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Abstract

We study a few constrained Stochastic Optimal Control Problems. First, we look at

problems with terminal constraints. For various convex problems with constrained

control, such as Linear Quadratic Mean-Field problem or Non-Markovian prob-

lem with stochastic coefficients, we draw equivalence relationship between the Fritz

John condition and Karush–Kuhn–Tucker (KKT) conditions. Then we construct

an unconstrained problem with the Lagrange Multiplier derived from Fritz John

condition. Finally, we show the equivalence between the optimality of the uncon-

strained problem and its original problem. Furthermore, we look at the Duality of

Linear Quadratic Mean-Field control problems and find an equivalence relationship

between the primal and dual problems in the absence of control constraints. Lastly

we compare the Riccati solutions to the Linear Quadratic Mean-Field control prob-

lem and the empirical solutions to the Mean-Field Forward Backward Stochastic

Differential Equations (FBSDEs) using Deep Learning to verify our results.

Keywords: Duality, Lagrange Multiplier, Fritz John Condition, KKT conditions,

Linear Quadratic Mean-Field Control, Deep Learning, Mean-Field Forward Back-

ward Equations
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Notation

Notation

• Rd: the d-dimensional Eucledean space

• Rm×n: the set of all m× n real matrices

• Sn: the set of all n× n symmetric real matrices

• Sn
+: the set of all n× n symmetric positive definite real matrices

• S̄n
+: the set of all n× n symmetric positive semi-definite real matrices

• In: the n× n identity matrix which is simply denoted as I if no confusion arises

• M⊺: the transpose of matrix M

• M †: the Moore-Penrose pseudoinverse of matrix M

• tr(M): the trace of matrix M

• ⟨·, ·⟩: the inner product in a Hilbert Space, particularly for matrices in Rm×n,

⟨M,N⟩ = tr(M⊺N)

• |M |: the Forbenius norm of matrix M which is
√

⟨M,M⟩

• (Ω,F ,P): A complete probability space

• {Wt, t ∈ [0, T ]}: a Rd-valued standard Brownian Motion on (Ω,F ,P)
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• {Ft : 0 ≤ t ≤ T}: the natural filtration generated from {Wt, t ∈ [0, T ]}

• F: the usual augmentation of {Ft : 0 ≤ t ≤ T}

Let H be a Euclidean Space

• Lp
Ft
(0, T ;H): the set of all Ft-measurable H-valued random variables ξ such that

E[|ξ|2] < ∞

• Lp(t, T ;H): the set of all H-valued functions that are p-th power Lebesgue in-

tegrable on [t, T ], especially, L∞(t, T ;H) denote the set of H-valued Lebesgue

measurable functions that are essentially bounded

• Lp
F(t, T ;H): the set of allH-valued F-progressively measurable processes ϕ : [t, T ]×

Ω → H such that E[
∫ T

0
|ϕ(s)|pds] < ∞

• L̄p
F(t, T ;H): the set of allH-valued F-progressively measurable processes ϕ : [t, T ]×

Ω → H such that E[sups∈[t,T ] |ϕ(s)|p] < ∞

• L̄p
F(C(t, T ;H)): the set of all H-valued F-adapted continuous processes ϕ : [t, T ]×

Ω → H such that E[sups∈[t,T ] |ϕ(s)|p] < ∞

For any random variable X or stochastic process {Y (t)}t∈[0,T ]:

• X̄: E[X]

• X̃: X − E[X]

• Ȳ (·): E[Y (·)]

• Ỹ (·): Y (·)− E[Y (·)]
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1
Introduction

1.1 Overview

Due to its purpose of obtaining optimal values, stochastic optimal control has natu-

rally become a commonly studied topic, especially in mathematical finance. There

is extensive research tackling systems involving stochastic differential equations

(SDEs) which can be converted to equally solving Forward and Backward SDEs

(FBSDEs). In the late 1970s, Merton [47, 48] introduced the idea of stochastic

control to solve a problem in a Markovian setting. With the findings of Black and

Scholes [10], the concept was reinforced and paved the way for more complicated

problems. Most of the research that deals with optimal control problems can be

divided into 2 methods: the Bellman dynamic programming approach (Hamilton-

Jacobi-Bellman or HJB) in [6] and the Pontryagin (stochastic) maximum principle

(SMP) approach in [11].
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HJB provides a necessary and sufficient condition for optimality of the problem

with respect to its loss function in the form of a Partial Differential Equation

(PDE). When the problem is linear quadratic, by assuming the value function to be

quadratic, the HJB equation can be simplified into a Riccati equation. On the other

hand, SMP tries to maximise the Hamiltonian to establish a necessary condition

for optimality. While HJB may seem to be a more powerful tool, SMP is equally

important in the Stochastic Programming analysis.The role of SMP becomes more

prominent when people are no longer satisfied with Markovian settings and start

investigating problems outside of Markovian settings such as when the coefficients

are stochastic like those in [9, 53, 20]. Similarly, in the case of linear quadratic

problem, by using a decoupling method, the problem can also be simplified to solve

the Riccati equations. Refer to [39] and references therein for more details. On

the other hand, HJB becomes less studied, as it requires generalising PDEs into

stochastic PDEs, which are much more difficult to solve.

But, of course, mathematicians never stop at the simplest problems. Inspired by

real-life scenarios such as risk minimisation in finance and cost reduction in trans-

portation, people are also interested in problems with extra constraints, such as

constrained controls and terminal constraints. For example, Pham [51] discusses a

problem involving CRRA uitility model with convex cone-constrained control. When

the coefficients are stochastic, [29] gives a general solution represented by Extended

Stochastic Riccati Equations to problems with controls in a closed cone. There are

even more studies on constraints on State process, either at terminal or across the

whole time period. Altman [4] listed many publications and examples of constraint

Markovian dynamic programming problems. Risk constraints through probability

expectations, variance, or value constraints are very common in financial sectors,

such as in [52, 19, 26, 43].

In another field of mathematics, game theories grow extensively in the late 90s and

early 20s. When studying high-dimensional games, many consider stochastic differ-
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ential games and N Nash points like in [12, 46, 31, 41]. By letting N tend to infinity,

the concept of Mean-Field games emerges together with the limit, McKean–Vlasov

equation. Inspired by the concept, Mean-Field Backward Stochastic Differential

Equations (MFBSDEs) were studied in [14] as the limit of a system containing N

interacting agents and further developed in [15]. Based on the new concept, people

start to investigate Mean-Field Forward Backward Stochastic Differential Equations

(MFFBSDEs) and optimal control problems involving them such as in [42, 22, 17].

If, in addition, the problem is convex, then duality used in convex optimaization

is still relevant to the analysis. Duality in SDEs was first proposed by Bismut

in [8]. Then the idea is further developed in [20, 21, 40]. As mentioned in [55],

from a heuristic point of view, the dual process is a Lagrangian multiplier which

aims to optimise the Lagrangian. Although not always easier to solve the original

problem, the dual problem can sometimes provide an explicit solution while its

primal counterpart cannot, opening up more opportunities to tackle the problems.

However, if the problem is more complicated, more often than not, an analytical

solution may not exist. Due to rapid development in recent years, Deep Learning

techniques can be used to find empirical solutions. The method can be applied to

various problems from SDEs to PDEs and related BSDEs and from fully coupled

FBSDEs to MFFBSDEs as exemplified in [56, 23, 33, 18].

1.2 Outline of the thesis

Chapter 2 studies the Stochastic Optimal Control problems with terminal con-

straints under different settings. The first problem involves stochastic coefficients

and a constrained control in a convex cone. The second problem is a MFSDE with,

again, a constrained control in a convex cone. The main approach is to draw an

equivalent relationship between Fritz John condition (FJ) and Karush–Kuhn–Tucker

conditions (KKT). Then use FJ to show the existence of the Lagrange multiplier
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so that the problem with constrained terminal state can be converted to an uncon-

strained problem. Lastly, show that the optimality to the unconstrained problem

with KKT conditions is equivalent to the optimality to the original problem.

Chapter 3 studies a type of Mean-Field Stochastic Optimal Control problem with

initial value of the state process involved in the cost function. It lists the assump-

tions required for the existence and uniqueness to the optimal control, as well as

the adjoint process. Then it investigates the optimality condition using the SMP

method.

Chapter 4 studies the duality of a linear quadratic mean-field stochastic optimal

control problem. Then investigates the equivalent relationship between the primal

and dual problem when the control is set in the whole space.

Chapter 5 tries to verify the results of previous chapters by comparing the results

of analytical solutions and empirical values of the deep learning method.

Finally, in conclusion, the limitations and future work are discussed.
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2
Lagrange Multiplier

2.1 Introduction

Constrained Stochastic Optimal Control has always been a popular area of study.

Different methods are used to tackle different constraints. Such as duality [34],

HJB [16, 13], and most naturally Lagrange multiplier. Flam [27] gave a proof

of necessary conditions of KKT in terms of subdifferential for discrete Markovian

problem followed by a correction in [28]. Since then, more people have used the

Lagrange multiplier method to convert a constrained problem into an unconstrained

one and apply the established method to solve problems, such as those in [38, 7,

36]. While many of the results can be applied to more general problems, which

are non-convex and non-Frechet differentiable, they often complicate the problem.

Moreover, due to generality, the local extrema obtained using KKT are often not

global extrema.
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As such, inspired by the Fritz John condition mentioned in [25], which does not

contain any requirement on the differentiability of the problem, we generalised the

results there from discrete problems into continuous time problems and draw rela-

tionships between the FJ condition and KKT conditions, the later of which can be

shown to be necessary and sufficient to the optimality of original problem under nice

enough conditions.

In this section, we studied two problem. The first one is inspired by problem in

[44], which is linear quadratic, containing stochastic coefficients and convex cone

constrained control. When the terminal constraint also follows a similar quadratic

form, the unconstrained problem can be solved using the same method proposed in

the paper and hence give an optimal solution to the original constrained problem.

The second problem is inspired by [59], which is mean-field.

2.2 Lagrange Multiplier for Stochastic Opti-

mal Control Problem with additional ter-

minal inequality constraints

Let T > 0 be a fixed terminal time, {Wt, t ∈ [0, T ]} a RN -valued standard Brownian

Motion with entries Wm,m = 1, 2...N , on a complete probability space (Ω,F ,P).

Lemma 2.2.1 L2
F(0, T ;RN) forms a Hilbert space with inner product ⟨x, y⟩ defined

as

⟨x, y⟩ = E[
∫ T

0

x⊺(t)y(t)dt].

Lemma 2.2.2 Every bounded sequence in Hilbert space has a weakly convergent

subsequence.

Proof. For example refer to [35].
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Theorem 2.2.3 (Banach Sak’s Thoerem) In a uniformly convex Banach space,

any weakly converging sequence has a subsequence whose Cesaros-mean converges

strongly, where the Cesaros-mean denotes the arithmetic mean.

Proof. For example refer to [37].

Assume that r,Q ∈ L1
F(0, T ;R), θ, S ∈ L1

F([0, T ],RN), σ,R ∈ L1
F(0, T ;RN×N) are

uniformly bounded. For all (z, ω, t) ∈ RN ×Ω× [0, T ], there exists a constant k > 0

such that

z⊺σ(ω, t)σ⊺(ω, t)z ≥ k|z|2,

R symmetric and the matrix

Q(t) S⊺(t)

S(t) R(t)

 is positive definite for almost all (ω, t) ∈

Ω× [0, T ].

Lemma 2.2.4 (Schur’s Complement)

(
Q(t) S⊺(t)
S(t) R(t)

)
≻ 0

⇐⇒ Q(t) ≻ 0, R(t)− S(t)Q−1(t)S(t)⊺ ≻ 0

⇐⇒ Q(t)− S(t)⊺R(t)−1S(t) ≻ 0, R ≻ 0.

Proof. For example, refer to Section 1.4 Theorem 1.12 from [60].

Lemma 2.2.5 (Fatou’s Lemma) Given a measure space (Ω,F , µ) and a set X ∈ F ,

let {fn} be a sequence of (F ,B)-measurable non-negative functions fn : X →

[0,+∞]. Define the function f : X → [0,+∞] by setting f(x) = lim infn→∞ fn(x),

for every x ∈ X. Then f is (F ,B)-measureable, and also
∫
X
fdµ ≤ lim infn→∞

∫
X
fndµ,

hwere the integrals may be infinite.

Proof. This is a direct application of Monotonic Convergence Theorem. Refer to

Theorem 2 from section 5.2 in [57].
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Theorem 2.2.6 (Jensen’s Inequality) Let (Ω,F ,P) be a probability space, X an

integrable real-valued random variable and f a convex function. Then:

f(E[X]) ≤ E[f(X)].

Proof. Refer to [50] for a general proof on an infinite-dimensional space.

Let a, c,m, n, k be bounded variables valued in R with a,m being positive. Under

the quadratic and convex setting, for x ∈ R,π ∈ RN , let
f(ω, t, x, π) = 1

2
(Q(t)x2 + 2π⊺S(t)x+ π⊺R(t)π)

g(ω, x) = 1
2
(ax2 + 2cx)

h(ω, x) = 1
2
(mx2 + 2nx+ k)

Then for the state process Xπ ∈ L2
F(0, T ;RN) and control π ∈ L2

F(0, T ;RN), the

optimization problem is as the following:

minimize
π∈A

J(π) = E

[∫ T

0

f(t,Xπ(t), π(t))dt+ g(Xπ(T ))

]
(2.1)

(P1)

subject to H(π) = E
[
h(Xπ(T ))

]
≤ 0 (2.2)

where

dXπ(t) = (r(t)Xπ(t) + π⊺(t)σ(t)θ(t))dt+ π⊺(t)σ(t)dWt; X
π(0) = x0 (2.3)

and

A := {π ∈ L2
F(0, T ;RN) : π(t) ∈ K for all t ∈ [0, T ] a.e.},

with K ⊆ RN a closed convex set containing 0.
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Define

B := {π ∈ A : H(π) ≤ 0}.

We call π admissible if it is in B and the pair (π,Xπ) is called admissible if Xπ

is a strong solution to (2.3). Let V (x0) denote the value function of (P1), i.e.

V (x0) = infπ∈B J(π).

Lemma 2.2.7 B is convex.

Proof. B = A ∩ {π : H(π) ≤ 0} and if it can be shown that B is a union of 2

convex sets, then it is also convex. It is straightforward to see that A is convex.

To see that {π : H(π) ≤ 0} is convex, first observe (2.3) is linear about π and X.

Therefore X π̃ = Xµπ1+(1−µ)π2 = Xµπ1 +X(1−µ)π2 = µXπ1 + (1− µ)Xπ2 for µ ∈ [0, 1]

and (πi, X
πi) admissible. Given h convex, we can conclude that

H(π̃) = E
[
h(X π̃(T ))

]
≤ E

[
µh(Xπ1(T )) + (1− µ)h(Xπ2(T ))

]
≤ 0.

Hence π̃ ∈ {π : H(π) ≤ 0} and so B is convex.

If the solution to the non-constrained problem (2.1) already satisfies the constraint

(2.2), then we are done here. Thus it is advisable to solve the problem without

additional constraint first.

For a more general solution, let’s introduce a Langrange Multiplier λ ≥ 0 to reduce

constrained problem (P1) to an unconstrained case:

for each λ minimize
π∈A

J(π, λ) = J(π) + λH(π), (2.4)

(P2)

then find λ such that


H(π) ≤ 0,

λH(π) = 0,

λ ≥ 0.

(2.5)
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While we can also draw equivalent relationship between Karush–Kuhn–Tucker con-

ditions and Fritz John condition similar to the deterministic optimal control, in

stochastic case, we shall use an alternative version of Fritz John (FJ) condition

mentioned in [25].

Define

C := {(r, s) ∈ R× R : J(π) ≤ V (x0) + r,H(π) ≤ s, for some π ∈ A}.

Then the following assumption ensures that we will arrive at FJ condition:

(FJ1) The convex hull of C, ConvC has non-empty interior and (0, 0) lies on the

boundary of ConvC.

Lemma 2.2.8 C is convex.

Proof. Suppose (r1, s1), (r2, s2) ∈ C, so there exists π1, π2 ∈ A s.t.

J(πi) ≤ V (x0) + ri, H(πi) ≤ si, for i ∈ {1, 2}.

Then for any real number µ ∈ [0, 1], π̃ = µπ1 + (1− µ)π2, r̃ = µr1 + (1− µ)r2 and

s̃ = µs1 + (1− µ)s2,

J(π̃) ≤ µJ(π1)+(1−µ)J(π2) ≤ µV (x0)+µr1+(1−µ)V (x0)+(1−µ)r2 ≤ V (x0)+ r̃,

H(π̃) ≤ µH(π1) + (1− µ)H(π2) ≤ µs1 + (1− µ)s2 ≤ s̃.

Hence π̃ ∈ C and C is convex.

Also, as long as
∣∣V (x0)

∣∣ < ∞, C is non-empty so it only suffices to assume the

origin is on the boundary. As such assumption (FJ1) is equivalent to the following

condition under the current problem setting:

(FJ2)
∣∣V (x0)

∣∣ < ∞ and origin is on the boundary of C.
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Theorem 2.2.9 (Fritz John Condition) With (FJ2) satisfied, one can find a non-

zero pair (r∗, s∗) ∈ R≥0 × R≥0 such that

r∗V (x0) = inf
π∈A

{r∗J(π) + s∗H(π)}. (2.6)

Proof. From (FJ2), the origin is on the boundary of C, as such, we can find a

supporting hyperplane to the convex hull through the origin. Hence there exists a

non-zero pair (r∗, s∗) ∈ R×R such that r∗r+ s∗s ≥ 0, for any (r, s) in C. If r∗ < 0,

for any pair (r, s) we can pick arbitrarily large r̃ such that (r̃, s) is still in C. Then

there exits r̃ such that r̃∗r + s∗s < 0 and contradicts the result. Hence r∗ ≥ 0.

With a similar argument, s∗ ≥ 0. Furthermore, by definition of C, for any π ∈ A,

(J(π)− V (x0), H(π)) ∈ C and

r∗(J(π)− V (x0)) + s∗H(π) ≥ 0.

Hence

r∗V (x0) ≤ inf
π∈A

{r∗J(π) + s∗H(π)}.

The reverse is trivially true since s∗ ≥ 0 and H(π) ≤ 0 for any π ∈ B. Then,

r∗V (x0) = inf
π∈B

r∗J(π) ≥ inf
π∈B

{r∗J(π) + s∗H(π)} ≥ inf
π∈A

{r∗J(π) + s∗H(π)}.

Hence,

r∗V (x0) = inf
π∈A

{r∗J(π) + s∗H(π)}.

To ensure the existence of the Lagrange multiplier, another assumption has to be

made:

(SF1) There exists π ∈ A s.t. H(π) < 0.
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Theorem 2.2.10 If both (FJ2) and (SF1) are satisfied, then we can always find a

Lagrange multiplier λ such that

V (x0) = inf
π∈A

{J(π) + λH(π)}.

Proof. Suppose for a contradiction for all pair (r∗, s∗) ∈ C, r∗ = 0, then by non-

zeroness, s∗ > 0, together with (SF1)

0 = s∗ inf
π∈A

H(π) ≤ s∗ inf
π∈B

H(π) < 0,

which leads to a contradiction. Hence we can find such r∗ > 0. Divide r∗ on both

sides of (2.6) to obtain

V (x0) = inf
π∈A

{J(π) + s∗

r∗
H(π)}.

We can conclude λ = s∗

r∗
as the non-negative Lagrange multiplier.

Next, we want to show the Lagrange multiplier indeed satisfies (2.5).

Theorem 2.2.11 Under (FJ2) and (SF1), we can find λ such that

V (x0) = inf
π∈A

{J(π) + λH(π)}

and (2.5) is true.

Proof. From Theorem 2.2.10, we can find a non-negative Lagrange multiplier λ s.t.

V (x0) = inf
π∈A

{J(π) + λH(π)} ≤ inf
π∈B

{J(π) + λH(π)}.

As λ ≥ 0, for any π ∈ B, J(π) + λH(π) ≤ J(π), so

V (x0) ≤ inf
π∈B

{J(π) + λH(π)} ≤ inf
π∈B

J(π) = V (x0).

12



Hence

inf
π∈B

{J(π) + λH(π)} = inf
π∈B

J(π) = V (x0). (2.7)

Then, by the definition of infimum, we can find a sequence {πn} s.t. πn ∈ A, H(πn) ≤

0 and

V (x0) ≤ J(πn) ≤ V (x0) +
1

n
.

By completing the square in the running cost

f(t,Xπn , πn) =
1

2
Q
(
Xπ

n +Q−1S⊺πn

)2
+

1

2
Qπ⊺

n(R− SQ−1S⊺)πn.

From Lemma 2.2.4, Q > 0 and R − SQ−1S⊺ ≻ 0. By the Min-Max Theorem,

π⊺
n(t)(R− SQ−1S⊺)πn(t) ≥ λmin

∣∣πn(t)
∣∣2. Hence, f(t,Xπn , πn) ≥ λmin

∣∣πn(t)
∣∣2.

The terminal cost is quadratic with quadratic coefficient (a+λm) > 0. Therefore, it

is bounded from below by some number κ. Then J(πn) ≥ E[
∫ T

0
λmin

∣∣πn(t)
∣∣2dt] + κ.

As J(πn) ≤ V (x0) +
1
n
and

∣∣V (x0)
∣∣ < ∞, {πn} ⊆ L̄2

F(0, T ;RN), a bounded sequence

in the Hilbert space L2
F(0, T ;RN). By Lemma 2.2.2, there exists a weakly convergent

subsequence {πi, i ∈ I1}. The by Thoerem 2.2.3, we can again find a subsequence

{πi, i ∈ I2 ⊆ I1} such that, after reordering the subsequence, the Cesaro-mean

converges strongly to π̃, i.e.

lim
i→∞

∥1
i

i∑
j=1

πnj
− π̃∥ → 0.

As L2
F(0, T ;RN) is a Hilbert space, the closed subset of Hilbert space is complete,

hence the limit π̃ ∈ B.

Additionally note J(π) is convex and bounded from below, then by Fatou’s Lemma

2.2.5 and Jensen’s inequality 2.2.6:

13



V (x0) ≤ J(π̃)

= J( lim
i→∞

1

i

i∑
j=1

πnj
)

≤ lim
i→∞

J(
1

i

i∑
j=1

πnj
)

≤ lim
i→∞

1

i

i∑
j=1

J(πnj
)

= V (x0) + lim
i→∞

1

i

i∑
j=1

1

nj

≤ V (x0) + lim
i→∞

1

i

i∑
j=1

1

j

= V (x0).

Substitute π̃ to (2.7) we have

J(π̃) = inf
π∈B

{J(π) + λH(π)} ≤ J(π̃) + λH(π̃) ≤ J(π̃)

Therefore, λH(π̃) = 0.

On the other hand, for sufficiency,

Theorem 2.2.12 Suppose that there exists a pair (π∗, λ∗) that solves (P2). Then

the value function to (2.4), J(π∗, λ∗) equals the value function of (P1). Furthermore,

the corresponding (Xπ∗
, π∗) is optimal to the original constrained problem (P1), that

is

J(π∗, λ∗) = J(π∗) = V (x0).

Proof. As (π∗, λ∗) is optimal to the unconstrained problem (P2), for any π ∈ B, we
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have

J(π, λ∗) ≥ J(π∗, λ∗).

From (2.4) and (2.5),

J(π) + λ∗H(π) = J(π, λ∗) ≥ J(π∗, λ∗) = J(π∗) + λ∗H(π∗) = J(π∗).

Therefore, for any π ∈ B,

J(π) = J(π∗)− λ∗H(π) ≥ J(π∗),

that is

J(π∗) ≤ inf
π∈B

J(π) = V (x0) ≤ J(π∗).

Hence we can show that

J(π∗, λ∗) = J(π∗) = V (x0).

Corollary 2.2.13 Under the same setting as in Theorem 2.2.12 above, we can find

a non-zero pair (r∗, s∗) ∈ R≥0 × R≥0 satisfy (2.6).

Proof. The proof is straight forward from results of Theorem 2.2.12.

V (x0) = J(π∗, λ∗) = inf
π∈A

{J(π) + λ∗H(π)}.

Time both sides by some positive number to arrive at (2.6).

Therefore, we have shown that under (FJ2) and (SF1), the FJ condition is equivalent

to the KKT conditions. Furthermore, Theorem 2.2.11 shows that with an optimal

solution to the constrained problem (P1), there exists an optimal pair of control and

Lagrange multiplier to solve the unconstrained problem (P2) while Theorem 2.2.12
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shows that the KKT conditions are sufficient for the optimal solution to the non-

constrained problem (P2) to match the optimal solution to the constrained problem

(P1). As such, we have built the necessary and sufficient conditions between the

optimality of constrained and unconstrained problems. Lastly, it is natural to ask

what would happen when (FJ2) and (SF1) are not satisfied.

Lemma 2.2.14 If (0, 0) ∈ C, then it will be on the boundary.

Proof. Suppose for a contradiction, then the origin will be in the interior of C which

means we can find ε > 0 such that the ball B((0, 0), ε) ⊆ C. Hence we can pick

(µ, 0) ∈ C where −ε < µ < 0 which by definition of C says there exists a π ∈ A such

that J(π) ≤ V (x0) + µ < V (x0) contradicting the fact V (x0) is the infimum.

Therefore, if (FJ2) is not satisfied, either
∣∣V (x0)

∣∣ = ∞, which is a trivial case, or

(0, 0) /∈ C.

Lemma 2.2.15 If C is not empty, then (0, 0) ∈ C.

Proof. Suppose for a contradiction, if (0, 0) /∈ C, then there exists ε > 0 such that

B((0, 0), ε) ⊆ C∁, the complement of C. So for all π ∈ A and (r, s) ∈ B((0, 0), ε),

J(π) > V (x0) + r or H(π) > s. Pick r, s > 0, then for all π ∈ B, J(π) > V (x0) + r

which means V (x0) = infπ∈B J(π) ≥ V (x0) + r > V (x0), leading to a contradiction.

Lemma 2.2.16 If (SF1) is not satisfied, then the constrained problem is equivalent

to (2.1) subject to H(π) = 0.

Proof. If (SF1) is not satisfied, then for any π ∈ B, H(π) ≥ 0. Combining with

constraint (2.2), the new constraint would be H(π) = 0.

Remark Although Theorem 2.2.12 says that the optimal control for the uncon-

strained problem matches that of the constrained problem, we still need a way to

find the optimal control and optimal value. The steps are to first fix a Lagrange
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multiplier λ, then solve (2.4), for example, using the established method in [44].

Define

H̃(π) = E[
1

2
mX2 + nX]

as an alternative version of (2.3) without the constant term. Then, for any fixed

λ ≥ 0, J(π)+λH̃(π) can be treated as the cost function in [44] and solved accordingly.

Subsequently, pick λ∗ that satisfies (2.5) which definitely exists by Theorem 2.2.11.

2.3 Lagrange Multiplier for Mean-Field Stochas-

tic Optimal Control Problem with addi-

tional terminal inequality constraints

In the section we change the setting to a mean-field problem. Most of the proofs

will be similar to 2.2, so they will be omitted. However, because most of the studies

on mean-field stochastic optimal control, especially linear-quadratic, center around

deterministic coefficients, we will use new settings similar to those in [59]:

(H1) A, Ā ∈ L1(0, T ;Rn×n), B, B̄ ∈ L2(0, T ;Rn×m), C, C̄ ∈ L2(0, T ;Rn×n) and

D, D̄ ∈ L∞(0, T ;Rn×m).

(H2) Q, Q̄ ∈ L1(0, T ;Sn),S, S̄ ∈ L2(0, T ;Rm×n), R, R̄ ∈ L∞(0, T ;Sm), GT , ḠT ∈ Sn

and gT , ḡT ∈ Rn.

Let u ∈ U [t, T ] := L2
F(t, T ;Rm) and the initial pair (t, ξ) from

D := {(t, ξ) : t ∈ [0, T ], ξ ∈ L2
Ft
(Rn)}.
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Define the state process as
dX(s) =

(
A(s)X(s) + Ā(s)X̄(s) +B(s)u(s) + B̄(s)ū(s)

)
ds

+
(
C(s)X(s) + C̄(s)X̄(s) +D(s)u(s) + D̄(s)ū(s)

)
dW (s)

X(t) = ξ,

and the objective cost function being

J(t, ξ;u)

= E[
∫ T

t

f(s,X(s), u(s), X̄(s), ū(s))ds+ g(X(T ), ¯X(T ))]

= E
[
⟨GTX(T ), X(T )⟩+ 2⟨gT , X(T )⟩+ ⟨ḠT X̄(T ), X̄(T )⟩+ 2⟨ḡT , X̄(T )⟩

+

∫ T

t

⟨

Q(s) S⊺(s)

S(s) R(s)


X(s)

u(s)

 ,

X(s)

u(s)

⟩+ ⟨

Q̄(s) S̄⊺(s)

S̄(s) R̄(s)


X̄(s)

ū(s)

 ,

X̄(s)

ū(s)

⟩ds
]

(H3) There exists a constant δ > 0 such that

J(t, 0;u) ≥ δE[
∫ T

t

∣∣u(s)∣∣2ds].
As (H1), (H2) and (H3) are the same as (A1), (A2) and (A4) from section 3 in

[59],(2.8) admits a unique Xu ∈ L2
F(C(t, T ;Rn)) and the problem

minimize
u∈U [t,T ]

J(t, ξ;u) (2.8)

has a unique solution u∗ ∈ U [t, T ] for each pair (t, ξ) ∈ D.

Additionally, it is also pointed out that (H3) is equivalent to J(t, ξ;u) being uni-

formly (strongly) convex.

Extending from Yong and Sun’s work, suppose there is an additional constraint at
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the terminal time,

H(u) = E
[
⟨HTX(T ), X(T )⟩+ 2⟨hT , X(T )⟩+ ⟨H̄T X̄(T ), X̄(T )⟩+ 2⟨h̄T , X̄(T )⟩+ c

]
≤ 0,

where HT and H̄T ∈ Sn
+ while hT , h̄T and c are constant. Then the constrained

problem will be

minimize
u∈U [t,T ]

J(t, ξ;u)

(P3)

subject to H(u) ≤ 0

Let Ũ [t, T ] = {u ∈ U [t, T ] : H(u) ≤ 0} and V (t, ξ) denotes the value function so

V (t, ξ) := inf
u∈Ũ [t,T ]

J(t, ξ;u).

Similarly to Section 2.2, introduce the Lagrange multiplier and construct an un-

constrained problem. Define J(t, ξ;u, λ) = J(t, ξ;u) + λH(u) then for each λ, the

unconstrained problem becomes

minimize
u∈U [t,T ]

J(t, ξ;u, λ) (2.9)

Let its value function be V (t, ξ;λ), so

V (t, ξ;λ) := inf
u∈U [t,T ]

J(t, ξ;u, λ).

The KKT condition is finding λ such that
H(u) ≤ 0,

λH(u) = 0,

λ ≥ 0.

(2.10)
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Define

C := {(r, s) ∈ R2 : J(t, ξ;u) ≤ V (t, ξ) + r,H(u) ≤ s, for some u ∈ U [t, T ]},

and the assumption about C will be still be (FJ1).

Lemma 2.3.1 C is convex.

Proof. Since J is convex and the SDE (2.8) is linear, the proof is the same as in

2.2.8.

Assuming
∣∣V (t, ξ)

∣∣ < ∞, we can again simplify (FJ1) to

(FJ3)
∣∣V (t, ξ)

∣∣ < ∞ and the origin is on the boundary of C.

Theorem 2.3.2 With (FJ3) satisfied, one can find a non-zero pair (r∗, s∗) ∈ R≥0×

R≥0 such that

r∗V (t, ξ) = inf
u∈U [t,T ]

{r∗J(t, ξ;u) + s∗H(u)}.

Proof. The proof is the same as Theorem 2.2.9.

The strict feasibility says

(SF2) There exists u ∈ U s.t. H(u) < 0.

Theorem 2.3.3 If both (FJ3) and (SF2) are satisfied, then we can always find a

Lagrange multiplier λ such that

V (t, ξ) = inf
u∈U [t,T ]

{J(t, ξ;u) + λH(u)}.

Proof. Proof same as Theorem 2.2.10.

Theorem 2.3.4 Under (FJ3) and (SF2), we can find λ such that

V (t, ξ) = inf
u∈U [t,T ]

{J(t, ξ;u) + λH(u)}
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and (2.10) is true.

Proof. According to (3.3.3) from [59], for each pair (t, ξ) ∈ D, J(t, ξ;u) can be

expressed as quadratic equation on u and strictly convex from (H3). Hence it is

bounded from below by
∫ T

t
α
∣∣u(s)∣∣ds+ κ for some α > 0 and κ ∈ R. Also U [t, T ] is

a Hilbert space so the proof will be the same as that in Theorem 2.2.11.

Theorem 2.3.5 For any pair (t, ξ) ∈ D, suppose that there exists a pair (u∗, λ∗)

that solves (2.9) and satisfies (2.10). Then the value function J(t, ξ;u∗, λ∗) equals

the value function of (P3). Furthermore, the corresponding (Xu∗
, u∗) is optimal to

the original constrained problem (P3), that is

V (t, ξ;λ∗) = J(t, ξ;u∗, λ∗) = J(t, ξ;u∗) = V (t, ξ).

Proof. The proof is the same as Theorem 2.2.12.

Remark For each λ, we can treat the unconstrained problem (2.9) as an example

in [59] to solve. Then find λ∗ that satisfies (2.10).

2.4 Conclusion

Notice that most of the proofs only require finiteness of the value function and

convexity of the problem. As such it is possible to apply the results to a more general

settings, for example, the cost functions do not have to be limited to quadratic. Any

convex function bounded below can be used instead.

Lemma 2.2.16 points out what would happen if the Strict Feasiblity condition is vio-

lated. The additional constraint H(π) would only be zero and the problem becomes

finding an optimal solution with the equality constraint, given that the additional

constraint is always non-negative. Although the problem becomes limited, it would

still be interesting to see what the solution would look like.

21



Lastly, the problem proposed in [59] does not have any constraint on the control.

Therefore, a new method would be needed to address the problem. The following

chapters show that using a duality approach, the constrained primal problem can

be converted to an equivalent dual problem which could be easier to solve than its

primal counterpart.
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3
MFSDE

3.1 Introduction

Similar to usual stochastic optimal control problem, we are interested in whether

there exists an easy way to characterise the optimality conditions of a Mean-Field

Stochstic Optimal Control problem. With the work in [14], MFFBSDEs can be

rigorously derived. As such we can properly discuss the existence of adjoint processes

which can help to formulate Hamiltonian for the optimal control problem and recover

the relevant Maxmum Principle conditions for optimality. Many articles like [5] and

[42] study this problem, but the setting usually involves no term directly depending

on the distribution of the control. Furthermore, since the dual problem in [44]

contains the initial value of the state process in the cost function, it is natural to

believe that the dual problem to Mean-Field primal problem would have a similar

cost function. As such, it is an incentive to study the optimal condition when the
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cost function contains initial values. Although [2] has a similar setting, in its proof

of sufficiency, the concavity condition missed out the requirement that h must be

increasing. Furthermore, their problem is one-dimensional, whereas our problem

has to be multidimensional with control constraints.

We have divided the proof into two parts. The first part shows the existence and

uniqueness of optimal control as well as adjoint processes, while the second part

shows the necessary and sufficient conditions for the optimality for the constrained

problem.

3.2 Adjoint processes to Mean-Field Stochas-

tic Control

Let |·| denote the Euclidean norm (a.k.a Forbenius norm) for vectors and matrices.

So for any matrix (or vector) A := (aij)1≤i≤n1,1≤j≤n2 ∈ Rn1×n2 , it has a norm

|A| := (

n1∑
i=1

n2∑
j=1

a2ij)
1
2 .

Suppose χ ∈ Rk0 , u = (u1, u2, ..., un)
⊺ ∈ K where K ⊆ R

∑n
0 ki is a closed convex set,

ui ∈ Rki and ki ∈ N+ for i ∈ {1, 2, ..., n}, m = (m0,m1, ...,mn)
⊺ where mi ∈ Rki for

i ∈ {0, 1, ..., n} and functions

b = b(t) = b(t, x,u,m) : [0, T ]× Rk0 × R
∑n

1 ki × R
∑n

0 ki 7→ Rk0 ,

and

σ = σ(t) = σ(t, x,u,m) : [0, T ]× Rk0 × R
∑n

1 ki × R
∑n

0 ki 7→ Rk0×d

,

satisfying the following assumptions,
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(A1) Both b and σ are continuous and differentiable with respect to x and m0 with

finite derivatives.

(A2) For any fixed u and fixed {mi}1≤i≤r, functions b and σ are Lipschitz continuous,

i.e. there exists a constant C ≥ 0 such that

∣∣b(t, x′,u,m′)− b(t, x,u,m)
∣∣+∣∣σ(t, x′,u,m′)− σ(t, x,u,m)

∣∣ ≤ C(
∣∣x′ − x

∣∣+∣∣m′
0 −m0

∣∣)
for almost all t ∈ [0, T ] and x, x′,m = (m0,m1, ...,mn)

⊺,m′ = (m′
0,m1, ...,mn)

⊺.

(A3) For any fixed u and fixed {mi}1≤i≤r, functions b and σ are such that

∥b(t, 0,u,m0)∥2L2
+∥σ(t, 0,u,m0)∥2L2

= E[
∫ T

0

∣∣b(t, 0,u,m)
∣∣2 + ∣∣σ(t, 0,u,m)

∣∣2dt] < ∞,

where m0 = (m0, 0, ..., 0)
⊺ ∈ R

∑n
0 ki .

Now suppose u ∈ L2
F(0, T ;K), then the following SDE admits a unique solution

X = Xu,χ ∈ L2
F(C([0, T ],Rk0)),

dX(t) = b(t,X(t),u(t),M(t))dt+ σ(t,X(t),u(t),M(t))dW (t)

X(0) = χ,

where M = M(t) = Mu,χ(t) = (M0(t),M1(t), ...,Mn(t))
⊺ is defined as

Mi(t) := E[ui(t)] for 1 ≤ i ≤ n

while

M0(t) := E[Xu,χ(t)].

Furthermore, we call such u an admissible control and let U ⊆ L2
F(0, T ;K) denote

the set of all admissible controls. The optimal control problem is to minimise the
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objective function:

J(u, χ) = E

[∫ T

0

f(t,X(t),u(t),M(t))dt+ g(X(T ),E[X(T )], χ)

]
, (3.1)

where

f = f(t) = f(t, x,u,m) : [0, T ]× Rk0 × R
∑n

1 ki × R
∑n

0 ki 7→ R,

and

g = g(x,m0, χ) : Rk0 × Rk0 × Rk0 7→ R.

From now on,
∑

i and
∑

j will be used as a shortened form for
∑n

i=1 and
∑n

j=0 if

there is no confusion. For the running cost and terminal cost we need the following

assumption throughout this section:

(A4) f and g are continuous and differentiable with respect to x and m0. f is

Frechet-differentiable with respect to u and m. g is continuous and differen-

tiable with respect to χ. The derivatives are bounded by a linear growth and

Lipschitz. For example,

|∂m0f | ≤ C(1 + |x|+ |u|+ |m|)

and

∣∣∂m0f(t, x,u,m)− ∂m0f(t, x
′,u′,m′)

∣∣ ≤ C(1+
∣∣x− x′∣∣+ ∣∣u− u′∣∣+ ∣∣m−m′∣∣)

for some constant C, where ∂ denotes the partial derivative. For example, if

x = (x1, x2, ...xk0)
⊺, b = (b1, b2, ...bk0)

⊺, y = (y1, y2, ...yk0)
⊺, z = (zij)1≤i≤k0,1≤j≤d

and σ = (σi,j)1≤i≤k0,1≤j≤d, then
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∂xb :=


∂x1b

...

∂xk0
b

 =




∂x1b1

...

∂x1bk0


...

∂xk0
b1

...

∂xk0
bk0





, y⊺∂xb :=


y⊺∂x1b

...

y⊺∂xk0
b

, ∂x(y
⊺)b :=


∂x1(y

⊺)b

...

∂xk0
(y⊺)b



and

∂xσ :=


∂x1σ

...

∂xk0
σ

 =


(∂x1σij)1≤i≤k0,1≤j≤d

...

(∂xk0
σi,j)1≤i≤k0,1≤j≤d

, tr(z⊺∂xσ) :=


tr(z⊺∂x1σ)

...

tr
(
z⊺∂xk0

σ
)


while ∂xb · x :=
∑

i ∂xi
bxi =

∑
i


∂xi

b1xi

...

∂xi
bk0xi

 = (∂xb)
⊺x.

Define the Hamiltonian H : [0, T ]× Rk0 × R
∑n

1 ki × R
∑n

0 ki × Rk0 × Rk0×d 7→ R as

H = H(t) = H(t, x,u,m, y, z) := f + y⊺b+ tr(z⊺σ).

For example, refer to [1], for

Y = Y (t) = Y (t, ω) : [0, T ]× Ω 7→ Rk0

and

Z = Z(t) = Z(t, ω) : [0, T ]× Ω 7→ Rk0×d,
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consider the adjoint BSDE,

dY (t) = −
[
∂xH(t) + E[∂m0H(t)]

]
dt+ Z(t)dW (t)

= −
[
∂xf(t) + Y ⊺(t)∂xb(t) + tr

(
Z⊺(t)∂xσ(t)

)
+ E[∂m0f(t)] + E[Y ⊺(t)∂m0b(t)]

+ E[tr
(
Z⊺(t)∂m0σ(t)

)
]
]
dt+ Z(t)dW (t)

Y (T ) = ∂xg(X(T ),E[X(T )], χ) + E
[
∂m0g(X(T ),E[X(T )], χ)

]
.

(3.2)

Lemma 3.2.1 Let (Ω̄, F̄ , P̄) = (Ω × Ω,F ⊗ F ,P ⊗ P) be the product of (Ω,F ,P)

with itself. Let its filtration be F̄t : Ft ⊗Ft, for 0 ≤ t ≤ T . Any measurable random

variable ξ originally defined on Ω can be extended to Ω̄: ξ′(ω′, ω) := ξ(ω′), where

(ω′, ω) ∈ Ω̄. Let L̄p(H) denote the set of all pth integrable H-valued random variables

on probability space (Ω̄, F̄ , P̄). For any θ ∈ L̄p(H), the variable θ(·, ω) : Ω 7→ H

belongs to L1(H), P(dω)-a.s. and we denote its expectation by

E′ [θ(·, ω)] = ∫
Ω

θ(ω′, ω)P(dω′).

Note that E′ [θ] = E′ [θ(·, ω)] ∈ L1(H), and

Ē [θ] =

∫
Ω̄

θdP̄ =

∫
Ω

E′ [θ(·, ω)]P(dω) = E[E′ [θ]].

Suppose the function

ϕ = ϕ(ω′, ω, t, y′, z′, y, z) : Ω̄× [0, T ]× R× Rd × R× Rd 7→ R

is F̄t-progressively measurable and there exists a constant C ≥ 0 such that dPdt-a.s.,

for any y1, y2, y
′
1, y

′
2 ∈ R, z1, z2, z′1, z′2 ∈ Rd,

∣∣ϕ(t, y′1, z′1, y1, z1)− ϕ(t, y′2, z
′
2, y2, z2)

∣∣ ≤ C(
∣∣y′1 − y′2

∣∣+∣∣z′1 − z′2
∣∣+|y1 − y2|+|z1 − z2|).
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Also, ϕ(·, 0, 0, 0, 0) ∈ L2
F(0, T ;R). Then for any square integrable random variable

ξ, the MFBSDE

Y (t) = ξ +

∫ T

t

E′ [ϕ(s, Y ′(s), Z ′(s), Y (s), Z(s))
]
ds−

∫ T

t

Z(s)dW (s), 0 ≤ t ≤ T,

has a unique adapted solution (Y, Z) ∈ L2
F(C([0, T ],R)× L2

F(0, T ;Rd), where

E′ [ϕ(s, Y ′(s), Z ′(s), Ys, Zs)
]
(ω) =

∫ ′

Ω

ϕ(s, Y (s, ω′), Z(s, ω′), Y (s, ω), Z(s, ω))dP(ω′).

Proof. Refer to Theorem 3.1 in [15].

Corollary 3.2.2 With (A1) to (A4), the adjoint processes (Y, Z) ∈ L2
F(C([0, T ],Rk0)×

L2
F(0, T ;Rk0×d) exist and are unique for any u ∈ U .

Proof. For any admissible control u and real value χ, with (A1) to (A3), there exists

a unique state process X ∈ L2
F(C([0, T ],Rk0)) that satisfies the forward SDE.

With appropriate substitutions, the results in [15] can be applied:

ϕ(ω′, ω, t, Y ′, Z ′, Y, Z) := Y ⊺∂xb(t,X(ω, t),u(ω, t),M(t)) + tr
(
Z⊺∂xσ(t,X(ω, t),u(ω, t),M(t))

)
+ ∂xf(t,X(ω, t),u(ω, t),M(t)) + ∂m0f(t,X(ω′, t),u(ω′, t),M(t))

+ Y ′⊺∂m0b(t,X(ω′, t),u(ω′, t),M(t)) + tr
(
(Z ′)⊺∂m0σ(t,X(ω′, t),u(ω′, t),M(t))

)
ξ := ∂xg(X(T ),E[X(T )], χ) + E

[
∂m0g(X(T ),E[X(T )], χ)

]
,

From (A1) and (A4), ∂xb, ∂xσ and ∂mj
b, ∂mj

σ are bounded. Therefore, ϕ is Lipschitz

in y, y′, z, z′ Moreover, as ∂xf and ∂mj
f are bounded by linear growth of x, u and
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m,

∥ϕ(·, ·, ·, 0, 0, 0, 0)∥L2
: =

√∫
Ω̄

∫ T

0

∣∣ϕ(ω′, ω, t, 0, 0, 0, 0)
∣∣2dtdP̄

=

√√√√E

[∫ T

0

∣∣∂xf + E[∂m0f ]
∣∣2dt]

≤

√√√√(r + 2)E

[∫ T

0

|∂xf |2 + |∂m0f |
2dt

]

≤

√√√√C2(r + 2)2E

[∫ T

0

(1 +
∣∣X(t)

∣∣+ ∣∣u(t)∣∣+ ∣∣M(t)
∣∣)2dt]

≤ C ′(1 + ∥X∥L2 + ∥u∥L2 + ∥M∥L2),

for some constant C ′ = 2(r+2)C and fixed u, χ and X, function ϕ(·, ·, ·, 0, 0, 0, 0) ∈

L2
F(0, T ;Rk0). Hence conditions in Lemma 3.2.1 are satisfied and the result can be

applied: There exists a unique pair (Y, Z) ∈ L2
F(C([0, T ],H) × L2

F(0, T ;H) solving

the backward equation.

Y (t) = ξ +

∫ T

t

E′ [ϕ(·, ω, s, Y ′(s), Z ′(s), Y (s), Z(s))
]
ds−

∫ T

t

Z(s)dW (s)

which is equivalent to (3.2).

3.3 Stochastic Maximum Conditions

To show the necessary condition for optimality, we need to use the Gateaux deriva-

tive and its product rule, as well as chain rule. Also note that differentiability implies

Frechet which implies Gateaux diffenrentiabilty. Let DdF (u) denote the Gateaux

derivative of F with respect to u if it exists, along the direction of d, that is,

DdF (u) := lim
r→0

F (u+ rd)− F (u)

r
.
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Theorem 3.3.1 A necessary condition for û to minimize (3.1) over u ∈ U is

(∂uH|u=û + E[∂mi
H|u=û]) · (u− û) ≥ 0 (3.3)

for all u ∈ U almost surely, and

Y (0) + E
[
∂χg(X(T ),E[X(T )], χ)

]
= 0. (3.4)

In the case K is the whole space, (3.3) can be simplified into

∂ui
H(t) + E[∂mi

H(t)] = 0 (3.5)

almost surely for t ∈ [0, T ] for all i,

Proof. For any pair (u, χ) ∈ U×Rk0 , fix χ and apply Gateaux derivative in direction

of β to u both sides of the forward SDE. As the state process is in L2
F(C([0, T ],Rk0),

DCT applies. As such the Gateaux derivative can be taken inside the integral on

both sides of the state process SDE as well as expectations. Write X in short of Xu,χ

and M in short of Mu,χ = E[Xu,χ]. Apply the Gateaux derivative to the forward

SDE of X. Then, by linearity of the derivatives, continuity and chain rules,

d(DβX(t))

= Dβbdt+DβσdW (t)

= (∂xb ·DβX +
∑
i

∂ui
b · βi +

∑
j

∂mj
b ·DβMj)dt

+ (∂xσ ·DβX +
∑
i

∂ui
σ · βi +

∑
j

∂mj
σ ·DβMj)dW (t)

= (∂xb ·DβX +
∑
i

∂ui
b · βi + ∂m0b · E[DβX] +

∑
i

∂mi
b · E[βi])dt

+ (∂xσ ·DβX +
∑
i

∂ui
σ · βi + ∂m0σ · E[DβX] +

∑
i

∂mi
σ · E[βi])dW (t). (3.6)

31



Next, take the Gateaux derivative of J(u, χ) along the direction of β. From the

assumptions, the integral will be bounded, hence we can take the limit inside the

expectation and integral:

DβJ(u, χ) = E

[∫ T

0

Dβfdt+Dβg(X(T ),E[X(T )], χ)

]

= E
[ ∫ T

0

(∂xf ·DβX +
∑
i

∂ui
f · βi +

∑
j

[∂mj
f ·DβMj])dt

+ ∂xg(X(T ),E[X(T )], χ) ·DβX(T ) + ∂m0g(X(T ),E[X(T )], χ) · E[DβX(T )]
]

= E
[ ∫ T

0

(∂xf ·DβX +
∑
i

∂ui
f · βi + ∂m0f · E[DβX] +

∑
i

∂mi
f · E[βi])dt

+ ∂xg(X(T ),E[X(T )], χ) ·DβX(T ) + E
[
∂m0g(X(T ),E[X(T )], χ)

]
·DβX(T )

]
= E

[ ∫ T

0

(∂xf ·DβX +
∑
i

∂ui
f · βi + ∂m0f · E[DβX] +

∑
i

∂mi
f · E[βi])dt

+ Y ⊺(T )DβX(T )
]
. (3.7)

The last line involves switching the two expectation on E
[
∂m0g(X(T ),E[X(T )], χ) · E[DβX(T )]

]
.

Apply Ito’s Lemma to Y ⊺(t)DβX(t) and substitute with (3.2) and (3.6). Then we

32



have

d(Y ⊺(t)DβX(t))

= Y ⊺(t)d(DβX(t)) + (dY (t))⊺DβX(t) + d⟨Y,DβX⟩t

= {Y ⊺

∂xb ·DβX +
∑
i

∂ui
b · βi +

∑
j

[∂mj
b · (DβMj)]


−

[
∂xf + Y ⊺∂xb+ tr(Z⊺∂xσ) + (E[∂m0f ] + E[Y ⊺∂m0b] + E[tr(Z⊺∂m0σ)])

]⊺
DβX

+ tr

Z⊺

∂xσ ·DβX +
∑
i

∂ui
σ · βi +

∑
j

[∂mj
σ · (DβMj)]


}dt+NβdW (t)

= {Y ⊺

∂xb ·DβX +
∑
i

∂ui
b · βi +

∑
j

[∂mj
b · (DβMj)]


−

k0∑
k=1

[
∂xk

f + Y ⊺∂xk
b+ tr

(
Z⊺∂xk

σ
)
+ (E[∂m0k

f ] + E[Y ⊺∂m0k
b] + E[tr

(
Z⊺∂m0k

σ
)
])
]
DβXk

+ tr

Z⊺

∂xσ ·DβX +
∑
i

∂ui
σ · βi +

∑
j

[∂mj
σ · (DβMj)]


}dt+NβdW (t)

= {Y ⊺

∂xb ·DβX +
∑
i

∂ui
b · βi +

∑
j

[∂mj
b · (DβMj)]


−

[
∂xf + (E[∂m0f ] + E[Y ⊺∂m0b] + E[tr(Z⊺∂m0σ)])

]
·DβX − Y ⊺∂xb ·DβX − tr

(
Z⊺∂xσ ·DβX

)
+ tr

Z⊺

∂xσ ·DβX +
∑
i

∂ui
σ · βi +

∑
j

[∂mj
σ · (DβMj)]


}dt+NβdW (t)

= {Y ⊺

∑
i

∂ui
b · βi +

∑
j

[∂mj
b · (DβMj)]

+ tr

Z⊺

∑
i

∂ui
σ · βi +

∑
j

[∂mj
σ · (DβMj)]




−
[
∂xf + (E[∂m0f ] + E[Y ⊺∂m0b] + E[tr(Z⊺∂m0σ)])

]
·DβX}dt+NβdW (t)

(3.8)

For some process Nβ.
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Remark

Nβ = Y ⊺

∂xσ ·DβX +
∑
i

∂ui
σ · βi +

∑
j

[∂mj
σ · (DβMj)]

+ (DβX)⊺Z

From assumption (A1) to (A3), X ∈ L2
F(C([0, T ],H)) and its adjoint process (Y, Z)

are such that E
[
sups∈[0,T ]

∣∣Y (s)
∣∣2] < ∞ and E[

∫ T

0

∣∣Z(s)∣∣2ds] < ∞.

So, by a similar argument in Section 5 of [44], using the BDG inequality, we can

show that E
[
sups∈[0,T ]

∣∣Nβ(s)
∣∣2] < ∞. As such the volatility part is a martingale

and equals to 0 when taking expectation.

Taking the expectation and by swapping the expectation (E
[
E[X⊺]Y

]
= E

[
X⊺E[Y ]

]
),

(3.8) can be simplified to

dE[Y ⊺(t)DβX(t)]

= E
[
{Y ⊺(

∑
i

∂ui
b · βi +

∑
j

[∂mj
b ·DβMj]) + tr

Z⊺(
∑
i

∂ui
σ · βi +

∑
j

[∂mj
σ ·DβMj])


− (∂xf + E[∂m0f ] + E[Y ⊺(t)∂m0b(t)] + E[tr(Z⊺∂m0σ)]) ·DβX}dt

]
(3.9)

= E
[
{Y ⊺(

∑
i

∂ui
b · βi + ∂m0b · E[DβX] +

∑
i

∂mi
b · E[βi])

+ tr

Z⊺(
∑
i

∂ui
σ · βi + ∂m0σ · E[DβX] +

∑
i

∂mi
σ · E[βi])


− (∂xf + E[∂m0f ]) ·DβX − (Y ⊺(t)∂m0b(t) + tr(Z⊺∂m0σ)) · E[DβX]}dt

]
(3.10)

= E
[
{Y ⊺(

∑
i

∂ui
b · βi +

∑
i

∂mi
b · E[βi]) + tr

Z⊺(
∑
i

∂ui
σ · βi +

∑
i

∂mi
σ · E[βi])


− (∂xf + E[∂m0f ]) ·DβX}dt

]
. (3.11)
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Integrate the equation from 0 to T and note DβX(0) = 0:

E[Y ⊺(T )DβX(T )]

= E
[ ∫ T

0

{Y ⊺(
∑
i

∂ui
b · βi +

∑
i

∂mi
b · E[βi]) + tr

Z⊺(
∑
i

∂ui
σ · βi +

∑
i

∂mi
σ · E[βi])


− (∂xf + E[∂m0f ]) ·DβX}dt+ Y ⊺(0)DβX(0)

]
= E

[ ∫ T

0

{Y ⊺(
∑
i

∂ui
b · βi +

∑
j

[∂mj
b · E[βj]]) + tr

Z⊺(
∑
i

∂ui
σ · βi +

∑
j

[∂mj
σ · E[βj]])


− (∂xf + E[∂m0f ]) ·DβX}dt

]
. (3.12)

Substituting (3.12) into (3.7), we have

DβJ(u, χ)

= E

∫ T

0

{∂xf ·DβX +
∑
i

∂ui
f · βi + ∂m0f · E[DβX] +

∑
i

∂mi
f · E[βi]}dt


+ E

[ ∫ T

0

{Y ⊺(
∑
i

∂ui
b · βi +

∑
i

[∂mi
b · E[βi]])− (∂xf + E[∂m0f ]) ·DβX

+ tr

Z⊺(
∑
i

∂ui
σ · βi +

∑
i

[∂mi
σ · E[βi]])

}dt
]

= E

∫ T

0

{
∑
i

[(∂ui
f + Y ⊺∂ui

b+ tr
(
Z⊺∂ui

σ
)
) · βi + (∂mi

f + Y ⊺∂mi
b+ tr

(
Z⊺∂mi

σ
)
) · E[βi]]}dt


= E

∫ T

0

{
∑
i

[∂ui
H · βi + ∂mi

H · E[βi]]}dt


= E

∫ T

0

{
∑
i

[(∂ui
H + E[∂mi

H]) · βi]}dt


where the last line involves switching two expectation signs.

If the pair (u, χ) is optimal the Gateaux derivative should equal to 0 for all β such

that u+ β ∈ L2
F(0, T ; K̊) where K̊ denotes the interior of K while greater or equal
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to 0 if u+ β is on the boundary. That is

inf
β:u+β∈U

[
∂ui

H + E[∂mi
H]

]
· βi ≥ 0.

Since β is in the direction of u− û, the above equation is equivalent to

(∂uH|u=û + E[∂mi
H|u=û]) · (u− û) ≥ 0

for all u ∈ U almost surely.

In the case K being the whole space, the Gateaux derivative should be 0 for all β.

Then we have

∂ui
H + E[∂mi

H] = 0,

for all i and almost all t.

Now, with a similar approach to that in (3.6), fix u and apply the Gateaux derivative

in the direction of ζ to χ on both sides of the forward SDE.

d(DζX(t))

= Dζbdt+DζσdW (t)

= (∂xb ·DζX +
∑
j

∂mj
b ·DζMj)dt+ (∂xσ ·DζX +

∑
j

∂mj
σ ·DζMj)dW (t)

= (∂xb ·DζX + ∂m0b · E[DζX])dt+ (∂xσ ·DζX + ∂m0σ · E[DζX])dW (t).

Next, take the Gateaux derivative of J(u, χ) along the direction of ζ. From the

assumptions, the integral will be bounded, hence we can take the limit inside the

36



expectation and integral:

DζJ(u, χ)

= E

[∫ T

0

Dζfdt+Dζg(X(T ),E[X(T )], χ)

]

= E
[ ∫ T

0

(∂xf ·DζX + ∂m0f · E[DζX])dt+ ∂xg(X(T ),E[X(T )], χ) ·DζX(T )

+ ∂m0g(X(T ),E[X(T )], χ) · E[DζX(T )] + ∂χg(X(T ),E[X(T )], χ) · ζ
]

= E
[ ∫ T

0

(∂xf ·DζX + ∂m0f · E[DζX])dt+ ∂χg(X(T ),E[X(T )], χ) · ζ

+ ∂xg(X(T ),E[X(T )], χ) ·DζX(T ) + E
[
∂m0g(X(T ),E[X(T )], χ)

]
·DζX(T )

]
= E

[∫ T

0

(∂xf ·DζX + ∂m0f · E[DζX])dt+ Y ⊺(T )DζX(T ) + ∂χg(X(T ),E[X(T )], χ) · ζ

]
.

(3.13)

Applying Ito’s lemma to Y ⊺(t)DζX(t), we have

d(Y ⊺(t)DζX(t))

= Y ⊺(t)d(DζX(t)) + (DζX(t))⊺dY (t) + d⟨Y,DζX⟩t

= {Y ⊺
[
∂xb ·DζX + ∂m0b · E[DζX]

]
−

[
∂xf + Y ⊺∂xb+ tr(Z⊺∂xσ) + E[∂m0f ] + E[Y ⊺∂m0b] + E[tr(Z⊺∂m0σ)]

]⊺
DζX

+ tr
(
Z⊺

[
∂xσ ·DζX + ∂m0σ · E[DζX]

])
}dt+NζdW (t) (3.14)

For some process Nζ .

Taking expectation and swapping the expectations, (3.14) can be simplified to

dE[Y ⊺(t)DζX(t)] = −E
[
[(∂xf + E[∂m0f ]) ·DζX]dt

]
. (3.15)

Integrate (3.15) from 0 to T and substitute into (3.13) and note DζX(0) = ζ, we
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have

DζJ(u, χ)

= E

[∫ T

0

(∂xf ·DζX + ∂m0f · E[DζX])dt+ Y ⊺(T )DζX(T ) + ∂χg(X(T ),E[X(T )], χ) · ζ

]

= E
[ ∫ T

0

(∂xf ·DζX + ∂m0f · E[DζX])dt+ Y ⊺(0)DζX(0)

−
∫ T

0

(∂xf ·DζX + ∂m0f · E[DζX])dt+ ∂χg(X(T ),E[X(T )], χ) · ζ
]

= E
[
Y ⊺(0)ζ + ∂χg(X(T ),E[X(T )], χ) · ζ

]
= E

[
(Y (0) + ∂χg(X(T ),E[X(T )], χ)) · ζ

]
.

By optimality, the equation equals 0 for all ζ, hence the condition is equivalent to

Y (0) + E
[
∂χg(X(T ),E[X(T )], χ)

]
= 0

(A5) Suppose function H and g are convex with respect to x,u,m and there exist

u∗ ∈ U and χ∗ ∈ Rk0 such that the corresponding state process X∗ and adjoint

processes (Y, Z) satisfy the following conditions:

H∗ := H(X∗,u∗,M∗, Y, Z) = inf
u∈U

H(X∗,u, (E[X∗],E[u1], ...,E[un])
⊺, Y, Z)

(3.16)

for almost all time t, P-almost surely, and

Y (0) + E
[
∂χg

∗] = 0,

where g∗ := g(X∗(T ),E[X∗(T )], χ∗)

Theorem 3.3.2 Suppose that the assumptions (A1) to (A5) are satisfied, then the

pair (u∗, χ∗) is optimal.
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In the case where the control set is the whole space, (3.16) is equivalent to (3.5),

∂ui
H(t) + E[∂mi

H(t)] = 0

for all i, for almost all t almost surely.

Proof. Denote ∆y∗ := y − y∗ for any variable or process.

First by convexity of g,

∆g∗ = g − g∗ ≥ ∂xg
∗ ·∆X∗(T ) + ∂m0g

∗ ·∆M∗
0 (T ) + ∂χg

∗ ·∆χ∗

= ∂xg
∗ ·∆X∗(T ) + ∂m0g

∗ · E[∆X∗(T )] + ∂χg
∗ ·∆χ∗, (3.17)

similarly by convexity,

∆H∗

= H−H∗

≥ ∂xH∗ ·∆X∗ +
∑
i

∂ui
H∗ ·∆u∗

i +
∑
j

∂mj
H∗ ·∆M∗

j

= ∂xH∗ ·∆X∗ +
∑
i

∂ui
H∗ ·∆u∗

i + ∂m0H∗ · E[∆X∗] +
∑
i

∂mi
H∗ · E[∆u∗

i ] for all t.

(3.18)

Next, apply Ito’s Lemma to Y ⊺∆X∗:

d(Y ⊺∆X∗) = (dY )⊺∆X∗ + Y ⊺(d∆X∗) + d⟨Y,∆X∗⟩

=
[
−(∂xH∗(t) + E[∂m0H∗(t)])⊺∆X∗ + Y ⊺∆b∗ + tr(Z⊺∆σ∗)

]
dt+N2dW (t)

=
[
−(∂xH∗(t) + E[∂m0H∗(t)]) ·∆X∗ + Y ⊺∆b∗ + tr(Z⊺∆σ∗)

]
dt+N2dW (t),

for some square integrable process N2. Integrate both sides from 0 to T and take

expectation, again by Fubini-Tonelli’s theorem the integration and expectation can
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be swapped and we could get:

E
[
∂xg(X

∗(T ),E[X∗(T )], χ∗) ·∆X∗(T ) + ∂m0g(X
∗(T ),E[X∗(T )], χ · E

[
∆X∗(T )

]]
= E

[
(∂xg(X

∗(T ),E[X∗(T )], χ∗) + E
[
∂m0g(X

∗(T ),E[X∗(T )], χ∗)
]
) ·∆X∗(T )

]
= E

[
(∂xg(X

∗(T ),E[X∗(T )], χ∗) + E
[
∂m0g(X

∗(T ),E[X∗(T )], χ∗)
]
)⊺∆X∗(T )

]
= E[Y ⊺(T )∆X∗(T )]

= E

[
Y ⊺(0)∆X∗(0) +

∫ T

0

d(Y ⊺(t)∆X∗(t))

]

= Y (0) ·∆χ∗ +

∫ T

0

(−E[∂xH∗ ·∆X∗]− E[∂m0H∗] · E[∆X∗] + E[Y ⊺∆b∗ + tr(Z⊺∆σ∗)])dt.

(3.19)

Also note by the definition of Hamiltonian,

∆f ∗ = ∆H∗ − Y ⊺∆b∗ − tr(Z⊺∆σ∗). (3.20)
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Substituting (3.17) (3.18) (3.19) and (3.20), we have

∆J∗(u, χ)

= J(u, χ)− J(u∗, χ∗)

= E

[∫ T

0

∆f ∗(t)dt+∆g∗

]

= E

[∫ T

0

[∆H∗(t)− Y ⊺(t)∆b∗(t)− tr
(
Z⊺(t)∆σ∗(t)

)
]dt+∆g∗

]

≥ E

[∫ T

0

[∂xH∗ ·∆X∗ +
∑
i

∂ui
H∗ ·∆u∗

i + ∂m0H∗ · E[∆X∗] +
∑
i

∂mi
H∗ · E[∆u∗

i ]

− Y ⊺∆b∗ − tr(Z⊺∆σ∗)]dt+ ∂xg
∗ ·∆X∗(T ) + ∂m0g

∗ · E[∆X∗(T )] + ∂χg
∗ ·∆χ∗

]

= E

[∫ T

0

[∂xH∗ ·∆X∗ +
∑
i

∂ui
H∗ ·∆u∗

i + ∂m0H∗ · E[∆X∗] +
∑
i

∂mi
H∗ · E[∆u∗

i ]

− Y ⊺∆b∗ − tr(Z⊺∆σ∗)]dt

]
+

∫ T

0

(−E[∂xH∗ ·∆X∗]− E[∂m0H∗] · E[∆X∗]

+ E[Y ⊺∆b∗ + tr(Z⊺∆σ∗)])dt+ (Y (0) + E[∂χg∗]) ·∆χ∗

= E

∫ T

0

∑
i

(∂ui
H∗ ·∆u∗

i + ∂mi
H∗ · E[∆u∗

i ])dt

 . (3.21)

Again since at u∗, H(X∗,u,M∗, Y, Z) reaches minimal, if it is in the interior then

the equation in the last line is 0 and if it on the boundary the equation will be

greater than 0. As such, ∆J∗(u, χ) ≥ 0 for any admissible control u. Therefore, u∗

is the optimal solution to the generalised problem. The integral in the last line of
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(3.21) can be simplified as

E

∑
i

(∂ui
H∗ ·∆u∗

i + ∂mi
H∗ · E[∆u∗

i ])


= E

∑
i

(∂ui
H∗ ·∆u∗

i + E[∂mi
H∗] ·∆u∗

i )


= E

∑
i

(∂ui
H∗ + E[∂mj

H∗]) ·∆u∗
i

 .

In the case that the control space is the whole space, (3.16) is equivalent to (3.5).

3.4 Conclusion

In this chapter, we have built the foundation for the Dual problem to Mean-Field

Stochastic Optimal Control problem. One possible extension would be to look at a

multidimensional Brownian motion. Then a summation
∑

i σidWi will be required

in the SDE. Another opportunity for extension would be to loosen the assumptions

as it is shown that the drift and diffusion terms do not necessarily need to be

differentiable, some Lipschitz conditions would be enough.
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4
Duality

4.1 Introduction

Due to its simple structure, Linear Quadratic has always been a popular setting in

a problem. Furthermore, as linear quadratic often guarantees smoothness as well

as convexity, many results from optimal control can directly apply without need

of imposing too many other conditions. [58],[24],[30] and many others built the

foundation for solving a Mean-Field Linear Quadratic Stochastic Optimal problem.

In addition, one particular property of expectations in linear quadratic problems is

E
[
XE[Y ]

]
= E

[
E[X]E[Y ]

]
= E[X]E[Y ]. This property, together with convexity,

opens the possibility of deriving the dual problem from the original problem. The

setting of this chapter is mainly based on [59], in which value functions can be

represented using solutions to the Riccati equations. Here we study the duality of

the problem which could be helpful in solving the problem when it has additional
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constraints on controls. The results on optimality of primal and dual problems

is a direct application of results in Chapter 3. Then, when there is no control

constraint, we show that the dual problem can replicate the primal problem with

given substitutions and vice versa, hence drawing an equivalent relationship between

the primal and dual problems.

4.2 Dual Problem to a Linear Quadratic Mean-

Filed Stochastic Control Problem

If the problem is linear quadratic and the control is in whole space, then for some

control π ∈ L2
F(0, T ;Rm) consider the state process following the SDE below on the

interval [0, T ]:

minimize
π∈U

J1(π) = E

[∫ T

0

f̃1(t,X1(t), X̄1(t), π(t), π̄(t))dt+ g̃1(X1(T ), X̄1(T ))

]

where
dX1(t) =

(
A1(t)X1(t) + Ā1(t)X̄1(t) +B1(t)π(t) + B̄1(t)π̄(t)

)
ds

+
(
C1(t)X1(t) + C̄1(t)X̄1(t) +D1(t)π(t) + D̄1(t)π̄(t)

)
dW (t)

X1(0) = x1,

f̃1(t, x, x̄, π, π̄) =
1

2
⟨

Q1(t) S⊺
1 (t)

S1(t) R1(t)


x

π

 ,

x

π

⟩+ 1

2
⟨

Q̄1(t) S̄⊺
1 (t)

S̄1(t) R̄1(t)


x̄

π̄

 ,

x̄

π̄

⟩,

g̃1(x, x̄) =
1

2
⟨GT1x, x⟩+ ⟨gT1, x⟩+

1

2
⟨ḠT1x̄, x̄⟩+ ⟨ḡT1, x̄⟩.
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Define Λ̂1 = Λ1 + Λ̄1 for Λ ∈ {A,B,C,D,Q, S,R,GT , gT}. Since for any X, Y ∈

L2
F(0, T ;Rm) we have

E[X̃Ỹ ] = E
[
(X − E[X])(Y − E[Y ])

]
= E

[
XY − E[X]E[Y ]

]
= E[XY − X̄Ȳ ],

the problem can be rewritten into equivalent form
dX1(t) =

(
A1(t)X̃1(t) + Â1(t)X̄1(t) +B1(t)π̃(t) + B̂1(t)π̄(t)

)
dt

+
(
C1(t)X̃1(t) + Ĉ1(t)X̄1(t) +D1(t)π̃(t) + D̂1(t)π̄(t)

)
dW (t)

X1(0) = x1.

Let U denotes the set of admissible controls. The primal problem becomes

minimize
π∈U

J1(π) = E

[∫ T

0

f1(t, X̃1(t), X̄1(t), π̃(t), π̄(t))dt+ g1(X̃1(T ), X̄1(T ))

]
(4.1)

where

f1(t, x̃, x̄, π̃, π̄) =
1

2
⟨

Q1(t) S⊺
1 (t)

S1(t) R(t)


x̃

π̃

 ,

x̃

π̃

⟩+ 1

2
⟨

Q̂1(t) Ŝ⊺
1 (t)

Ŝ1(t) R̂1(t)


x̄

π̄

 ,

x̄

π̄

⟩,

(4.2)

g1(x̃, x̄) =
1

2
⟨GT1x̃, x̃⟩+ ⟨gT1, x̃⟩+

1

2
⟨ĜT1x̄, x̄⟩+ ⟨ĝT1, x̄⟩. (4.3)

Let V1(x1) := infπ∈U J1(π) denotes the value function.

For any matrix L ∈ Rm×n, write L† ∈ Rn×m as its Moore-Penrose inverse which

equals its actual inverse when L is invertible. By definition, it satisfies the following
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conditions: 

LL†L = L

L†LL† = L†

(LL†)⊺ = LL†

(L†L)⊺ = L†L.

Especially, if L is of full column rank, L† = (L⊺L)−1L⊺.

Lemma 4.2.1 Suppose L is an m × n matrix of coefficients, l an m-dimensional

vector of constants and x an n-dimensional vector of unknowns.

A solution to Lx = l exists if and only if LL†l = l. Furthermore, if solution exists,

then the complete set of solutions is given by

x = L†l + (I − L†L)w,

for an arbitrary n-dimensional vector and I an identity matrix. As such the solution

x is unique if and only if L†L = I, that is L has full column rank.

Proof. Refer to Theorem 1 and 2 in [32].

Suppose the coefficients of the primal problem satisfy the following assumptions:

(A6) A1, Â1 ∈ L2(0, T ;Rn×n), B1, B̂1 ∈ L1(0, T ;Rn×m), C1, Ĉ1 ∈ L1(0, T ;Rn×n)

and D1, D̂1 ∈ L∞(0, T ;Rn×m). Additionally, D1 and D̂1 have full column

rank.

(A7) Q1, Q̂1 ∈ L∞(0, T ;Sn
+),S1, Ŝ1 ∈ L∞(0, T ;Rm×n), R1, R̂1 ∈ L∞(0, T ; Sm

+ ), GT1, ĜT1 ∈

Sn
+ and gT1, ĝT1 ∈ Rn. R1 − S1Q

−1
1 S⊺

1 and R̂1 − Ŝ1Q̂
−1
1 Ŝ⊺

1 are positive definite.
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For simplicity, define

O1 :=

Q1 S⊺
1

S1 R1

 Ō1 :=

Q̄1 S̄⊺
1

S̄1 R̄1

 and Ô1 := O1 + Ō1 =

Q̂1 Ŝ⊺
1

Ŝ1 R̂1


(4.4)

There exits δ > 0 such that

⟨O1(t)

x(t)

π(t)

 ,

x(t)

π(t)

⟩ ≥ δ∥π(t)∥22

and

⟨Ô1(t)

x(t)

π(t)

 ,

x(t)

π(t)

⟩ ≥ δ∥π(t)∥22

almost surely on [0, T ] for any x ∈ L2(0, T ;Rm) and π ∈ L2(0, T ;Rm).

Remark From (A7),

E

[∫ T

0

f̃1(t,X1, X̄1, π, π̄)dt

]

= E

[∫ T

0

f1(t, X̃1, X̄1, π̃, π̄)dt

]

=
1

2
E

∫ T

0

⟨O1

X̃1

π̃

 ,

X̃1

π̃

⟩+ ⟨Ô1

X̄1

π̄

 ,

X̄1

π̄

⟩dt


≥ δ

2
E[
∫ T

0

(∥π̃∥22 + ∥π̄∥22)dt]

=
δ

2
E[
∫ T

0

∥π∥22dt].

As such, the assumption (A4) in [59] is satisfied. Since the coefficient conditions

in this report is stricter than that in (A1) and (A2) in the book, results in Theorem

3.4.1 can be applied here.
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Remark Note that as gT1 is deterministic, E[⟨gT1, X̃1(T )⟩] = 0 and we can safely

remove it from the terminal cost. From now on, the updated terminal function shall

be

g1(x̃, x̄) =
1

2
⟨GT1x̃, x̃⟩+

1

2
⟨ĜT1x̄, x̄⟩+ ⟨ĝT1, x̄⟩.

Lemma 4.2.2 For a invertible block matrix P =

A B

C D

, we can express the

inverse of P , P−1 in the following way:

if D is invertible,

P−1 =

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

 ;

if A is invertible,

P−1 =

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1


Note that if both A and D are invertible,

A−1 + A−1B(D − CA−1B)−1CA−1 = (A−BD−1C)−1, (4.5)

D−1 +D−1C(A−BD−1C)−1BD−1 = (D − CA−1B)−1.

and

(A−BD−1C)−1BD−1 = A−1B(D − CA−1B)−1. (4.6)

(4.6) times D then apply (4.5):

(A−1 + A−1B(D − CA−1B)−1CA−1)B = A−1B(D − CA−1B)−1D. (4.7)
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Proof. For example, refer to [45].

Theorem 4.2.3 Suppose (A6) and (A7) are satisfied, then the dual problem would

be

minimize
α,β,χ

J2(α, β, χ) = E

[∫ T

0

f2(t, α̃, β̃, ᾱ, β̄)dt+ g∗2(X̃2(T ), X̄2(T ), χ)

]
,

where 
dX2(t) =

[
A2X̃2 + α̃ +B2β̃ + Â2X̄2 + ᾱ + B̂2β̄

]
dt

+
[
C2X̃2 +D2β̃ + Ĉ2X̄2 + D̂2β̄

]
dW (t),

X2(0) = χ,


f2(t, α̃, β̃, ᾱ, β̄) =

1
2
⟨R2(t)

α̃

β̃

 ,

α̃

β̃

⟩+ 1
2
⟨R̂2(t)

ᾱ

β̄

 ,

ᾱ

β̄

⟩

g∗2(ỹ, ȳ, χ) =
1
2
⟨GT2ỹ, ỹ⟩+ 1

2
⟨ĜT2ȳ, ȳ⟩+ ⟨ĝT2, ȳ⟩+ 1

2
⟨ĝT2, Ĝ

−1
T2 ĝT2⟩+ x⊺

1χ

and



A2 = (−A1 +B1D
†
1C1)

⊺

B2 = −C⊺
1 (D

†
1)

⊺

C2 = −(D†
1)

⊺B⊺
1

D2 = (D†
1)

⊺

R2 = O−1
1

GT2 = G−1
T1



Â2 = (−Â1 + B̂1D̂
†
1Ĉ1)

⊺

B̂2 = −(D̂†
1Ĉ1)

⊺

Ĉ2 = −(B̂1D̂
†
1)

⊺

D̂2 = (D̂†
1)

⊺

R̂2 = Ô−1
1

ĜT2 = Ĝ−1
T1

ĝT2 = Ĝ−1
T1 ĝT1.

(4.8)
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Proof. Suppose

dX2 = (M̃ + M̄)dt+ (Ñ + N̄)dW (t),

where E[M̃ ] = E[Ñ ] = 0 and M̄, N̄ deterministic. Then we can rewrite the state

processes as

dX̃1 = (A1X̃1 +B1π̃)dt+ (C1X̃1 + Ĉ1X̄1 +D1π̃ + D̂1π̄)dW (t)

dX̄1 = (Â1X̄1 + B̂1π̄)dt

dX̃2 = M̃dt+ (Ñ + N̄)dW (t)

dX̄2 = M̄dt.

Apply Ito’s Lemma to X̃⊺
1 X̃2 + X̄⊺

1 X̄2:

d(X̃⊺
1 X̃2 + X̄⊺

1 X̄2)

=
[
X̃⊺

1M̃ + (A1X̃1 +B1π̃)
⊺X̃2 + (C1X̃1 + Ĉ1X̄1 +D1π̃ + D̂1π̄)

⊺(Ñ + N̄) + X̄⊺
1M̄

+ (Â1X̄1 + B̂1π̄)
⊺X̄2

]
dt+ EdW (t)

=
[
X̃⊺

1 (M̃ + A⊺
1X̃2 + C⊺

1 (Ñ + N̄)) + π̃⊺(B⊺
1X̃2 +D⊺

1(Ñ + N̄))

+ X̄⊺
1 (Ĉ

⊺
1 (Ñ + N̄) + M̄ + Â⊺

1X̄2) + π̄⊺(D̂⊺
1(Ñ + N̄) + B̂⊺

1X̄2)
]
dt+ EdW (t),

for some E ∈ L2
F(0, T ;Rn).

Taking expectation on both sides:

dE[X⊺
1X2]

= dE[X̃⊺
1 X̃2 + X̄⊺

1 X̄2]

= E
[
X̃⊺

1 (M̃ + A⊺
1X̃2 + C⊺

1 (Ñ + N̄)) + π̃⊺(B⊺
1X̃2 +D⊺

1(Ñ + N̄))

+ X̄⊺
1 (Ĉ

⊺
1 (Ñ + N̄) + M̄ + Â⊺

1X̄2) + π̄⊺(D̂⊺
1(Ñ + N̄) + B̂⊺

1X̄2)
]
dt

=
[
X̃⊺

1 (M̃ + A⊺
1X̃2 + C⊺

1 Ñ) + π̃⊺(B⊺
1X̃2 +D⊺

1Ñ)

+ X̄⊺
1 (Ĉ

⊺
1 N̄ + M̄ + Â⊺

1X̄2) + π̄⊺(D̂⊺
1N̄ + B̂⊺

1X̄2)
]
dt. (4.9)
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which means we can define:

α̃ = M̃ + A⊺
1X̃2 + C⊺

1 Ñ ,

β̃ = B⊺
1X̃2 +D⊺

1Ñ ,

ᾱ = Ĉ⊺
1 N̄ + M̄ + Â⊺

1X̄2,

β̄ = D̂⊺
1N̄ + B̂⊺

1X̄2.

(4.10)

Note E[α̃] = E[β̃] = 0 which is desired.

By (A6), D1 and D̂1 are of full column rank, so D⊺
1(D

⊺
1)

† = D̂⊺
1(D̂

⊺
1)

† = I then by

Lemma 4.2.1, and taking w = 0, we can rearrange (4.10) to obtain:

Ñ = (D†
1)

⊺(β̃ −B⊺
1X̃2) = −(B1D

†
1)

⊺X̃2 + (D†
1)

⊺β̃ = C2X̃2 +D2β̃

M̃ = α̃− A⊺
1X̃2 − C⊺

1 Ñ = α̃− (D†
1C1)

⊺β̃ + (−A1 +B1D
†
1C1)

⊺X̃2 = A2X̃2 + α̃ +B2β̃

N̄ = (D̂†
1)

⊺(β̄ − B̂⊺
1X̄2) = −(B̂1D̂

†
1)

⊺X̄2 + (D̂†
1)

⊺β̄ = Ĉ2X̄2 + D̂2β̄

M̄ = ᾱ− Â⊺
1X̄2 − Ĉ⊺

1 N̄ = (−Â1 + B̂1D̂
†
1Ĉ1)

⊺X̄2 + ᾱ− (D̂†
1Ĉ1)

⊺β̄ = Â2X̄2 + ᾱ + B̂2β̄,

(4.11)

where

A2 = (−A1 +B1D
†
1C1)

⊺

B2 = −(D†
1C1)

⊺

C2 = −(B1D
†
1)

⊺

D2 = (D†
1)

⊺



Â2 = (−Â1 + B̂1D̂
†
1Ĉ1)

⊺

B̂2 = −(D̂†
1Ĉ1)

⊺

Ĉ2 = −(B̂1D̂
†
1)

⊺

D̂2 = (D̂†
1)

⊺.

Hence, the dual state process should follow

dX2

= (M̃ + M̄)dt+ (Ñ + N̄)dW (t)

=
[
A2X̃2 + α̃ +B2β̃ + Â2X̄2 + ᾱ + B̂2β̄

]
dt+

[
C2X̃2 +D2β̃ + Ĉ2X̄2 + D̂2β̄

]
dW (t).
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Let X2(0) = χ be another control.

Let the dual running cost be f2(t, α̃, β̃, ᾱ, β̄) and the dual terminal cost be g2(X̃2(T ), X̄2(T ))

where

g2(ỹ, ȳ) : = sup
x̃,x̄

{−x̃⊺ỹ − x̄⊺ȳ − g1(x̃, x̄)}

=
1

2
⟨G−1

T1 ỹ, ỹ⟩+
1

2
⟨Ĝ−1

T1 ȳ, ȳ⟩+ ⟨Ĝ−1
T1 ĝT1, ȳ⟩+

1

2
⟨Ĝ−1

T1 ĝT1, ĝT1⟩

=
1

2
⟨GT2ỹ, ỹ⟩+

1

2
⟨ĝT2ȳ, ȳ⟩+ ⟨ĝT2, ȳ⟩+

1

2
⟨ĝT2, Ĝ

−1
T2 ĝT2⟩,

f2(t, α̃, β̃, ᾱ, β̄) : = sup
x̃,π̃,x̄,π̄

{x̃⊺α̃ + π̃⊺β̃ + x̄⊺ᾱ + π̄⊺β̄ − f1(t, x̃, x̄, π̃, π̄)}

=
1

2
⟨R2(t)

α̃

β̃

 ,

α̃

β̃

⟩+ 1

2
⟨R̂2(t)

ᾱ

β̄

 ,

ᾱ

β̄

⟩,

and


R2 = O−1

1

GT2 = G−1
T1


R̂2 = Ô−1

1

ĜT2 = Ĝ−1
T1

ĝT2 = Ĝ−1
T1 ĝT1.

Integrate (4.9) from 0 to T and by definition of the dual cost functions:

E[g1(X̃1(T ), X̄1(T )] + E[g2(X̃2(T ), X̄2(T ))]

≥ −E[X̃⊺
1 (T )X̃2(T ) + X̄⊺

1 (T )X̄2(T )]

= −x⊺
1χ− E[

∫ T

0

(X̃⊺
1 α̃ + π̃⊺β̃ + X̄⊺

1 ᾱ + π̄⊺β̄)dt]

≥ −x⊺
1χ− E[

∫ T

0

f1(t, X̃1(t), X̄1(t), π̃(t), π̄(t))dt+

∫ T

0

f2(t, α̃(t), β̃(t), ᾱ(t), β̄(t))dt]

(4.12)
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Rearrange we would have for any π, α, β and χ

J1(π) = E[
∫ T

0

f1(t, X̃1(t), X̄1(t), π̃(t), π̄(t))dt+ g1(X̃1(T ), X̄1(T )]

≥ −x⊺
1χ− E[

∫ T

0

f2(t, α̃(t), β̃(t), ᾱ(t), β̄(t))dt+ g2(X̃2(T ), X̄2(T ))]

So the infimum of LHS is greater or equal to the supremum of RHS, which gives

V1(x1) = inf
π
J1(π) ≥ − inf

α,β,χ
E[
∫ T

0

f2(t, α̃(t), β̃(t), ᾱ(t), β̄(t))dt+g∗2(X̃2(T ), X̄2(T ), χ)]

(4.13)

where

g∗2(ỹ, ȳ, χ) := g2(ỹ, ȳ) + x⊺
1χ.

Define

J2(α, β, χ) := E[
∫ T

0

f2(t, α̃(t), β̃(t), ᾱ(t), β̄(t))dt+ g∗2(X̃2(T ), X̄2(T ), χ)] (4.14)

and

V2(x1) := inf
α,β,χ

J2(α, β, χ), (4.15)

then we have the dual cost function and the value function. To obtain equality in

the first inequality of (4.12), we would need to have

(−ỹ,−ȳ) = (∂x̃g1, ∂x̃g2) (4.16)

or

(−x̃,−x̄) = (∂ỹg2, ∂ỹg2).

The equality in the second inequality of (4.12) can be achieved only if

(α̃, β̃, ᾱ, β̄) = (∂x̃f1, ∂π̃f1, ∂x̄f1, ∂π̄f1) (4.17)
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or

(x̃, π̃, x̄, π̄) = (∂α̃f2, ∂β̃f2, ∂ᾱf2, ∂β̄f2).

In the case of (4.12), the conditions of (4.16) and (4.17) are as follows.

−X̃2(T ) = ∂x̃g1(X̃1(T ), X̄1(T )) = GT1X̃1(T ),

−X̄2(T ) = ∂x̄g1(X̃1(T ), X̄1(T )) = ĜT1X̄1(T ) + ĝT1,α̃

β̃

 = O1

x̃

π̃

 ,

ᾱ

β̄

 = Ō1

x̄

π̄

 .

Note that as E[Λ̃] = 0 for Λ ∈ {X1, π,X2, α, β}, and as all the coefficients are

deterministic, the equations above indeed work out.

Hence we can conclude that the dual problem is what is expected in Theorem 4.2.3.

Remark Equivalently, the dual problem can be rewritten as
dX2(t) =

[
A2X2 + α +B2β + Ā2X̄2 + ᾱ + B̄2β̄

]
dt

+
[
C2X2 +D2β + C̄2X̄2 + D̄2β̄

]
dW (t)

X2(0) = χ,

subject to

minimize
α,β,χ

J2(α, β, χ) = E

[∫ T

0

f̃2(t, α, β, ᾱ, β̄)dt+ g̃∗2(X2(T ), X̄2(T ), χ)

]
.

54



where Λ̄2 := Λ̂2 − Λ2 for Λ ∈ {A,B,C,D,R,GT , gT} and

f̃2(t, α, β, ᾱ, β̄) =
1
2
⟨R2(t)

α

β

 ,

α

β

⟩+ 1
2
⟨R̄2(t)

ᾱ

β̄

 ,

ᾱ

β̄

⟩

g̃2(y, ȳ) =
1
2
⟨GT2y, y⟩+ ⟨gT2, ȳ⟩+ 1

2
⟨ḠT2ȳ, ȳ⟩+ ⟨ḡT2, ȳ⟩

g̃∗2(y, ȳ, χ) = g̃2(y, ȳ) +
1
2
⟨ĝT2, Ĝ

−1
T2 ĝT2⟩+ x⊺

1χ.

4.3 Relationship Between Primal and Dual Prob-

lem

Theorem 4.3.1 Suppose assumption (A6) and (A7) are true and the matrix O1

from (4.4) is positive definite and GT1 is positive.

The admissible control π ∈ U is optimal if and only if the solution (X1, Y1, Z1) to

the primal FBSDEs

dX1(t) = (A1X̃1 + Â1X̄1 +B1π̃ + B̂1π̄)dt+ (C1X̃1 + Ĉ1X̄1 +D1π̃ + D̂1π̄)dW (t)

X1(0) = x1

dY1(t) = −(A⊺
1Ỹ1 + Â⊺

1Ȳ1 + C⊺
1 Z̃1 + Ĉ⊺

1 Z̄1 +Q1X̃1 + S⊺π̃ + Q̂1X̄1 + Ŝ⊺
1 π̄)dt+ Z1dW (t)

Y1(T ) = GT1X̃1(T ) + ĜT1X̄1(T ) + ĝT1

(4.18)

satisfies the following condition:

B⊺
1 Ỹ1 + B̂⊺

1 Ȳ1 +D⊺
1Z̃1 + D̂⊺

1Z̄1 + S1X̃1 + Ŝ1X̄1 +R1π̃ + R̂1π̄ = 0. (4.19)
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Proof. Using the results of Theorem 3.3.1 and 3.3.2 Let

u1 := π

b := A1x+ Ā1m0 +B1u1 + B̄1m1

σ := C1x+ C̄1m0 +D1u1 + D̄1m1

f := f̃1(t, x,m0, u1,m1)

g := g̃1(x,m0)

The state process is linear, and the objective function is quadratic with positive-

definite quadratic coefficients, hence Lipschitz, bounded by a linear growth, diffen-

rentiable, and convex. Then the Hamiltonian is also convex.

H = (A1x+ Ā1m0 +B1u1 + B̄1m1)
⊺y + tr

(
(C1x+ C̄1m0 +D1u1 + D̄1m1)

⊺z
)

+
1

2
⟨

Q1 S⊺
1

S1 R1


 x

u1

 ,

 x

u1

⟩+ 1

2
⟨

Q̄1 S̄⊺
1

S̄1 R̄1


m0

m1

 ,

m0

m1

⟩.

So assumption (A1) to (A5) are satisfied. The adjoint process should be

dY1 = −
[
∂xH +

∑
j E[∂mj

H]
]
dt+ Z1dW (t)

= −(A⊺
1Y1 + Ā⊺

1Ȳ1 + C⊺
1Z1 + C̄⊺

1 Z̄1 +Q1X1 + Q̄1X̄1 + S⊺
1π + S̄⊺

1 π̄)dt+ Z1dW (t)

= −(A⊺
1Ỹ1 + Â⊺

1Ȳ1 + C⊺
1 Z̃1 + Ĉ⊺

1 Z̄1 +Q1X̃1 + Q̂1X̄1 + S⊺
1 π̃ + Ŝ⊺

1 π̄)dt+ Z1dW (t)

Y1(T ) = ∂xg̃1(X1(T ), X̄1(T )) + E
[
∂m0 g̃1(X1(T ), X̄1(T ))

]
= GT1X1(T ) + ḠT1X̃1(T ) + ĝT1

= GT1X̃1(T ) + ĜT1X̃1(T ) + ĝT1

Since the terminal cost does not depend explicitly on x1, the control is optimal if
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and only if (3.5) is true with x = X1,m0 = X̄1, u1 = π,m1 = π̄:

0 = ∂u1H + E[∂m1H]

= ∂πH + E[∂m1H]

= B⊺
1Y1 + B̄⊺

1 Ȳ1 +D⊺
1Z1 + D̄⊺

1Z̄1 + S1X1 + S̄1X̄1 +R1π + R̄1π̄

= B⊺
1 Ỹ1 + B̂⊺

1 Ȳ1 +D⊺
1Z̃1 + D̂⊺

1Z̄1 + S1X̃1 + Ŝ1X̄1 +R1π̃ + R̂1π̄.

Lemma 4.3.2 Suppose assumption (A6) and (A7), then the coefficients in dual

problem will once again satisfy the assumptions of (A6) and (A7).

Proof. Suppose that assumption (A6) is satisfied, since D1 ∈ L∞(0, T ;Rn×m) and

D†
1 = D⊺

1(D1D
⊺
1)

−1, D†
1 ∈ L∞(0, T ;Rn×m) as well. From (4.8), A2 = (−A1 +

B1D
†
1C1)

⊺, since B and C are square-integrable, the product B1D
†
1C1 is integrable

like A1. Therefore, A2 is in L1(0, T ;Rn×n). The rest can be shown using a similar

approach.

Suppose assumption (A7) is satisfied then |O1| ≤ ∆ for some ∆ ∈ R. R2 is

the inverse of matrix O1 as defined in (4.4), since ⟨O1(t)

x(t)

π(t)

 ,

x(t)

π(t)

⟩ ≥

δ∥

x(t)

π(t)

 ∥22, δ ≤ |O1| ≤ ∆, so its inverse is also essentially bounded and ⟨R2

α̃

β̃

 ,

α̃

β̃

⟩

uniformly convex. Additionally, GT2 = G−1
T1 is positive definite since GT1 is positive

definite. A similar argument can be applied to R̂2, Ĝ2 and ĝ2. As such, the dual

problem satisfies assumptions (A6) and (A7).

Theorem 4.3.3 Suppose assumption (A6) and (A7) are true then the matrix R2

from (4.8) and GT2 are positive definite.

The admissible control pair and the initial value (χ, α, β) is optimal if and only if
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the solution (X2, Y2, Z2) to the dual FBSDEs:

dX2(t) = (A2X̃2 + Â2X̄2 + α̃ +B2β̃ + ᾱ + B̂2β̄)dt

+ (C2X̃2 + Ĉ2X̄2 +D2β̃ + D̂2β̄)dW (t)

X2(0) = χ

dY2(t) = −(A⊺
2Ỹ2 + Â⊺

2Ȳ2 + C⊺
2 Z̃2 + Ĉ⊺

2 Z̄2)dt+ Z2dW (t)

Y2(T ) = GT2X̃2(T ) + ĜT2X̄2(T ) + ĝT2.

(4.20)

satisfies the following conditions: Ỹ2

B⊺
2 Ỹ2

+

 Ȳ2

B̂⊺
2 Ȳ2

+

 0

D⊺
2Z̃2

+

 0

D̂⊺
2Z̄2

+R2

α̃

β̃

+ R̂2

ᾱ

β̄

 = 0. (4.21)

and

Y2(0) = −x1 (4.22)

Proof. Consider the equivalent form of dual problem as in (4.20) and (4.21), apply

the result in Theorems 3.3.1 and 3.3.2 by setting

u1 := α

u2 := β

b := A2x+ Ā2m0 + u1 +B2u2 +m1 + B̄2m2

σ := C2x+ C̄2m0 +D2u2 + D̄2m2

f := f̃2(t, u1, u2,m1,m2)

g := g̃∗2(x,m0, χ).
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Then the Hamiltonian is

H = (A2x+ Ā2m0 + u1 +B2u2 +m1 + B̄2m2)
⊺y + tr

(
(C2x+ C̄2m0 +D2u2 + D̄2m2)

⊺z
)

+
1

2
⟨R2

u1

u2

 ,

u1

u2

⟩+ 1

2
⟨R̄2

m1

m2

 ,

m1

m2

⟩.

From Lemma 4.3.2, the coefficients in the dual problem also satisfy Assumptions

(A6) and (A7). Then by a similar argument as in Theorem 4.3.1, assumption (A1)

to (A5) are satisfied. Hence the BSDE for adjoint processes (Y2, Z2) is

dY2 = −
[
∂xH +

∑
j E[∂mj

H]
]
dt+ Z2dW (t)

= −(A⊺
2Y2 + Ā⊺

2Ȳ2 + C⊺
2Z2 + C̄⊺

2 Z̄2)dt+ Z2dW (t)

= −(A⊺
2Ỹ2 + Â⊺

2Ȳ2 + C⊺
2 Z̃2 + Ĉ⊺

2 Z̄2)dt+ Z2dW (t)

Y2(T ) = ∂xg
∗
2(X2(T ), X̄2(T ), χ) + E

[
∂m0g

∗
2(X2(T ), X̄2(T ), χ)

]
= GT2X2(T ) + ḠT2X̄2(T ) + ĝT2

= GT2X̃2(T ) + ĜT2X̄2(T ) + ĝT2

and the control is optimal if and only if (3.5) is true with x = X2,m0 = X̄2, m1 = ᾱ

and m2 = β̄:

0 = ∂ui
H + E[∂mi

H]

(u1 = α) = ∂αH + E[∂m1H]

(u2 = β) = ∂βH + E[∂m2H],
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combining the two equations,

0 =

∂αH

∂βH

+

E[∂m1H]

E[∂m2H]


=

 Y2

B⊺
2Y2

+

 Ȳ2

B̄⊺
2 Ȳ2

+

 0

D⊺
2Z2

+

 0

D̄⊺
2Z̄2

+R2

α

β

+ R̄2

ᾱ

β̄


=

 Y2

B⊺
2 Ỹ2

+

 Ȳ2

B̂⊺
2 Ȳ2

+

 0

D⊺
2Z̃2

+

 0

D̂⊺
2Z̄2

+R2

α̃

β̃

+ R̂2

ᾱ

β̄

 ,

and (3.4) gives:

0 = Y2(0) + ∂χg̃
∗
2 = Y2(0) + x1

Theorem 4.3.4 Under Assumptions (A6) and (A7), suppose that π is optimal for

the primal problem as in Theorem 4.3.1 with (X1, Y1, Z1) as the solution to the

corresponding FBSDEs. Suppose further

(D⊺
1)

†D⊺
1Z̃1 = Z̃1 (4.23)

and

(D̂⊺
1)

†D̂⊺
1Z̄1 = Z̄1. (4.24)

Define 
χ := −Y1(0)

α := Q1X̃1 + S⊺
1 π̃ + Q̂1X̄1 + Ŝ⊺

1 π̄

β := −D⊺
1Z̃1 −B⊺

1 Ỹ1 − D̂⊺
1Z̄1 − B̂⊺

1 Ȳ1.

(4.25)

Then (χ, α, β) is optimal for the dual problem as in Theorem 4.3.3, and the optimal
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state and adjoint processes can be represented by
X2 := −Y1

Y2 := −X1

Z2 := −C1X̃1 − Ĉ1X̄1 −D1π̃ − D̂1π̄.

(4.26)

Theorem 4.3.5 Let assumption (A6) and (A7) be satisfied, suppose (χ, α, β) is

optimal to the dual problem as in Theorem 4.3.3 with (X2, Y2, Z2) as a solution to

the corresponding FBSDEs. Suppose further

D1D
†
1(Z̃2 − C1Ỹ2) = Z̃2 − C1Ỹ2 (4.27)

and

D̂1D̂
†
1(Z̄2 − Ĉ1Ȳ2) = Z̄2 − Ĉ1Ȳ2 (4.28)

Define

π := −B⊺
2 Ỹ2 −D⊺

2Z̃2 − B̂⊺
2 Ȳ2 − D̂⊺

2Z̄2, (4.29)

then π is optimal to the primal problem as in Theorem 4.3.1 and the state and

adjoint processes can be represented by
X1 := −Y2

Y1 := −X2

Z1 := −C2X̃2 − Ĉ2X̄2 −D2β̃ − D̂2β̄.

(4.30)

Remark Assumptions (4.23), (4.24) and (4.27), (4.28) are necessary to build the

equivalence relationship from the Primal problem to the Dual problem and vice versa.

In addition, (4.27), (4.28) are necessary in deriving the expression of the Dual prob-

lem. One simple assumption for all these conditions to meet is to assume D1 and

D̂1 to be invertible.
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Corollary 4.3.6 With the same setting as in Theorem 4.3.4, for the constructed

dual problem, (4.27), (4.28) are satisfied.

Proof. From (A.9) in Theorem 4.3.4,

Ỹ2 = −X̃1

Ȳ2 = −X̄1

Z̃2 = −C1X̃1 −D1π̃

Z̄2 = −Ĉ1X̄1 − D̂1π̄.

Then

D1D
†
1(Z̃2 − C1Ỹ2) = −D1D

†
1D1π̃ = −D1π̃ = Z̃2 − C1Ỹ2

and similarly for

D̂1D̂
†
1(Z̄2 − Ĉ1Ȳ2) = Z̄2 − Ĉ1Ȳ2.

Corollary 4.3.7 With the same setting as in Theorem 4.3.5, for the constructed

primal problem, (4.23), (4.24) are satisfied.

Proof. From (A.10) in Theorem 4.3.5,
Z̃1 = −C2X̃2 −D2β̃ = (D⊺

1)
†(B⊺

1X̃2 − β̃)

Z̄1 = −Ĉ2X̄2 − D̂2β̄ = (D̂⊺
1)

†(B̂⊺
1X̄2 − β̄).

Then

(D⊺
1)

†D⊺
1Z̃1 = −(D⊺

1)
†D⊺

1(D
⊺
1)

†(B⊺
1X̃2 − β̃) = (D⊺

1)
†(B⊺

1X̃2 − β̃) = Z̃1

and similarly for

(D̂⊺
1)

†D̂⊺
1Z̄1 = Z̄1.
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Corollary 4.3.8 Without conditions (4.23) and (4.24), if the dual problem is still

defined as in Theorem 4.3.4, then Ṽ1(x1) ≤ −Ṽ2(x1) where the value functions are

defined as in (4.13) and (4.15).

Proof. As D†
1D1D

†
1 = D†

1 and D̂†
1D̂1D̂

†
1 = D̂†

1, if Z̃1 = (D⊺
1)

†ṽ and Z̄1 = (D̂⊺
1)

†v̄ for

some v ∈ L2
F(0, T ;Rn) then

V1(x1) = inf
π
J1(π)

≤ inf{J1(π)|π : Z1 = (D⊺
1)

†ṽ1 + (D̂⊺
1)

†v̄1 for some v1}

= − inf{J2(α, β, χ)|(α, β) : Z̃2 − C1Ỹ2 = D1ṽ2, Z̄2 − Ĉ1Ȳ2 = D̂1v̄2 for some v2}

≤ − inf
α,β,χ

J2(α, β, χ)

= V2(x1) (4.31)

Example 4.3.9 In the case where the running cost f1 ≡ 0 the state process in the

dual problem could be solved explicitly.

Proof. For simplicity, everything will be assumed to be one-dimensional. Using a

similar approach as in Theorem 4.2.3, let the dual running cost be

f2(α̃, β̃, ᾱ, β̄) = sup
x̃,π̃,x̄,π̄

{x̃⊺α̃ + π̃⊺β̃ + x̄⊺ᾱ + π̄⊺β̄ − f1(t, x̃, x̄, π̃, π̄)}.

However, as f1 ≡ 0, to make sure the dual running cost to be finite, we need to set

dual controls α and β to be 0. As a result, so is f2. Then the dual problem, with
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controls being 0 becomes

dX2(t) = (A2X2 + Ā2E[X2])dt+ (C2X2 + C̄2E[X2])dW (t),

X2(0) = χ,

dY2(t) = −(A2Y2 + Ā2E[Y2] + C2Z2 + C̄2E[Z2])dt+ Z2dW (t),

Y2(T ) = G−1
T2X2(T ) + ḠT2E[X2(T )] + ĝT2.

So

dE[X2] = Â2E[X2]ds,

and E[X2] = χe
∫ t
0 Â2ds. With substitution into the Forward equation, the equation

becomes a linear SDE that has an explicit solution and a general solution to X2

would be

X2(t) = χe
∫ t
0 (A2−

C2
2
2
)ds+

∫ t
0 C2dW (s)

[ ∫ t

0

[e−
∫ s
0 (A2−

C2
2
2
)dr−

∫ s
0 C2dW (r)(Ā2 − C2C̄2)e

∫ s
0 Â2dr]ds

+

∫ t

0

[e−
∫ s
0 (A2−

C2
2
2
)dr−

∫ s
0 C2dW (r)C̄2e

∫ s
0 Â2dr]dW (s) + 1

]
. (4.32)

Using the expression and considering X2(T ) and X2(t), we have

X2(T )χ
−1e−

∫ T
0 (A2−

C2
2
2
)ds−

∫ T
0 C2dW (s) −X2(t)χ

−1e−
∫ t
0 (A2−

C2
2
2
)ds−

∫ t
0 C2dW (s)

=

∫ T

t

[
e−

∫ s
0 (A2−

C2
2
2
)dr−

∫ s
0 C2dW (r)(Ā2 − C2C̄2)e

∫ s
0 Â2dr]ds

+

∫ T

t

[e−
∫ s
0 (A2−

C2
2
2
)dr−

∫ s
0 C2dW (r)C̄2e

∫ s
0 Â2dr

]
dW (s) (4.33)

By Ito’s Lemma,

dX2
2 = 2X2(A2X2+Ā2E[X2])dt+(C2X2+C̄2E[X2])

2dt+2X2(C2X2+C̄2E[X2])dW (t),
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since X2 ∈ L2
F(C([0, T ],R)), taking the expectation on both sides to get

dE[X2
2 ] = (2A2 + C2

2)E[X2
2 ] + (2Ā2 + 2C2C̄2 + C̄2

2)E[X2]
2dt,

which means E[X2
2 (t)] = e

∫ t
0 2A2+C2

2dsχ2(1 +
∫ t

0
(2Ā2 + 2C2C̄2 + C̄2

2)e
∫ s
0 2Ā2−C2

2drds).

The primal value function can then be derived from the following equation:

V1(x1) (4.34)

= −V2(x1)

= − inf
χ
{E

[
g̃∗2(X2(T ),E[X2(T )], χ)

]
}

= − inf
χ
{GT2E[X2

2 (T )] + ḠT2E[X2(T )]
2 + ĝT2E[X2(T )] + x1χ} −

1

2
⟨ĝT2, Ĝ

−1
T2 ĝT2⟩

= − inf
χ

{[
GT2e

∫ t
0 2A2+C2

2ds(1 +

∫ t

0

(2Ā2 + 2C2C̄2 + C̄2
2)e

∫ s
0 2Ā2−C2

2drds) + ḠT2e
2
∫ t
0 Â2ds

]
χ2

+
[
ĝT2e

∫ t
0 Â2ds + x1

]
χ
}
− 1

2
⟨ĝT2, Ĝ

−1
T2 ĝT2⟩. (4.35)

4.4 Constrained Controls

The first part of the analysis in this section primarily comes from [54].

Definition 4.4.1 A proper convex function is an extended real-valued convex func-

tion with non-empty domain that never takes −∞ and is not identically equal to

∞.

Definition 4.4.2 A vector x∗ is said to be a subgradient of a convex function f at

a point x if

f(z) ≥ f(x) + ⟨x∗, z − x⟩,∀z.

The set of all subgradients of f at x is called the subdifferential of f at x and is
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denoted by ∂f .

Theorem 4.4.3

dom ∂f := {x|∂f(x) ̸= ∅} ⊆ dom f := {x|f(x) < ∞}.

Proof. For example, refer to Theorem 23.4 in [54].

Definition 4.4.4 A proper convex function f in Rn is said to be essentially strictly

convex in C if f is strictly convex in all convex subsets of dom ∂f .

Definition 4.4.5 An extended-real-valued proper convex function on Rn is said to be

essentially smooth if it satisfied the following three conditions for C := int(dom f):

• C is non-empty;

• f is differentiable throughout C;

• limi→∞
∣∣∇f(xi)

∣∣ = +∞ whenever x1, x2, ... is a sequence in C converging to a

boundary point x of C.

Theorem 4.4.6 A closed proper convex function is essentially strictly convex if and

only if its conjugate is essentially smooth.

Proof. Refer to Theorem 26.3 on page 253 of [54].

When the control is no longer a whole space in the primal problem, for example, if

π ∈ K for some closed convex spaceK, we can no longer treat π̃ and π̄ independently

when deriving the Legendre Transform of the running cost. That is, the dual running

cost would become:

f2(t, α̃, β̃, ᾱ, β̄) : = sup
x̃,x̄,π∈K

{x̃⊺α̃ + π̃⊺β̃ + x̄⊺ᾱ + π̄⊺β̄ − f1(t, x̃, x̄, π̃, π̄)}

= sup
x̃,x̄,π̄∈K,π̃+π̄∈K

{x̃⊺α̃ + π̃⊺β̃ + x̄⊺ᾱ + π̄⊺β̄ − f1(t, x̃, x̄, π̃, π̄)}.
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which is complicated to represent. As such, an alternative way of representing the

dual problem would be needed. We shall not use X̃1 and X̄1 and so on in the

equations, instead, X1 and X̄1 and so on shall be used. Then the dual running cost

would look like this:

f2(t, α, β, ᾱ, β̄) : = sup
x,x̄,π∈K

{x⊺α + νx̄⊺ᾱ + π⊺β + ρπ̄⊺β̄ − f1(x, x̄, π, π̄)}

= sup
x,x̄,π∈K,π̄∈K

{x⊺α + νx̄⊺ᾱ + π⊺β + ρπ̄⊺β̄ − f1(x, x̄, π, π̄)}

= sup
x,x̄,π,π̄

{x⊺α + νx̄⊺ᾱ + π⊺β + ρπ̄⊺β̄ − f̂1(x, x̄, π, π̄)},

for some ν and ρ to be determined and f̂1 = f1 + Φ(π, π̄) with Φ the penalizing

function for π and π̄ on K. That is

Φ(π, π̄) =


0 if π, π̄ ∈ K

∞ otherwise .

Since f̂1 is essentially strictly convex, its dual conjugate f2 will be essentially smooth

by Theorem 4.4.6. Hence the dual gap will be closed under a similar condition to

(4.17):

(α, β, νᾱ, ρβ̄) = (∂xf̂1, ∂πf̂1, ∂x̄f̂1, ∂π̄f̂1).

Furthermore, as ᾱ = E[α] and β̄ = E[β], we need to pick ν and ρ so that

∂x̄f̂1 = νE[∂xf̂1]

and

∂π̄f̂1 = ρE[∂πf̂1].

For the dual terminal cost, a similar condition to (4.16) would be

(−y,−ȳ) = (∂xg1, ∂x̃g1)
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which means that

E[∂xg1] = ∂x̃g1.

An example of the primal problem that could close the duality gap when K is

the whole space will be when Ō1 = cO1, ḠT1 = µGT1 and ḡT1 = µgT1 for some

non-negative c and µ.

4.5 Conclusion

In this chapter, we discuss the derivation of dual problem both in the case of un-

constrained and constrained controls. Then we show that when there is no control

constraints, the primal and dual problem are equivalent provided (4.23) and (4.24)

or (4.27) and (4.28) are satisfied. When D1 and D̂1 are non-degenerate square ma-

trix, these conditions will always hold so there will be no duality gap. An interesting

further study would be to discuss what would happen if, when expressing Ñ and

N̄ in (4.11), we keep w as any general vector. Then there will be many possible

variations of dual problem. Although (4.12) shows that the derivation of the value

function will be the same, it would still be nice to study the relationship between

various dual problems. Another area for further study would be to derive equivalent

relationships between the primal and dual problems when the control is constrained.

It will involve Gateaux derivative of primal and dual running costs by considering

the optimality condition for Legendre’s transform. But because the running costs

are inexplicit, a more analytical approach would be required.
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5
Verification

5.1 Introduction

Ever since the introduction of Machine Learning, it has been trained to solve FBS-

DEs because there are often no explicit solutions to these problems.

• Starting from the decoupled problem, there are well-established methods for

solving forward SDEs as well as mean-field ones by discretisation (Euler-

Maruyama Method or Milstein Method). Sauer [56] has done a brief summary

of the common methods used to solve SDEs. (Note that the mean-field terms

are deterministic, as such will not interfere with higher order terms involving

W (t) in the expansion).

• However, it is rarer for methods to solve stand-alone BSDEs numerically. More

commonly, the problem involves a decoupled forward SDE as the state pro-

cess, and then the adjoint process would be of interest and depend on the
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state process. Such an observation is mainly caused by the fact that BSDEs

problems are usually derived from PDEs. [23] lists a forward discretisation

method to solve BSDEs that approximates the function u by assuming that

the adjoint processes are functions of the terminal values. Note that albeit the

central problem in the paper is a BSDE, under Section 3.2, the general case

applies to FBSDEs with decoupled state processes as well.

• On the other hand, solutions to FBSDEs have been extensively studied. There

is a 4-step scheme method that converts the problem back into a PDE problem.

In [33], three similar algorithms are discussed. The differences depend mainly

on which variables are treated as controls.

• For coupled Mean-Field FBSDEs, the equations are usually derived from

Mean-Field control problems such as the method proposed in [18].

In this chapter, we first apply the results of the Riccati equations from [59] to the

primal and dual problems of Chapter 4 to verify our conclusions. Then, inspired by

[3], we derive a representation of the solutions to MFBSDEs and show that some

results in [3] could be mistaken. Lastly, with the help of deep learning, we find

some empirical results for both the primal and dual FBSDEs problems and compare

them with the analytical results derived from the Riccati solutions to check the

performance.

5.2 Riccati Solution

Since both the primal and dual problems are in the Linear-Quadratic form as stated

in [59], the method in their book can be adapted to verify the dual problem. How-

ever, note that the cost function used in it is twice that of the setting in Chapter 4.

Setting u1 = π, u2 = (α, β)⊺, B1 = B1, B2 =

(
I B2

)
, B̄1 = B̄1, B̄2 =

(
κI B̄2

)
,

D1 = D1, D2 =

(
0 D2

)
, D̄1 = D̄1, D̄2 =

(
0 D̄2

)
, we are able to simplify both
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the primal and dual problems. Suppose Pi and Πi are the solutions to the following

Ricatti equations:
Ṗi + PiAi + A⊺

iPi + C⊺
i PiCi +Qi

− (B⊺
i Pi +D⊺

i PiCi + Si)
⊺(Ri +D⊺

i PiDi)
−1(B⊺

i Pi +D⊺
i PiCi + Si) = 0

Pi(T ) = GT i


Π̇i +ΠiÂi + Â⊺

iΠi + Ĉ⊺
i PiĈi + Q̂i

− (B̂⊺
iΠi + D̂⊺

i PiĈi + Ŝi)
⊺(R̂i + D̂⊺

i PiD̂i)
−1(B̂⊺

iΠi + D̂⊺
i PiĈi + Ŝi) = 0

Πi(T ) = ĜT i.

Define

Ri(Pi) = Ri +D⊺
i PiDi,Si(Pi) = B⊺

i Pi +D⊺
i PiCi + Si

R̂i(Pi) = R̂i + D̂i
⊺
PiD̂i, Ŝi(Pi,Πi) = B̂⊺

iΠi + D̂⊺
i PiĈi + Ŝi

and

Θi = −R−1
i (Pi)Si(Pi), Θ̂i = −R̂−1

i (Pi)Ŝi(Pi,Πi)

φi = −Ri(Pi)
−1(B⊺

i ηi +D⊺
i ζi), φ̄i = −R̂i(Pi)

−1(B̂⊺
i η̄i + D̂⊺

iE[ζi]),

where (η, ζ) is the solution to
dηi(s) = −

[
(Ai + BiΘi)

⊺ηi + (Ci +DiΘi)
⊺ζi

]
ds+ ζidW (s)

ηi(T ) = gT i

and η̄ is the solution to
˙̄ηi(s) +

[
(Âi + B̂iΘ̂i)

⊺η̄i + (Ĉi + D̂iΘ̂i)
⊺E[ζi]

]
= 0

η̄i(T ) = E[gT i] + ḡT i.

(5.1)
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and the value function will be

2Vi(t, ξi) = E⟨Pi(t)(ξi − E[ξi]) + 2ηi(t), ξi − E[ξi]⟩+ ⟨Πi(t)E[ξi] + 2η̄i(t),E[ξi]⟩

− E
∫ T

t

⟨Ri(Pi)(φi − E[φi]), φi − E[φi]⟩+ ⟨R̂i(Pi)φ̄i, φ̄i⟩ds

Note that t = 0 and since ξi(i.e. x1 or χ) and gT1 are set to be deterministic, then

ζi = 0, φi is deterministic, η̄i(T ) = ĝT i and the value function can be simplified to

Vi(0, ξi) =
1

2
⟨Πi(0)ξi + 2η̄i(0), ξi⟩ −

1

2

∫ T

0

⟨⟨R̂i(Pi)φ̄i, φ̄i⟩ds,

with φ̄i = −R̂i(Pi)
−1B̂⊺

i η̄i.

Lemma 5.2.1 Given two non-empty sets X, Y and f : X × Y → R, we have

inf
x,y

f(x, y) = inf
x
(inf

y
f(x, y)).

Proof.

∀(x, y) ∈ X × Y : f(x, y) ≥ inf
y
f(x, y) ≥ inf

x
(inf

y
f(x, y)).

Hence, infx,y f(x, y) ≥ infx(infy f(x, y)). On the other hand,

∀x ∈ X : inf
y
f(x, y) ≥ inf

x,y
f(x, y).

Therefore, infx(infy f(x, y)) ≥ infx,y f(x, y).

However as the terminal cost function in [59] does not explicitly depend on the initial
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value of the state process, (4.31) can be broken down into two parts by Lemma 5.2.1:

inf
π
J1(π)

≤ V2(x1)

= − inf
χ,α,β

E

[∫ T

0

f̃2(α, β,E[α],E[β])dt+ g̃∗2(X2(T ),E[X2(T )], χ)

]

= − inf
χ
{inf
α,β

E

[∫ T

0

f̃2(α, β,E[α],E[β])dt+ g̃2(X2(T ),E[X2(T )])

]
+ x⊺

1χ}

− 1

2
⟨ĝT2, Ĝ

−1
T2 ĝT2⟩

= − inf
χ
{V2(0, χ) + x⊺

1χ} −
1

2
⟨ĝT2, Ĝ

−1
T2 ĝT2⟩

Hence, having no duality gap is equivalent to having

− V1(0, x1)

= −1

2
⟨Π1(0)x1 + 2η̄1(0), x1⟩+

1

2

∫ T

0

⟨⟨R̂1(P1)φ̄1, φ̄1⟩ds

= inf
χ
{x⊺

1χ+ V2(0, χ)}+
1

2
⟨ĝT2, Ĝ

−1
T2 ĝT2⟩

= inf
χ
{x⊺

1χ+
1

2
⟨Π2(0)χ+ 2η̄2(0), χ⟩ −

1

2

∫ T

0

⟨⟨R̂2(P2)φ̄2, φ̄2⟩ds}+
1

2
⟨ĝT2, Ĝ

−1
T2 ĝT2⟩

= −1

2
⟨Π−1

2 (0)(x1 + 2η̄2(0)), x1⟩ −
1

2

∫ T

0

⟨R̂2(P2)φ̄2, φ̄2⟩ds

− 1

2
⟨Π−1

2 (0)η̄2(0), η̄2(0)⟩+
1

2
⟨ĝT2, Ĝ

−1
T2 ĝT2⟩. (5.2)

From Theorem 3.4.6 in [59], the optimality is obtained if and only if

ui = Θi(Xi − E[Xi]) + Θ̂iE[Xi] + φi − E[φ]i + φ̄i = Θi(Xi − E[Xi]) + Θ̂iE[Xi] + φ̄i.
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The equation above is true if and only if the following holds:
ũi = ΘiX̃i

ūi = Θ̂iX̄i + φ̄i.

(5.3)

Example 5.2.2 Solve the problem as stated in Example 4.3.9 in the last section

using the Riccati equations from primal problem then show that the value functions

in the primal problem and the dual problem match. Furthermore, the optimality

conditions in the primal and dual problems coincide.

Proof. Without running cost, the primal Riccati equations become
Ṗ1 + 2A1P1 + C2

1P1 − (B1 + C1D1)
2D−2

1 P1

= Ṗ1 − (2A2 + C2
2)P1 = 0

P1(T ) = GT1

(5.4)


Π̇1 + 2Â1Π1 + Ĉ2

1P1 − (B̂1Π1 + Ĉ1D̂1P1)
2D̂−2

1 P−1
1

= Π̇1 − 2Â2Π− Ĉ2
2P

−1
1 Π2

1 = 0

Π1(T ) = ĜT1.

(5.5)


˙̄η1(s) + (Â1 + B̂1Θ̂1)

⊺η̄1 = 0

η̄1(T ) = ĝT1.

(5.6)

(5.4) gives

P1(t) = GT1e
−

∫ T
t 2A2+C2

2ds (5.7)

.
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Let Γ = Π−1
1 , so Γ̇ = −Π−2

1 Π̇1 and (5.5) can be rewritten as
Γ̇ + 2Â2Γ +G−1

T1Ĉ
2
2e

∫ T
t 2A2+C2

2ds = 0

Γ(T ) = Ĝ−1
T1 ,

which gives the solution Γ(t) = e
∫ T
t 2Â2ds(Ĝ−1

T1 +G−1
T1

∫ T

t
Ĉ2

2e
∫ T
s −2Ā2+C2

2drds) and so

Π1(t) = e−
∫ T
t 2Â2ds(Ĝ−1

T1 +G−1
T1

∫ T

t

Ĉ2
2e

∫ T
s −2Ā2+C2

2drds)−1. (5.8)

Θ̂1 = −R̂−1
1 (P1)Ŝ1(P1,Π1) = −D̂−2

1 P−1
1 (B̂1Π1 + Ĉ1D̂1P1), so from (5.6),

η̄1 = ĝT1e
∫ T
t Â1+B̂1Θ̂1ds = ĝT1e

∫ T
t Â1+B̂1(Ĉ2Π1P

−1
1 +B̂2)ds = ĝT1e

−
∫ T
t Â2+Ĉ2

2Π1P
−1
1 ds (5.9)

Next, to solve the dual problem,

Ṗ2 + 2A2P2 + C2
2P2 = 0

P2(T ) = GT2

Π̇2 + 2Â2Π2 + Ĉ2
2P2 = 0

Π2(T ) = ĜT2

˙̄η2(s) + Â2η̄2 = 0

η̄2(T ) = ĝT2.

(5.10)
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Solving the system of linear ODEs in (5.10) gives

P2(t) = GT2e
∫ T
t 2A2+C2

2dr

= G−1
T1e

∫ T
t 2A2+C2

2dr

= P−1
1 (t) by comparing with (5.7)

Π2(t) = e
∫ T
t 2Â2dr(ĜT2 +GT2

∫ T

t
Ĉ2

2e
∫ T
s −2Ā2+C2

2drds)

= e
∫ T
t 2Â2dr(Ĝ−1

T1 +G−1
T1

∫ T

t
Ĉ2

2e
∫ T
s −2Ā2+C2

2drds)

= Π−1
1 (t) by comparing with (5.8)

η̄2(t) = ĝT2e
∫ T
t Â2ds.

(5.11)

Therefore, the quadratic terms on x1 in the primal and dual value functions (5.2)

match. Let F (t) :=
∫ T

t
Ĉ2

2e
∫ T
s −2Ā2+C2

2drds, so F ′(t) = −Ĉ2
2e

∫ T
t −2Ā2+C2

2drthen

Ĉ2
2Π1(t)P

−1
1 (t) = Ĉ2

2P2(t)Π
−1
2 (t)

= Ĉ2
2G

−1
T1e

∫ T
t 2A2+C2

2dre−
∫ T
t 2Â2dr(ĜT2 +GT2

∫ T

t

Ĉ2
2e

∫ T
s −2Ā2+C2

2drds)−1

= −F ′(t)(ĜT2G
−1
T2 + F (t))−1

Together with (5.9),

Π2(t)η1(t)

η2(t)

= e
∫ T
t 2Â2dr(ĜT2 +GT2

∫ T

t

Ĉ2
2e

∫ T
s −2Ā2+C2

2drds)ĝT1e
−

∫ T
t Â2+Ĉ2

2Π1P
−1
1 drĝ−1

T2e
−

∫ T
t Â2ds

= e−
∫ T
t Ĉ2

2Π1P
−1
1 ds(1 +GT2Ĝ

−1
T2

∫ T

t

Ĉ2
2e

∫ T
s −2Ā2+C2

2drds)

= e
∫ T
t −F ′(s)(ĜT2G

−1
T2+F (s))−1ds(1 +GT2Ĝ

−1
T2F (t))

= e

[
log(ĜT2G

−1
T2+F (s))

]T
t (1 +GT2Ĝ

−1
T2F (t))

= 1.
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Hence the linear terms on x1 in (5.2) match.

Lastly, consider

d(Π−1
2 (t)η22(t))

dt
= −Π−2

2 Π̇2η
2
2 + 2Π−1

2 η2η̇2

= −Π−2
2 (−2Â2Π2 − Ĉ2

2P2)η
2
2 + 2Π−1

2 η2(−2Â2η2)

= Ĉ2
2P2(Π

−1
2 η2)

2

= Ĉ2
2P

−1
1 η21

= R̂1(P1)φ̄
2
1,

and note that Π−1
2 (T )η22(T ) = G−1

T2 ĝ
2
T2, we can conclude the constant terms in (5.2)

match. Hence, we have shown that (5.2) holds.

Next to show optimality of the dual problem, note that as the dual problem is

independent of controls, there is no partial derivative with respect to controls. So

the SMP equation (4.21) becomes meaningless. We will need to prove the optimality

of the primary problem by (5.3). Since Θ1 = −R−1
1 (P1)S1(P1) = −D−2

1 P−1
1 (B1P1 +

C1D1P1) = −(D−2
1 B1 + D−1

1 C1), from (4.29) the RHS of the first line of (5.3) is

equivalent to

−D−1
1 Z̃2 +D−1

1 C1Ỹ2 = (D−2
1 B +D−1

1 C1)Ỹ2

Z̃2 = −D−1
1 BỸ2 = C2Ỹ2. (5.12)

Θ̂1 = −R̂−1
1 (P1)Ŝ1(P1,Π1) = −D̂−2

1 P−1
1 (B̂1Π1 + Ĉ1D̂1P1). So the second line of

(5.3) is equivalent to

−D̂−1
1 Z̄2 +

1

µ+ 1
D̂−1

1 ĈȲ2 = D̂−2
1 P−1

1 (B̂1Π1 + Ĉ1D̂1P1)
1

µ+ 1
Ȳ2

Z̄2 = − 1

µ+ 1
D̂−1

1 B̂1P
−1
1 Π1Ȳ2. (5.13)

From assumption of Riccati equation for dual problem, Ỹ2 = P2X̃2 and Ȳ2 = Π2X̄2,
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by Malliavin derivative we have

Z2 = P2(C2X2 + C̄2X̄2)

as such Z̃2 = P2C2X̃2 = C2Ỹ2, which is indeed (5.12), and

Z̄2 = P2Ĉ2X̄2

= Ĉ2P2Π
−1
2 Ȳ2

(5.10) = Ĉ2Π1P
−1
1 Ȳ2

(4.8) = −D̂−1
1 B̂1P

−1
1 Π1Ȳ2,

which is exactly (5.13). As such, the optimal solution of the dual problem is equiv-

alent to the optimality of the primal problem.

5.3 Solution to Linear Mean-Field BSDEs

In the first part of the section, steps in [3] to find solution to Linear Mean-Field

BSDEs will be replicated and all the notations used are from the paper where B(t)

denotes the standard Brownian Motion. The second part is to dispute the proof with

the examples used in the previous chapters and give a correct expression instead.

Theorem 5.3.1 (Page 6 Section 3.2 of [3]) Consider a linear mean-field BSDE of

the form
dY (t) = −[α1(t)Y (t) + β1(t)Z(t) + α2(t)E[Y (t)] + β2(t)E[Z(t)]]dt+ Z(t)dB(t),

Y (T ) = ξ,

t ∈ [0, T ], where α1(t), α2(t), β1(t).β2(t) are given deterministic functions, ξ ∈ L2
FT

(Ω;R)

is a given FT -measurable random variable.
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It can be rewritten as

Y (t) = E

[
ξΓ(t, T ) +

∫ T

t

Γ(t, s){α2(s)E[Y (s)] + β2(s)E[Z(s)]}ds|Ft

]
, t ∈ [0, T ],

(5.14)

where Γ(t, s) is the solution of the following linear SDE
dΓ(t, s) = Γ(t, s)

[
α1(t)dt+ β1dB(t)

]
, s ∈ [t, T ],

Γ(t, t) = 1.

(5.15)

In the case of one-dimensional, Γ(t, s) = e
∫ s
t β1(r)dB(r)+

∫ s
t (α1− 1

2
(β1(r))2)dr and E[Γ(t, s)] =

e
∫ s
t α1(r)dr.

Denoting Ȳ (t) := E[Y (t)] and Z̄(t) := E[Z(t)], we have

Ȳ (t) = E

[
ξΓ(t, T ) +

∫ T

t

Γ(t, s){α2(s)Ȳ (s) + β2(s)Z̄(s)}ds

]
, t ∈ [0, T ]. (5.16)

To find Z̄(t), first note that Y (t) can be expressed as a forward SDE:

Y (t) = Y (0)+

∫ t

0

[
α1(s)Y (s) + α2(s)Ȳ (s) + β1(s)Z(s) + β2(s)Z̄(s)

]
ds+

∫ t

0

Z(s)dB(s),

t ∈ [0, T ], for some deterministic initial value Y (0).

Remark Next we will take Malliavin derivatives of the equation. The formal defi-

nition of the derivative require rigorous discussion starting from Wiener-Ito chaos

expansion. For readers interested in the concept, we recommend reading the first 3

sections of Chapter 1 in [49]. However, as we are only using the derivative as a tool,

we can heuristically treat it as the derivative with respect to the white noise dB(t).

We can compute the Malliavin derivative of Y (t) for all r < t, using the following

properties (From Example 2.2 on [3]):

Lemma 5.3.2 Let Dr denotes the Malliavin Derivative at time r. Then for ϕ ∈
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C1(R), R-valued differentiable functions, F ∈ L2
Ft
(Ω,R), Ft-adapted Rn-valued

square integrable random variable, u ∈ L2
F(0, T ;R), 0 ≤ r < t < s,

Dt(ϕ(F )) = ϕ′(F )DtF

DsF = 0

Dr(

∫ T

0

u(t)dt) =

∫ T

r

Dru(t)dt

Dr(

∫ T

0

u(t)dB(t)) =

∫ T

r

Dru(t)dB(t) + u(r),

Proof. For example, refer to [49].

So we have for all r < t

DrY (t) =

∫ t

r

Dr

[
α1(s)Y (s) + α2(s)Ȳ (s) + β1Z(s) + β2Z̄(s)

]
ds+

∫ t

r

DrZ(s)dB(s)+Z(r).

Letting r → t−, we get Z(t) = DtY (t). Thus to find Z(t) we only need to compute

DtY (t). Using the expression (5.14),the identity

DtE[F |Ft] = E[DtF |Ft], (5.17)

as well as the fact that DtΓ(t, T ) = Γ(t, T )β1(t),

Z(t) = E

[
DtξΓ(t, T ) + ξΓ(t, T )β1(t) +

∫ T

t

Γ(t, s)β1(t){α2(s)Ȳ (s) + β2(s)Z̄(s)}ds|Ft

]
.

(5.18)

Taking expectation, we have

Z̄(t) = E

[
DtξΓ(t, T ) + ξΓ(t, T )β1(t) +

∫ T

t

Γ(t, s)β1(t){α2(s)Ȳ (s) + β2(s)Z̄(s)}ds

]
.

(5.19)
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Remark However, note that E[Γ(t, s)|Ft] = E[Γ(t, s)] = e
∫ s
t α1dr. Then

DtE[Γ(t, s)|Ft] = Dt(e
∫ s
t α1dr) = 0

E[DtΓ(t, s)|Ft] = β1(t)E[Γ(t, s)|Ft] = β1(t)e
∫ s
t α1dr,

which contradicts that claim (5.17). This means that the identity property used in

the theorem above is incorrect. The identity is probably a variation to Prop. 1.2.8

from [49]:

Dt(E[F |FA]) = E[DtF |FA]1A(t)

a.e. in T ×Ω for any A in Borel-sigma-algebra over [0, T ]. The main problem with

the identity is that E[Γ(t, s)|Ft] is Ft measurable and the Malliavin derivative Dt is

also t-dependent while A in the equation above should be independent of t. As such,

the conclusion after (5.17) should be invalid.

Instead (5.14) can be written as

Y (t) = E
[
ξΓ(t, T )|Ft

]
+

∫ T

t

E[Γ(t, s)|Ft]{α2(s)E[Y (s)] + β2(s)E[Z(s)]}ds

= E
[
ξΓ(t, T )|Ft

]
+

∫ T

t

E[Γ(t, s)]{α2(s)E[Y (s)] + β2(s)E[Z(s)]}ds

= E
[
ξΓ(t, T )|Ft

]
+

∫ T

t

e
∫ s
t α1ds{α2(s)E[Y (s)] + β2(s)E[Z(s)]}ds

and as such

Z(t) = DtY (t) = DtE
[
ξΓ(t, T )|Ft

]
(5.20)

To show (5.20) is true instead of what is given in Theorem 5.3.1, we use the same

example as set in Example 4.3.9.

Example 5.3.3 With the same setting as Example 4.3.9, the results from Theorem

5.3.1 contradicts the result from Example 5.2.2.
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Proof. Using the result from Theorem 5.3.1, by substituting the followings:

Y = Y2

Z = Z2

α1 = A2

α2 = Ā2

β1 = C2

β2 = C̄2

ξ = Y2(T ) = GT2X2(T ) + ḠT2E[X2(T )] + ĝT2

B(t) = W (t)

(5.21)

(5.14) becomes

Y2(t) = E

[
Y2(T )Γ(t, T ) +

∫ T

t

Γ(t, s)(Ā2E[Y2(s)] + C̄2E[Z2(s)])ds|Ft

]

= E
[
Y2(T )Γ(t, T )|Ft

]
+

∫ T

t

E[Γ(t, s)|Ft](Ā2E[Y2(s)] + C̄2E[Z2(s)])ds

= E
[
Y2(T )Γ(t, T )|Ft

]
+

∫ T

t

E[Γ(t, s)](Ā2E[Y2(s)] + C̄2E[Z2(s)])ds (5.22)

and (5.18) becomes

Z2(t)

= E

[
Dt(Y2(T ))Γ(t, T ) + Y2(T )Γ(t, T )C2(t) +

∫ T

t

Γ(t, s)C2(t)[Ā2E[Y2(s)] + C̄2E[Z2(s)]]ds|Ft

]
= C2(t)Y2(t) + E[Dt(Y2(T ))Γ(t, T )|Ft]. (5.23)
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Also, (5.16) and (5.19) become

E[Y2(t)] = E
[
Y2(T )Γ(t, T ) +

∫ T

t
Γ(t, s)(Ā2E[Y2(s)] + C̄2E[Z2(s)]ds

]
E[Z2(t)] = E

[
Dt(Y2(T ))Γ(t, T ) + Y2(T )Γ(t, T )C2(t)

+
∫ T

t
Γ(t, s)C2(t)[Ā2E[Y2(s)] + C̄2E[Z2(s)]]ds

]
= C2(t)E[Y2(t)] + E[Dt(Y2(T ))Γ(t, T )],

Since at the optimality, Y2(T ) = GT2X2(T )+ḠT2E[X2(T )]+ ĝT2, and SDE for X2(t)

is known, Dt(Y2(T )) can be represented by a function of Dt(X2(T )):

Dt(Y2(T )) = Dt(GT2X2(T ) + ḠT2E[X2(T )] + ĝT2) = GT2DtX2(T )

Apply Malliavin’s derivative to X2(s) where s > t, we have

DtX2(s) = Dt(X2(0) +

∫ s

0

dX2(r))

for t > 0 = Dt(

∫ s

0

(A2X2 + Ā2E[X2])dr +

∫ s

0

(C2X2 + C̄2E[X2])dW (r))

=

∫ s

t

A2DtX2dr +

∫ s

t

C2DtX2dW (r) + (C2(t)X2(t) + C̄2E[X2(t)]).

So 
d(DtX2(s)) = A2(s)DtX2(s)ds+ C2(s)DtX2(s)dW (s)

DtX2(t
+) = C2(t

+)X2(t
+) + C̄2(t

+)E[X2(t
+)]

By uniqueness of strong solution to SDE and continuity,

DtX2(s) = Γ(t, s)(C2(t)X2(t) + C̄2(t)E[X2(t)]), (5.24)

and so

DtY2(T ) = GT2Γ(t, T )(C2(t)Y (t) + C̄2(t)E[Y (t)]).

To verify the result of (5.24), from (4.32) and (4.33), we can compute DtY (T )
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explicitly:

DtX2(T )

= Dt{χe
∫ T
0 (A2−

C2
2
2
)ds+

∫ T
0 C2dW (s)}

[
1 +

∫ T

0

[e−
∫ s
0 (A2−

C2
2
2
)dr−

∫ s
0 C2dW (r)(Ā2 − C2C̄2)e

∫ s
0 Â2dr]ds

+

∫ T

0

[e−
∫ s
0 (A2−

C2
2
2
)dr−

∫ s
0 C2dW (r)C̄2e

∫ s
0 Â2dr]dW (s)

]
+ χe

∫ T
0 (A2−

C2
2
2
)ds+

∫ t
0 C2dW (s)Dt{

∫ T

0

[e−
∫ s
0 (A2−

C2
2
2
)dr−

∫ s
0 C2dW (r)(Ā2 − C2C̄2)e

∫ s
0 Â2dr]ds}

+ χe
∫ T
0 (A2−

C2
2
2
)ds+

∫ t
0 C2dW (s)Dt{

∫ T

0

[e−
∫ s
0 (A2−

C2
2
2
)dr−

∫ s
0 C2dW (r)C̄2e

∫ s
0 Â2dr]dW (s)}

= C2(t)X2(T ) + χe
∫ T
0 (A2−

C2
2
2
)ds+

∫ t
0 C2dW (s)(−C2(t))

∫ T

t

[e−
∫ s
0 (A2−

C2
2
2
)dr−

∫ s
0 C2dW (r)C̄2e

∫ s
0 Â2dr]dW (s)

+ χe
∫ T
0 (A2−

C2
2
2
)ds+

∫ t
0 C2dW (s)(−C2(t))

∫ T

t

[e−
∫ s
0 (A2−

C2
2
2
)dr−

∫ s
0 C2dW (r)(Ā2 − C2C̄2)e

∫ s
0 Â2dr]ds

+ χe
∫ T
0 (A2−

C2
2
2
)ds+

∫ t
0 C2dW (s)e−

∫ t
0 (A2−

C2
2
2
)dr−

∫ t
0 C2dW (r)C̄2(t)e

∫ t
0 Â2dr

= C2(t)X2(T ) + C̄2(t)E[X2(t)]e
∫ T
t (A2+

C2
2
2
)ds−

∫ t
0 C2dW (s)

− C2(t)χe
∫ T
0 (A2−

C2
2
2
)ds+

∫ t
0 C2dW (s)X2(T )χ

−1e−
∫ T
0 (A2−

C2
2
2
)ds−

∫ T
0 C2dW (s)

+ C2(t)χe
∫ T
0 (A2−

C2
2
2
)ds+

∫ t
0 C2dW (s)X2(t)χ

−1e−
∫ t
0 (A2−

C2
2
2
)ds−

∫ t
0 C2dW (s)

= C2(t)X2(T ) + C̄2(t)E[X2(t)]e
∫ T
t (A2+

C2
2
2
)ds−

∫ t
0 C2dW (s) − C2(t)X2(T )

+ C2(t)X2(t)e
∫ T
t (A2+

C2
2
2
)ds−

∫ t
0 C2dW (s)

= (C2(t)X2(t) + C̄2(t)E[X2(t)])Γ(t, T ),

which is indeed match (5.24).

Next to compute

E[Dt(Y2(T ))Γ(t, T )|Ft] = GT2C2(t)E[Γ2(t, T )X2(t)|Ft]+GT2C̄2(t)E[Γ2(t, T )|Ft]E[X2(t)].

Since E[Γ2(t, T )|Ft] = E[Γ2(t, T )] = e
∫ T
t 2A2+C2

2dr, the only term that remains to be
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found in E[Dt(Y2(T ))Γ(t, T )|Ft] is E[X2(t)Γ
2(t, T )|Ft].

E[X2(t)Γ
2(t, T )|Ft] = X2(t)E[Γ2(t, T )|Ft]

= X2(t)e
∫ T
t 2A2+C2

2dr, (5.25)

where X2(t) can be expressed as in (4.32). As such

E[Dt(Y2(T ))Γ(t, T )|Ft] = GT2C2(t)e
∫ T
t 2A2+C2

2drX2(t) +GT2C̄2(t)e
∫ T
t 2A2+C2

2drE[X2(t)]

(5.26)

GT2e
∫ T
t 2A2+C2

2dr(C2(t)X2(t) + C̄2(t)E[X2(t)]).

From (5.20) and (5.11),

Z2(t) = GT2e
∫ T
t 2A2+C2

2dr(C2(t)Y (t) + C̄2(t)E[Y (t)])

= P2(t)(C2(t)Y (t) + C̄2(t)E[Y (t)]),

which coincides with (5.14). This shows that (5.20) agrees with the results from

[59].

Notice that E
[
ξΓ(t, T )|Ft

]
from (5.20) also seems to be in the form of a solution to

the state process in a linear non-Mean-Field BSDE.

Theorem 5.3.4 With the same linear mean-field BSDE as above, consider another

normal BSDE pair (Y̌ , Ž) that is the solution to
dY̌ (t) = −[α1(t)Y̌ (t) + β1(t)Ž(t)]dt+ Ž(t)dB(t), t ∈ [0, T ],

Y̌ (T ) = ξ,

(5.27)

then Z = Ž.

Proof. To solve (5.27), consider the same multiplying factor Γ(t, s) as in (5.15).
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Then by Ito’s Lemma,

d(Y̌ (s)Γ(t, s))

= (dY̌ (s))Γ(t, s) + Y̌ (s)(dΓ(t, s)) + d⟨Y̌ ,Γ(t, .)⟩s

= {−[α1(s)Y̌ (s) + β1(s)Ž(s)]Γ(t, s) + Y̌ (s)Γ(t, s)α1(s) + Ž(s)Γ(t, s)β1(s)}ds+ E3dB(t)

= E3dB(t)

for some E3 ∈ L2
F(t, T ;R). Therefore,

Y̌ (t) = Γ(t, t)−1E[Y̌ (T )Γ(t, T )|Ft] = E[ξΓ(t, T )|Ft].

Similarly as in the approach of Theorem 5.3.1, express Y̌ in the form of forward

SDE:

Y̌ (t) = Y̌ (0) +

∫ t

0

[α1(s)Y̌ (s) + β1(s)Ž(s)]ds+

∫ t

0

Ž(s)dB(s), t ∈ [0, T ],

for some deterministic initial value Y̌ (0). Applying the Malliavin derivative with

r < t, we have

DrY̌ (t) =

∫ t

r

Dr[α1(s)Y̌ (s) + β1(s)Ž(s)]ds+

∫ t

r

DrŽ(s)dB(s) + Ž(r).

Letting r → t−, we have Ž(t) = DtY̌ (t) which means

Ž(t) = DtY̌ (t) = DtE[ξΓ(t, T )|Ft] = Z(t). (5.28)
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5.4 Machine Learning and solution to Mean-

Field FBSDEs

Divide the time interval [0, T ] evenly into 0 = t0 < t1 < ... < tN = T where

∆ti = ti+1−ti =
T
n
for 0 ≤ i ≤ N−1. Let ∆Wi = W (ti+1)−W (ti) for 0 ≤ i ≤ N−1,

then ∆Wi has the same distribution as
√
∆tini where ni ∼ N(0, 1), the standard

normal distribution. Denote xi = X(ti), yi = Y (ti) and zi = Z(ti) for 0 ≤ i ≤ N .

5.4.1 Forward SDE

Suppose the SDE equation follows
dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t),

X(0) = x0.

(5.29)

Theorem 5.4.1 (Euler-Maruyama) The SDE can be disretised into

xi+1 = xi + b(ti, xi)∆ti + σ(ti, xi)∆Wi.

The SDE can be realised by continuously simulating ∆Wi in each time step.

5.4.2 Mean-Field Forward SDE

Suppose the SDE now follows
dX(t) = b(t,X(t),E[X(t)])dt+ σ(t,X(t),E[X(t)])dW (t),

X(0) = x0.

Similar methods as in Subsection 5.4.1 can still be adopted.
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Theorem 5.4.2 (Euler-Maruyama) The SDE can be disretised into
x̄0 = x0

xi+1 = xi + b(ti, xi, x̄i)∆ti + σ(ti, xi, x̄i)∆Wi

x̄i+1 = E[xi+1] = x̄i + E[b(ti, xi, x̄i)]∆ti,

where E[b(ti, xi, x̄i)] can be approximated by Monte Carlo simulation when b is com-

plicated.

5.4.3 Backward SDE

Suppose the BSDE equation follows
dY (t) = −f(t, Y (t), Z(t))dt+ ZdW (t)

Y (T ) = g(X(T ))

where X(t) is the state process following the same SDE as in (5.29).

Theorem 5.4.3 (Forward discretisation of BSDE) Suppose that the BSDE has a

unique solution; then we can assume Y (t) = u(t,X(t)) for some function u with

u(T, ·) = g(·). Then either by Ito’s Lemma or taking the Malliavin’s derivative,

Z(t) = ∂u
∂x
(t,X(t)) · σ(t,X(t)).

As such the discretised BSDE is
y0 = u(t0, x0)

zi =
∂u
∂x
(ti, xi) · σ(ti, xi)

yi+1 = yi − f(ti, yi, zi)∆ti + zi∆Wi.

The selection of u is trained by minimising the function E[
∣∣Y (T )− g(X(T ))

∣∣2]
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5.4.4 Fully coupled FBSDE

Suppose that the state process X and the adjoint processes (Y, Z) follow the follow-

ing equations:

dX(t) = b(t,X(t), Y (t), Z(t))dt+ σ(t,X(t), Y (t), Z(t))dW (t)

dY (t) = −f(t,X(t), Y (t), Z(t))dt+ Z(t)dW (t)

X(0) = x0

Y (T ) = g(X(T )).

Theorem 5.4.4 (Discretisation of fully coupled FBSDE) Note that the diffusion

term in the state process σ now depends on (Y, Z). Z appears as both input and

output, which is not desirable in deep learning. Therefore, we introduce a parallel

network that approximates Z(t) = v(X(t)). The discretisation then becomes:

ui = u(xi)

zi = v(xi)

xi+1 = xi + b(ti, xi, ui, zi)∆ti + σ(ti, xi, ui, zi)∆Wi

yi+1 = yi − f(ti, xi, yi, zi)∆ti + zi∆Wi,

with minimizing function

E[
∣∣g(X(T ))− Y (T )

∣∣2 + ∫ T

0

∣∣Y (t)− ut

∣∣2dt].
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5.4.5 Fully coupled Mean-Field FBSDE with Diffusion

Dependent on the State Variable only

First when the diffusion term of the state process does not depend on Z:

dX(t) = b(t,X(t),E[X(t)], Y (t),E[Y (t)], Z(t),E[Z(t)])dt+ σ(t,X(t),E[X(t)])dW (t)

dY (t) = −f(t,X(t),E[X(t)], Y (t),E[Y (t)], Z(t),E[Z(t)])dt+ Z(t)dW (t)

X(0) = x0

Y (T ) = g(X(T ),E[X(T )]).

Again, assuming the uniqueness of the system, we can approximate Y (t) = u(t,X(t),E[X(t)])

and Z(t) = v(t,X(t),E[X(t)]) = ∂u
∂x
(t,X(t),E[X(t)]) ·σ(t,X(t),E[X(t)]). Note that

since E[X(t)] would be a deterministic function on t when X(t) is known, the prob-

lem can be discretised using the following method:

x̄i, ȳi, z̄i = E[xi],E[yi],E[zi]

y0 = ũ(t0, x0)

zi =
∂ũ
∂x
(ti, xi) · σ(ti, xi)

xi+1 = xi + b(ti, xi, yi, zi, x̄i, ȳi, z̄i)∆ti+1 + σ(ti, xi, x̄i)∆Wi+1

yi+1 = yi − f(ti, xi, yi, zi, x̄i, ȳi, z̄i)∆ti+1 + zi∆Wi+1,

with minimizing function

E
[∣∣Y (T )− g(X(T ),E[X(T )]

∣∣2] .
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5.4.6 Fully Coupled Mean-Field Linear Quadratic FBS-

DEs

With the same settings of coefficients as Section 5.2, we can write both the primal

and dual problems in Section 4.2 into
dXi(t) = (AiX̃i + ÂiX̄i + Biũi + B̂iūi)dt

+ (CiX̃i + ĈiX̄i +Diũi + D̂iūi)dW (t)

dYi(t) = (A⊺
i Ỹi + Â⊺

i Ȳi + C⊺
i Z̃i + Ĉ⊺

i Z̄i +QiX̃i + Q̂iX̄i + S⊺
i ũi + Ŝ⊺

i ūi)dt+ ZidW (t),

with SMP equation:

B⊺
i Ỹi + B̂⊺

i Ȳi +D⊺
i Z̃i + D̂⊺

i Z̄i + SiX̃i + ŜiX̄i +Riũi + R̂iūi = 0,

for i ∈ {1, 2}.

From the SMP equation above, we can express controls in terms of Xi, Yi and Zi:
ũi = −(R−1

i B⊺
i Ỹi +R−1

i D⊺
i Z̃i +R−1

i SiX̃i)

ūi = −(R̂−1
i B̂⊺

i Ȳi + R̂−1
i D̂⊺

i Z̄i + R̂−1
i ŜiX̄i)

Then the FBSDE can be rewritten without controls:

dXi = (AiX̃i + ÂiX̄i +BiỸi + B̂iȲi +CiZ̃i + ĈiZ̄i)dt

+ (DiX̃i + D̂iX̄i + EiỸi + ÊiȲi + FiZ̃i + F̂iZ̄i)dW

dYi = −(JiX̃i + ĴiX̄i +KiỸi + K̂iȲi + LiZ̃i + L̂iZ̄i)dt+ ZidW

Yi(T ) = GT iX̃i(T ) + ĜT ]X̄i(T ) + ĝT i.

(5.30)
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

Ai = Ai − BiR
−1
i Si

Bi = −BiR
−1
i B⊺

i

Ci = −BiR
−1
i D⊺

i

Di = Ci −DiR
−1
i Si

Ei = −DiR
−1
i B⊺

i

Fi = −DiR
−1
i D⊺

i

Ji = Qi − S⊺
i R

−1
i Si

Ki = A⊺
i − S⊺

i R
−1
i B⊺

i

Li = C⊺
i − S⊺

i R
−1
i D⊺

i



Âi = Âi − B̂iR̂
−1
i Ŝi

B̂i = −B̂iR̂
−1
i B̂⊺

i

Ĉi = −B̂iR̂
−1
i D̂⊺

i

D̂i = Ĉi − D̂iR̂
−1
i Ŝi

Êi = −D̂iR̂
−1
i B̂⊺

i

F̂i = −D̂iR̂
−1
i D̂⊺

i

Ĵi = Q̂i − Ŝ⊺
i R̂

−1
i Ŝi

K̂i = Â⊺
i − Ŝ⊺

i R̂
−1
i B̂⊺

i

L̂i = Ĉ⊺
i − Ŝ⊺

i R̂
−1
i D̂⊺

i .

As such we can discretise the Mean-Field FBSDE and try to use Machine Learning

to solve it:

Theorem 5.4.5 For the primal problem, X1(0) = x1, treat Y1(0) as a control, while

for the dual problem, Y2(0) = −x1, treat X2(0) as a control. Then approximate

Zj(t) = v(Xj(t), X̄j(t)) for j ∈ {1, 2}. The discretisation then becomes:

x̄i, ȳi, z̄i = E[xi],E[yi],E[zi]

x̃i, ỹi, z̃i = xi − x̄i, yi − ȳi, zi − z̄i

zi = v(xi, x̄i)

xi+1 = xi + bj(ti, x̃i, x̄i, ỹi, ȳi, z̃i, z̄i)∆ti + σj(ti, x̃i, x̄i, ỹi, ȳi, z̃i, z̄i)∆Wi

yi+1 = yi − fj(ti, x̃i, x̄i, ỹi, ȳi, z̃i, z̄i)∆ti + zi∆Wi,
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where

bj(ti, x̃i, x̄i, ỹi, ȳi, z̃i, z̄i) = Ajx̃i + Âjx̄i +Bj ỹi + B̂j ȳi +Cj z̃i + Ĉj z̄i

σj(ti, x̃i, x̄i, ỹi, ȳi, z̃i, z̄i) = Djx̃i + D̂jx̄i + Ej ỹi + Êj ȳi + Fj z̃i + F̂j z̄i

fj(ti, x̃i, x̄i, ỹi, ȳi, z̃i, z̄i) = Jjx̃i + Ĵjx̄i +Kj ỹi + K̂j ȳi + Lj z̃i + L̂j z̄i

gj(x, x̄) = GTjx+ ḠTjx̄+ ĝTj

with minimizing function

E
[∣∣g1(Xj(T ),E[Xj(T )])− Yj(T )

∣∣2] .
The strategy would be to apply stochastic gradient descent method to minimize the

cost function with respect to controls Y1(0) and v for the primal problem and X2(0)

and v for the dual problem.

From Section 5.2, we can use the solution to Riccati equations to recreate solutions

and use them as a benchmark to measure the accuracy of results from Machine

Learning: 

PiX̃i = Ỹi

ΠiX̄i + η̄i = Ȳi

Zi = DtY = Pi(CiX̃i +Diũi + ĈiX̄i + D̂iūi)

ũi = ΘiX̃i

ūi = ΘiX̄i + φ̄i

(5.31)
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5.5 Deep Learning on Mean-Field Linear Quadratic

FBSDEs

Remark In this section, we assume P2 and Π2 in (5.31) to be invertible on

[0, T ]. This assumption is only for computation and numerical results

and is not included for theoretical analysis in other sections.
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Example 5.5.1 For the first example, the following coefficients are used.

A1 =

 1 0.5

0.4 1


B1 =

 1 0.2

0.1 1


C1 =

 1 1

0.2 1


D1 =

0.5 0.4

0.3 0.5


Q1 =

 1 0.5

0.4 1


2

S1 =

0.2 0.2

0.1 0.4


R1 =

 1 0.2

0.1 1


2

G1 =

 1 0.2

0.3 1


2

g1 =

0

0


x1 =

1

2





Â1 =

1.5 0.8

1.0 1.5


B̂1 =

 2 0.5

0.3 2


Ĉ1 =

1.2 1.5

0.5 1.2


D̂1 =

 1 0.9

0.6 1


Q̂1 =

1.5 0.8

0.8 1.5


2

Ŝ1 =

0.5 0.4

0.3 0.8


R̂1 =

1.2 0.5

0.4 1.2


2

Ĝ1 =

1.5 0.5

0.4 1.5


2

ĝ1 =

0.1

0.2


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The processes are run using Adam algorithm as optimizer. The loss function is

calculated on the basis of 1024 BM paths while each epoch consists of 256 paths.

There are 2 hidden layers, each with a dimension of 4. The activation function is set

to be sigmoid. The total time is set to 0.3. 100k iterations are run for each timestep

at a learning rate of 5e − 4. Table 5.1 and Table 5.2 show the relative errors for

each variables and each time steps. The values in the table refer to the percentile

difference between variables time series generated from deep learning and the time

series generated from solutions to Riccati equations.

Relative Error =
1

2× T ×N

T∑
t=1

N∑
j=1

2∑
i=1

∣∣∣((Xj)
DL
i (ti)−XR

i (ti))/X
R
i (ti)

∣∣∣,
where (Xj)

DL
i (t) refers to the values i-th entry of j-th X in the batch at time t from

deep learning, while XR
i (t) refers to the values i-th entry X at time t from time

series generated from Riccati solutions.

Var\Timestep 5 10 15 20 25
X 12.96% 5.07% 5.20% 5.62% 4.65%
Y 2.88% 1.48% 1.23% 0.99% 0.91%
Z 4.11% 2.27% 1.97% 1.62% 1.48%

Table 5.1: Primal Problem Analysis (Adam)

Var\Timestep 5 10 15 20 25
X 3.41% 2.51% 2.27% 2.21% 2.11%
Y 58.48% 10.49% 12.95% 29.98% 18.60%
Z 3.57% 3.15% 3.07% 3.19% 3.22%

Table 5.2: Dual Problem Analysis (Adam)

The graphs below show hoe the log relative errors of X, Y and Z change as the

number of iteration increases for different time steps. Graphs on the left are from

Primal problems while graphs on the right are from Dual problems.
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Figure 5.1: Relative errors of X1 (ADAM) Figure 5.2: Relative errors of X2 (ADAM)

Figure 5.3: Relative errors of Y1 (ADAM) Figure 5.4: Relative errors of Y2 (ADAM)

Figure 5.5: Relative errors of Z1 (ADAM) Figure 5.6: Relative errors of Z2 (ADAM)

Example 5.5.2 Due to the structure of the primal and dual problems, we compare

the precision between X1 and Y2, as well as between Y1 and X2. As the number

of iterations increases, the relative errors in primal problem decrease significantly
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faster. However, when the number of iterations increases further, the dual relative

errors catch up. Moreover, the dual relative error is usually still on the downward

trend, which means that it can decrease further. An example would be the relative

error of Y1 and X2 with time step 5 of Figure 5.3 and Figure 5.2. The relative error

of Y1 appears to fluctuate around e−3, while at the end of the iteration the relative

error of X2 approaches e
−4. Therefore, for the same level of learning rate, if a faster

result is preferred, the primal problem would be the one to choose, whereas if a more

accurate result is desired, the dual problem would usually be a better choice of the

two. The second example uses a non-square D1. The updated coefficients are as

follows: 

B1 =

 1

0.1


D1 =

0.5

0.3


S1 =

(
0.2 0.2

)
R1 =

(
12
)



B̂1 =

 2

0.3


D̂1 =

0.5

0.3


Ŝ1 =

(
0.5 0.4

)
R̂1 =

(
1.22

)

The other coefficients remain the same as in Example 5.5.1. The primal and dual

tables consisting of relative errors are shown below.

For the second example, all the parameters are kept the same except for the total

number of iteration is reduced to 50k instead as relatively steady loss errors were

observed within a small number of iterations for both primal and dual problem. The

tables and graphs are constructed in the same way as the last example.
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Var\Timestep 5 10 15 20 25
X 4.67% 4.60% 3.19% 2.05% 2.01%
Y 5.45% 2.14% 1.71% 1.69% 1.08%
Z 15.29% 30.16% 17.55% 27.44% 21.92%

Table 5.3: Primal Problem Relative Error with varied D (Adam)

Var\Timestep 5 10 15 20 25
X 4.21% 1.60% 0.81% 0.61% 0.51%
Y 2.61% 4.01% 2.24% 1.50% 0.97%
Z 88.29% 46.67% 521.82% 38.48% 24.79%

Table 5.4: Dual Problem Relative Error with varied D (Adam)

Figure 5.7: Relative errors of X1 varied D
(ADAM)

Figure 5.8: Relative errors of X2 varied D
(ADAM)

Figure 5.9: Relative errors of Y1 varied D
(ADAM)

Figure 5.10: Relative errors of Y2 varied D
(ADAM)
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Figure 5.11: Relative errors of Z1 varied D
(ADAM)

Figure 5.12: Relative errors of Z2 varied D
(ADAM)

As can be seen from both examples, with higher time steps, the results are closer

to the true values. From Table 5.4, it seems strange at first that while the relative

errors of X and Y are low, the relative error of Z is very high. This is, in fact,

caused by the fact that D1 and D2 are not invertible. Since they are not of full row

rank, their nullities are greater than 0 which means there exists v1 ̸= v2 such that

D1v1 = D1v2. But as the problem is only interested in the value functions, an close

approximation on X and Y is good enough.

5.6 Conclusion

In the chapter, we compare the solutions of 4 with the results of [59] to show that

the derivation of the dual problem is indeed correct. We also point out the error in

[3] and give a correct representation of the solution to the MF-BSDEs. Lastly, with

help of Machine Learning, we are able to find numerical solutions that are close to

solutions derived from Riccati solutions in [59].

One possible further research is to use machine learning to find solutions to con-

strained Mean-Field Stochastic control problem. The main obstacle would be to

identify a problem that has an explicit solution. Although one can always use the

loss function to measure accuracy, it is still good to measure how accurate the results
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from machine learning will be by comparing them to the true values.
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6
Conclusion

Combining results in Chapter 2 with those in Chapter 4, we can find the dual

problem to the constrained Mean-Field Stochastic Optimal Control. However, the

conditions required in the proofs limit the method’s application. It remains an

interesting area to see if the results can be extended outside the Linear-Quadratic

setting. While we treat X (or X̃) and X̄ as independent variables when deriving the

dual running cost and terminal cost, it is unlikely possible to repeat such method for

more complicated problem since the stochastic and the law terms would be coupled.

Even in a Linear Quadratic setting, it will still be interesting to see what would

happen when D1 and D̂1 are not of full column rank, i.e., what would happen if Ñ

and N̄ from (4.11) cannot be represented by dual variables? Although we can still

express the dual problem as it is now, what would be the relationship between it

and the primal problem?

Lastly, while the current algorithm shows that the dual problem generally produces
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a more accurate result than its primal counterpart with the same learning rate, it

requires a significantly greater number of iteration steps to be achieved. A possible

further research would be to look into possible improvements to fasten the converging

rate of the dual problem while keeping the accuracy level more or less unchanged.
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A
Proofs for Chapter 4 Section 3

By considering the expectation of the equations and equations subtracting their

expectations, we can divide the FBSDEs and the SMP conditions into 2 parts.

Primal FBSDEs:
dX̃1(t) = (A1X̃1 +B1π̃)dt+ (C1X̃1 + Ĉ1X̄1 +D1π̃ + D̂1π̄)dW (t),

dỸ1(t) = −(A⊺
1Ỹ1 + C⊺

1 Z̃1 +Q1X̃1 + S⊺π̃)dt+ Z1dW (t),

Ỹ1(T ) = GT1X̃1(T )

(A.1)

and 
dX̄1(t) = (Â1X̄1 + B̂1π̄)dt,

dȲ1(t) = −(Â⊺
1Ȳ1 + Ĉ⊺

1 Z̄1 + Q̂1X̄1 + Ŝ⊺
1 π̄)dt,

Ȳ1(T ) = ĜT1X̄1(T ) + ĝT1.

(A.2)
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Primal SMP:

B⊺
1 Ỹ1 +D⊺

1Z̃1 + S1X̃1 +R1π̃ = 0 (A.3)

and

B̂⊺
1 Ȳ1 + D̂⊺

1Z̄1 + Ŝ1X̄1 + R̂1π̄ = 0. (A.4)

Dual FBSDEs:
dX̃2(t) = (A2X̃2 + α̃ +B2β̃)dt+ (C2X̃2 + Ĉ2X̄2 +D2β̃ + D̂2β̄)dW (t)

dỸ2(t) = −(A⊺
2Ỹ2 + C⊺

2 Z̃2)dt+ Z2dW (t)

Ỹ2(T ) = GT2X̃2(T )

(A.5)

and 
dX̄2(t) = (Â2X̄2 + ᾱ + B̂2β̄)dt

dȲ2(t) = −(Â⊺
2Ȳ2 + Ĉ⊺

2 Z̄2)dt

Ȳ2(T ) = ĜT2X̄2(T ) + ĝT2.

(A.6)

Dual SMP:  Ỹ2

B⊺
2 Ỹ2

+

 0

D⊺
2Z̃2

+R2

α̃

β̃

 (A.7)

and  Ȳ2

B̂⊺
2 Ȳ2

+

 0

D̂⊺
2Z̄2

+ R̂2

ᾱ

β̄

 (A.8)

Proofs to Theorem 4.3.4:
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Proof. Be definitions from above:

X̃2 = −Ỹ1

X̄2 = −Ȳ1

Ỹ2 = −X̃1

Ȳ2 = −X̄1

Z̃2 = −C1X̃1 −D1π̃

Z̄2 = −Ĉ1X̄1 − D̂1π̄

α̃ = Q1X̃1 + S⊺
1 π̃

ᾱ = Q̂1X̄1 + Ŝ⊺
1 π̄

β̃ = −D⊺
1Z̃1 −B⊺

1 Ỹ1

β̄ = −D̂⊺
1Z̄1 − B̂⊺

1 Ȳ1.

(A.9)

As such

dX̃2 = −dỸ1

(A.1) = (A⊺
1Ỹ1 + C⊺

1 Z̃1 +Q1X̃1 + S⊺
1 π̃)dt− Z1dW (t)

(A.9) = [(A1 −B1D
†
1C1)

⊺Ỹ1 + (B1D
†
1C1)

⊺Ỹ1 + C⊺
1 Z̃1 + α̃]dt

− [(B1D
†
1 −B1D

†
1)

⊺Ỹ1 + Z̃1 + (B̂1D̂
†
1 − B̂1D̂

†
1)

⊺Ȳ1 + Z̄1]dW (t)

(4.23) = [(A1 −B1D
†
1C1)

⊺Ỹ1 + (D†
1C1)

⊺B⊺
1 Ỹ1 + C⊺

1 (D1D
†
1)

⊺Z̃1 + α̃]dt

− [(B1D
†
1 −B1D

†
1)

⊺Ỹ1 + (D1D
†
1)

⊺Z̃1 + (B̂1D̂
†
1 − B̂1D̂

†
1)

⊺Ȳ1 + (D̂1D̂
†
1)

⊺Z̄1]dW (t)

= [(A1 −B1D
†
1C1)

⊺Ỹ1 + (D†
1C1)

⊺(B⊺
1 Ỹ1 +D⊺

1Z̃1) + α̃]dt

− [−(B1D
†
1)

⊺Ỹ1 + (D†
1)

⊺(B⊺
1 Ỹ1 +D⊺

1Z̃1)− (B̂1D̂
†
1)

⊺Ȳ1 + (D̂†
1)

⊺(B̂⊺
1 Ȳ1 + D̂⊺

1Z̄1)]dW (t)

(A.9) = [−(A1 −B1D
†
1C1)

⊺X̃2 − (D†
1C1)

⊺β̃ + α̃]dt

+ [−(B1D
†
1)

⊺X̃2 + (D†
1)

⊺β̃ − (B̂1D̂
†
1)

⊺Ȳ1 + (D̂†
1)

⊺β̄]dW (t)

(4.8) = (A2X̃2 + α̃ +B2β̃)dt+ (C2X̃2 +D2β̃ + Ĉ2X̄2 + D̂2β̄)dW (t),
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and

dX̄2 = −dȲ1

(A.2) = (Â⊺
1Ȳ1 + Ĉ⊺

1 Z̄1 + Q̂1X̄1 + Ŝ⊺
1 π̄)dt

(A.9) = [(Â1 − B̂1D̂
†
1Ĉ1)

⊺Ȳ1 + (B̂1D̂
†
1Ĉ1)

⊺Ȳ1 + Ĉ⊺
1 Z̄1 + ᾱ]dt

(4.24) = [(Â1 − B̂1D̂
†
1Ĉ1)

⊺Ȳ1 + (B̂1D̂
†
1Ĉ1)

⊺Ȳ1 + Ĉ⊺
1 (D̂1D̂

†
1)

⊺Z̄1 + ᾱ]dt

= [(Â1 − B̂1D̂
†
1Ĉ1)

⊺Ȳ1 + (D̂†
1Ĉ1)

⊺(B̂⊺
1 Ȳ1 + D̂⊺

1Z̄1) + ᾱ]dt

(A.9) = [−(Â1 − B̂1D̂
†
1Ĉ1)

⊺X̄2 + ᾱ− (D̂†
1Ĉ1)

⊺β̄]dt

(4.8) = (Â2X̄2 + ᾱ + B̂2β̄)dt.

Adding the two equations to obtain dual forward equation.

As for the backward equation,

dỸ2 = −dX̃1

(A.1) = −(A1X̃1 +B1π̃)dt− (C1X̃1 + Ĉ1X̄1 +D1π̃ + D̂1π̄)dW (t)

(4.26) = [(−A1 +B1D
†
1C1)X̃1 −B1D

†
1C1X̃1 −B1π̃]dt+ Z2dW (t)

((A6)) = [(−A1 +B1D
†
1C1)X̃1 −B1D

†
1C1X̃1 −B1D

†
1D1π̃]dt+ Z2dW (t)

= [(−A1 +B1D
†
1C1)X̃1 −B1D

†
1(C1X̃1 +D1π̃)]dt+ Z2dW (t)

(A.9) = [−(−A1 +B1D
†
1C1)Ỹ2 +B1D

†
1Z̃2]dt+ Z2dW (t)

(4.8) = −(A⊺
2Ỹ2 + C⊺

2 Z̃2)dt+ Z2dW (t),

114



and

dȲ2 = −dX̄1

(A.2) = −(Â1X̄1 + B̂1π̄)dt

(4.26) = [(−Â1 + B̂1D̂
†
1Ĉ1)X̄1 − B̂1D̂

†
1Ĉ1X̄1 − B̂1π̄]dt

((A6)) = [(−Â1 + B̂1D̂
†
1Ĉ1)X̄1 − B̂1D̂

†
1Ĉ1X̄1 − B̂1D̂

†
1D̂1π̄]dt

= [(−Â1 + B̂1D̂
†
1Ĉ1)X̄1 − B̂1D̂

†
1(Ĉ1X̄1 + D̂1π̄)]dt

(A.9) = [−(−Â1 + B̂1D̂
†
1Ĉ1)Ȳ2 + B̂1D̂

†
1Z̄2]dt

(4.8) = −(A⊺
2Ȳ2 + C⊺

2 Z̄2)dt.

Combining the two to produce the backward equation. Furthermore, the SMP

condition (4.21) can be divided into (A.7) and (A.8):

 Ỹ2

B⊺
2 Ỹ2

+

 0

D⊺
2Z̃2

+R2

α̃

β̃


(A.9) =

 −X̃1

−B⊺
2X̃1

+

 0

−D⊺
2(C1X̃1 +D1π̃)

+R2

 Q1X̃1 + S⊺
1 π̃

−D⊺
1Z̃1 −B⊺

1 Ỹ1


(4.8) =

 −X̃1

D†
1C1X̃1 −D†

1C1X̃1 −D†
1D1π̃

+R2

 Q1X̃1 + S⊺
1 π̃

−D⊺
1Z̃1 −B⊺

1 Ỹ1


((A6)) = R2(−

Q1 S⊺
1

S1 R1


X̃1

π̃

+

 Q1X̃1 + S⊺
1 π̃

−D⊺
1Z̃1 −B⊺

1 Ỹ1

)

= R2

−Q1X̃1 − S⊺
1 π̃ +Q1X̃1 + S⊺

1 π̃

−S1X̃1 −R1π̃ −D⊺
1Z̃1 −B⊺

1 Ỹ1


(A.3) = 0
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and  Ȳ2

B̂⊺
2 Ȳ2

+

 0

D̂⊺
2Z̄2

+ R̂2

ᾱ

β̄


(A.9) =

 −X̄1

−B̂⊺
2X̄1

+

 0

−D̂⊺
2(Ĉ1X̄1 + D̂1π̄)

+ R̂2

 Q̂1X̄1 + Ŝ⊺
1 π̄

−D̂⊺
1Z̄1 − B̂⊺

1 Ȳ1


(4.8) =

 −X̄1

D̂†
1Ĉ1X̄1 − D̂†

1Ĉ1X̄1 − D̂†
1D̂1π̄

+ R̂2

 Q̂1X̄1 + Ŝ⊺
1 π̄

−D̂⊺
1Z̄1 − B̂⊺

1 Ȳ1


(4.8), ((A6)) = R̂2(−

Q̂1 Ŝ⊺
1

Ŝ1 R̂1


X̄1

π̄

+

 Q̂1X̄1 + Ŝ⊺
1 π̄

−D̂⊺
1Z̄1 − B̂⊺

1 Ȳ1

)

= R̂2

−Q̂1X̄1 − Ŝ⊺
1 π̄ + Q̂1X̄1 + Ŝ⊺

1 π̄

−Ŝ1X̄1 − R̂1π̄ − D̂⊺
1Z̄1 − B̂⊺

1 Ȳ1


(A.4) = 0.

Hence (4.21) equals 0. Lastly, check the initial and terminal conditions:
χ = X2(0) = −Y1(0)

Y2(0) = −X1(0) = −x1,

Ỹ2(T )

(A.9) = −X̃1(T )

(A.1) = −G−1
T1Ỹ1(T )

(A.9) = G−1
T1X̃2(T )

(4.8) = GT2X̃2(T )
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and

Ȳ2(T )

(A.9) = −X̄1(T )

(A.2) = −Ĝ−1
T1(Ȳ1(T )− ĝT1)

(A.9) = Ĝ−1
T1X̄2(T ) + Ĝ−1

T1 ĝT1

(4.8) = ĜT2X̄2(T ) + ĝT2.

We are able to obtain the initial and terminal conditions of the dual problem.

Proofs to Theorem 4.3.5:

Proof. Be definitions from above:

X̃1 = −Ỹ2

X̄1 = −Ȳ2

Ỹ1 = −X̃2

Ȳ1 = −X̄2

Z̃1 = −C2X̃2 −D2β̃

Z̄1 = −Ĉ2X̄2 − D̂2β̄

π̃ = −B⊺
2 Ỹ2 −D⊺

2Z̃2

π̄ = −B̂⊺
2 Ȳ2 − D̂⊺

2Z̄2.

(A.10)
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As such

dX̃1 = −dỸ2

(A.5) = (A⊺
2Ỹ2 + C⊺

2 Z̃2)dt− Z2dW (t)

(4.8), (4.27) = [(−A1 +B1D
†
1C1)Ỹ2 −B1D

†
1Z̃2]dt

+ [(−C1 +D1D
†
1C1)Ỹ2 −D1D

†
1Z̃2 + (−Ĉ1 + D̂1D̂

†
1Ĉ1)Ȳ2 − D̂1D̂

†
1Z̄2]dW (t)

= [−A1Ỹ2 +B1(D
†
1C1Ỹ2 −D†

1Z̃2)]dt

+ [−C1Ỹ2 −D1(−D†
1C1Ỹ2 +D†

1Z̃2)− Ĉ1Ȳ2 − D̂1(−D̂†
1Ĉ1Ȳ2 + D̂†

1Z̄2)]dW (t)

(4.8), (4.8) = [−A1Ỹ2 +B1(−C⊺
2 Ỹ2 −D⊺

2Z̃2)]dt

+ [−C1Ỹ2 −D1(B
⊺
2 Ỹ2 +D⊺

2Z̃2)− Ĉ1Ȳ2 − D̂1(B̂
⊺
2 Ȳ2 + D̂⊺

2Z̄2)]dW (t)

(A.10) = (A1X̃1 +B1π̃)dt+ (C1X̃1 + Ĉ1X̄1 +D1π̃ + D̂1π̄)dW (t),

and

dX̄1 = −dȲ2

(A.6) = (Â⊺
2Ȳ2 + Ĉ⊺

2 Z̄2)dt

(4.8) = [(−Â1 + B̂1D̂
†
1Ĉ1)Ȳ2 − B̂1D̂

†
1Z̄2]dt

= [−Â1Ȳ2 + B̂1(D̂
†
1Ĉ1Ȳ2 − D̂†

1Z̄2)]dt

(4.8) = [−Â1Ȳ2 + B̂1(−Ĉ⊺
2 Ȳ2 − D̂⊺

2Z̄2)]dt

(A.10) = (Â1X̄1 + B̂1π̄)dt.

Adding the two equations to obtain the primal forward equation. Observe O1 = R−1
2

times (A.7), we have

0 =

Q1 S⊺
1

S1 R1


 Ỹ2

B⊺
2 Ỹ2 +D⊺

2Z̃2

+

α̃

β̃

 =

Q1Ỹ2 + S⊺
1 (B

⊺
2 Ỹ2 +D⊺

2Z̃2) + α̃

S1Ỹ2 +R1(B
⊺
2 Ỹ2 +D⊺

2Z̃2) + β̃

 .

(A.11)
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Similarly, let R̂−1
2 time (A.8),

0 =

Q̂1 Ŝ⊺
1

Ŝ1 R̂1


 Ȳ2

B̂⊺
2 Ȳ2 + D̂⊺

2Z̄2

+

ᾱ

β̄

 =

Q̂1Ȳ2 + Ŝ⊺
1 (B̂

⊺
2 Ȳ2 + D̂⊺

2Z̄2) + ᾱ

Ŝ1Ȳ2 + R̂1(B̂
⊺
2 Ȳ2 + D̂⊺

2Z̄2) + β̄

 .

(A.12)

As for the backward equation,

dỸ1 = −dX̃2

(A.5) = −(A2X̃2 + α̃ +B2β̃)dt− (C2X̃2 + Ĉ2X̄2 +D2β̃ + D̂2β̄)dW (t)

(4.8), (4.30) = [(A1 −B1D
†
1C1)

⊺X̃2 − α̃ + (D†
1C1)

⊺β̃]dt+ Z1dW (t)

(4.8) = [A⊺
1X̃2 + C⊺

1 (C2X̃2 +D2β̃)− α̃]dt+ Z1dW (t)

(A.11) = [A⊺
1X̃2 + C⊺

1 (C2X̃2 +D2β̃) +Q1Ỹ2 + S⊺
1 (B

⊺
2 Ỹ2 +D⊺

2Z̃2)]dt+ Z1dW (t)

(A.10) = −(A⊺
1Ỹ1 + C⊺

1 π̃ +Q1X̃1 + S⊺
1 π̃)dt+ Z1dW (t),

and

dȲ1 = −dX̄2

(A.5) = −(Â2X̄2 + ᾱ + B̂2β̄)dt

(4.8) = [(Â1 − B̂1D̂
†
1Ĉ1)

⊺X̄2 − ᾱ + (D̂†
1Ĉ1)

⊺β̄]dt

(4.8) = [Â⊺
1X̄2 + Ĉ⊺

1 (Ĉ2X̄2 + D̂2β̄)− ᾱ]dt

(A.12) = [Â⊺
1X̄2 + Ĉ⊺

1 (Ĉ2X̄2 + D̂2β̄) + Q̂1Ȳ2 + Ŝ⊺
1 (B̂

⊺
2 Ȳ2 + D̂⊺

2Z̄2)]dt

(A.10) = −(Â⊺
1Ȳ1 + Ĉ⊺

1 π̄ + Q̂1X̄1 + Ŝ⊺
1 π̄)dt.

Combining the two to produce the backward equation. Furthermore, the SMP
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condition (4.19) can be divided into (A.3) and (A.4):

B⊺
1 Ỹ1 +D⊺

1Z̃1 + S1X̃1 +R1π̃

(A.10) = −B⊺
1X̃2 −D⊺

1(C2X̃2 +D2β̃)− S1Ỹ2 −R1(B
⊺
2 Ỹ2 +D⊺

2Z̃2)

(4.8) = −B⊺
1X̃2 −D⊺

1(D
†
1)

⊺(β̃ −B⊺
1X̃2)− [S1Ỹ2 +R1(B

⊺
2 Ỹ2 +D⊺

2Z̃2)]

((A6)) = −B⊺
1X̃2 +B⊺

1X̃2 − [S1Ỹ2 +R1(B
⊺
2 Ỹ2 +D⊺

2Z̃2) + β̃]

(A.11) = 0

and

B̂⊺
1 Ȳ1 + D̂⊺

1Z̄1 + Ŝ1X̄1 + R̂1π̄

(A.10) = −B̂⊺
1X̄2 − D̂⊺

1(Ĉ2X̄2 + D̂2β̄)− Ŝ1Ȳ2 − R̂1(B̂
⊺
2 Ȳ2 + D̂⊺

2Z̄2)

(4.8) = −B̂⊺
1X̄2 − D̂⊺

1(D̂
†
1)

⊺(β̄ − B̂⊺
1X̄2)− [Ŝ1Ȳ2 + R̂1(B̂

⊺
2 Ȳ2 + D̂⊺

2Z̄2)]

((A6)) = −B̂⊺
1X̄2 + B̂⊺

1X̄2 − [Ŝ1Ȳ2 + R̂1(B̂
⊺
2 Ȳ2 + D̂⊺

2Z̄2) + β̄]

(A.12) = 0

Hence (4.19) equals 0. Lastly, check the initial and terminal conditions:

X1(0) = −Y2(0) = X1,

Ỹ1(T )

(A.10) = −X̃2(T )

(A.5) = −G−1
T2Ỹ2(T )

(A.10) = G−1
T2X̃1(T )

(4.8) = GT1X̃2(T )
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and

Ȳ1(T )

(A.10) = −X̄2(T )

(A.6) = −Ĝ−1
T2(Ȳ2(T )− ĝT2)

(A.10) = Ĝ−1
T2X̄1(T ) + Ĝ−1

T2 ĝT2

(4.8) = ĜT1X̄1(T ) + ĝT1.

We are able to obtain the initial and terminal conditions of the primal problem.
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