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Abstract— Human movement intention recognition is im-
portant for human-robot interaction. Existing work based
on motor imagery electroencephalogram (EEG) provides a
non-invasive and portable solution for intention detection.
However, the data-driven methods may suffer from the limited
scale and diversity of the training datasets, which result in
poor generalization performance on new test subjects. It is
practically difficult to directly aggregate data from multiple
datasets for training, since they often employ different chan-
nels and collected data suffers from significant domain shifts
caused by different devices, experiment setup, etc. On the
other hand, the inter-subject heterogeneity is also substantial
due to individual differences in EEG representations. In this
work, we developed two networks to learn from both the
shared and the complete channels across datasets, handling
inter-subject and inter-dataset heterogeneity respectively. Based
on both networks, we further developed an online knowledge
co-distillation framework to collaboratively learn from both
networks, achieving coherent performance boosts. Experimental
results have shown that our proposed method can effectively
aggregate knowledge from multiple datasets, demonstrating
better generalization in the context of cross-subject validation.

I. INTRODUCTION

Understanding human movement intention plays a critical
role in human-robot interaction. Especially, for rehabilitation
and assistive robotics, successfully recognizing movement
intention is a prerequisite for assistive tool control and
therapeutic motor training [1], [2], [3], [4]. For social
robotics, anticipating upcoming movements can help improve
the safety in human-level engagement over the course of
human-robot collaboration [5], [6]. Thus far, it has received
increasing attention to develop intelligent brain-computer
interface (BCI) systems for intention recognition, and par-
ticularly, electroencephalogram (EEG) has been a popular
measurement method due to its non-invasiveness and conve-
nience of data acquisition.

Advances in deep learning have enabled automatic feature
extraction and intention prediction from raw EEG signals,
with considerable research efforts dedicated to effective
computational architecture designs, such as EEGNet and
DeepConvNet. However, raw EEG representations are quite
complex, and are dominated by individual specific charac-
teristics. Current research is prone to overfitting and being
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Fig. 1. Illustration of benefits and challenges of leveraging mul-
tiple datasets for neural network training. a) Accumulating multiple
relatively-small motor-imagery EEG datasets can increase the diversity and
scale of the datasets b) However, there exist heterogeneous settings across
different datasets, including channel number, device, experiment paradigms,
etc., limiting the applicability of utilizing multiple datasets.

biased towards training subjects, which results in suboptimal
cross-subject generalization [7], [8].

On the other hand, research efforts have also been devoted
to curating motor imagery datasets for algorithm develop-
ment and benchmarking [9]. However, the diversity and scale
of every single dataset are usually, if not always, relatively
small, as caused by several factors such as tedious calibration
and ethical issues. The limited data diversity makes the
cross-subject generalization issue even more severe [7].

The increased diversity enabled by the increased number
of available subjects is a potential countermeasure, as shown
in Figure 1. One intuitive strategy is to directly aggregate
multiple existing EEG datasets for model training. However,
there are several issues hindering such practice. First of all,
the number of electrode channels across datasets is varied,
and such heterogenous settings lead to the failure of fixed
implementation of existing computational architectures [10],
[11], since the dimensionality of the input data is different.
Although selecting common electrodes of different datasets
could be a practical solution, this might drop out useful
information from those dataset-unique channels [12]. Hence,
corresponding solutions are necessary to more effectively
deal with the heterogeneity of input dimensionality, which
is rarely explored in the existing literature.

Furthermore, though different datasets could share identi-
cal imagination classes (such as left/right hand movement),
their experiments may be conducted under paradigms that



are not exactly the same, with different instructional cue
types, session-trial settings, etc. For instance, in [13], the
subject was asked to follow the direction of an arrow to
perform imagination, whereas in [14] the subject was asked
to follow the instruction text displayed on the screen. This
might result in domain shifts across datasets. Thus, the direct
combination, if not addressed properly, might also lead to
negative knowledge transfer from auxiliary datasets.

In our work, to deal with the heterogeneity existing at
the individual level, as well as the dataset level, we propose
a framework consisting of two networks to handle both
heterogeneity issues respectively. A fixed network with data
from common channels of multiple datasets as input is
applied to handle inter-subject heterogeneity. On the other
hand, a dynamic network that can adaptively take data of
varied channel numbers is applied to handle inter-dataset het-
erogeneity. With these two nets, we further develop an online
knowledge co-distillation framework to transfer knowledge
from each other. Our contributions are listed below,

Training with Heterogeneous Datasets. We proposed
a dynamic neural network architecture to handle channel
heterogeneity in EEG datasets. To the best of our knowledge,
this is the first work that focuses on channel heterogene-
ity across EEG datasets, and our proposed framework can
effectively aggregate samples from heterogeneous datasets,
without simply selecting the common channels across them.

Knowledge Co-Distillation. We proposed an online
knowledge distillation framework to simultaneously transfer
knowledge between the networks trained with the shared
channels and with the complete channels. It can achieve
coherent performance boosts for both networks.

Enhanced Cross-Subject Generalization. Our proposed
framework is able to implicitly enhance the cross-subject
generalization performance by aggregating data from multi-
ple datasets, overcoming the small-size issue of most motor
imagery benchmarks.

II. RELATED WORK

A. Deep Learning for BCIs

The advances in deep learning have brought a paradigm
shift to the way brain signals are interpreted. Till now,
different deep learning architectures have been applied in
various BCI applications. The basic architectures like Con-
volutional Neural Network (CNN) and Recurrent Neural Net-
work (RNN) have demonstrated their capability of handling
original EEG time series and its transformations [10], [15],
[16], [17]. Attention mechanisms [18], [19] have also been
introduced to deal with the temporal and spatial dynamics
of the data, to empower the representations of discrimina-
tive features. Albeit these advances, in conventional BCI
classification settings, computational models are trained and
evaluated on the same subject’s data. The performance on the
data collected from new subjects thus cannot be evaluated.
Furthermore, large amounts of works [20], [21], [7] have
proved that the EEG data are prone to variations caused
by individual differences. Such variations would result in
low generalization performance if the training is under

a vanilla end-to-end supervised manner with limited data
diversity/scale [7].
B. Cross-Subject Transfer Learning in BCIs

Instead of applying vanilla end-to-end supervised training
in BCIs, increasing attention has been paid to the challenging
inter-subject variability issue. Transfer learning, especially
domain adaptation, dominates this field [21], [8], [22], [23].
It aims to reduce calibration efforts on the new subjects
(target domain) by leveraging the knowledge derived from
existing subjects (source domains). Wu et al. [24] sum-
marizes the general pipeline of transfer learning in motor
imagery based BCI tasks and highlights the importance of
integrating data alignment and sophisticated transfer learning
approaches. Recently, Wei et al. [22] proposed a new task
of performing transfer learning in multiple BCI datasets.
However, the solutions introduced in [22] simply selected
common channels across datasets; the trade-off between
keeping more common electrode channels or including more
subjects from more datasets limited the effectiveness.
C. Cross-Subject Generalization in BCIs

Different from transfer learning, which assumes the (par-
tial) availability of target subjects for model adaptation,
the task of domain generalization is expected to gener-
alize on totally unseen subjects without any calibration.
Domain generalization has received rapidly increasing atten-
tion in the computer vision field [25], [26], [27]. However,
it has been much less explored in motor imagery based
BCIs [28], especially compared to transfer learning. On
the other hand, the generalization issue could be implicitly
mitigated by more training subjects [29], which however
often cannot be realized within each individual existing
motor imagery benchmark [30], [31]. Although aggregating
multiple datasets could promote the training subject diversity,
it poses another novel challenge, namely the inter-dataset
channel heterogeneity. Existing solutions such as picking up
data from common channels [12] would drop out lots of
useful information.
D. Knowledge Distillation in EEG

Knowledge distillation aims to transfer unique knowledge
learned by one model to another model, which can be cat-
egorized as response-based, feature-based or relation-based
distillation [32]. They distillate model output logits, inter-
mediate feature representations, and relationships between
different layers or data samples, respectively. In the litera-
ture, there have been several works on applying knowledge
distillation to EEG data to handle different issues in varied
applications. For instance, Wu et al. [33] applied knowledge
distillation to bridge the gap between patient-specific and
patient-independent models for EEG-based seizure detec-
tion. Zhang et al. [34] performed visual-to-EEG knowledge
distillation for continuous emotion recognition. In contrast,
we focused on the heterogeneity issue resulting from aggre-
gating heterogeneous motor imagery datasets. We leveraged
knowledge distillation to perform co-distillation between the
models that are targeted at inter-subject heterogeneity and
inter-dataset heterogeneity, respectively.



TABLE I
EXPERIMENTAL SETTINGS OF DIFFERENT TRAINING/TEST SPLITS.

Learning Paradigm Dataset Subject Channel Number

Conventional validation dtr = dte {s}tr = {s}te Same
Uni-dataset inter-subject adaptation dtr = dte {s}tr ⊃ {s}te Same
Uni-dataset inter-subject generalization dtr = dte {s}tr ∩ {s}te = ∅ Same
Multi-dataset inter-subject generalization {d}tr ⊃ {d}te {s}tr ∩ {s}te = ∅ Heterogeneous

III. METHODS

A. Problem Formulation

Considering the left-right motor imagery EEG classifica-
tion task, we denote the input as x ∈ RCd×T , the dataset
it belongs to as d, the subject as si, and the output as y ∈
[0, 1], where Cd represents the channel number of existing
domain d, class 0,1 represents left/right hand imagination,
respectively. Thus in total there are {{xi, yi, si}Nd

i=1}Dd=1.
Different from previous experimental settings, we would

like to highlight the novelty of our learning paradigm.
1. Conventional Validation. Classic machine learning

models are validated under intra-subject settings. With the
training and testing data drawn from the same dataset and
the same subject(s), the stages of model training and testing
are deployed under the same data distribution. This paradigm
has been utilized by several existing works [10], [35].

2. Intra-Dataset Inter-Subject Adaptation. Existing
works on transfer learning mostly focus on intra-dataset
inter-subject model adaptation. With both the data from
source subjects and (un)labelled target subjects, fast and
accurate model adaptation to the target subjects is expected
[21], [24].

3. Intra-Dataset Inter-Subject Generalization. Another
line of work is focused on generalizing to totally unseen
subjects, yet is under-explored for motor-imagery EEG clas-
sification [20]. In other words, this protocol does not use
any data from the target subjects during training. On the
other hand, existing generalization methods, assume the data
dimensionality to be the same, which can only apply to the
data collected with the same electrode settings.

4. Multi-Dataset Inter-Subject Generalization. Beyond
the above, our work involves collecting the data from
multiple small-scale datasets and then training under the
aggregated data, which forms another experiment pipeline.

We summarize the conceptual differences between the
above evaluation protocols in Table I. In this work, we
focus on the last experiment setting and provide an effective
solution to deal with cross-dataset channel heterogeneity and
cross-subject data distribution heterogeneity simultaneously.
B. Methodology Overview

Our framework is built upon the architecture of the
popular EEGNet [10]. The original EEGNet consists of
temporal convolution, spatial convolution, as well as depth-
wise&pointwise separable convolution to extract temporal
feature, spatial feature, and spatial-temporal feature step
by step. Our framework consists of two branches, a fixed
architecture fc and a dynamic architecture fdyn, as illustrated
in Figure 1. The fixed network fc takes the data from

the common channels (i.e. C3, C4, Cz) as input, with a
fixed input dimensionality. An implicit domain generalization
solution is applied to process the data distribution shifts
across large number of subjects. The dynamic network fdyn
is built on adaptive components that can process input
data of varied dimensionalities. Since these two networks
master unique properties, online knowledge distillation is
conducted between fc and fdyn to collaboratively transfer
knowledge from each other in an online manner. Hence,
coherent performance boost can be achieved for both.
C. Fixed network with homogeneous common channels - fc

The network fc takes the data from shared channels across
all the datasets, with the dimension as RC0×T .

1) Batch-Instance Normalization (BIN): In fc, with the
homogeneous data dimensionality, we would like to pay
more attention to handling heterogeneity across subjects.
This is inspired by recent works of domain generalization
in the general computer vision field [25]. Existing domain
generalization works either implicitly or explicitly align
the distribution shifts across domains. Explicit methodolo-
gies mostly seek help from domain-specific architecture
or modules during training, which significantly increases
the computational cost when the domain number (in our
case, namely subject number) is large [26], [36]. On the
other hand, implicit based methods tend to have much less
computational cost since they save the burden of aligning the
distributions across domains [37], [29].

We adopted a simple yet effective batch-instance normal-
ization strategy [29] to incorporate instance normalization
into the batch normalization layers. Given the intermediate
layer output in a minibatch as X ∈ Rb×dimf×dimC×dimT ,
where b refers to the minibatch size, dimf refers to the
intermediate feature number, and dimC ,dimT indicates the
channel and time dimension. The batch-instance normaliza-
tion is formulated as below,

X̂
(B)

=
X − µ(B)

√
σ(B)2 + ϵ

,

X̂
(I)

=
X − µ(I)√
σ

(I)2
c + ϵ

,
(1)

X̂ = γ(ρ · X̂(B)
+ (1− ρ) · X̂(I)

) + β, (2)

where ρ,γ,β are learnable weights, µ(B) and σ(B) refer
to feature statistics tracked from minibatches (batch-norm),
µ(I) and σ(I) refer to features statistics calculated from each
individual sample (instance-norm), and ϵ is the small added
value for numerical stability.

For fc, cross-entropy loss Lc
ce =

1
N

∑N
i=1 CE(fc(xi), yi)

is utilized for optimization.
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Fig. 2. Illustration of our proposed frameworks for training with heterogeneous motor imagery EEG datasets. (a) The input sample xi ∈ RCn×T

is decomposed into both the shared channel RC0×T and the original complete channel RCn×T . The data of selected channels is fed into a fixed network
fc with batch-instance normalization to handle inter-subject heterogeneity implicitly. Simultaneously, the original xi is put to a dynamic network fdyn with
dataset-specific spatial convolution and normalization to deal with inter-dataset heterogeneity. (b) With these two networks, we performed online knowledge
co-distillation to transfer knowledge from each other, with both feature-level Lkdf and response-level Lkdr distillation. Together with classification loss
Lc
ce and Ldyn

ce , the whole network is optimized end-to-end.

D. Dynamic network with heterogeneous channels - fdyn
In order to adaptively process varying channel num-

bers, i.e., Cd of the input data, the following adaptations
were made to the original EEGNet design, by introducing
Cd-related dataset-specific modules.

1) Dataset-specific spatial convolution: In the original
EEGNet [10], the kernel size of Spatial Conv is (Cd,1),
which aims to aggregate features across channels and merge
them into one single channel. To deal with the changes of
Cd, we use dataset-specific spatial convolution in fdyn. As
shown in Figure 2, there are multiple dataset-specific spatial
convolution components to process the data belonging to
their corresponding datasets, separately.

2) Dataset-specific batch normalization (DSN): Mean-
while, since there exists heterogeneity of different datasets as
caused by devices, experiment paradigms, etc., we employ
dataset-specific batch normalization throughout the whole
fdyn to deal with such inter-dataset heterogeneity, by cal-
culating dataset-specific statistics (i.e., µ(B) σ(B) as in
Equation 1) to perform normalization (X̂ = γ · X̂

(B)
+ β).

For the optimization of fdyn, the cross-entropy loss
Ldyn
ce = 1

N

∑N
i=1 CE(fdyn(xi), yi) is applied.

E. Knowledge Distillation

As discussed above, the two networks are expected to
master different properties, with fc focused on inter-subject
data shifts, and fdyn focused on handling inter-dataset chan-
nel heterogeneity. To achieve coherent performance boost
by transferring the knowledge from each other, we ap-
ply an online knowledge distillation framework to perform
co-distillation of both networks, in terms of both the response
and feature level.

1) Response-Level Distillation:

Lkdr =
1

N

N∑
i=1

KL(softmax(zc
i/T ), softmax(zdyn

i /T ))

+KL(softmax(zdyn
i /T ), softmax(zc

i/T )),

(3)

where zc
i and zdyn

i represents the logit outputs of fc and
fdyn, respectively, T is the temperature to soften the output
logits, and KL represents KL divergence loss.

2) Feature-Level Distillation:

Lkdf =
1

N

N∑
i=1

L∑
l=1

MMD(f l
c(xi), f

l
dyn(xi)), (4)

where f l
c, f l

dyn represent the intermediate feature from
the lth layer of fc and fdyn, MMD represents the Maximum
Mean Discrepancy measurement between two feature maps
[32]. In practice, we select the feature maps after spatial
convolution and separable convolution blocks, since after
these blocks, the outputs from both networks have the same
feature dimensionality.

The whole network is trained end-to-end with weighted
combination of the above four, Lc

CE ,Ldyn
CE ,Lkdf ,Lkdr. The

final prediction of our framework is an ensemble of both
networks by 1

2 (fc(xi) + fdyn(xi)).
IV. RESULTS AND DISCUSSION

A. Experimental Settings

1) Dataset Descriptions: In line with our motivations,
we picked up four typical established left-right-hand motor
imagery EEG datasets, with limited subject sizes and varied
channel numbers. The details are given below.

• BNCI2014001. This dataset consists of 9 subjects with
22 channel EEG recordings with cue-based data col-
lection paradigm [30]. Each trial was started with a
short acoustic warning tone and an arrow pointing to the

TABLE II
DESCRIPTION OF DATASETS USED FOR EXPERIMENTS.

Dataset #Channel #Subject #Trial

BNCI2014001 [30] 22 9 2592
BNCI2014004 [31] 3 10 6519
Weibo2014 [14] 60 10 1580
Zhou2016 [13] 14 4 1199



TABLE III
RESULT OF LEAVE-ONE-SUBJECT-OUT VALIDATION. SUBJECT-MEAN ACC AND F1 SCORES OF EACH DATASET ARE REPORTED.

Method Channel Training Set BNCI2014001 BNCI2014004 Weibo2014 Zhou2016

Acc F1 Acc F1 Acc F1 Acc F1

ShallowCNN [11]

Common Uni

0.64±0.12 0.62±0.22 0.70±0.10 0.71±0.09 0.62±0.13 0.62±0.12 0.73±0.06 0.74±0.08
DeepCNN [11] 0.66±0.10 0.67±0.11 0.66±0.10 0.65±0.11 0.64±0.12 0.63±0.12 0.72±0.07 0.69±0.12
EEGNet [10] 0.65±0.08 0.62±0.14 0.71±0.09 0.71±0.09 0.57±0.08 0.61±0.06 0.70±0.04 0.67±0.10
fc only 0.66±0.08 0.62±0.10 0.72±0.10 0.72±0.08 0.58±0.09 0.62±0.07 0.71±0.05 0.67±0.10

ShallowCNN [11]

All Uni

0.73±0.11 0.71±0.16 0.71±0.09 0.71±0.09 0.66±0.14 0.69±0.10 0.74±0.08 0.73±0.13
DeepCNN [11] 0.70±0.13 0.72±0.15 0.67±0.09 0.67±0.08 0.68±0.10 0.67±0.11 0.76±0.04 0.74±0.06
EEGNet [10] 0.77±0.06 0.76±0.08 0.72±0.08 0.71±0.08 0.65±0.10 0.62±0.13 0.79±0.07 0.79±0.08
Ours-fc 0.66±0.06 0.63±0.09 0.72±0.07 0.72±0.07 0.60±0.09 0.63±0.07 0.71±0.03 0.68±0.07
Ours-fdyn 0.80±0.05 0.80±0.06 0.73±0.08 0.73±0.08 0.68±0.09 0.68±0.12 0.79±0.05 0.79±0.09
Ours-Ensemble 0.80±0.05 0.79±0.06 0.73±0.08 0.74±0.08 0.69±0.08 0.69±0.09 0.80±0.05 0.80±0.09

ShallowCNN [11]

Common Multi

0.64±0.11 0.60±0.11 0.64±0.07 0.60±0.10 0.58±0.11 0.48±0.16 0.73±0.06 0.76±0.04
DeepCNN [11] 0.63±0.09 0.62±0.15 0.60±0.08 0.52±0.15 0.61±0.10 0.54±0.15 0.73±0.04 0.74±0.06
EEGNet [10] 0.61±0.09 0.62±0.13 0.63±0.07 0.61±0.10 0.60±0.11 0.55±0.15 0.73±0.06 0.76±0.04
fc only 0.66±0.09 0.63±0.13 0.65±0.10 0.64±0.11 0.61±0.10 0.58±0.10 0.73±0.02 0.77±0.04

fdyn only

All Multi

0.79±0.07 0.78±0.08 0.74±0.10 0.72±0.10 0.66±0.10 0.67±0.11 0.79±0.08 0.78±0.05
Ours-fc 0.67±0.07 0.67±0.09 0.73±0.09 0.72±0.10 0.61±0.08 0.63±0.06 0.75±0.05 0.75±0.01
Ours-fdyn 0.80±0.07 0.81±0.07 0.76±0.10 0.74±0.08 0.69±0.10 0.69±0.10 0.81±0.07 0.80±0.09
Ours-Ensemble 0.81±0.06 0.81±0.06 0.76±0.11 0.75±0.08 0.70±0.08 0.69±0.11 0.81±0.06 0.81±0.03

The best results are in bold and the second best results are underlined.

left/right appeared to indicate corresponding left/right
hand movement imagination.

• BNCI2014004. It contains 9 subjects from 3 channels
(C3,C4,Cz), under a cue-based paradigm [31]. Each trial
was started with a fixation cross and an acoustic warning
tone. The visual cue was shown subsequently to present
the motor imagery type.

• Weibo2014. It was collected with 10 subjects and 60
electrodes [14]. A white circle appearing on the screen
indicated the start of each trial, followed by a red circle
as a preparation cue, and text showing the imagery type.

• Zhou2016. This dataset contains 4 subjects with 14
channels [13]. Each trail started with a short beep,
followed by a red arrow that indicated the imagination
task by its arrow direction.

The details are given in Table II for intuitive comparison.
We segmented out the first 2s of each trial across all the
datasets to construct the whole dataset, with a bandpass filter
of 3-40 Hz and z-normalization as preprocessing. All the
data is loaded by MOABB 1. The common channels across
all datasets are {C3, C4, Cz}.

2) Evaluation Paradigms: To evaluate the generaliza-
tion capability of different methods, we applied the
Leave-One-Subject-Out (LOSO) cross-validation evalua-
tion strategy. Under this protocol, we selected one subject
as the testing subject and the remaining data results in the
training split. We randomly split 20% from the training split
as validation to select the best model, and to report the
performance on the testing split. The Accuracy (Acc) and
the F1 scores were utilized as performance metrics.

To further evaluate the effectiveness of our proposed
method under different channel numbers and with/without
the help of additional datasets, the comparison was con-
ducted under different settings of the channels and datasets.

• Common-Channel or All-Channel. Two options

1http://moabb.neurotechx.com/

were available in channel settings. “Common-Channel”
refers to utilizing the shared channels across all the
datasets, namely {C3, C4, Cz}, whilst the other option
“All-Channel” employed all channels in each dataset.

• Uni-Dataset or Multi-Dataset. Similarly, two options
were provided in terms of the training data composi-
tions. In the “Uni-Dataset” settings, all the remaining
subjects from the same dataset as held-out testing
subjects contributed to the training/validation data. In
the “Multi-Dataset” settings, we also added all the data
from the other datasets to form the final training split.

For comparison, we also implemented three motor imagery
classification methodologies EEGNet [10], DeepCNN [11],
ShallowCNN [11]. They shared the same experimental set-
tings as our method for a fair comparison.

3) Implementation Details: We implemented all the net-
works by Pytorch with Titan Xp. For training, we applied
AdamW as the optimizer, with learning rate as 5e-2, betas
as (0.9,0.999), and weight decay as 1e-4. The batch size of
each dataset was set as 32.
B. Quantitative Results

We present the quantitative results of LOSO cross-subject
validation in Table III. Overall our proposed method (marked
in ) outperformed other compared methods. This was
enabled by incorporating additional datasets, as well as
leveraging our proposed architecture design and training
strategy. Below we give detailed discussions of the results.
Effectiveness of Batch-Instance Normalization. As shown
in the Table III, the adaptation to the original EEGNet with
our proposed architecture (fc only as marked in ) can
achieve better generalization performance, compared to the
original EEGNet in most cases.
Effectiveness of Dynamic Architecture. Furthermore, in the
training of All-Channel + Multi-Dataset, we also applied
fdyn only (marked in ) to validate the efficacy of the dy-
namic architecture. Our proposed method can bring in better
performance with additional datasets, compared to directly

http://moabb.neurotechx.com/


selecting common channels. It is demonstrated to be a better
solution to handle inter-dataset channel heterogeneity.
Knowledge Distillation between Models Trained with Dif-
ferent Channels. We also implemented our framework
within All Channel + Uni-Dataset settings. In this way, the
dynamic architecture can be viewed as a fixed architecture
with the original data of all channels as input. In this way,
the knowledge co-distillation is more focused on the repre-
sentations under different channel numbers, and/or different
normalization strategies. Performance gains can be noted in
Table III, as marked in , compared to other methods under
the same settings.
All Channels vs Common Channels. Comparing the same
algorithm that is trained using only common channels and
using complete channels, it can be easily found that only
selecting partial electrodes can significantly drop out useful
information, thus deteriorating the generalization perfor-
mance. This validates that when there are large differences
in electrode settings between datasets, simply selecting only
the common shared channels might not be an ideal solution.
Multi-Dataset vs Uni-Dataset. An interesting finding is that,
directly collecting data from multiple datasets by picking
up common channels mostly is not functional. It can be ob-
served that in Common-Channel settings (Common-Channel,
Multi-Dataset VS Uni-Dataset), in most cases, directly utiliz-
ing multi-dataset to train would not result in a performance
boost. This might be caused by the heterogeneity across
datasets caused by devices, and experiment setups. Adding
other datasets into training would bias the model by such
heterogeneity. Instead, our data-specific modules can handle
this issue by calculating dataset-specific statistics to perform
dataset-specific normalization.
Performance across Each Subject. We also present the
Acc results of each subject of BNCI2014001 in Figure 3,
and performed paired t-test to show the significance of the
performance gains enabled by our method.

C. Qualitative Results

The spatial convolution in EEGNet [10] functions as a
spatial filter to perform a weighted average across all the
channels. We visualized one representative kernel of the
spatial convolutions from fc, fdyn in Figure 4. For more
intuitive visualization, we performed extrapolation to the
whole head to deal with channel-heterogeneity. It can be
observed that they shared a similar pattern (larger weights on
the right hemisphere area), whereas, for each dataset-specific
filter, they demonstrate some unique characteristics.

D. Ablation Studies

We further perform ablation studies to validate the ef-
fectiveness of each loss function of our proposed method,
with the results shown in Table IV. Furthermore, we also
tried to directly replace dataset-specific normalization with
batch-instance normalization in fdyn and test whether the
modified fdyn only is enough to handle both inter-subject
and inter-dataset heterogeneity. However, it shows inferior
performance compared to our method.
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Fig. 3. Acc results of each subject of LOSO validation on
BCNI2014001. On the left, ShallowCNN, DeepCNN, EEGNet were trained
under Common-Channel + Multi-Dataset settings, whilst on the right, they
were trained under All-Channel + Uni-Dataset settings. Our fc and fdyn
is learned under All-Channel + Uni-Dataset settings. The rightmost column
presents subject-average results, with paired t-test to perform significant test.
(*: 0.01<p≤0.05, **: 0.001<p≤0.01, ***: 0.0001<p≤0.001)

(a) fc (b) fdyn-1 (c) fdyn-2 (d) fdyn-3 (e) fdyn-4

Fig. 4. Visualization of one representative spatial convolution filters
from both fc and four domains-specific modules of fdyn. They are
visualized under the same range (red-larger; blue-smaller).

TABLE IV
RESULT OF ABLATION STUDY.

Ablation BNCI2014001

Acc F1

Lc
ce La

ce Lkdr Lkdf

a ✓ ✓ 0.79±0.07 0.77±0.08
b ✓ ✓ ✓ 0.79±0.06 0.79±0.08
c ✓ ✓ ✓ ✓ 0.81±0.06 0.81±0.06

d fdyn only, with BIN 0.76±0.12 0.74±0.10

V. CONCLUSION
Generalizing human movement recognition on unforeseen

novel subjects is important for real-world human-robot in-
teraction. Existing motor imagery EEG training could suffer
from relatively small size of subjects due to ethics and
tedious data calibration, thus resulting in poor generalization.
In this work, we seek the help from multiple small-scale
open-source datasets to increase the diversity and scale of
training data. However, such operation is not trivial, rather
associated with several issues including the inter-subject
data distribution heterogeneity as well as the inter-dataset
channel heterogeneity. To tackle these issues, we built a fixed
network with batch-instance normalization and a dynamic
network with dataset-specific modules, separately. Based on
these two networks, we further proposed a novel collabo-
rative online knowledge distillation framework to achieve
coherent performance boosts. Experimental results show that
our proposed method achieved superior performance against
other baseline motor imagery algorithms. In this regard, a
novel cross-subject generalization solution was developed by
learning from multiple heterogeneous EEG datasets.
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