting, for 1 � i � d,

XzI−
i (τ ) =

{
∂i (L−1

X•τ)(z) if τ ∈ TRHS,
1 if τ = Xi .

(8.1)

8.2. Operations on I−
i trees

Given a local product X, we extend the corresponding path to I−
i trees by

setting, for any τ ∈ TRHS and 1 � i � d,

Xz,wI−
i (τ ) = (Xz ⊗ X

cen
w

)
�I−

i (τ ). (8.2)

where we extend the formulae of (4.5) by setting, for 1 � i � d,

�I−
i (τ ) = (I−

i ⊗ Id)�τ + I+
i (Xi ) ⊗ I+

i (τ ), τ ∈ TRHS.

Remark 8.1. We remark that our convention that I−
i (Xi ) = I+

i (Xi ) also seems
natural since this guarantees (4.8) holds for σ of the formI−

i (τ ), but this observation
will not play any role in our argument.

We then have the following easy lemma.

Lemma 8.2. Let X be a local product, then for any 1 � i � d and τ ∈ W � V ,
one has

∂iXz,wI(τ ) = Xz,wI−
i (τ ) for any τ ∈ W ∪ V, (8.3)

where the derivative ∂i above acts in the variable z. In particular, one has

Xz,zI−
i (τ ) = 0 if |I−

i (τ )| > 0. (8.4)

Moreover, if � : V → C∞ has the property that, for some 1 < γ < 2, we have
[U 1]γ < ∞ (where U 1

γ−2 is defined as in (6.5)) then we have that

∂i�z(1) =
∑

τ∈V
|τ |�−1

�z(τ )Xz,zI−
i (τ ). (8.5)

Proof. The first statement (8.3) is a straightforward computation using (8.3) and
(8.1) and (8.2). The second statement (8.4) then follows from the first one and the
order bound [X : I(τ )] for such τ .

Finally, the third statement (8.5) follows immediately from combining (8.3)
and Lemma 6.3. ��
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8.3. A recipe for local products

With this notation in hand, our recipe for building a local product X will be to
first specify the smooth function Xz� and then inductively define, for τ ∈ Q (recall
that Q was defined in Definition 3.7),

Xzτ = Xz Rτ (8.6)

where R : Q → Alg(T −
LHS), and on the right hand side, we apply Xz multiplica-

tively over the planted trees appearing in the forests of Alg(T −
LHS) and use the

cnventions of Sect. 3.3 and (8.2) to reduce the right-hand side to evaluating Xz on
V ∪ W . For this to be a well-defined way to construct local products the map R
must satisfy the following two criteria.

• For the induction (8.6) to be closed, it is natural to enforce that R should have
a triangular structure in that, for any τ ∈ Q, any planted tree appearing in a
forest appearing in Rτ should be of the form I(τ̃ ) or I−

i (τ̃ ) with τ̃ strictly
fewer edges than τ .

• In order for Xz to be invariant under permutations of non-commutative tree
products it also natural to enforce that R behaves well with respect to reordering,
namely that τ ∼ τ ′, where ∼ is the equivalence relation defined in Sect. 3.2,
then Rτ ∼ Rτ ′ (where we extend ∼ to linear combinations of trees in the
natural way).

If we have a map R as above and use it to build a local product X using (8.6) then
we say X is built from R.

For what follows it is useful to define the map qF which takes tree products
to forest products, namely qF maps Vprod ∪ Wprod � I(τ1)I(τ2)I(τ3) �→ I(τ1) ·
I(τ2) · I(τ3) ∈ Alg(TLHS).
Remark 8.3. One possible choice for a renormalisation operator Rmult is setting,
for each τ ∈ Q, Rmultτ = qFτ . If one uses Rmult to build a local product X then it
follows that X is a multiplicative local product.

However, in order to allow more flexibility than a multiplicative local product but
still make it easy to show that that the product φ◦X3 in (7.5) admits a nice formula,
we impose a structural assumption on the operator R.

This assumption can be expressed in terms of a slightly modified version of our
earlier defined coproduct.

8.4. A modified coproduct and local renormalisation operators

The modified coproduct is defined with a map C−, modification of C+. C− :
(τ̄ , τ ) ∈ (TRHS ∪ TLHS)2 → F is given by the table below.

The difference between C+ and C− is the removal of the projection on positive
planted trees. Similarly, we never assume that I−

i (τ ) = 0 if τ �∈ Ṽ .C− also satisfies
Lemma 4.11, with the first implication in (4.9) being an equivalence in this case.

The next lemma, which follows in an immediate way from the definition of our
sets of trees V and W , will be useful when we try to drive an explicit formula for
φ◦X3.
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Table 2. This table gives a recursive definition of C−(τ̄ , τ ). Possible values of τ are dis-
played in the first column, while possible values of τ̄ are shown in the first row

τ \ τ̄ 1 Xi � I(τ̄1)I(τ̄2)I(τ̄3)

1 I(1) 0 0 0
X j I(X j ) I−

i (X j ) 0 0
� I(�) I−

i (�) 1 0
I(τ1)I(τ2)I(τ3) I(τ ) I−

i (τ ) 0 C−(τ̄1, τ1)C−(τ̄2, τ2)C−(τ̄3, τ3)

The corresponding values of C−(τ̄ , τ ) are shown in the remaining fields

Lemma 8.4. For any fixed τ̄ ∈ Vprod ∪ Wprod,

p�0

∑

τ∈Vprod∪Wprod

C−(τ̄ , τ )

=

⎧
⎪⎪⎨

⎪⎪⎩

(∑
τ∈W I(τ ) + I(1)

)
if m1(τ̄ ) = 1 ,

(∑
τ∈W I(τ ) + I(1)

) · (∑τ∈W I(τ ) + I(1)
)

if m1(τ̄ ) = 2 ,
∑

τ∈V∪W
|τ |�−1

I−
i (τ ) if mxi (τ̄ ) = 1 .

Above, p� : Alg(T −
LHS) → Alg(T −

LHS) is the projection that annihilates any forest
of planted trees that contains a planted tree of strictly positive degree.

Definition 8.5. Given a map r : Q → R such that r is invariant under permutations
we define a corresponding map R : Q → Alg(T −

LHS) by defining

R(τ ) = qFτ +
∑

τ ′∈ Q
r(τ ′)C−(τ ′, τ ) . (8.7)

Note that counterterm maps r and local renormalisation operators R determine
each other uniquely.

We then immediately have

Lemma 8.6. Let R be a local renormalisation operator..
Given a local product X built from R, the formula (8.6) defining X for τ ∈ Q

actually also holds as an identity for τ ∈ Vprod\Q where R is itself is extended to
Vprod ∪ Wprod by applying the formula (8.7).

Suppose we are given a X built from R. Then the formula (8.6) allows us to compute
the action of X• on any element τ ∈ V ∪W in terms of its actions on simpler trees.
However, the starting formula for φ◦X3 involves the action of the corresponding
path Xz,z . Therefore in order to work out an explicit formula for φ◦X3 it would
be good to have an analog of (8.6) for paths X•,• instead of just the underlying
local product X•. Heuristically the idea for getting such a formula is showing that
the action of a local renormalisation operator will “commute” with our centering
operations. To this end we have the following lemma.
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Lemma 8.7. Let R be a local renormalisation operator. Then one has, for any
τ ∈ Vprod ∪ Wprod, the identity

�Rτ = (R ⊗ Id)�τ . (8.8)

Proof.

�R(τ ) = �qFτ +
∑

¯̄τ∈TRHS∪TLHS
r( ¯̄τ)�C−( ¯̄τ, τ ).

We split the sum above depending on m1( ¯̄τ) and mx( ¯̄τ), for ¯̄τ � τ . If m1( ¯̄τ) =
mx( ¯̄τ) = 0, then C−( ¯̄τ, τ ) = δ{τ=¯̄τ }.

If m1( ¯̄τ) = 1, then we have C−( ¯̄τ, τ ) = I(σ ) where σ ⊂ τ and

�I(σ ) =
∑

τ̃∈Vprod∪W
I(τ̃ ) ⊗ C+(τ̃ , σ̃ ).

For each element τ̃ in this sum, we define a corresponding τ̄ by replacing the
occurrence of σ in τ identified above by τ̃ . We have ¯̄τ � τ̄ � τ and by the
inductive formulas,

I(τ̃ ) = C−( ¯̄τ, τ̄ )

and

C+(τ̃ , σ̃ ) = C+(τ̄ , τ ).

The following picture is a representation of τ and the relation between its different
subtrees, for one choice of τ̃ , to give an intuition of the proof in blue is C+(τ̃ , σ̃ ) =
C+(τ̄ , τ ), which in this example is a product of two planted trees:

¯̄τ

τ̃

τ̄

σ

If mx( ¯̄τ) = 1, the same holds by replacing I by I−
i in the argument.

If m1( ¯̄τ) = 2, then we write C−( ¯̄τ, τ ) = I(σ1) · I(σ2) where σi ⊂ τ and for
i = 1, 2,

�I(σi ) =
∑

τ̃i∈Vprod∪W
I(τ̃i ) ⊗ C+(τ̃i , σ̃i ).

For each element τ̃1 and τ̃2, we define τ̄ by replacing σi by τ̃i in τ . We have
¯̄τ � τ̄ � τ and by the inductive formulas,

I(τ̃1) · I(τ̃2) = C−( ¯̄τ, τ̄ )
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and

C+(τ̃1, σ̃1) · C+(τ̃2, σ̃2) = C+(τ̄ , τ ).

In all the cases discussed, we can index the sum induced by the coproduct in terms
of τ̄ instead of τ̃ or τ̃1, τ̃2. Permutation of that sum with the sum over ¯̄τ then gives

�R(τ ) = �qFτ +
∑

τ̄∈Vprod∪W
(

∑

¯̄τ∈TRHS∪TLHS
r( ¯̄τ)C−( ¯̄τ, τ̄ )) ⊗ C+(τ̄ , τ )

=
∑

τ̄∈Vprod∪Wprod

(qF τ̄ +
∑

¯̄τ∈TRHS∪TLHS
r( ¯̄τ)C−( ¯̄τ, τ̄ )) ⊗ C+(τ̄ , τ )

=
∑

τ̄∈Vprod∪Wprod

R(τ̄ ) ⊗ C+(τ̄ , τ )

= (R ⊗ Id)�τ ,

where above we adopt the convention that r(τ ′) = 0 if τ ′ �∈ Q. ��
With this identity we can now give an analog of (8.6) for our paths.

Lemma 8.8. Suppose that the local product X was built from an local renormal-
isation map R. Then, for any x, y ∈ R

d , and tree τ ∈ Vprod ∪ Wprod one has

Xx,yτ = Xx,y Rτ, (8.9)

where on the right hand side we extend Xx,y to forests of planted trees multiplica-
tively.

Proof. Our proof is by induction in the size of τ . The bases cases where mτ = 3
are straightforward to check by hand. For the inductive step, we note that one has

Xx,yτ = (Xx ⊗ X
cen
y )�τ = (Xx R ⊗ X

cen
y )�τ

= (Xx ⊗ X
cen
y )�Rτ = Xx,y Rτ,

where in the second equality we used Lemma 8.6 and in the third equality we used
Lemma 8.7. ��
Remark 8.9. We describe how the renormalisation of �4

3 (which in our setting
corresponds to fixing δ = 1/2− with Gaussian noise) used in previous works such
as [33] corresponds to a choice of a local renormalisation operator R.

We define Qwick to be the three different elements of Vprod obtained by per-
muting the tree product in I(1)I(�)2, that is,

Qwick = {I(1)I(�)2, I(�)I(1)I(�), I(�)2I(1)},
and we similarly define Qsunset to be the collection of the 9 different elements of
Vprod which are obtained by permutations of the tree product in

I(�)I
(
I(�)I(1)I(�)

)
I(�) =

0

.
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(The word sunset is used to make a connection with the QFT literature for φ4
3 , the

corresponding divergent Feynman graph consists of two vertices of degree three
which can be drawn as a “sunset”.) There are nine elements because there are three
different orders for each of the two tree products appearing in this tree, for instance
one also has

I
(
I(1)I(�)2)I(�)2 ∈ Qsunset.

The corresponding counterterm map r is given by

r(τ ) =

⎧
⎪⎨

⎪⎩

−Cwick if τ ∈ Qwick,

−Csunset if τ ∈ Qsunset,

0 otherwise,

where one has
Cwick = E[(L−1ξ)(0)2].
Csunset = E[θ(0)L−1θ(0)],

where ξ is our (regularised) noise, P is the space–time Green’s function for the
heat kernel and θ is defined by

θ(z) = (L−1ξ)(z)2 − E[(L−1ξ)(0)2] = (L−1ξ)(z)2 − Cwick.

The promised local renormalisation operator is then given by building R from
r as in (8.7).

As an example, we compute

R = − 3Cwick and R

0

=
0

− Cwick

0

− Csunset

0

.

8.5. Formula for the rRenormalised cube

The next proposition gives the explicit formulae for our renormalised product
that promised at the beginning of this section.

Proposition 8.10. Let X be built from a local renormalisation operator R.
Fix smooth functions v1, vX1 , . . . , vXd : R × R

d → R and let

�(z) =
∑

τ∈V∪W
ϒz(τ )I(τ )

where ϒ is defined in terms of the parameters v1 and vX, and

φ(z) = Xz,z�(z) = ϒz(1) +
∑

τ∈W
ϒ(τ)XzI(τ ) .

Moreover, suppose that, for some 1 < γ < 2, if U 1
γ−2 as in (6.5) with �•(·) =

ϒ•(·)|V , we have that [U 1]γ < ∞.
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Then, if we define φ◦X3 as in Definition 7.1 using � as our tree expansion for
φ, we then have

φ◦X3(z) = φ3(z) − r1 − r�φ(z) − r�2φ2(z) −
d∑

i=1

r∂i�∂iφ(z), (8.10)

where

r1 =
∑

τ̄∈Vprod∪Wprod,
m1(τ̄ )+mx(τ̄ )=0

(−1)
m(τ̄ )−1

2 r(τ̄ ), r� =
∑

τ̄∈Vprod
m1(τ̄ )=1

(−1)
m(τ̄ )−1

2 r(τ̄ ),

r�2 =
∑

τ̄∈Vprod
m1(τ̄ )=2

(−1)
m(τ̄ )−1

2 r(τ̄ ), r∂i� =
∑

mxi (τ̄ )=1
τ̄∈Vprod

(−1)
m(τ̄ )−1

2 r(τ̄ ).

(8.11)

Here r : Q → R is the map from which R is built.

Proof. We have

φ◦X3(z) =
∑

τ1,τ2,τ3∈V∪Wprod

ϒz(τ1)ϒz(τ2)ϒz(τ3)Xz,zI(τ1)I(τ2)I(τ3)

=
∑

τ∈Vprod∪Wprod

ϒz(τ )Xz,zτ

=
∑

τ∈Vprod∪Wprod

ϒz(τ )Xz,z Rτ

=
∑

τ∈Vprod∪Wprod

ϒz(τ )(Xz,zqFτ +
∑

τ̄∈TRHS∪TLHS
r(τ̄ )Xz,zC−(τ̄ , τ )) ,

where the first equality follows from the definition of renormalised local products,
the second equality comes from Lemma 6.10, and the third equality comes from
Lemma 8.8.

By appealing to Lemma 6.10 once more, we can rewrite the first term of the
last line above as

−Xz,zqF
∑

τ∈Vprod∪Wprod

ϒz(τ )τ = Xz,zqF

(
∑

τ∈V∪W
ϒz(τ )I(τ )

)3

=
(
∑

τ∈V∪W
ϒz(τ )Xz,zI(τ )

)3

= φ3(z) .

By using Lemma 8.4 (note that Xz,z p�0 = Xz,z on Alg(T −
LHS)) followed by equa-

tion (6.21), and using the fact that Xz,zσ = 0 if |σ | > 0, we have

∑

τ∈Vprod∪Wprod

ϒz(τ )
∑

τ̄∈Vprod∪Wprod

r(τ̄ )Xz,zC−(τ̄ , τ ) (8.12)
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=
∑

τ̄∈Vprod∪Wprod,
m1(τ̄ )+mx(τ̄ )=0

(−1)
m(τ̄ )−1

2 r(τ̄ )1

+
∑

τ̄∈Vprod
m1(τ̄ )=1

(−1)
m(τ̄ )−1

2 r(τ̄ )
∑

τ∈{1}∪W
ϒz(τ )Xz,zI(τ )

+
∑

τ̄∈Vprod
m1(τ̄ )=2

(−1)
m(τ̄ )−1

2 r(τ̄ )
( ∑

τ∈{1}∪W
ϒz(τ )Xz,zI(τ )

)2

+
d∑

i=1

∑

τ̄∈Vprod
mxi (τ̄ )=1

(−1)
m(τ̄ )−1

2 r(τ̄ )
∑

τ∈V∪W
|τ |�−1

ϒz(τ )Xz,zI−
i (τ ).

We then obtain the desired result by observing that, for the second and third terms
on the right hand side above,

∑

τ∈{1}∪W
ϒz(τ )Xz,zI(τ ) = ϒz(1) +

∑

τ∈W
ϒzXzI(τ ) = φ(z)

and, for the third term on the right hand side above, we have, for 1 � i � d,
∑

τ∈V∪W
|τ |�−1

ϒz(τ )Xz,zI−
i (τ ) =

∑

τ∈W
ϒ(τ)XzI−

i (τ ) +
∑

τ∈V
|τ |�−1

ϒz(τ )Xz,zI−
i (τ )

=
∑

τ∈W
ϒz(τ )∂iXzI(τ ) + ∂iϒz(1) = ∂iφ(z) .

For the first equality of the second line above we used Lemma 8.2 - in particular,
(8.5) - with �•(·) = ϒ•(·)|V . ��
Remark 8.11. Under the assumptions of Proposition 8.10 one can also show that
each one of the renormalised products in (7.7) can also be expressed in terms of
local polynomials of v(z), {∂iv(z)}di=1, and {XzI(τ ) : τ ∈ W}.

However, we refrain from doing this because the index sets for the summations
that define the analogs of the constants (8.11) become quite complicated.

Remark 8.12. Returning to the example of �4
3 described in Remark 8.9, one then

sees that r∂i� = r�2 = r1 = 0 for all 1 � i � d and

r� =
∑

τ∈Qwick

(−1)
3−1

2 (−Cwick) +
∑

τ∈Qsunset

(−1)
5−1

2 (−Csunset) = 3Cwick − 9Csunset.

9. Main Result

9.1. Statement of main theorem

We recall the definition of the parabolic cylinders D and DR :

D = (0, 1) × {|x | < 1}, DR = (R2, 1) × {|x | < 1 − R}
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We introduce the parabolic ball of center z = (t, x) and radius R in the metric d
(defined in (1.5)), looking only into the past:

B(z, R) = {z̄ = (t̄, x̄) ∈ R × R
d , d(z, z̄) < R, t̄ < t}. (9.1)

Note that for R′ < R � 1 we have DR′ + B(0, R − R′) ⊂ DR .
We denote by ‖ · ‖ the L∞ norm on the whole space R × R

d and for any open
set ‖ · ‖B is the L∞ norm of the restriction of the function to B.

Theorem 9.1. There exists a constant C such that if v solves the �4 remainder
equation driven by a local product X, in the sense of Definition 7.4, pointwise on
D, then

‖v‖DR � C max
{ 1

R
, [X; τ ] 1

δm�(τ) , τ ∈ T�,m�(τ ) �= 0
}
. (9.2)

Recall that the set of trees T� is defined in (4.2).
This theorem generalises to an arbitrary bounded domain D̃ in the following

way: our construction of local products in (3.6) is adapted to the choice of domain
D through the cut-off function ρ. This should be replaced by a cut-off function that
has value 1 on a 1-enlargement of D̃, and vanishes on a 2 enlargement of the set.
Then for every point in D̃, one can obtain a bound depending only on the path by
applying a translated version of the theorem, for R sufficiently small.

Remark 9.2. One could work harder to prove that the order bounds onVprod∪TRHS
imply the order bounds on all other trees. However this requires global Schauder
estimates and the exact statements we would need are not easy to find in the literature
we instead state an estimate in terms of all order bounds.

The following corollary is a reformulation of this theorem following from Def-
inition 7.3.

Corollary 9.3. There exists a constant C such that if φ is a pointwise solution to
equation (7.5)drivenbya local productX in D, then forv = φ−∑w∈W ϒ(w)XI(w),
the bound (9.2) holds.

The next result is a particular case of the local product introduced in Sect. 8. It
follows from Proposition 8.10.

Corollary 9.4. Let R be a local renormalisation operator, and X be the local prod-
uct built from R. There exists a constant C such that if φ is a pointwise solution to

(∂t − �)φ = −φ3(z) + r1 + r�φ(z) + r�2φ2(z) +
d∑

i=1

r∂i�∂iφ(z) + ξ, (9.3)

in D, where the coefficients r1, r�, r�2 and r∂i are given by (8.11), then for
v = φ −∑w∈W ϒ(w)XI(w), the bound (9.2) holds.
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The typical application of these results concerns paths X, which are constructed
from a Gaussian noise ξ . One can, for example, take a spacetime white noise ξ̄ over
R × R

4 and set

ξ := (1 − �)−
δ̄
2 ξ̄ (9.4)

for δ̄ > δ. In this case, for any given tree τ the quantity [X; τ ] is in the (inhomo-
geneous) Wiener chaos of order m�(τ ). In particular, one gets for some λ > 0,

E[exp(λ[X; τ ] 2
m�(τ) )] < ∞. (9.5)

The methodology developed in [12] (essentially - see Remark 9.8) establishes (9.5)
for (9.4). We then have the following corollary:

Corollary 9.5. Let X satisfy the bound (9.5). If v is a pointwise solution to the
remainder equation driven by a local product X on D, according to Definition 7.4
then there exists a constant λ̄ > 0 such that

E[exp(λ̄‖v‖2δ
D 1

2

)] < ∞.

Remark 9.6. The results presented here also imply a bound for the corresponding
elliptic equation in dimension 6−, that is

�φ = φ3 − ξ x ∈ R
6,

where ξ is a 6-dimensional white noise which is slightly regularized (for example by

applying (1−�)− δ̄
2 for an arbitrary δ̄ > 0). The four and five dimensional versions

of this equation where recently studied in [1,18]. Our Corollaries 9.4 and 9.5 can
be applied directly, if φ is viewed as a stationary solution of the parabolic equation
(that is with ∂tφ = 0).

Remark 9.7. One of the main motivations to study the stochastic quantisation equa-
tion in d = 1, 2, 3 is as a tool to access the invariant measure with formal density

μ(dφ) ∝ exp
(

− 2
∫

Rd
|∇φ|2 + 1

4
φ4 − · · · dx

)
(9.6)

where as above the . . . represents infinite counter-terms that need to be removed.
While our equation (1.1) is the natural extension to fractional dimension from the
PDE point of view, it is less natural in this context.

If ξ is chosen as in (9.4), then, since the noise is white in time, at least formally
(1.1) defines a strong Feller process and our estimates can be used to prove the ex-
istence of an invariant measure. However, this measure does not have an expression
akin to (9.6) and it is also not expected to be reflection positive.

In the literature a different way to emulate the �4 measures close to criticality
has been proposed: In [9] the random fields over R

3 with formal density

μ(dφ) ∝ exp
(

− 2
∫

R3
(|∇| 3

4 +δφ)2 + 1

4
φ4dx − · · ·

)
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are studied and shown to have interesting infrared behaviour. The natural stochastic
quantisation equation for this model is

(∂t + (−�)
3
4 +2δ)φ = −φ3 + · · · + ξ, (9.7)

where ξ is now a space–time white noise over R × R
3. Just as (1.1), this equation

approaches the threshold of criticality as δ ↓ 0. It would be interesting to investigate
if our methods can be adapted to deal with (9.7). While we expect that the local
theory developed in Sects. 3–8 should still apply, our large scale theory does depend
on the specific form of the heat operator. The main challenges would be to find
appropriate replacement for the localised Schauder estimate, Lemma A.2, and in
particular for our version of the maximum principle, Lemma 9.9 (see [29, Lemma 5]
for a Schauder estimate for a non-local operator using the same strategy of proof
as we use).

Remark 9.8. We take a moment to give more detail about comparing the results of
[8,12] within regularity structures and the setting of the present article.

The first point is that, at an algebraic level, the space of models obtained by
deforming the canonical model using the reduced renormalisation group of [8] is
certainly compatible with Definition 8.5 - in order to go from a renormalised model
to the corresponding local product one just chooses the counterterm map r in (8.7)
to be the same as the corresponding renormalisation character in [8].

Regarding the stochastic estimates, we would need estimates on the “BPHZ
local product” on our trees τ ∈ Wprod � Vprod. One immediate difference in our
setting is that in [12] the “integration” that defines planted trees given by a convo-
lution with a translation invariant kernel. In our setting the integration procedure
corresponds to solving a heat equation, possibly with space–time boundary con-
ditions, so that our local products are not space–time stationary. One approach to
controlling trees with boundary conditions in terms of the stationary trees of [12]
could be extending some of the methods of [27].

Putting this difference aside (that is putting ourselves in the stationary setting),
if we took ξ as in (9.4) then the desired estimates would follow from checking the
three “power-counting”’ conditions of [12, Thm 2.15] for every tree.

The first of the three power counting conditions is an integrability condition
for when τ “contracts” with other noises (different from the noises that sit on τ ’s
leaves). The integrability condition is that, given any collection of noises A such
that the sum of the number of noises in τ and in A is even, one should have

|τ | + (total degree of the noises in A) + (d + 2)× (number of noises in A) > 0.

The second of these power counting conditions imposes that removing a noise
from any tree τ (in our language, replacing an instance of I(�) in τ with I(1))
should always result in a tree of positive degree.

The third of these power counting conditions imposes that we must have deg(τ ) >

−(d + 2)/2, this guarantees that the stochastic object associated to τ has a finite
variance (diverging variances cannot be renormalized with the additive renormal-
izations one usually performs in path-wise approaches to singular SPDE).
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For our present situation in which we only have one type of noise, the second
condition is a consequence of subcriticality (if it failed for some τ , then one would
have deg(τ ) < deg(�).

We now turn to the third condition, for which the worst tree is τ = I(�)3. The
fact that this is the worst tree can be argued by sub-criticality since any larger tree is
obtained by replacing instances of � in τ with other trees, which can only increase
the degree.

The third condition requires us to also fix the dimension of space. Note that one
cannot apply [12, Thm 2.15] for arbitrarily small δ > 0 and d � 3, this is because
one could then arrange for |I(�)3| < −(d + 2)/2.

Therefore, in order to take δ > 0 arbitrarily small one would need to take d � 4,
but in this case we can prove even stronger versions of the first and third conditions:
for every τ ∈ TRHS ∪ TLHS, one has |τ | + |�| > −d − 2 and |τ | > −(d + 2)/2.

9.2. Proof of Theorem 9.1

We start the proof by specifying further the norms that we are using. We often
work with norms which only depend on the behaviour of functions / distributions on
a fixed subset of time–space: if B ⊂ R×R

d is a bounded set, then the addition of a
subscript B such as [U τ ]α,B means that the corresponding supremum is restricted to
variables in B. The use of a third index r as in [U τ ]α,B,r indicates that the supremum
is restricted to z and z̄ at distance at most r from each other. Similarly for a function
of two variable, ‖ · ‖B,r is the norm restricted to z, z̄ ∈ B with d(z, z̄) � r .

We remind the reader that the letter τ always refers to an unplanted tree. In
particular, sums indexed by |τ | ∈ J for an interval J only refer to unplanted trees
of that order. Planted trees will be explicitly denoted by I(τ ).

We recall the remainder equation

(∂t − �)v = −v3 − 3
∑

w∈W
ϒ(w)v ◦X v ◦X X•I(w)

− 3
∑

w1,w2∈W
ϒ(w1)ϒ(w2)v ◦X X•I(w1) ◦X X•I(w2)

+
∑

τ∈∂W
ϒ(τ)X•τ.

Here we have introduced ∂W = {τ ∈ V, τ = I(w1)I(w2)I(w3), wi ∈ W}. Note
that the product v3 does not need to be expressed using the renormalised product
◦X since v is of positive regularity. All the factors ϒ are just combinatorial factors
±1 which is why we omitted the subscript variable y. Also recall that the path X is
built to respect the equivalence relation ∼ given in Sect. 3.2 which is why we can
combine terms giving the two factors of 3 above.

The first thing we do is to convolve this equation with the kernel �L introduced
in Sect. 1.1 (see also Appendix A), and we obtain

(∂t − �)vL = −v3
L + (v3

L − (v3)L) − 3
∑

w∈W
ϒ(w)(v ◦X v ◦X X•I(w))L (9.8)
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− 3
∑

w1,w2∈W
ϒ(w1)ϒ(w2)(v ◦X X•I(w1) ◦X X•I(w2))L (9.9)

−
∑

τ∈∂W
ϒ(τ)(X•τ)L .

We are going to use the following version of the maximum principle for this
equation:

Lemma 9.9. For some R ∈ [0, 1), let u be continuous on DR and C2 in DR and
satisfy point-wise in DR:

(∂t − �)u = −u3 + g (9.10)

there g is a bounded function. We have, the following point-wise bound on u, for
all (t, x) ∈ DR:

|u(x, t)| (9.11)

� C max
{ 1

min{√t − R, ((1 − R) − xi ), ((1 − R) + xi ), i = 1, 2, 3} , ‖g‖
1
3

}

for some constant C = C(d) > 0,

The statement for R = 0 is taken directly from [30, Lemma 2.7], and the proof can
be found there. The adaptation to R > 0 is immediate.

To apply this lemma, we need bounds on the commutator,

|(v3)L − (vL)3| � ‖v‖2[v]αLα,

as well as quantities of the type

(X•τ)L(x) where τ ∈ ∂W,

which are bounded by [τ ]|τ |L |τ | � [τ ]|τ |L−3+δm�(τ), in view of (3.1). The follow-
ing two products will require more work:

(v ◦X v ◦X X•I(w))L with w ∈ W (9.12)

and
(v ◦X X•I(w1) ◦X X•I(w2))L with w1, w2 ∈ W. (9.13)

The proof of Theorem 9.1 proceeds recursively by deriving bounds on ‖v‖DRn

for suitable Rn . Throughout the recursion it is convenient to remove the dependence
on the various norms [X; τ ] by working under the following domain-dependent
assumption:

Assumption 9.10. Let D′ be a domain and let c > 0. We assume that, for all τ ∈ T�

with m� �= 0,
[X; τ ] � c‖v‖δm�(τ)

D′ . (9.14)

With this set-up, we proceed to prove the next lemmas to control the two prod-
ucts (9.12) and (9.13). We extend the notation m� to sums of trees linearly. The
functions m1,mx and m will also be extended similarly.
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Lemma 9.11. Assume that Assumption 9.10 holds for some domain D′ and that
x ∈ R × R

d and 0 < L � 1 are such that B(x, L) ⊆ D′. Then, for w1, w2 ∈ W ,
there exists an ε > 0 such that, for J = [−2,−6 − |w1| − |w2| + ε),
∣
∣
∣
∣
∣
∣
(v ◦X X•I(w1) ◦X X•I(w2))L(x) −

∑

|τ |∈J

(
ϒx (τ )X•,x (I(τ )I(w1)I(w2))

)
L (x)

∣
∣
∣
∣
∣
∣

� c
∑

|τ |∈J

‖v‖δm�(τ+w1+w2)

D′ [U τ ]−6−|w1|−|w2|−|τ |+ε,B(x,L)L
ε. (9.15)

We also have, for |τ | ∈ J ,
∣
∣ϒx (τ )

(
X•,x (I(τ )I(w1)I(w2))

)
L (x)

∣
∣ (9.16)

� c‖v‖m1(τ )+δm�(τ+w1+w2)

D′ |vX(x)|mx(τ )L6+|τ |+|w1|+|w2|.

Lemma 9.12. Assume that Assumption 9.10 holds for some domain D′ and that
x ∈ R × R

d and 0 < L � 1 are such that, B(x, L) ⊆ D′. Then for w ∈ W , there
exists ε > 0 such that for J̃ = {(a, b) ∈ [−2,−1]2, a + b < −6 − |w| + ε},
∣
∣
∣(v ◦X v ◦X X•I(w))L(x)

−
∑

(|τ1|,|τ2|)∈ J̃

ϒx (τ1)ϒx (τ2)
(
X•,x (I(τ1)I(τ2)I(w))

)

L
(x)
∣
∣
∣ (9.17)

� c
∑

(|τ1|,|τ2|)∈ J̃

‖v‖δm�(τ1+τ2+w)

D′ [UI(τ1)I(τ2)I(�)]−6−|w|−|τ1|−|τ2|+ε,B(x,L)L
ε.

We also have, for (|τ1|, |τ2|) ∈ J̃ ,
∣
∣
∣ϒx (τ1)ϒx (τ2)

(
X•,x (I(τ1)I(τ2)I(w))

)

L
(x)
∣
∣
∣ (9.18)

� c‖v‖m1(τ1+τ2)+δm�(τ1+τ2+w)

D′ L6+|τ1|+|τ2|+|w|.

In both of these lemmas, the existence of the ε follows from the following remark:

Remark 9.13. Our choice of δ is such that I(1)I(1)I(1) is the only tree of order
0. Therefore for any non-trivial product, the sum can be indexed over trees τ of
order |τ | < ε, for some ε > 0. The renormalised product is therefore described up
to positive order ε.

Remark 9.14. (On the exponents of ‖v‖) The interval J in Lemma 9.11 (resp.
the set J̃ in Lemma 9.12) are chosen precisely in a way to guarantee that all trees
I(τ )I(w1)I(w2) on the right hand sides of (9.15) and (9.16) (resp.I(τ1)I(τ2)I(w)

in (9.17) and (9.18)) have negative order. Recalling the relation (3.1), that connects
|τ | with m�(τ ), m1(τ ), mx(τ ), this results in the restriction

m�(τ + w1 + w2)δ + m1(τ ) + 2mx(τ ) < 3, (9.19)

(resp. δm�(τ1 + τ2 + w) +m1(τ1 + τ2) < 3) limiting the exponents of ‖v‖D′ that
can appear on the right hand sides of (9.15) and (9.16) (resp. (9.17) and (9.18)).
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This restriction of exponents is crucial for our argument, because powers < 3 of
‖v‖ can be reabsorbed during the arguments using the exponent 1

3 on the right hand
side of (9.11).

Applying the Schauder Lemma A.1 yields the following estimates:

Lemma 9.15. Let D′ = DR for some R > 0. Let Assumption 9.10 hold for some
c > 0 small enough (chosen in (10.14) and (10.16)), then for d0 = ‖v‖−1

D′ we have

sup
d�d0

dγ [V ]γ,D′
d ,d � ‖v‖D′ + c sup

d�d0

d‖vX‖D′
d
. (9.20)

In particular, for R ∈ (0, 1
2 ), we also have

sup
d�d0

d‖vX‖D′
d

� ‖v‖D′ , (9.21)

and (9.20) becomes

sup
d�d0

dγ−β−|τ |+mx(τ )[U τ ]γ−β−|τ |,D′
d ,d � ‖v‖m1(τ )+mx(τ )

D′ . (9.22)

Here D′
d = {x : B(x, d) ⊆ D′} denotes the set of interior points of D′ with distance

� d from the boundary.

A few more computations allow for the closing of this argument.

Lemma 9.16. Let D′ = DR for some R ∈ (0, 1
2 ). There exists a λ > 0 such that if

Assumption 9.10 holds for some c > 0 small enough (determined by the previous
Lemma 9.15 and by (10.22)) we have

‖v‖D′
λ‖v‖−1

D′
� ‖v‖D′

2
. (9.23)

Here, as before D′
λ‖v‖−1

D′
denotes the set of interior points of D′ with distance

� λ‖v‖−1
D′ from the boundary, that is DR+λ‖v‖−1

D′ .

The final proof of the main theorem relies on an iteration of this result. We define
a finite sequence 0 = R0 < · · · < RN = 1

2 by setting

Rn+1 − Rn = λ‖v‖−1
DRn

,

as long as the Rn+1 defined that way stay less than 1
2 . We terminate this algorithm

once it would produce Rn+1 � 1
2 in which case we set RN = Rn+1 = 1

2 . Note
that ‖v‖−1

DRn
is increasing so the sequence necessarily terminates after finitely many

steps.
We now prove that Theorem 9.1 holds for all d = Rn, n = 0, . . . , N . First, if

Assumption 9.10 fails for a k = 0, 1, 2, . . . , n, there exists a τ ∈ TRHS such that

‖v‖DRn
� ‖v‖DRk

�
( [X; τ ]

c

) 1
δm�(τ)

.
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Otherwise, applying Lemma 9.16 for D′ = DRk gives the bounds for smaller and
smaller boxes yields

‖v‖DRk+1
�

‖v‖DRk

2
,

and hence, for k < n, ‖v‖DRn
� ‖v‖DRk

2k−n , which implies that

Rn =
n−1∑

k=0

Rk+1 − Rk =
n−1∑

k=0

λ‖v‖−1
DRk

� λ‖v‖−1
DRn−1

n−1∑

k=0

2k−n+1 � ‖v‖−1
DRn−1

,

This implies that for any R ∈ (Rn−1, Rn), ‖v‖DR � ‖v‖DRn−1
� R−1

n � R−1,
which proves the theorem in that case.

If the end-point is RN = 1
2 , we either have RN−1 > 1

4 or RN − RN−1 > 1
4 . In

both cases ‖v‖DRN−1
� R−1

N−1 � 1.

10. Proof of the Intermediate Results

10.1. A technical lemma

We first quantify the expansions given in equations (6.8), (6.9) and (6.10), used
now with � = ϒ .

[V ]α = sup
x,y

|v1(x) − Vα(y, x)|
d(x, y)α

,

[V 2]α = sup
x,y

|v1(x)2 − V 2
α (y, x)|

d(x, y)α
, (10.1)

[V ∂,i ]α = sup
x,y

|vXi (x) − V ∂,i
α (y, x)|

d(x, y)α
.

For any domain D, we denote the restriction of this norm to x, y ∈ D by adding the
subscript D. A second subscript d may be added when we restrict to x, y satisfying
d(x, y) < d.

Using Theorem 6.12 we have the identities

[U τ ]γ−|τ | =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[V ]γ−|τ | if m1(τ ) = 1,

[V 2]γ−|τ | if m1(τ ) = 2,

[V ∂,i ]γ−|τ | if mxi (τ ) = 1,

0 if m1(τ ),mx(τ ) = 0 .

(10.2)

Using Lemma 6.6 and the Assumption 9.10 to replace all order bounds on trees
in this lemma by powers of ‖v‖D′ , we get the following general bound for the
norm of U . The bound in the case of mx(τ ) = 1 is a straightforward application of
Lemma A.3.
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Lemma 10.1. Under the Assumption 9.10, for any τ ∈ V , and 0 < β < γ < 2,

sup
d�d0

dγ−β+2−δm�(τ)[U τ ]γ−β−|τ |,D′
d ,d (10.3)

� sup
d�d0

(
dγ [V ]γ,D′

d ,d + 1{γ−β+2−δm�(τ)<1}d‖vX‖D′
d

+ c
∑

γ−β−δm�(τ)�|τ̄ |<γ−2

d |τ̄ |+2‖v‖m1(τ̄ )+m�(τ̄ )δ

D′ ‖vX‖mx(τ̄ )

D′
d

)
.

10.2. Proof of Lemma 9.11

Take w1, w2 ∈ W . From Definition 7.1, there exists ε > 0 such that, for
J = [−2,−6 − |w1| − |w2| + ε),

(v ◦X X•I(w1) ◦X X•I(w2))L(x) (10.4)

=
∑

|τ |∈J

(
ϒ•(τ )X•,•(I(τ )I(w1)I(w2))

)

L
(x).

We know J is the right interval even though we have a longer expansion of v

because the unplanted trees of positive homogeneity vanish in our formalism. This
corresponds to |τ | + |w1| + |w2| + 6 < 0, and Remark 9.13 tells us that this
expansion is the same to positive level ε, for ε > 0 small enough.

We prove estimate (9.15) by using the reconstruction Lemma A.1. Define
F(y, x) = ∑|τ |∈J ϒx (τ )Xy,x (I(τ )I(w1)I(w2)), and we aim to bound a suitable
regularisation of F(y, x) − F(x, x). Lemma A.1 and Assumption 9.10 imply the
desired estimate (9.15) as soon as the following identity is established:

∣
∣
∣

∫

�l(x2 − y)(F(y, x1) − F(y, x2))dy
∣
∣
∣ (10.5)

�
∑

|τ |∈J

[X; I(τ )I(w1)I(w2)][U τ ]−6−|w1|−|w2|−|τ |+ε,B(x,L)

× l6+|w1|+|w2|+|τ |d(x1, x2)
−6−|w1|−|w2|−|τ |+ε .

By multiplicativity of the coproduct, and since w1, w2 ∈ W , we first note that for
τ̄ ∈ V

�(I(τ̄ )I(w1)I(w2)) = �I(τ̄ )�I(w1)�I(w2)

=
∑

−2�|τ |�|τ̄ |
I(τ )I(w1)I(w2) ⊗ C+(τ, τ̄ ).

Using Chen’s relation, we have

F(y, x1) =
∑

|τ̄ |∈J

ϒx1(τ̄ )Xy,x1(I(τ̄ )I(w1)I(w2))

=
∑

|τ̄ |∈J

ϒx1(τ̄ )
∑

|τ |∈J

Xy,x2(I(τ )I(w1)I(w2))Xx2,x1C+(τ, τ̄ )
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=
∑

|τ |∈J

Xy,x2(I(τ )I(w1)I(w2))
∑

|τ̄ |∈J

ϒx1(τ̄ )Xx2,x1C+(τ, τ̄ ).

Therefore,

F(y, x1) − F(y, x2)

=
∑

|τ |∈J

Xy,x2(I(τ )I(w1)I(w2))
( ∑

|τ̄ |∈J

ϒx1(τ̄ )Xx2,x1C+(τ, τ̄ ) − ϒx2(τ )
)

= −
∑

|τ |∈J

Xy,x2(I(τ )I(w1)I(w2))U
τ−6−|w1|−|w2|−|τ |+ε(x2, x1)

which proves (10.5) and thus (9.15).
The bound (9.16) is simply the order bound on the trees, which can be expressed

as:

|ϒx (τ )
(
X•,x (I(τ )I(w1)I(w2))

)

L
(x)| (10.6)

� |v(x)|m1(τ )|vX(x)|mx(τ )[X; I(τ )I(w1)I(w2)]L6+|τ |+|w1|+|w2|

Ass. 9.10
� c‖v‖m1(τ )+δm�(τ+w1+w2)

D′ |vX(x)|mx(τ )L6+|τ |+|w1|+|w2|.

10.3. Proof of Lemma 9.12

Take w ∈ W . From Definition 7.1 and Remark 9.13, there exists ε > 0 such
that for J̃ = {(a, b) ∈ [−2,−1]2, a + b < −6 − |w| + ε},

(v ◦X v ◦X X•I(w))L(x)

=
∑

(|τ1|,|τ2|)∈ J̃

(
ϒ(τ1)ϒ(τ2)X•,•(I(τ1)I(τ2)I(w))

)

L
(x). (10.7)

We know J is the right domain even though we have a longer expansion for v

because unplanted trees of positive order vanish in our setting.
We prove the bound (9.17). Define

F(y, x) =
∑

(|τ1|,|τ2|)∈ J̃

ϒx (τ1)ϒx (τ2)Xy,x (I(τ1)I(τ2)I(w)),

and we aim to bound a suitable regularisation of F(y, x) − F(x, x). Lemma A.1
and Assumption 9.10 implies the desired bound as soon as the following bound is
established:
∣
∣
∣

∫

�l(x2 − y)(F(y, x1) − F(y, x2))dy
∣
∣
∣

�
∑

(|τ1|,|τ2|)∈ J̃

[X; I(τ1)I(τ2)I(w)][UI(τ1)I(τ2)I(�)]−6−|w|−|τ1|−|τ2|+ε,B(x,L)
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l6+|τ1|+|τ2|+|w|d(x1, x2)
−6−|w|−|τ1|−|τ2|+ε (10.8)

By multiplicativity of the coproduct, and since w ∈ W , we first note that for
(|τ̄1|, |τ̄2|) ∈ J̃ ,

�(I(τ̄1)I(τ̄2)I(w)) = �I(τ̄1)�I(τ̄2)�I(w)

=
∑

−2�|τ2|�|τ̄2|
−2�|τ1|�|τ̄1|

I(τ1)I(τ2)I(w) ⊗ C+(τ1, τ̄1)C+(τ2, τ̄2).

Using Chen’s relation, we have

F(y, x1) =
∑

(|τ̄1|,|τ̄2|)∈ J̃

ϒx1(τ̄1)ϒx1(τ̄2)Xy,x1(I(τ̄1)I(τ̄2)I(w))

=
∑

(|τ̄1|,|τ̄2|)∈ J̃

ϒx1(τ̄1)ϒx1(τ̄2)

×
∑

−2�|τ2|�|τ̄2|
−2�|τ1|�|τ̄1|

Xy,x2(I(τ1)I(τ2)I(w))Xx2,x1(C+(τ1, τ̄1)C+(τ2, τ̄2))

=
∑

(|τ1|,|τ2|)∈ J̃

Xy,x2(I(τ1)I(τ2)I(w))

×
∑

(|τ̄1|,|τ̄2|)∈ J̃

ϒx1(τ̄1)ϒx1(τ̄2)Xx2,x1(C+(τ1, τ̄1)C+(τ2, τ̄2)).

In the following computation, we introduce a mock ϒ(�), which is just a factor
−1, and C+(�,�) = 1 to make explicit that the structure of the terms appearing
here is that of U τ̃

β for some τ̃ and β.

F(y, x1) − F(y, x2) =
∑

(|τ1|,|τ2|)∈ J̃

Xy,x2 (I(τ1)I(τ2)I(w))

×
( ∑

(|τ̄1|,|τ̄2|)∈ J̃

ϒx1 (τ̄1)ϒx1 (τ̄2)Xx2,x1 (C+(τ1, τ̄1)C+(τ2, τ̄2)) − ϒx2 (τ1)ϒx2 (τ2)
)

=
∑

(|τ1|,|τ2|)∈ J̃

Xy,x2 (I(τ1)I(τ2)I(w)) ×
(
ϒx2 (τ1)ϒx2 (τ2)ϒx2 (�)

−
∑

(|τ̄1|,|τ̄2|)∈ J̃

ϒx1 (τ̄1)ϒx1 (τ̄2)ϒx1 (�)Xx2,x1 (C+(τ1, τ̄1)C+(τ2, τ̄2)C+(�,�))
)

=
∑

(|τ1|,|τ2|)∈ J̃

Xy,x2 (I(τ1)I(τ2)I(w)) ×
(
ϒx2 (I(τ1)I(τ2)I(�))

−
∑

(|τ̄1|,|τ̄2|)∈ J̃

ϒx1 (I(τ1)I(τ2)I(�))Xx2,x1 (C+(I(τ1)I(τ2)I(�),I(τ̄1)I(τ̄2)I(�))
)

=
∑

(|τ1|,|τ2|)∈ J̃

Xy,x2 (I(τ1)I(τ2)I(w))UI(τ1)I(τ2)I(�)
−3+δ−|w|+ε (x2, x1),

which proves (10.8) and thus (9.17).
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The bound (9.18) is directly the order bound on the trees, which can be expressed
as:

|ϒx (τ1)ϒx (τ2)
(
X•,x (I(τ1)I(τ2)I(w))

)

L
(x)| (10.9)

� |v(x)|m1(τ1+τ2)[X; I(τ1)I(τ2)I(w)]L6+|τ1|+|τ2|+|w|

Ass. 9.10
� c‖v‖m1(τ1+τ2)+δm�(τ1+τ2+w)

D′ L6+|τ1|+|τ2|+|w|.

Note that here the term vX does not appear since J̃ does not contain any homo-
geneities higher than 1.

10.4. Proof of Lemma 9.15

For γ ∈ (2 − 2δ, 2) we have

(∂t − �)yVγ (y, x) =
∑

−2<|τ |<γ−2

ϒx (τ )Xyx (τ ).

We write trees in this sum as τ = I(τ1)I(τ2)I(τ3). The first remark we make is
that if |τi | � −2 for i = 1, 2, 3, then |τ | � 0 > γ − 2. We also remark that for
w ∈ W , ϒx (w) is independent of x and for τ ∈ ∂W , Xyxτ is also independent of
x . Therefore, accounting for symmetries with the factor 3, we get:

(∂t − �)yVγ (y, x)

= −3
∑

w∈W
ϒy(w)

∑

|τ1|+|τ2|<γ−8−|w|
ϒx (τ1)ϒx (τ2)Xy,x (I(τ1)I(τ2)I(w))

− 3
∑

w1,w2∈W
ϒy(w1)ϒy(w2)

∑

|τ |<γ−8−|w1|−|w2|
ϒx (τ )Xy,x (I(τ )I(w1)I(w2))

+
∑

τ∈∂W
ϒy(τ )Xy,yτ.

Using the remainder equation, we have:

(∂t − �)(v − Vγ (·, x))(y) = −v3(y)

− 3
∑

w∈W
ϒy(w)

(
(v ◦X v ◦X XyI(w))(y)

−
∑

|τ1|+|τ2|<γ−8−|w|
ϒx (τ1)ϒx (τ2)Xy,x (I(τ1)I(τ2)I(w))

)

− 3
∑

w1,w2∈W
ϒy(w1)ϒy(w2)

(
(v ◦X XyI(w1) ◦X XyI(w2))(y)

−
∑

|τ |<γ−8−|w1|−|w2|
ϒx (τ )Xy,x (I(τ )I(w1)I(w2))

)
.
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We need to bound this after integration against �L1(z − y)dy for z ∈ B(x, L2),
for x ∈ D′

2d , for L1 < d
2 and L2 < d

4 to apply the Schauder Lemma A.1. We first
have:

|(v3)L1(z)| � ‖v‖3
D′ .

If F(y, x) = ∑
|τ1|+|τ2|<γ−8−|w| ϒx (τ1)ϒx (τ2)Xy,x (I(τ1)I(τ2)I(w)), then the

Lemma 9.12 gives a bound on (v ◦X v ◦X X•I(w) − F(•, z))L1(z), and from
equation (10.8) we have a bound on (F(•, x) − F(•, z))L1(z). Together with As-
sumption 9.10, these give

∣
∣
∣
(
(v ◦X v ◦X X•I(w)) (10.10)

−
∑

|τ1|+|τ2|<γ−8−|w|
ϒx (τ1)ϒx (τ2)X·,x (I(τ1)I(τ2)I(w))

)

L1
(z)
∣
∣
∣

� c
∑

|τ1|+|τ2|<γ−8−|w|
[UI(τ1)I(τ2)I(�)]−6−|w|−|τ1|−|τ2|+ε,D′

d ,d

× ‖v‖δm�(τ1+τ2+w)

D′ (Lε
1 + L6+|τ1|+|τ2|+|w|

1 d(x, z)−6−|w|−|τ1|−|τ2|+ε).

Similarly with F(y, x) = ∑
|τ |<γ−8−|w1|−|w2| ϒx (τ )Xy,x (I(τ )I(w1)I(w2)),

Lemma 9.11 gives a bound on (v ◦X X•I(w1) ◦X X•I(w2)) − F(•, z))L1(z)) and
from Equation (10.5), we have a bound on (F(•, x)− F(•, z))L1(z). Together with
Assumption 9.10, these give

∣
∣
∣
(
v ◦X X•I(w1) ◦X X•I(w2) (10.11)

−
∑

|τ |<γ−8−|w1|−|w2|
ϒx (τ )X•,x (I(τ )I(w1)I(w2))

)

L
(z)
∣
∣
∣

� c
∑

|τ |<γ−8−|w1|−|w2|
[U τ ]−6−|w1|−|w2|−|τ |+ε,D′

d ,d

× ‖v‖δm�(τ+w1+w2)

D′ (Lε + L6+|w1|+|w2|+|τ |d(x, z)−6−|w1|−|w2|−|τ |+ε).

We also need the three-point continuity. It is a consequence of Lemma 6.5, and can
be quantified, for x ∈ D′

d , for y ∈ B(x, d
4 ), for z ∈ B(y, d

4 ), as

|Vγ (z, x) − Vγ (z, y) + Vγ (y, y) − Vγ (y, x) + V i
γ (y, x)(zi − yi )| (10.12)

�
∑

−2<|τ |<γ−2
τ �=X

[U τ ]
γ−2−|τ |,D′

d
2
, d2
d(y, x)γ−2−|τ | [X; I(τ )]d(z, y)|τ |+2

Ass. 9.10
� c

∑

−2<|τ |<γ−2
τ �=X

‖v‖δm�(τ)

D′ [U τ ]
γ−2−|τ |,D′

d
2
, d2
d(y, x)γ−2−|τ | d(z, y)|τ |+2.

Finally, in order to apply Lemma A.1 for v −Vγ (·, x))(y) in the role of U (y, x) we
write using first the definition (6.8) of Vγ , Lemma 6.8, and then Assumption 9.10
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to get

sup
d�d0

‖v − Vγ ‖D′
d ,d � ‖v‖D′ +

∑

τ∈V,
|τ |<γ−2

‖ϒ•(τ )‖D′ [X; I(τ )]d |τ |+2
0

� ‖v‖D′ + c
∑

τ∈V,
|τ |<γ−2

d |τ |+2
0 ‖v1‖m1(τ )+δm�(τ)

D′ ‖vX‖mx(τ )

D′ .

We now notice that all the term appearing in (10.10),(10.11) and (10.12) have a
common structure. By replacing the homogeneities by their expressions in terms
of δm� for the trees in W , and relabelling τ = I(τ1)I(τ2)I(�) in (10.10), we get,
after application of Lemma A.1,

sup
d�d0

dγ [V ]γ,D′
d ,d � sup

d�d0

d2‖v‖3
D′ (10.13)

+ c sup
a,b,τ

sup
d�d0

(
db‖v‖a+δm�(τ)

D′
d

[U τ ]b−2−a−|τ |,D′
d ,d

)

+ ‖v‖D′ + c sup
τ

d |τ |+2
0 ‖v1‖m1(τ )+δm�(τ)

D′ ‖vX‖mx(τ )

D′ ,

where [V ]γ,D′
d ,d is as defined in (10.1) with the supremum taken over x, y ∈ D′

d
with d(x, y) � d and where the supremum is taken over a finite subset of

{(a, b, τ ) ∈ R
2+ × TRHS, a � 0 , b � γ , b − 2 − a − |τ | < γ }.

We apply the Lemma 10.1 to the second part.

sup
d�d0

dγ [V ]γ,D′
d ,d � d2

0‖v‖3
D′

+ c sup
a,b,τ

sup
d�d0

da+δm�(τ)‖v‖a+δm�(τ)

D′
d

(
[V ]γ,D′

d ,dd
γ + 1{b−a−δm�(τ)<1}d‖vX‖D′

d

+ c
∑

b−a−2−δm�(τ)�|τ̄ |<γ−2

d |τ̄ |+2‖v‖m1(τ̄ )+δm�(τ̄ )

D′ ‖vX‖mx(τ̄ )

D′
d

)

+ ‖v‖D′ + c sup
τ

d |τ |+2
0 ‖v1‖m1(τ )+δm�(τ)

D′ ‖vX‖mx(τ )

D′ ‖D′ .

We see now that if we take
d0 = ‖v‖−1

D′ , (10.14)

then there exists a value of c0 < 1 such that for any 0 < c < c0, the occurrences of
[V ]γ,D′

d ,d can be absorbed into the left-hand side, and the other terms also simplify:
if mx(τ̄ ) = 1, we bound

d |τ̄ |+2‖v‖m1(τ̄ )+δm�(τ̄ )

D′ ‖vX‖mx(τ̄ )

D′
d

� d−1+2mx(τ̄ )‖vX‖mx(τ̄ )

D′
d

= d‖vX‖D′
d
,

and if mx(τ̄ ) = 0,

d | ¯̄τ |+2‖v‖m1(τ̄ )+δm�(τ̄ )

D′ = d−1+m1(τ̄ )+δm�(τ̄ )‖v‖m1(τ̄ )+δm�(τ̄ )

D′ � ‖v‖D′ .



   48 Page 68 of 76 Arch. Rational Mech. Anal.          (2023) 247:48 

This gives (9.20).
We now prove the bound on ‖vX‖D′

d
. For that we take ε small enough such that

there is no tree of regularity between 1 and 1 + ε. Then we can apply Lemma A.3
with κ = 1 + ε but with U (x, y) =∑−2�|τ |<−1 ϒx (τ )XyxI(τ ). We get

‖vX‖D′
d

� dε[V ]1+ε,D′
d ,d + d−1‖U‖D′

d ,d .

In applying Lemma A.3, the fact that R ∈ (0, 1/2) guarantees we have a interior
cone condition on D′

d with r0 = d for any d � d0.
We have by Assumption 9.10

d−1‖U‖D′
d ,d �

∑

n

dn−2‖v‖nD′ ,

and from (10.3)

dε[V ]1+ε,D′
d ,d � dγ−1[V ]γ,D′

d ,d + c
∑

n,m

dn+2m−2‖v‖nD′
d
‖vX‖mD′

d
,

where the sum ranges over a finite set of indices n � 0 and m ∈ {0, 1}. We have,
assuming d0 = ‖v‖−1

D′ ,

sup
d�d0

d‖vX‖D′
d

� sup
d�d0

(
dγ [V ]γ,D′

d ,d + c(‖v‖D′ + d‖vX‖D′
d
)
)
.

If we take c small enough, depending on the constant implicit in �, for some
constant C > 0 we have

sup
d�d0

d‖vX‖D′
d

� C sup
d�d0

(
[V ]γ,D′

d ,dd
γ + ‖v‖D′

)
. (10.15)

Together with (9.20), this gives, for a constant c small enough,

sup
d�d0

dγ [V ]γ,D′
d ,d � ‖v‖D′ . (10.16)

10.5. Proof of Lemma 9.16

We apply the Lemma 9.9 to the convolved equation (9.8), on the domain D′.

‖v‖D′
d+d′ � max

{
d ′−1

, ‖(v3)L − v3
L‖

1
3
D′
d
, ‖(X•τ)L‖

1
3
D′
d
, τ ∈ ∂W,

‖(v ◦X X•I(w1) ◦X X•I(w2))L‖
1
3
D′
d
, wi ∈ W, (10.17)

‖(v ◦X v ◦X X•I(w))L‖
1
3
D′
d
, w ∈ W, ‖v − vL‖D′

d+d′

}
.

We have, for d > L ,

‖(v3)L − v3
L‖D′

d
� ‖v‖2

D′
d−L

[v]α,D′
d−L ,L L

α and
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‖v − vL‖D′
d+d′ � [v]α,D′

d−L ,L L
α, (10.18)

and for α small enough, we have, by Lemma 9.15, [v]α,D′
d−L ,L � (d − L)−α‖v‖D′ .

From Lemma 9.11 we get, for w1, w2 ∈ W ,

‖(v ◦X X•I(w1) ◦X X•I(w2))L‖D′
d

� c
∑

|τ |∈J

‖v‖δm�(τ+w1+w2)

D′
(
[U τ ]−6−|w1|−|w2|−|τ |+ε,D′

d−L ,d L
ε

+ ‖v‖m1(τ )

D′ ‖vX‖mx(τ )

D′
d−L

L6+|τ |+|w1|+|w2|
)
.

From Lemma 9.12 we get, for w ∈ W ,

‖(v ◦X v ◦X X•I(w))L‖D′
d

� c
∑

(|τ1|,|τ2|)∈ J̃

‖v‖δm�(τ1+τ2+w)

D′
(
[UI(τ1)I(τ2)I(�)]−6−|w|−|τ1|−|τ2|+ε,D′

d−L ,d L
ε

+ ‖v‖m1(τ1+τ2)

D′ L6+|τ1|+|τ2|+|w|).

Using Lemma 9.15 and setting d = ‖v‖−1
D′ and L = d

k for some k � 2 gives, for
w1, w2 ∈ ∂W ,

‖(v ◦X X•I(w1) ◦X X•I(w2))L‖D′
d

� c‖v‖3
D′K (w1, w2, k) , (10.19)

where

K (w1, w2, k) =
∑

|τ |∈J

(
k−ε + k3−δm�(τ+w1+w2)−m1(τ )−2mx(τ )

)
,

and for w ∈ W ,

‖(v ◦X v ◦X X•I(w))L‖D′
d

� c‖v‖3
D′K ′(w, k) (10.20)

where

K ′(w, k) =
∑

(|τ1|,|τ2|)∈ J̃

(
k−ε + k3−δm�(τ1+τ2+w)−m1(τ1+τ2)

)
.

Finally, for τ ∈ ∂W , we get from Assumption 9.10 that

‖(Xτ)L‖D′
d

� cL−3+δm�(τ)‖v‖δm�(τ)

D′ = c‖v‖3
D′k3−δm�(τ). (10.21)

With (10.18), (10.19), (10.20) and (10.21), the bound (10.17) becomes

‖v‖D′
‖v‖−1

D′ +R
� max

{
R−1, k− α

3 ‖v‖D′ , c
1
3 ‖v‖D′k1− δm�(τ)

3 , τ ∈ ∂W,

c
1
3 ‖v‖D′K (w1, w2, k)

1
3 , w1, w2 ∈ W, (10.22)

c
1
3 ‖v‖D′K ′(w, k)

1
3 , w ∈ W, k−α‖v‖D′ ,

}
.
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We see that we can now choose k > 2 large enough and then c < c0, as well as
R = (λ − 1)‖v‖−1

D′ for λ large enough such that (10.22) becomes

‖v‖D′
λ‖v‖−1

D′
� ‖v‖D′

2
. (10.23)
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A. Reconstruction Lemma

In this section, we present the result that is essential for the proof of Lemmas 9.11 and
9.12, allowing us to define a function given its local description. It is inspired from [23,
Proposition 3.28]. We show here a localised result that was introduced in [30]. We also
reproduce the short proof here. It depends strongly on a specific choice of kernel to measure
the regularity, which we construct hereafter.
We fix a non-negative smooth function � with support in B(0, 1), symmetric in space, with
�(x) ∈ [0, 1] for all x ∈ R×R

d and with integral 1. Setting �L (t, x) = L−d+2�( t
L2 , x

L ),
we now define �L ,n = �L2−1 ∗ �L2−2 ∗ · · · ∗ �L2−n and �L = limn→∞ �L ,n so that
�L = � L

2
∗ � L

2
. �L and �L ,n are non-negative and smooth, symmetric in space and

with supports contained in B(0, L) and B(0, (1 − 2−n)L). We define the operator (·)L by
convolution with �L , and (·)L ,n by convolution with �L ,n for n � 1. (·)L ,0 is the identity.
Since �L ,n+m = �L ,n ∗ �L2−n ,m , we have

(·)L ,n+m = ((·)L2−n ,m)L ,n . (A.1)

Taking m to infinity in this, or equivalently noticing that �L = �L ,n ∗ �L2−n , we have the
desired relation between dyadic scales

(·)L = ((·)L2−n )L ,n . (A.2)

Lemma A.1. (Reconstruction) Let γ > 0 and A be a finite subset of (−∞, γ ]. Let L ∈
(0, 1) and x ∈ R × R

d . For a continuous function F : B(x, L)2 → R assume that for
all β ∈ A there exist constants Cβ > 0 and γβ � γ such that for all l ∈ (0, L), for all
x1, x2 ∈ B(x, L − l)

∣
∣
∣

∫

�l (x2 − y)(F(y, x1) − F(y, x2))dy
∣
∣
∣ �

∑

β∈A

Cβd(x1, x2)γβ−β lβ . (A.3)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Then f : y �→ F(y, y) satisfies

∣
∣
∣

∫

�L (x − y)(F(y, x) − f (y))dy
∣
∣
∣ �

∑

β∈A

Cβ L
γβ , (A.4)

where “�” represents a bound up to a multiplicative constant depending only on γ and A.

In the proof we will use the following notations for f a function of one variable and F a
function of two variables:

[F, (·)L ](x) =
∫

�L (x − y)F(y, x)dy. (A.5)

Proof. This is the only place where our particular choice of convolution kernel is crucial.
This allows us to use the following factorisation:

∣
∣
∣[F, (·)L2−n ](x1) −

(
[F, (·)L2−n−1 ]

)

L2−n ,1
(x1)

∣
∣
∣

=
∣
∣
∣

∫ ∫

�L2−n−1 (x2 − y)�L2−n−1(x1 − x2)(F(y, x1) − F(y, x2))dydx2

∣
∣
∣

�
∑

β∈A

Cβ

∫

�L2−n−1(x1 − x2)d(x1, x2)γβ−β(L2−n−1)βdx2

�
∑

β∈A

Cβ(L2−n−1)γβ .

Using the specific property of the kernels � and � once more, we get the telescopic sum

∣
∣
∣[F, (·)L ] − ([F, (·)L2−N ])L ,N−1

∣
∣
∣ =

∣
∣
∣

N∑

n=0

(
[F, (·)L2−n ] − ([F, (·)L2−n−1 ])L2−n ,1

)

L ,n

∣
∣
∣

�
N∑

n=0

∑

β∈A

Cβ(L2−n−1)γβ �
∑

β∈A

Cβ L
γβ ,

where the constant in ”�” depends only on γ (in particular not on N ). By continuity
([F, (·)L2−N ])L ,N−1 converges to ( f )L as N → ∞ thus proving the lemma. ��
In the definition of local product for a planted tree, we solve the heat equation with a cut-off
function. The following lemma justifies that for a smooth cut-off, this does not change the
order bound.

B. Schauder Lemmas

We start by introducing a few norms. For α ∈ (0, 1), we define the Hölder semi-norm [.]α

[ f ]α := sup
z �=z̄∈R×Rd

| f (z) − f (z̄)|
d(z, z̄)α

. (B.1)

For α ∈ (1, 2), we define the Hölder semi-norm [.]α

[ f ]α := sup
z �=z̄∈R×R

d

z=(t,x); z̄=(t̄,x̄)

| f (z) − f (z̄) − ∇ f (z).(x − x̄)|
d(z, z̄)α

, (B.2)
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where ∇ refers to the spatial gradient.
We will often deal with functions F(z, z̄) of two variables generalising the increments of
f (z) − f (z̄) in (B.2) above. In this case we define, for α ∈ (1, 2),

[F]α := sup
z∈R×R

d

z=(t,x)

inf
ν(z)∈Rd

sup
z̄∈R×R

d\{z}
z̄=(t̄,x̄)

|F(z̄, z) − ν(z).(x − x̄)|
d(z, z̄)α

. (B.3)

The infimum over functions ν is attained when ν(z) is the spatial gradient in the second
coordinate of F at point (z, z). We use the same conventions as in Sect. 9.2 for localised ver-
sions of such norms. In all this section, "�" denotes a bound that holds up to a multiplicative
constant that only depends on κ and A when relevant. The localised Schauder estimate is
taken from [30, Lemma 2.11] and its proof can be found there.1

Lemma A.1. Let 1 < κ < 2 and A ⊂ (−∞, κ] be finite. Let U be a bounded function of
two variables defined on a domain D × D such that U (x, x) = 0 for all x. Let d0 > 0 and

assume that for any 0 < d � d0 and L1 � d
4 there exists a constant M(1)

Dd ,L1
such that for

all base-points x ∈ Dd and length scales L2 � L1, it holds that

L2
2‖(∂t − �)UL2 (·, x)‖B(x,L1) � M(1)

Dd ,L1

∑

β∈A

Lβ
2 L1

κ−β . (B.4)

Assume furthermore, that for L1 � d
2 , L2 � d

4 there exists a constant M(2)
Dd ,L1,L2

such that,

for any x ∈ Dd and y ∈ B(x, L1), there exists λ(y, x) = (λ(i)(y, x))di=1 ∈ R
d such that,

for any z ∈ B(y, L2), the following “three-point continuity” holds:

|U (z, x) −U (y, x) −U (z, y) − (zi − yi )λ
(i)(y, x)|

� M(2)
Dd ,L1,L2

∑

β∈A

d(y, x)βd(z, y)κ−β . (B.5)

Additionally, define

M(1) := sup
d�d0

dκM(1)

Dd , d2
, and M(2) := sup

d�d0

dκM(2)

Dd , d2 , d4
.

Then
sup
d�d0

dκ [U ]κ,Dd ,d � M(1) + M(2) + sup
d�d0

‖U‖Dd ,d . (B.6)

The following lemma, taken from [30, Corollary 2.12], gives bounds on the derivative:

Lemma A.2. Let κ > 1 and U ∈ Cκ (R × R
d ) then, for the optimal function ν in (B.3), for

any r ∈ (0, ∞),

‖ν‖ � rκ−1[U ]κ + r−1‖U‖ . (B.7)

1 Unfortunately, the statement of [30, Lemma 2.11] has an error. There, the final estimate
(B.6) is stated with supd�d0

dκ [U ]κ,Dd ,d replaced by supd�d0
dκ [U ]κ,Dd , and this not

correct. See also the very last display of the proof on page 2549 for the error. The statement
here does follow from the proof, if this last display is removed. The application of the
Schauder Lemma in [30] and here are not affected by this change.
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Suppose, furthermore, that there exists a constant M and, for all x, y ∈ R × R
d , a vector

λ(y, x) = (λ(i)(y, x))di=1 ∈ R
d such that for any z ∈ R × R

d one has the three-point
continuity bound

|U (z, x)−U (y, x)−U (z, y)−(zi − yi )λ
(i)(y, x)| � M

∑

β∈A

d(y, x)βd(z, y)κ−β . (B.8)

Then, if we write f (z, w) = ( f (i)(z, w))di=1 where f (i)(z, w) = ν(i)(z) − ν(i)(w) +
λ(i)(z, w), one has

[ f ]κ−1 � [U ]κ + M . (B.9)

A localised version of this lemma is as follows:

Lemma A.3. Assume that D satisfies a spatial interior cone condition with parameters r0 >

0 and β ∈ (0, 1), that is for all r ∈ [0, r0], for all x ∈ D, for any vector θ = (θ(i))di=1 ∈ R
d ,

there exists y ∈ D such that d(x, y) = r and

∣
∣
∣

d∑

i=1

θ(i)(yi − xi )
∣
∣
∣ � βd(x, y)|θ |.

Let κ > 1 and U ∈ Cκ then, for the optimal function ν in (B.3) and for all r ∈ [0, r0], we
have the bound

β‖ν‖D � rκ−1[U ]κ,D + r−1‖U‖D,r . (B.10)

Suppose furthermore that there exists a constant M and, for all x, y ∈ D, a vector λ(y, x) =
(λ(i)(y, x))di=1 ∈ R

d such that for any z ∈ D one has the the three-point continuity bound

|U (z, x)−U (y, x)−U (z, y)−(zi−yi )λ
(i)(y, x)| � M

∑

β∈A

d(y, x)βd(z, y)κ−β . (B.11)

Then, if we write f (z, w) = ( f (i)(z, w))di=1 where f (i)(z, w) = ν(i)(z) − ν(i)(w) +
λ(i)(z, w), one has, for every r ∈ [0, r0],

[ f ]κ−1,D � [U ]κ,D + M + r−κ‖U‖D,r . (B.12)

C. Symbolic Index

In this appendix, we collect the most used symbols of the article, together with their meaning
and the page where they were first introduced.
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Symbol Meaning Page
d(·, ·) Parabolic distance between space–time points z, z̄ ∈ R × R

d 6
� The abstract noise 15
Poly The set {1,X1, . . . ,Xd } 17
W Unplanted trees with |τ | < −2 17
Wprod Set of product trees in W , namely W \ {�} 17
V Unplanted trees with |τ | ∈ [−2, 0], includes Poly 17
Vprod Set of product trees in V , namely V \ Poly 17
TRHS Unplanted trees on right hand side of φ equation, TRHS = W ∪ Vprod 17
TLHS Planted trees in expansion of φ, TLHS = I(TRHS) ∪ I(Poly) 17
V>1 {τ ∈ Vprod : |τ | > 1} 20
T� TRHS ∪ TLHS ∪ Tcen, where our coproduct is defined 20
Tcen Planted trees that only appear for centering 21
I Edge of a tree corresponding to heat kernel 15

I(i)
+ Edge for derivative of heat kernel for positive renormalisation 20

I(i)
− Edge for derivative of heat kernel for negative renormalisation 40

[•]α Hölder seminorm of index α 63
[X; •] Seminorm for the local product X applied to a tree 30
‖ • ‖ L∞ norm 48
X• Local product 20
X

cen• Centering map 27
X•,• Local path 27
ρ Cut-off function used to define local product 19
�, ⊂ Relations on trees 24
m(τ ) Number of leaves in a tree τ 17
m� Number of noise leaves in a tree τ 17
mx Number of {Xi }di=1 leaves in a tree τ 17
m1 Number of 1 leaves in a tree τ 17
| • | Order of a tree 17
δ Noise is regularity C−3−δ , δ > 0 2
D (0, 1) × {|x | < 1} 2
DR (R2, 1) × {|x | < 1 − R} 2
� Coproduct 20
C+ Cut map for coproduct 25
C− Cut map for modified coproduct 42
R Renormalisation operator 42
◦X Renormalised product of tree expansion 39
(•)L Convolution with the kernel �L 7
�L Smooth compactly supported kernel, rescaled at length L 7
ϒ Coefficient map for solutions to equation 35
Vγ Expansion of the remainder solution to level γ 34
V 2

γ Expansion of square of remainder solution to level γ 34

V ((i)
γ Expansion of derivative of the remainder solution to level γ 34

U τ
γ Expansion of the local approximation on level τ 33
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