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This study presents a technique to develop data-driven constitutive models for the elastic-plastic
response of materials, and applies this technique to the case of commercially pure titanium. The complex
yield and strain hardening characteristics of this solid are captured for random non-monotonic uniaxial
loading, without relying on specific theoretical descriptions. The surrogate model is obtained by super-
vised machine learning, relying on feed-forward neural networks trained with data obtained from ran-
dom loading of titanium specimens in uniaxial stress. Uniaxial tests are conducted in strain control,
applying random histories of axial strain in the range [�0.04, 0.04], to prevent the occurrence of signif-
icant damage. The corresponding stress versus strain histories are subdivided into a finite number of
increments, and machine learning is applied to predict the change in stress in each increment. A suitable
architecture of the data-driven model, key to obtaining accurate predictions, is presented. The predictions
of the surrogate model are validated by comparing to experiments not used in the training process, and
compared to those of an established theoretical model. An excellent agreement is obtained between the
measurements and the predictions of the data-driven surrogate model.
� 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Accurate predictions of the elastic-plastic response of engineer-
ing materials are fundamental in structural design and failure anal-
ysis. For solids undergoing non-monotonic reversed loading,
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Fig. 1. Specimen geometry (all dimensions in mm).
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involving the sequential application of positive and negative plas-
tic strains, accurate predictions can only be obtained if the details
of the strain-hardening characteristic of the material are ade-
quately captured. The theoretical models available to engineers
often rely on simplifying assumptions, such as purely isotropic or
kinematic hardening, or combinations of these. In this study, we
model the complex strain hardening of commercially pure tita-
nium using exclusively the results of carefully designed measure-
ments, by applying supervised machine learning.

Plastic deformation is a dissipative mechanism and is therefore
history-dependent; several researchers have applied machine
learning techniques to predict this phenomenon [1–4]. In the pres-
ence of repeated and reversed plastic deformation, as for example
in cyclic plasticity, the implementation of accurate constitutive
models is complicated by the complex history-dependent strain
hardening response of solids, which has been explored extensively
for some metallic alloys [5,6].

Machine learning is being applied to solid mechanics to acceler-
ate or enable complex material design and optimisation, including
constitutive models for multiphysics problems [7,8], identification
of material properties [9,10], inverse modelling and predictions of
plastic flow as a function of temperature and strain rate [11,12].
Machine learning was also used to extend the experimentally mea-
surable range of strains and enhance springback predictions in
[13]. Most of the published work focuses on monotonic loading,
in which it is not necessary to accurately capture the yield and
strain hardening characteristic of the material investigated. Several
authors (for example [14–16]) applied machine learning tech-
niques to the case of reversed plasticity, developing surrogate
models trained on datasets generated numerically, in which simple
strain hardening characteristics (isotropic hardening) were
assumed. Kinematic hardening was successfully predicted by
data-driven models obtained using numerically generated data in
[17,18].

In this study, we use data from actual experiments in uniaxial
stress to construct a constitutive model that captures the details
of the yielding and strain hardening response of a commercially
pure titanium. The proposed technique is in principle applicable
to any solid, but commercially pure titanium is chosen here for
its ready availability and its well-studied strain hardening
response, displaying a clear Bauschinger effect. Below we use
feed-forward Neural Networks (a neural network is abbreviated
below by NN) to construct a rate-independent surrogate model,
also independent of any theoretical assumptions on the details of
the material’s yield and strain hardening. We use the surrogate
model to predict the stress history consequent to the application
of a random strain history.

The paper is structured as follows. In Section 2 we illustrate the
details of the experiments conducted, while Section 3 presents the
implementation of the data-driven surrogate model; results are
presented and discussed in Section 4.
2. Mechanical tests

2.1. Material and specimen geometry

Extruded bars of commercially pure titanium (Grade 3), of
diameter 10 mm, were obtained from Smiths Metal Centres.
Axisymmetric dogbone specimens were manufactured by turning,
according to the geometry in Fig. 1. The specimen geometry was
designed considering previous research work ([19–20]) on cyclic
plasticity tests, to ensure approximately uniform stress and strain
in the gauge portion and to prevent buckling in presence of com-
pressive loading.
2

2.2. Experimental setup and procedure

A portion of the specimen’s gauge length was speckled to mea-
sure strain. The specimen was connected to a steel loading fixture
by threaded connections. The fixture was loaded by a screw-driven
testing machine via mounting pins, as shown in Fig. 2. Uniaxial
tension–compression cyclic experiments were conducted in real-
time strain control; a video extensometer was used to measure
the axial strain in the gauge portion and a feedback loop controlled
such strain imposing a constant nominal strain rate of
_ej j ¼ 10�3 s�1 in all tests. The force was measured by a 20 kN resis-
tive load cell. Strain and force measurements were recorded at a
frequency of 10 Hz.

Nine random histories of reversed strain were imposed on dif-
ferent specimens. Each random history comprised 20 loading steps
(10 cycles), and in each step a random change in axial strain
Deij j 2 Demin;Demax½ �, i ¼ 1;2:::20ð Þ was imposed on the specimen;
the sign of the first change in strain was chosen randomly, while
subsequent loading steps alternated positive and negative signs
of the applied strain, i.e.

Dei¼1 ¼ sign 0:5� rð Þ Demin þ r Demax � Deminð Þ½ �;
Dei ¼ �sign Dei�1ð Þ Demin þ r Demax � Deminð Þ½ �; ð1Þ

where r is a uniformly random number between 0 and 1. We
chose Demin ¼ 0:02 and Demax ¼ 0:04 to ensure that the material
displayed both elastic and elastic–plastic responses in each step
(note that the initial yield strain of pure titanium is less than
1 %). The choice of having only 20 steps in each experiment was
made to avoid low-cycle fatigue damage, as we will discuss quan-
titatively below. We note that some of the experiments were ter-
minated before the 20th step, due to premature degradation of
the speckling pattern during the test (and consequent inability to
measure strain).

Fig. 3 illustrates a representative random strain history imposed
in one of the experiments. Fig. 3 (a) shows the nominal strain ver-
sus time history, and Fig. 3 (b) presents the corresponding true
stress versus true strain measurement. The conversion between
nominal and true stress and strain was conducted with the usual
formulae for plastically incompressible solids (we note that the
material used is practically void-free).

Titanium alloys containing a high volume fraction of the low
temperature HCP a-phase typically display tension–compression
yield strength asymmetry when subjected to uniaxial loading con-
ditions at room temperature [21,22]. Previous studies have inves-
tigated the yield behaviour of commercially pure titanium of
various purity grades and found that the tension–compression
strength asymmetry is dependent on oxygen content and crystal-



Fig. 2. (a) View of the experimental setup; (b) close-up of the specimen and loading fixtures.

Fig. 3. (a) Example of a random imposed nominal strain history; (b) stress-strain
behaviour measured during the corresponding random cyclic loading experiment.

Fig. 4. A summary of the data used in this study. The measurements used for
training and testing are shown in grey; the experiments used for validation are in
red and blue. Only 20% of the datapoints is shown for clarity. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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lite orientation distribution with respect to the loading axis [21], it
is therefore not present in all grades of pure titanium. Titanium
samples manufacture from unidirectionally rolled plates show an
appreciable tension compression yield strength asymmetry only
in transverse direction [21,23]. The experimental data, obtained
from samples made from an extruded bar, as expected displayed
a stress versus strain response characterised by a Young’s modulus
of approximately 105 GPa, an initially approximately symmetric
initial yield stress (the proof stress at a plastic strain of 0.2 % was
3

approximately 520 MPa in both tension and compression), and a
noticeable Bauschinger effect upon reversed plasticity.

3. Implementation of the surrogate model

3.1. Training data set

Two of the nine experiments conducted (one starting with ten-
sile loading and one with compressive loading) were stored to per-
form a validation of the predictions of our surrogate model; these
are indicated as ‘‘Validation set” 1 and 2 in Fig. 4. The remaining 7
experiments were used to assemble a training dataset. All data are
visualised in Fig. 4, with the 7 experiments used for training shown
in grey and the 2 tests for validation shown in red and blue. The
corresponding time histories of strain and stress to the data in
Fig. 4 are provided in Section 4. The stress versus strain measure-
ments were used without further manipulations, with two excep-
tions: (i) not all recorded datapoints were used, but only 1/8 of the
total were stored, as this number was sufficient to construct an
accurate surrogate model; (ii) we removed the portions of the
curves in the region rj j < 5MPa (r is the applied stress) to elimi-
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nate noisy stress/strain measurements due to the a small slack in
the loading fixture. The data comprised 36,457 increments,
intended as portions of the loading and deformation history span-
ning the time comprised between two selected measurements;
each increment, or more precisely the set of values of all variables
at the beginning and end of the increment, represents one point of
the training dataset.

In the implementation of the surrogate model, we assume that
no damage (loss of stiffness) occurs during the tests. This is par-
tially based on the existing literature on low-cycle fatigue of com-
mercially pure titanium [24–27], some of which shows negligible
degradation of the material after 20 loading steps of strain ampli-
tude up to 2.4 %. To assess the likelihood of fatigue damage at
higher strains (up to 4 % was applied in this study), we measured
the slope of the elastic unloading in our experiments, to assess
the possible degradation of material stiffness. An example of such
data is shown in Fig. 5 for one selected experiment. It is observed
that there is no evident degradation of the Young’s modulus. Its
variation, of at most 5 % from step to step, is likely due to the
experimental errors caused by the limited resolution of the video
strain extensometer used.
3.2. Surrogate model

A feed-forward regression neural network (NNR) [28] is used in
this study to implement the surrogate model. The network per-
forms, at every increment, the regression

Dr ¼ NNR De; e; eel; e
�
pl; emax; emin; elast

� �
ð2Þ

The variation of stress across one increment is taken to be a
function of the increment in total strain De; the total strain e at
the beginning of the increment, the elastic strain eel at the begin-
ning of the increment (this is equivalent to the initial stress, as

r ¼ Eeel), the accumulated plastic strain e
�pl

, quantifying the extent
of plastic deformation accumulated up to the current increment,
and the additional parameters emax; emin; elast , quantifying the shift
of the yield surface due to the history of plastic strains
experienced.

The von Mises equivalent plastic strain reduces to the axial
plastic strain in a uniaxial test; therefore the accumulated plastic
strain can be calculated as the sum of the absolute values of the
increments in plastic strain in each loading step, i.e.

e
�
pl ¼

P
Depl
�� ��, where epl ¼ e� eel, assuming additive strain

decomposition.
The parameter emax is defined as the largest total tensile strain

experienced by the material at the beginning of the current incre-
Fig. 5. Evolution of the material’s Young’s modulus with increasing number of
loading steps, for a selected experiment.

4

ment; it aims at quantifying the largest tensile plastic strain
applied to the solid in its past deformation. Similarly, emin is the lar-
gest compressive strain experienced by the material at the begin-
ning of the current increment; it has similar function as emax but
focuses on compressive plastic strains. The parameter elast is
defined, at any given point, as the total strain when the sign of
De was last changed, i.e. when the direction of deformation was
last reversed. Note that elast may or may not coincide with one
between emax or emin, but it cannot exceed (in absolute value) nei-
ther emax nor emin. If elast does not coincide with emax or emin, this
indicates that the last time the deformation was reversed, the yield
surface had not been shifted (or equivalently, emax or emin had not
changed). Fig. 6 illustrates the evolution in time of some of the
inputs of the NN eq.(2), for the same experiment shown in Fig. 3.

The architecture of the NN was determined by trial and error;
the final network comprised 2 hidden layers containing 100 neu-
rons each. The inputs and outputs were rescaled to values between
0 and 1 using the minmax() function [29]; the ReLU [30] function
was chosen as the activation function for the hidden layers, while
the identity function was used for the output layer (i.e. no activa-
tion). The chosen loss function was the mean absolute error (MAE)
[29]. The NN was trained in TensorFlow 2.0 [31] via backpropaga-
tion, using the Adam optimiser [32] with a learning rate of 0.001.
The number of epochs was set to 3,000, with a batch size of 35.
The data collected from the experiments shown in grey in Fig. 4
was split into two subsets; one subset contained 90 % of the total
number of datapoints (increments) and was used for training,
while the remaining datapoints (10 % of the total) were used for
testing; the increments in the two sets were randomly selected.
At the end of the training, the explained variance score [29] was
found to be equal to 0.996 (out of a maximum of 1 for a perfect
regression).
3.3. Assessment of the accuracy of the surrogate model

To test the fidelity of the surrogate model, We focus on the data
recorded in the 2 experiments shown in red and blue in Fig. 4;
these were processed as the remaining experiments, providing
two strain histories, each split in sequences of consecutive applied
strain increments. The surrogate model was used to predict the
stress versus strain responses corresponding to these two strain
histories. For each history, starting from the initial stress- and
strain-free configuration (e ¼ r ¼ 0), the sequence of consecutive
strain increments was provided as an input to the surrogate model;
in each increment, eq. (2) was used to update the stress r, and
based on this, the accumulated plastic strain. The values of
emax; emin; elast were also updated, providing the input parameters
for the subsequent increment. This allowed constructing predic-
tions of the stress histories corresponding to the two unseen strain
histories.
4. Results and discussion

Fig. 7 compares the predictions of the surrogate model to the
two unseen experiments, in terms of the stress versus strain
response and of stress versus time response (the strain versus time
histories coincide for experiments and predictions). The NN predic-
tions are in red and blue, while the measurements are shown in
black; only 20 % of the datapoints are shown for clarity of visuali-
sation. The surrogate model is found in excellent agreement with
the experiments, accurately predicting the strain hardening char-
acteristic of the material loaded. The predictions deviate from the
experiments by at most 5 %, and such discrepancies only affect
small portions of the deformation histories, consistent with the
notion that the accuracy of the model is not uniform in input space,



Fig. 6. The evolution of NN inputs in a selected experiment (only the first 10 steps of the experiment are shown for clarity).
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which can be consequent to the non-uniform distribution of the
data in input space.

Fig. 8 presents the distribution of the inputs. The comparison
with experiments suggests that the proposed architecture of the
surrogate model is effective in capturing the physics of the mate-
rial’s yielding and strain hardening. Such architecture was deter-
mined by a trial and error procedure (omitted here for brevity),
which showed that the inclusion as inputs of the accumulated

plastic strain e
�pl

and of the parameters emax; emin; elast was essential
in allowing an accurate regression with a small NN and limited

data. The first parameters e
�pl

carries two types of physically rele-

vant information: its rate _e
�pl

allows distinguishing between elastic

( _e
�pl

¼ 0) and elastic–plastic ( _e
�pl

> 0) deformation; its magnitude
quantifies the accumulated permanent changes to the material’s
microstructure (e.g. dislocation density). The knowledge of
emax; emin; elast provides the model with information regarding the
maximum strains experienced up to the current increment, and
permits determining if the current deformation follows a shift of
the yield surface in the opposite direction. The size of the NN,
and therefore the speed of the surrogate model, could be reduced
by optimising the network’s architecture and separating elastic
from elastic-plastic increments, as in [2].

We note that only 7 simple uniaxial tests were required to train
the data-driven model presented here, and this is comparable to
the number of tests typically used to calibrate theoretical models
for the response of pure titanium. Data-driven constitutive models
similar to that presented here are expected to be particularly effec-
tive in the case of recently developed materials, for which there
could be lack of understanding of the physical response and of cor-
responding theoretical descriptions. In this case surrogate models
could allow immediate predictions of the response of complex
components, and more rapid deployment of newmaterials to engi-
neering applications.

In this study we have only explored the response of the material
to deformation in uniaxial stress, therefore the surrogate predic-
5

tions are only valid in such regime. For pure titanium, an extension
to the case of multiaxial deformation could be attempted, by
assuming and implementing appropriate constraints for a 3D sur-
rogate constitutive model. However, for materials that are not as
well understood as pure titanium, multiaxial experiments are
required to assemble a suitable training dataset for a surrogate
model of general applicability. The current approach assumes no
damage and a rate-independent response of the material, which
can be inappropriate assumptions in different strain regimes and
for different solids. In our future studies we will work at overcom-
ing the above limitations and at applying similar data-driven con-
stitutive modelling to different materials.

To further assess the effectiveness of the surrogate model pro-
posed, we proceed to compare its accuracy with that of a popular
theoretical model for cyclic plasticity, i.e. the constitutive model
proposed by Armstrong and Frederik [33] based on the von-
Mises yield criterion with associative plasticity [34,35]. The above
model is implemented in Abaqus [35] and can simulate non-linear
isotropic and kinematic hardening in metallic alloys with a rela-
tively modest number of hardening parameters. The evolution of
the yield surface is decomposed in the isotropic part QISO, i.e. the
expansion of the yield surface, and the kinematic part QKIN , that
is the shifting of the yield surface. These are functions of the accu-

mulated plastic strain e
�
pl, as it follows:

rISO ¼ Q inf 1� eð�b:e
�
plÞ

� �

rKIN ¼ rKIN1 þ rKIN2 ¼
P
i¼1;2

Ci
ci
ð1� e�c:e

�
pl Þ ð3Þ

where Q inf denotes the maximum magnitude of the yield sur-
face expansion and b is a parameter that controls the rate of expan-
sion. The kinematic part of the nonlinear hardening, i.e. the
translation of the yield surface resulting in the Bauschinger effect,
was represented using two backstress tensors QKIN1

and QKIN2
, each

corresponding to a component of translation of the yield surface.
The use of two backstresses was found to be optimal to maximise
the agreement between the model’s predictions and the test



Fig. 7. Comparison between the predictions of the surrogate model and the experiments; (a, b) validation set-1; (c, d) validation set-2.
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results used to calibrate the same model. The parameters C1, C2,
and c1, c2 govern the evolution of the backstress with respect to
the accumulated plastic strain. For every step of deformation, the
current yield stress is equal to the sum of initial yield stress and
hardening stresses due to isotropic and kinematic hardening (eq.
(4), Fig. 9).

ry ¼ r0 þ rISO þ rKIN1 þ rKIN2 ð4Þ
The parameters of the Armstrong and Frederik constitutive

equation were identified using the results of additional measure-
ments on the same material. The constitutive model required
inputting the stabilised cyclic behaviour of the material in tension,
as well as additional information on the variation of the yield stress
during successive cycles until stabilisation. Details on the calibra-
tion of the employed combined isotropic-kinematic hardening
model can be found in [35].

Additional cyclic straining experiments were conducted. The
sample geometry and experimental setup were analogous to those
described above, with the exception that these additional tests
were conducted prescribing symmetric cycles of constant total
strain amplitude (rather than a random amplitude between 0.02
and 0.04).

The experimental data, obtained from stabilised symmetric
cycles, were inputted in Abaqus, which determined by optimisa-
tion the kinematic hardening parameters Ci, and ci. Two sets of
6

these parameters were determined, using data from two cyclic
straining experiments with different strain amplitudes of 0.02
and 0.04. Calibration parameters were determined from each
experiment and then averaged to determine the set to be included
in FE simulations; a summary of their value is presented in Table 1.
We also note that multiple backstress terms can be considered in
this model; a preliminary investigation revealed that the accuracy
of the predictions is maximised when using two backstresses,
therefore we make this choice in the following.

The measured stress–strain histories in these two additional
cyclic tests are shown in Fig. 10, together with the corresponding
predictions of the Armstrong and Frederik model.

Clearly the model fails to capture the initial yielding character-
istic of the material, as such initial yielding is not part of the
required inputs. It does capture reasonably well the stabilised
response of the material, and it does this better in tension than
in compression, as the model requires only tensile data and
assumes an inherently symmetric response.

The accuracy of the proposed surrogate model is compared to
that of the theoretical model [33], by testing both models when
predicting the stress histories corresponding to random histories
of strain. Fig. 11 illustrates such comparison. Following the first
yield, the theoretical model overestimates the measured strain
hardening. Upon load reversal, the theoretical model also overpre-
dicts the stresses during the compressive yielding of the solid.



Fig. 8. Evolution in time increments and probability density distributions of (a, b) true stress, (c, d) total true strain, (e, f) accumulated plastic strain, (g, h) emin, emax, elast, and
(i, j) increments of strain.
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Fig. 9. Armstrong and Frederik model: (a) cyclically loaded specimen (b) stress–strain response (c) yield surface motion and expansion in the p plane.

Table 1
Kinematic/isotropic hardening model parameters.

Curve fitting of the test data

Calibration
Experiment Amplitude

Curve Fit Error Yield
Stress
(MPa)

Backstress
ðiÞ

Parameter
Ci

(MPa)

Parameter ci
(-)

2 % 0.00419 439.53 1 17824. 129.59
2 100747. 1169.5

4 % 0.10236 465.89 1 4737.7 67213.
2 67213. 407.08

Nonlinear kinematic/isotropic hardening model

Kinematic component

YieldStress
(MPa)

Backstress
ðiÞ

Parameter
Ci

(MPa)

Parameter ci
(-)

400.00 1 11281. 90.311

2 83980. 788.28
Isotropic component

YieldStress
(MPa)

Plastic
Strain
(-)

400.00 0.0000

669.55 12.601
682.71 25.347
683.99 37.933

Fig. 10. Calibration experiments and predictions of the theoretical hardening
model.

Fig. 11. Comparison of the surrogate model and the cyclic hardening model of
Abaqus.
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Fig. 12. Comparison of the errors of the surrogate and theoretical models.
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With increasing number of random plastic straining steps, the the-
oretical model converges to a nearly stabilised response with smal-
ler strain hardening than observed experimentally. The errors of
the theoretical model are generally larger in compression than in
tension, as the model cannot capture the asymmetric response.
In contrast, the data-driven model captures all phases of the mate-
rial’s response.

The absolute value of the errors made by the two models at
every strain increment are compared in Fig. 12. It is evident that
the absolute error of the data-driven surrogate model is negligible
throughout all stages of deformation, while the error of the theo-
retical model is initially approximately-five times larger than that
of the surrogate model, and this factor tends to increase with
increasing accumulated applied strain.

5. Conclusions

We presented a strategy to implement data-driven constitutive
models for the uniaxial response of pure titanium. We used the
results of seven experiments to train a surrogate constitutive
model of the material response to random strain histories in uniax-
ial stress; such model predicts the change in stress over an incre-
ment of the imposed deformation. The predictions of the
surrogate model were found to be computationally efficient, rely-
ing on a small feed-forward NN while achieving great accuracy.
The complex yielding and strain hardening of pure titanium were
captured correctly by including in the surrogate model specific
inputs describing the effects of the past history of deformation,
namely the accumulated plastic strain, quantifying the extent of
the magnitude of past plastic deformation, and three additional
parameters measuring the shift of the yield surface and the occur-
rence of reversed plasticity. The performance of the surrogate
model was found to largely exceed that of an established theoret-
ical model for the cyclic hardening of metals. The current approach
is limited to the response of pure titanium in uniaxial stress and it
assumes no loss of cohesion of the material and a rate independent
response; we will explore the extension to the multiaxial response
of general solids in our future studies.
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