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Background: The promotion of healthy lifestyles has high priority on the global public health agenda. Evidence on
the real-world (cost-)effectiveness of policies addressing nutrition and physical activity is needed. To estimate
short-term policy impacts, quasi-experimental methods using observational data are useful, while simulation
models can estimate long-term impacts. We review the methods, challenges and potential synergies of both
approaches for the evaluation of nutrition and physical activity policies. Methods: We performed an integrative
review applying purposive literature sampling techniques to synthesize original articles, systematic reviews and
lessons learned from public international workshops conducted within the European Union Policy Evaluation
Network. Results: We highlight data requirements for policy evaluations, discuss the distinct assumptions of
instrumental variable, difference-in-difference, and regression discontinuity designs and describe the necessary
robustness and falsification analyses to test them. Further, we summarize the specific assumptions of comparative
risk assessment and Markov state-transition simulation models, including their extension to microsimulation. We
describe the advantages and limitations of these modelling approaches and discuss future directions, such as the
adequate consideration of heterogeneous policy responses. Finally, we highlight how quasi-experimental and
simulation modelling methods can be integrated into an evidence cycle for policy evaluation. Conclusions:
Assumptions of quasi-experimental and simulation modelling methods in policy evaluations should be credible,
rigorously tested and transparently communicated. Both approaches can be applied synergistically within a co-
herent framework to compare policy implementation scenarios and improve the estimation of nutrition and
physical activity policy impacts, including their distribution across population sub-groups.
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Introduction

T
he promotion of healthy lifestyles has gained high priority on the
public policy agenda over the last two decades. There is a growing

demand for the credible estimation of policy impacts and evidence
on the real-world effectiveness and cost-effectiveness of different
population-based strategies addressing nutrition and physical activ-
ity.1,2 Yet, relative to clinical interventions, public policies are hard to
randomize and it is thus a challenge to control for confounding
factors and behavioural biases.3

Hence, quasi-experimental methods (QEM) using observational
data for policy evaluation have become increasingly popular
(table 1).4 Despite the availability of this quantitative toolbox, which
is successfully applied in the social sciences, especially labour eco-
nomics (see the 2021 Nobel prize in Economics, Royal Swedish
Academy of Sciences, 2021), its application to identify causal effects
of nutrition and physical activity policies on health outcomes is
complex and potentially not fully exploited.5

Because the policy-behaviour-health causal link is probabilistic,
delayed over time and the required data, particularly in the case of
many confounding factors, may not be available, QEM cannot provide
evidence on the long-term impact on health outcomes.6 Consequently,

mathematical disease simulation models (SMs) projecting the long-
term health and economic consequences are increasingly considered
by scholars and policy makers (table 1).4,7,8

This article reviews QEM and SM approaches for the evaluation of
nutrition and physical activity policies, their strengths and limita-
tions, as well as their underlying general methodological assump-
tions. We show the complementarities of QEM and SM and
discuss how their different characteristics could be exploited in a
synergetic fashion to develop a more comprehensive concept of pol-
icy evaluation. We aim to provide guidance for applied researchers,
policymakers and other stakeholders focussing on QEM and SM as
two rapidly evolving methodological frameworks.

Methods
We conducted an integrative review of assumptions, data require-
ments, strengths, limitations and synergies in the application of QEM
and SM to evaluate population-based nutrition and physical activity
policies. An integrative review approach enables the synthesis of di-
verse methods and types of information to provide a more compre-
hensive understanding of a research area. Integrative reviews are
targeted and selective in nature and apply purposive literature



sampling techniques.9,10 Thus, the aim, in contrast to a systematic
review, is not to provide an exhaustive, systematic overview of a
specific topic.

The starting point for our purposive searching comprised key
original articles and systematic reviews identified by the author
team within the European Union Policy Evaluation Network
(PEN) project, which described the methodological assumptions
and application of QEM and SM to evaluate population-based nu-
trition and physical activity policies.8,11,12 From these, we conducted
purposive snowball searches to identify further key references based
on subject matter expertise of the author team. The result of this
approach does not represent a comprehensive list of all relevant
original articles and systematic reviews, but a diverse selection of
studies useful for exploring the strengths, limitations and applica-
tions of QEM and SM.

We defined QEM as all methods using observational data to esti-
mate treatment effects (TEs) in the Neyman–Rubin counterfactual
framework and SM as methods and techniques, which use mathem-
atics to create abstractions of real-world phenomena with computer
software from various sources of information.13,14

For each identified original article and systematic review, we
extracted data on the general method (i.e. QM or SM), the specific
type of method used or reviewed [e.g. difference-in-difference (DiD)
analysis, Markov cohort SM], the underlying method-specific
assumptions and limitations discussed and contextual information.

Additionally, we drew relevant data from the presentations of re-
nowned scholars in QEM and SM at two public international work-
shops conducted within the European Union Policy Evaluation
Network (PEN) project in Munich and Rimini in 2021 (materials
available at: https://osf.io/fnmgk/ and https://osf.io/azf3n/).11

From these data sources, we synthesized key contemporary con-
siderations in the application of QEM and SM. Specifically, we inte-
grate an overview of QEM and SM methodology and summarize
strengths and limitations, as well as the most important assumptions,
future directions and synergies of both approaches in the evaluation
of nutrition and physical activity policies.

Results

Quasi-experimental methods
Estimating the impact of a policy requires isolating the cause-effect
path from a variety of confounding factors, i.e. causal inference.12

Outside the experimental setting, policy evaluation relies on obser-
vational data from so-called ‘natural experiments’ (NEs). Due to the
lack of randomization, selection bias needs to be addressed to esti-
mate the true policy effect.

We consider NE to be any setting where the statistical selection
process, which determines whether subjects are exposed to the policy
or not, is neither controlled, nor known by the evaluator and depends

on uncontrollable external factors.15 The presence of uncontrollable
external factors guarantees that the policy exposure is probabilistic.
Although these probabilities are unknown and unknowable, this con-
dition opens the way to statistical techniques for causal inference.15

This definition includes evaluations of nutrition and physical ac-
tivity policies where exposure explicitly depends on subject charac-
teristics, or because of indirect influences on participation.15 These
factors might be measurable and available (e.g. residence, age and
income), but also difficult to measure or not available (e.g. biological
markers and psychological traits).

With NEs, exposure to the policy cannot be assumed to be inde-
pendent from the outcome, as the external factors influencing the
probability to be treated may also influence the outcomes. This
means that the post-policy difference in the outcomes is a combin-
ation of policy impact and pre-existing selection bias.12 QEM control
for this selection bias by design, so that after conditioning on the
factors driving the assignment mechanism, the probability of being
treated is independent from the potential outcomes, as in random-
ized controlled experiments (RCEs).

Impact estimation is relatively straightforward if all these condi-
tioning variables are observed, an assumption, which is called selec-
tion on observables or unconfoundedness.16 However, this is hardly
ever fulfilled. Beyond observables, data on relevant variables may be
missing, or not accurately measured (e.g. psychological traits). These
variables are called unobservables, and unbiased estimation of the
policy impact implies the ability to control for both observables and
unobservables.

Testing assumptions and considering heterogeneous
response
The fundamental QEM, instrumental variable models (IV), DiD and
regression discontinuity designs (RDDs) control for both observables
and unobservables, under certain assumptions.17 An extensive de-
scription of the methods is beyond the scope of this review and is
provided elsewhere.12,17,18

We do not consider propensity score matching methods, which
depend on the strongest formulation of unconfoundedness, as they
require all relevant variables to be observable and any unobservable
to be either non-relevant, or highly correlated with an observed vari-
able. Hence, selection bias could be simply also addressed by a re-
gression equation with the treatment status and all relevant
covariates as explanatory variables.

Although implementing QEM methods is relatively straightfor-
ward with the appropriate (longitudinal) data, the real challenge
lies in demonstrating that their underlying assumptions hold.
Table 2 shows these assumptions for IV, DiD and RDD. Yet, in
most cases no conclusive test exists and rigorous evaluations must
present robustness and falsification analyses and support the cred-
ibility of their quantitative findings.12 Robustness analyses should

Table 1 Google Scholar search of evaluation methods for nutrition and physical policies over three decades

Keywords N, 1991–2000 % N, 2001–10 % N, 2011–20 % Ratio 2011–20 vs. 1991–2000

Nutrition policy (total) 5560a 100 13 300 100 17 200 100 3.1
Nutrition policy & randomized controlled trial 124 2.2 840 6.3 2820 16.4 22.7
Nutrition policy & quasi-experimental 50 0.9 253 1.9 812 4.7 16.2
Nutrition policy & difference-in-difference 1 0.0 41 0.3 186 1.1 186.0
Nutrition policy & simulation 299 5.4 553 4.2 1190 6.9 4.0
Nutrition policy & microsimulation 4 0.1 30 0.2 121 0.7 30.3
Physical activity policy (total) 37 100 706 100.0 2640 100.0 71.4
Physical activity policy & randomized controlled

trial
4 10.8 74 10.5 565 21.4 141.3

Physical activity policy & quasi-experimental 2 5.4 75 10.6 287 10.9 143.5
Physical activity policy & difference-in-difference 0 0.0 0 0.0 25 0.9 NA
Physical activity policy & simulation 3 8.1 32 4.5 106 4.0 35.3
Physical activity policy & microsimulation 0 0.0 0 0.0 8 0.3 NA

a: Italic values indicate total amount of identified articles with the respective keyword.
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demonstrate that relaxing one or more assumptions or changing
analytical choices does not lead to substantial differences in the
estimated policy impacts. Falsification analyses refer to the applica-
tion of the methods to outcomes, target groups or time periods not
affected by the policy, and should return non-significant estimates.

Under the appropriate conditions, not only can QEM be as effect-
ive as RCEs in eliciting the causal effect of policies, but they are
potentially even superior in terms of external validity since they
are free from some potential experimental biases (e.g. Hawthorne
effect, sampling errors and compliance).22

A short but rigorous review of the key features and testing strat-
egies for the application of QEM to public health studies is provided
in Bärnighausen et al. (2017).23 These method-specific tests on
assumptions are especially important from our perspective: (i) rele-
vance and exogeneity in IV studies;19 (ii) test for differential non-
linear trends in DiD studies, and their consideration (at least in
robustness checks) if data allows;20 and (iii) the continuity assump-
tion in RDDs, and the sensitivity of estimates to different functional
forms and bandwidth selections.21

When estimating real-world policy impacts, it is important to
consider that the actual impact—or TE—of the policy may be het-
erogeneous across exposed subjects, and average estimates (ATE)

may thus be unsatisfactory. If subjects are exposed to the policy,
but do not comply with the intervention, ATE estimates become
problematic, as non-compliers are likely to systematically differ
from both compliers and control subjects (i.e. reasons for compliance
are correlated with TE). Consequently, two different TEs can be
estimated: (i) considering all those exposed regardless of their
compliance, which returns the average intention-to-treat effect; and
(ii) considering treated subjects only, while accounting for the add-
itional selection bias, which returns the local average treatment effect
(LATE). When non-compliance is an issue, the LATE can be
obtained through an IV estimator.16 Furthermore, TEs may be het-
erogeneous between subjects due to the nature of the intervention
(e.g. personalized nutrition or physical activity programmes) since its
effectiveness primarily depends on subject characteristics. Recently,
there is a growing interest in methods (mostly based on machine
learning) that capture this heterogeneity of policy impact across sub-
populations, by letting the TE depend on sample covariates.24

Applications and future directions
There are many examples of QEM successfully applied to the evalu-
ation of nutrition policies.25 Applications to physical activity policies

Table 2 Testing assumptions and dealing with unobservables in QEM

Method Data requirements Assumption allowing to deal
with unobservables

Tests (examples) Key references

Instrumental variables Cross-sectional post-policy
and at least one valid
instrument

Relevance (of the instrument
in determining the prob-
ability to be treated)

Testing probit model coefficient
(Wald test significance not
enough, F-statistic on the instru-
ment coefficients should be large)

Cunningham (2021)17;
Imbens & Rubin (2015)12;
Davies et al. (2013)19

Exclusion restriction: the in-
strument is exogenous

Lack of correlation between an
excluded instrument and IV esti-
mates of the residuals (non-con-
clusive and only feasible under
overidentification)

Monotonicity: changes in in-
strument act in the same
direction for all subjects

Not testable, and usually not im-
portant, but sensitivity analyses
are possible

Difference-in-difference Repeated cross-sections: at
least one cross-section be-
fore and one after the
policy. Panel: at least one
observation before and
one after. Multiple obser-
vations before the policy
needed to test the com-
mon trend assumption

Common (linear) trend vs.
differential linear trend in
the outcomes without the
policy

Using data before-policy only, re-
gress outcome on observables, a
linear trend, and an interaction
between the linear trend and
the group variable (Wald test on
the latter coefficient)

Cunningham (2021)17;
Imbens & Rubin (2015)12;
Callaway & Sant’Anna
(2021)20

Common (non-linear) vs. dif-
ferential non-linear trends
in the outcomes without
the policy

Panel regression of outcomes on
observables and fixed time
effects, plus the interaction be-
tween the fixed time effects and
the group variable, using before-
policy data only. If there is a
common trend, the interaction
terms are all non-significant

Regression discontinuity de-
sign (RDD)

Cross-sectional post-policy
and an assignment-to-
treatment variable related
to the outcome. Data be-
fore the policy useful for
sensitivity analysis.

Continuity assumption (no
jump of the outcome at
the cut-off without the
policy—for fuzzy RDD also
continuity of the prob-
ability of treatment)

Ideal check: run the same RDD on
data before the policy and find
no change at the cut-off.
Alternative: RDD using the
observables as the outcome,
expecting non-significant results
(non-conclusive)

Cunningham (2021)17;
Imbens & Rubin (2015)12;
Lee & Lemieux (2010)21

Linearity assumption vs. non-
linear functional forms

Not testable, but sensitivity checks
are essential. Especially relevant
for external validity. Ideal: test
linear, non-linear (polynomial)
and non-parametric specifica-
tions on data before the policy.
Alternative: check robustness of
the treatment effect estimate
using different non-linear and
non-parametric specifications,
and different bandwidths.

RDD, regression discontinuity design.

iv86 European Journal of Public Health



are less frequent but increased over the last few years (e.g. Xie et al.,
2021 or Nakamura et al., 2021).26–28 The available methods are
evolving together with the rising availability of large and detailed
datasets on food consumption and physical activity. Specifically, con-
sumer panels for food purchases and the emergence of innovative
technologies for data collection over time (e.g. accelerometers and
smartphone apps to measure physical activity) are valuable resources
for QEM relying on longitudinal data. For example, synthetic control
methods are a powerful approach when pre-policy data cover mul-
tiple periods and multiple non-treated groups (e.g. regions or
states),29,30 while quantile DiD models and LASSO estimators may
be of use for the estimation of heterogeneous treatment effects.31,32

Simulation modelling
In the context of public health, SMs are usually used to simulate
population health trajectories and the impact of health-related pol-
icies on risk factor trends, disease epidemiology, health-related qual-
ity of life and subsequent socio-economic consequences in
populations using epidemiological and economic principles, but
can also be extended to include macroeconomic and environmental
aspects.7,33–36

For health policies that address unhealthy diets and physical in-
activity as risk factors for non-communicable diseases (NCDs), such
as type 2 diabetes, cardiovascular disease and cancer, these methods

are of particular merit.34,37,38 Since these diseases are characterized
by a chronic, progressing aetiology and their risk accumulates over
time, effects of preventive policies are only measurable after many
years, whereas the upfront political and policy implementation costs
occur immediately.39

Beyond projecting epidemiologic health outcomes, SMs can esti-
mate the long-term healthcare cost savings and non-health sector
implications (e.g. lost productivity and environmental impact) of
policies and are often applied within health-economic modelling to
compare multiple policy scenarios, generating valuable information
for priority setting.4,40 Finally SMs can provide policy impact corri-
dors by simultaneously incorporating uncertainties from multiple
sources.41,42

Simulation modelling methods and main applications
Over the last decades, a variety of SMs in public health were applied in
landmark projects, such as the Australian Assessing Cost-Effectiveness
(ACE) in Prevention study, the US Childhood Obesity Intervention
Cost-Effectiveness Study (CHOICES) project, the US Food Policy
Review and Intervention Cost-Effectiveness (Food-PRICE) project
(https://food-price.org/) and the Organization for Economic Co-
operation and Development’s (OECD) Chronic Disease Prevention
(CPD) modelling initiative.38,43,44

Table 3 Advantages, challenges and limitations of simulation modelling methods

Simulation modelling
method

Data requirements Advantages Challenges and limitations Seminal examples

Comparative risk assessment
(CRA)

Population size and sex-age
distribution; aggregated,
stratified socio-demo-
graphic and epidemio-
logical information on risk
factors and diseases; risk
factor–disease relation-
ships; policy and interven-
tion effectiveness

Easy to implement and low
run times

Straightforward communica-
tion to stakeholders

Efficient integration of mul-
tiple risk factors and
diseases

No explicit time component
Only aggregate information
Assumption of homogenous

population
No interaction and time-

dependencies possible

Briggs et al. (2017)45; Collins
et al. (2014)46

Markov (cohort) state-transi-
tion model

Population size and sex-age
distribution; aggregated,
stratified socio-demo-
graphic and epidemio-
logical information on risk
factors and diseases (incl.
prevalence, incidence,
case fatality and mortal-
ity); extensive data on risk
factor–disease relation-
ships to calculate transi-
tion probabilities; policy
and intervention
effectiveness

Comparably easy to imple-
ment with low number of
health states

Explicit time component
(discrete steps)

Allows for recurrence and
looping

Straightforward communica-
tion to stakeholders using
figures

Efficient integration of mul-
tiple risk factors and dis-
eases (in combination with
proportional multi-state
life tables)

Only aggregate information
Assumption of homogenous

population
Markovian assumption—no

information on health sta-
tus in previous time steps
(no memory)

Interaction and time-
dependencies only possible
for full (sub-)cohort and
with complex model
structures

Complexity increases expo-
nentially with number of
health states

Cobiac et al. (2017)47; Vos
et al. (2010)43; Carter et al.
(2009)48

Microsimulation Individual-level (repeated)
cross-sectional or cohort
data on socio-demo-
graphics and health
behaviours from popula-
tion health surveys;
aggregated, stratified epi-
demiological information
on diseases (incl. preva-
lence, incidence, case fa-
tality and mortality);
extensive stratified data
on risk factor–disease
relationships; policy and
intervention effectiveness

Individuals instead of cohorts
Explicit time component

(discrete steps)
High flexibility in model

structure
Allows for individual hetero-

geneity, complex interac-
tions and time-
dependencies

Flexible estimation of vari-
ous outcomes

Can be used within CRA or
Markov model framework

Can very quickly get very
complex

Communication with stake-
holders can be difficult due
to complexity

Very high data requirements
Very high computational

requirements (especially
with probabilistic sensitiv-
ity analyses)

Limited by underlying model
structure (e.g. CRA or
Markov)

Kypridemos et al. (2017)6;
Huang et al. (2019)49

CRA, comparative risk assessment. Information in table synthesized from Briggs et al. (2006), Briggs et al. (2016) and Emmert-Fees et al.
(2021).
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In this review, we cover the main SM approaches—from rather
simple to highly complex—that are applied in the evaluation of nu-
trition and physical activity policies (table 3). An extensive discussion
of SM for public health policy evaluation is available in Briggs et al.
(2006), Briggs et al. (2016) and Emmert-Fees et al. (2021).

Comparative risk assessments (CRAs) are usually relatively simple
cohort models, stratified by socio-economic and demographic
groups, without explicitly accounting for time (table 3).46,45 First,
risk factor and disease distributions are projected over the simulation
period. In a second step, the effect of different policy scenarios on
these projections is specified using population impact fractions to
simulate outcomes.7,50

Markov state-transition models, particularly in combination with
proportional multi-state life tables, are widely applied
(table 3).8,48,51,52 Compared to CRAs, they explicitly model a popu-
lation, often stratified in different age-sex-specific cohorts, over time.
Markov models further implement explicit health states (e.g. healthy,
sick and dead) between which cohorts transition proportionally,
governed by epidemiological parameters, such as incidence, preva-
lence and case fatality rate.41,47

Microsimulation methods have become more common in recent
years and are not a model type but rather a powerful technique that
can be used within different modelling frameworks and embodies
stochastic and dynamic components (table 3).14,53 In microsimula-
tions, individuals with their own demographic, socio-economic and
health profile are simulated over time instead of homogenous
cohorts. Individual probabilistic health and disease trajectories are
estimated based on risk estimates (the stochastic component) and
updated sequentially over discrete time steps (e.g. years) while retain-
ing all individual-level information (the dynamic component).

Beyond the types of SM discussed, there are other approaches and
techniques each addressing specific analytical and contextual consid-
erations, such as agent-based models, system dynamics models and
discrete-event simulations, which are not yet widely used for the
evaluation of nutrition and physical activity policies, though.7,54–56

Conceptualization of models and required input data
Irrespective of the SM approach, four key interdependent compo-
nents are needed to simulate the impact of nutrition and physical
activity policies: (i) the level of complexity chosen to model risk
factor–disease relationships; (ii) information on the (causal) relation-
ship between risk factors, health and economic outcomes; (iii) demo-
graphic, socio-economic and epidemiological data; and (iv) the
proposed mechanisms of policies.8

Most SM evaluations of nutrition policies rely on proximal risk
factors, such as body mass index (BMI) and blood pressure, to esti-
mate long-term NCD outcomes.8,57 While this is often a necessary
simplification due to data requirements, evidence suggests that diet-
ary quality, food processing and the food-specific combination of
micronutrients may be equally important in the aetiology of disease.
Currently, much of this complexity is not reflected in SMs.58

Correspondingly, it is essential to acknowledge differential effects
of volume and intensity of physical activity when evaluating respect-
ive policies.59

Depending on the complexity of the model, the most important
input for the simulation is the quantification of all explicitly included
pathways between risk factors and outcomes. One challenge is that
these are often only available as associations (i.e. non-causal) from
non-randomized observational studies, potentially subject to unob-
served confounding. This issue has been particularly discussed in
nutritional epidemiology.60,61

Another central component of SMs is context/population-
dependent demographic, socio-economic and epidemiological data.
This includes prevalence and incidence data for diseases included in
the model, as well as individual-level data on dietary intake and
physical activity, particularly for microsimulations.8,57 Yet, many

countries lack high-quality disease surveillance systems and national
surveys needed to parameterize very complex models.

Understanding the actual mechanism of the policy under consid-
eration including relevant externalities is crucial to integrate policy
effects into SMs. This includes information (e.g. from QEM) on
heterogeneous policy effects across sub-populations (e.g. sex, age,
ethnicity and income), leading to differentiated simulation parame-
ters, compensatory behaviour in response to the respective policy
[e.g. change in snack consumption after introduction of sugar-
sweetened beverage (SSB) tax], spatial aspects of policies (e.g. house-
hold and out-of-home consumption) and distributional effects to
assess impacts on health inequalities.62

Challenges and future directions
Two features are key to the implementation of SMs: (i) ‘validation’
and (ii) ‘transparency’.

The results of SM applications can only be as good as the model
structure and input parameters. Model ‘validation’ is therefore es-
sential for high-quality simulation-based impact evaluations. Validity
dimensions include ‘input data validity’ (e.g. relative risks for disease,
policy effects etc.), the ‘validity of the computational implementa-
tion’ of the model (e.g. code review) and its ability to predict data
that was not used in building the model, such as national survey and
surveillance data on risk factors and disease outcomes (‘external pre-
dictive validity’).63–66 However, simulated policy impacts are more
difficult to validate as usually no observed data for comparison exists.

Due to the complexity of SMs, their assumptions and amount of
data sources, it is crucial to ‘transparently’ provide information on
results and methods for critical assessment. It is recommended to
clearly communicate assumptions and publish lay summaries,
detailed technical descriptions and computer code in
Supplementary materials or online repositories.65,67 Addressing ‘val-
idity’ and practicing ‘transparency’ is crucial to assure trust by
policymakers.

General challenges, which should be considered include: (i) sim-
ulations over many years into the future are subject to secular trends,
socio-cultural disruptions and unforeseen behavioural changes;38 (ii)
differential dietary behaviours along socio-economic gradients are
important to analyze equity impacts;8,68 and (iii) dietary behaviour
is shaped by factors beyond health and systems thinking ideas could
be incorporated into SMs to help determine non-health sector
impacts of dietary policies (e.g. economy, education etc.).54

Future efforts to improve simulation modelling of nutrition and
physical activity policies should aim to disentangle the direct, indir-
ect and total effects of diet on health including environmental, be-
havioural and socio-cultural dimensions to more accurately estimate
long-term policy impacts. Further, the influence of regional variation
in food environments and consideration of out-of-home food intake
may be another avenue for improvement.

Particularly, synergistic environmental impacts of nutrition and
physical activity policies are of high relevance and may further in-
crease stakeholder relevance across non-health sectors following a
health-in-all-policies approach.69,70

Discussion
QEM and SM can exploit valuable complementarities to inform pol-
icy makers on the impact and implications of different policy scen-
arios.4 Whereas QEM provide a robust way to evaluate the effect on
selected (and mostly intermediate) outcomes of policy measures
implemented in the past, SM provide a framework to generate pro-
jections of the wider and longer-term implications of policy scen-
arios, potentially including combination of policies that have not
been jointly implemented before.4

We propose that evidence from QEM, RCEs, non-experimental
epidemiological studies and SM should be understood as part of an
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evidence cycle for policy evaluation in which each method has its
specialty and estimates from QEM can be used as inputs for the
mathematical relationships in the SM, which help to identify, com-
pare and prioritize outcomes, policy scenarios and impact dimen-
sions. These might then in turn be subject to evaluation in QEM
studies after a policy decision was made.

Figure 1 visualizes the nature of this evaluation cycle for an ex-
emplary tax on SSBs, as introduced in several jurisdictions around
the world.71

In this context, QEM can provide evidence of the tax impact on:
(i) firm response (product range and possible reformulations, tax
pass-through and price);72–76 and (ii) consumer response (including
substitution patterns to other beverages and foods, at-home and out-
of-home)77 and, potentially sugar and other nutrient intakes.78,79

One further key input needed in SM that QEM can provide are
heterogeneous policy responses across firms and population sub-
groups (e.g. CATE estimates).80

However, the estimation of intermediate and long-term health
effects induced by changes in sugar and nutrient intakes through
QEM is unfeasible, due to the lack of adequate longitudinal health
data and the requirement for timely evaluations in policy making.4

SM approaches provide a solution to this challenge. They build on
available survey data and the results of observational and QEM
studies and, in the evaluation of an SSB tax, can translate changes
in sugar intake and energy intake via established energy balance
equations into changes in e.g. BMI.81 Using the causal link between
BMI and other risk factors SM calculate population health trajecto-
ries of relevant NCDs, such as type 2 diabetes, cardiovascular disease
and cancer.49 Ultimately, SM can project the expected long-term
health and economic consequences of the SSB tax under consider-
ation and compare alternative policies and taxation scenarios.4,7,39

Recent advances in causal inference for epidemiology emphasize
the importance of integrating the plurality of methods for policy
evaluation and have the potential to further strengthen the import-
ance of QEM for public health simulation modelling.82,83

Furthermore, when the SM framework is grounded in systems think-
ing and formalized within a logic model, it can provide qualitative
guidance on the priorities for additional QEM studies for those
parameters with insufficient evidence.4 In the future, highly complex
simulations, may model pathways from the consumer to health and
non-health sectors to evaluate policies. Here, the method of value of
information analysis—a technique that assesses the expected gain
from reducing uncertainty in key parameters—could even be used

to prioritize the estimation of model input parameters within a for-
mal economic framework.41

Conclusion
QEM and SM have distinct strengths and limitations as standalone
frameworks to estimate the impact of nutrition and physical activity
policies. This integrative review analyzed a selective list of critical
elements and assumptions to be considered when implementing
these methodologies, and proposes to synergistically combine QEM
and SM to overcome their limitations.

Below, we summarize the main lessons drawn:

• Assumptions behind models must be transparent and credible.
This implies rigorous testing whenever possible, and validation
through recognized robustness checks and sensitivity analyses.

• Nutrition and physical activity policies may act rapidly on behav-
iours, but the health effects may only become apparent in the
longer term. QEM are a powerful tool to identify immediate causal
effects, SMs are a better suited to project these behavioural changes
into long-term outcomes.

• The growing interest in targeted policies and the variability in
individual response, call for the application of QEM and SM to
allow for heterogeneous responses, and consider the distribution of
impacts across different population sub-groups.

• The implementation of multi-component lifestyle policies is a
major challenge for QEM to elicit the contribution of individual
measures. However, their joint application with SM has the poten-
tial to generate new evidence on the effectiveness of multi-
component policies.

Finally, the evolution in methods for policy impact evaluation is
closely related to the availability of adequate data. Until recently, the
application of QEM and SM to nutrition and physical activity pol-
icies has been hindered by limitations in the quality and quantity of
(longitudinal) data. Novel data technologies can help generate new
evidence, and extend the toolkit for policy evaluation.
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