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A B S T R A C T   

An assessment of the elastic–plastic buckling limit state for multi-strake wind turbine support 
towers poses a particular challenge for the modern finite element analyst, who must competently 
navigate numerous modelling choices related to the tug-of-war between meshing and computa-
tional cost, the use of solvers that are robust to highly nonlinear behaviour, the potential for 
multiple near-simultaneously critical failure locations, the complex issue of imperfection sensi-
tivity and finally the interpretation of the data into a safe and economic design. 

This paper presents a detailed reference solution to the computational buckling analysis of a 
standardised benchmark problem of an 8-MW multi-strake wind turbine support tower. Both 
linear and nonlinear analyses are performed, including advanced GMNIA with several different 
models of geometric imperfections. The crucial issue of interpreting the imperfection amplitude in 
a way that is compliant with the new prEN 1993-1-6 is discussed in detail. The solution presented 
herein is intended for use by analysts in both industry and academia for training, verification and 
calibration of finite element models and is intended to initiate a public repository of such 
computational solutions for metal civil engineering shell structures. 

This paper is the second of a pair. The first paper [37] presents a synthesis of 29 submissions to 
an international round-robin exercise performed on the same benchmark problem.   

1. Introduction 

In 2016, a pan-European group of experts were tasked by CEN/TC250/SC3 to work on formalising the use of finite element analysis 
in structural steel design. Although when the first meeting took place in 2017 this was still an Ad-Hoc Group working on what was then 
intended to be either a ‘Technical Document’ or an Annex to an existing Eurocode, by 2019 it had morphed into a formal Working 
Group 22 of SC3 working on the first drafts of an entirely new prEN 1993-1-14 on the design of steel structures assisted by finite 
element analysis. In 2021, an advanced document was circulated for CEN Enquiry. This entirely new Eurocode is an important 
document aiming to standardise the often very inconsistent choices made by finite element analysts, namely those relating to ge-
ometry, meshing, material laws and solver settings, in recognition of the increasingly important role that computational predictions 
are playing in modern structural design. It has also provided a valuable impetus for the accumulation of computational benchmark 
problems for the verification or calibration of finite element models and methodologies, for which it has established a formal protocol. 

It should be recognised that the EN 1993-1-6 Eurocode on the strength and stability of metal shells has had standardised rules for 
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design of shell structures assisted by finite element analysis since at least the ENV in 1995, and that its drafting committee (which 
included Prof. Herbert Schmidt (University of Duisburg-Essen), Prof. Michael Rotter (University of Edinburgh) and Prof. Richard 
Greiner (TU Graz)) was the progenitor of the extremely successful LA, LBA, MNA, GMNA, GMNIA taxonomy since adopted into prEN 
1993-1-14 and by the wider structural steel community. The interested reader will find detailed historical information in the ECCS 
EDR5#2 [1] book of recommendations that accompanied the 2007 version of EN 1993-1-6 [2]. Present in drafts of ENV 1993-1-6 [3] 
since as early as 1995 have also been detailed rules aiming to validate or verify finite element models against ‘known results’, in 
response to specific concerns raised by Prof. Richard Greiner in recognition of the ease with which catastrophic mistakes can be made 
during modelling and design. Specifically, for the design of metal civil engineering shell structures assisted by the most advanced 
nonlinear GMNIA, it has long been required by ENV/ EN 1993-1-6 that a ‘reliability check’ be performed to assess the ability of the 
analyst to reproduce a ‘known’ result on a similar system to the one being designed. The analyst’s computed resistance for that ‘known’ 
system RGMNIA,check (scaling factor on the applied load set to achieve failure) is then either validated against a test result Rtest (whose 
geometric imperfections must be representative of those that occur in practical construction and which the analyst should have made 
some effort to include in their model) or verified against a ‘well-established known resistance from the literature’ Rk,known (implicitly 
taken to either mean an algebraic result or a carefully conducted and widely accepted finite element result). The available resistances 
are then combined to give a calibration factor kGMNIA such that 

kGMNIA =
Rtest

RGMNIA,check
or

Rk,known

RGMNIA,check
(1) 

which is used to calibrate the computed GMNIA resistance RGMNIA of the actual system being designed to give a characteristic 
resistance Rk and thence a design resistance Rd. 

Rk = kGMNIA ⋅ RGMNIA from which Rd =
Rk

γM1
(2)  

where γM1 is the partial factor for resistance of a shell to the buckling ultimate limit state. If the ‘known value’ is used, the calibration 
factor must be in the range 0.8 < kGMNIA < 1.2 to be acceptable, while if a test result is used the restriction is kGMNIA ≤ 1. 

A recent meta study of the available test results of axially compressed cylinders from the publicly available scientific literature by 
Sadowski et al. [4]) revealed that this entire body of experimental data is unrepresentative of full-scale civil engineering construction 
and sparsely documented, and a similar situation likely exists for other reference shell systems. While that study made the case that 
these tests would be an entirely inappropriate dataset upon which to calibrate safety–critical partial factors such as γM1, it could have 
had some value as a source of provisional examples for individual finite element model validation through kGMNIA factors. Unfortu-
nately, for this to have been possible the tests would have needed to be accompanied by very detailed imperfection measurements. 
With the limited exception of the numerous buckling tests that formed the now-defunct Initial Imperfection Databank (IIDB) [5,6], in 
which well-documented destructive buckling tests were accompanied by surface imperfection surveys, such detailed information is 
essentially unobtainable. Indeed, a recent computational study by Kathirkamanathan et al. [7] showed that even the resolution of the 
surface scans of isotropic specimens in the IIDB is too low to have captured all of the key buckling-relevant imperfection features likely 
to have existed in the actually tested specimens (and other important types of imperfection may not have been measured at all), and 
that with this information alone it is not consistently possible to computationally obtain buckling resistances as low as those reported 
from these tests. Using such test results to calibrate kGMNIA would lead to penalisingly low computed Rk through no fault of the analyst 
which would only serve to discourage the use of GMNIA in design. Consequently, calibration of kGMNIA on Rtest from tests is unlikely to 
be attractive for as long as test data of appropriate quantity and quality are not available, which only leaves Rk,known from ‘well- 
established known resistances from the literature’ as a feasible option. It should be stated, finally, that the γFE ‘model factor covering 
the uncertainties of the numerical model and the executed analysis type’ introduced by prEN 1993-1-14 [8] is a direct descendant of 
the kGMNIA factor from EN 1993-1-6 albeit recast into a probabilistic framework. 

Given the emphasis now placed in prEN 1993-1-6 [9] and prEN 1993-1-14 [8] on the calibration of finite element models used for 
safety–critical civil engineering structural design, and the fact that over two decades have passed since the first drafts of EN 1993-1-6, it 
is rather surprising that the publicly available repository of well-documented benchmark solutions involving shell structures is still 
relatively sparse. What is available for shells is typically limited to algebraic stress analyses or linear bifurcation solutions of relatively 
simple reference axisymmetric systems such as individual cylinders (the interested reader may consult the ‘blue book’ of Teng and 
Rotter [10]), although a handful of nonlinear computational studies can be used for more complex benchmarking (see for example 
[1,11,12]). For realistic full-scale civil engineering metal structures, however, a public repository of solutions with sufficient detail to 
be fully reproducible is virtually non-existent. 

The worked solution to the international ‘round-robin’ exercise benchmark presented here is intended to form the start of such a 
repository and permit analysts to directly calibrate a kGMNIA for this particular class of shell structure. It was already present in the 
companion paper [37] where it was referred to as a ‘reference solution’ and highlighted with heavy black icons or curves on combined 
comparison plots. Its consistent placement inside or close to the interquartile range of all submission gives strong support for it being a 
correct solution within the bounds of the modelling assumptions that have been made. The Reader is cautioned, however, that the 
analyses detailed here are intended purely for individual model verification and do not necessarily represent an exhaustive set of 
analyses necessary to certify a structural design. Such a set must follow the full provisions of the necessary Eurocodes which are too 
numerous to be all mentioned here. The Authors encourage constant vigilance and double-checking during the modelling process. 
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2. The benchmark 

The benchmark problem documented in this paper is identical to that set as part of the international round-robin exercise explored 
in the companion paper [37], and only a repeat of the most pertinent information is given here. The benchmark is based on the upper 
36 m long segment being close to a real design of an 8-MW multi-strake steel wind turbine support tower, though the modelled segment 
itself is assumed to be fully fixed at the base. 

The individual heights h, cross-sectional upper r1 and lower r2 radii and thicknesses t are presented in Table 1, together with the 
angle of incline of the meridian to the vertical β and the upper ρ1 and lower ρ2 circumferential radii of curvature calculated as 
ρ = r⋅secβ. The nominal material is a S355J0 grade steel, throughout with an elastic modulus of 210 GPa, a Poisson ratio of 0.3, a 
nominal yield strength of 345 MPa and a density of 7850 kg/m3. Two load cases (LCs) are considered, both including gravity-induced 
self-weight. The first (LC1) consists of a transverse force Q = 1.76 MN, a bending moment M = 33 MNm acting in the same direction 
and a vertical force V = 4 MN, all acting through a centroidal location within the top Flange 101. In the second (LC2), Q = 1.6 MN, 
M = 30 MNm, V = 4 MN and there is an additional global torsional moment T = 22 MNm. Readers may refer to Fig. 2 of the companion 
paper [37] for an illustration of the geometry and loads, as well as Fig. 1 here. 

3. Modelling of the tower 

3.1. Meshing protocol 

The mesh design adopted here for every computational analysis follows the meshing protocol of Sadowski [13] which built on the 
work of Spagnoli [14] on axially compressed conical shells. The protocol assumes that the smallest theoretically possible buckles in 
both conical and cylindrical shells are those under axial (meridional) compression, and that this is the scale of the smallest meaningful 
buckling-relevant feature for which the mesh should be purposefully designed for conical and cylindrical shell structures under general 
loading. In particular, the theoretical device of the generalised Koiter ellipse may be used to establish upper bounds for critical linear 
bifurcation buckling modes with the maximum possible number of meridional half-waves mmax and circumferential full waves nmax 
respectively. The Koiter ellipse is defined as 

m̄2ρ2
avg + n2sec2β −

π
̅̅̅
2

√

a
m̄ρavg

̅̅̅̅̅̅̅̅
ρavg

t

√

= 0 (3)  

where a = π̅̅̅̅̅̅̅̅̅̅̅̅̅
3(1− ν2)4

√ ≈ 2.444 for ν = 0.3, m̄ = m L
π & ρavg =

1
2 (ρ1 + ρ2) =

1
2 (r1 + r2)secβ from which it can be shown that 

mmax =

̅̅̅
2

√

a
⋅

L
̅̅̅̅̅̅̅̅̅ρavgt

√ ≈ 0.579
L
̅̅̅̅̅̅̅̅̅ρavgt

√ (4)  

and 

nmax =
π

a
̅̅̅
2

√ ⋅ cosβ
̅̅̅̅̅̅̅̅
ρavg

t

√

≈ 0.909cosβ
̅̅̅̅̅̅̅̅
ρavg

t

√

(5)  

for ν = 0.3. Adopting a reasonable ‘rule of thumb’ that the buckling half-wavelength in either direction should be discretised by a 
minimum of 10 linear shell elements (although the analyst is free to vary this), the minimum mesh resolution along the meridian Mmin 

Table 1 
Geometry of the top segment of an 8 MW wind turbine support tower.  

Strake 
ID 

h 
(mm) 

r1 (top) 
(mm) 

r2 (bottom) 
(mm) 

t 
(mm) 

β 
(rads) 

ρ1 (top) 
(mm) 

ρ2 (bottom) 
(mm) 

Flange 101 600  2072.50  2072.50 50 0  2072.50  2072.50 
Strake 102 2319  2072.50  2128.95 13 0.02434  2073.11  2129.58 
Strake 103 2569  2128.95  2196.70 13 0.02637  2129.69  2197.46 
Strake 104 2684  2196.70  2267.55 14 0.02639  2197.47  2268.34 
Strake 105 2675  2267.55  2338.10 14 0.02637  2268.34  2338.91 
Strake 106 2416  2338.10  2401.85 14 0.02638  2338.91  2402.69 
Strake 107 2657  2401.85  2471.95 14 0.02638  2402.69  2472.81 
Strake 108 2648  2471.95  2541.85 15 0.02639  2472.81  2542.74 
Strake 109 2639  2541.85  2611.45 15 0.02637  2542.73  2612.36 
Strake 110 2630  2611.45  2680.85 15 0.02638  2612.36  2681.78 
Strake 111 2621  2680.85  2750.00 15 0.02638  2681.78  2750.96 
Strake 112 2068  2750.00  2750.00 15 0  2750.00  2750.00 
Strake 113 2067  2750.00  2750.00 16 0  2750.00  2750.00 
Strake 114 2368  2750.00  2750.00 16 0  2750.00  2750.00 
Strake 115 2897  2750.00  2750.00 17 0  2750.00  2750.00 
Flange 116 142  2750.00  2750.00 17 0  2750.00  2750.00  
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Fig. 1. Modelling details, coordinate system, dofs and reactions.  

Fig. 2. Selection of LBA eigenmode shapes for both load cases.  
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or circumference Nmin of any individual conical shell strake may be taken as: 

Mmin = ⌈10 ⋅ mmax⌉ ≈ ⌈5.8
L
̅̅̅̅̅̅̅̅̅ρavgt

√ ⌉ (6)  

and 

Nmin = ⌈10 ⋅ 2nmax⌉ ≈ ⌈18.2cosβ
̅̅̅̅̅̅̅̅
ρavg

t

√

⌉ (7)  

for ν = 0.3 where the partial brackets represent the ceil operation (round upwards to nearest integer). While the theory behind the 
Koiter ellipse is linear, the predicted buckling eigenmodes are known to be similar in scale to nonlinear bifurcation buckles and the 
above procedure offers a convenient, geometrically scalable and programmable mesh design capability. It is cautioned that the 
resulting meshes may be finer than an analyst is accustomed to, but the resolution can be controlled by varying the number of elements 
per half-wavelength in Eqs (6) and (7). While the number of shell elements edges along the meridian M varies per strake (Table 2), to 
maintain mesh quality it is recommended to keep the number of shell edges around the circumference N constant as the maximum of 
all individual strake calculations using Eq. (7). This meshing scheme applies only to shell strakes and not to stiff flanges which, if they 
are not the focus of the analysis and if they are stiff enough to fully restrain cross-sectional ovalisation, may be simply modelled as 
circular hollow beam sections or rigid entities. 

3.2. Modelling choices 

The ABAQUS 2017 [15] commercial finite element software was used in all analyses presented here, but the methodology and 
modelling features should be entirely agnostic to the software used. Flange 116 is assumed to be superfluous to the structural response 
of the tower segment above it and was not included in this solution. Instead, the nodes along the bottom edge of Strake 115 were tied to 
a centroidal reference point via a rigid body kinematic coupling (Fig. 1a). All dofs of this reference point were restrained, leading to an 
effective BC1r boundary condition at the base of the modelled tower segment. Using a reference point in this manner is very convenient 
as it greatly simplifies the application of boundary conditions and the calculation of base reactions (which are then just taken as force 
and moment reactions at this reference point, thus avoiding an onerous integration of individual contributions from all nodes along the 
bottom circumference). Similarly, Flange 101 at the top of the tower was modelled as a circular hollow section beam element with the 
beam node at the 101–102 boundary linked to those of the top circumferential edge nodes of Strake 102 with a rigid body kinematic 
coupling (Fig. 1b). The point loads specified in the benchmark can then be easily applied to the beam element node at the top of Flange 
101, and tip deflections and rotations can be obtained with similar ease. Use of a beam element for Flange 101 precludes any cross- 
sectional distortion of the top flange, a reasonable assumption for such a thick component. Further information on such ‘hybrid’ beam- 
shell models for tower structures may be found in Sadowski [13]. Following the mesh design summarised in Table 2, the mesh consists 
of 266,513 reduced-integration S4R linear shell elements for Strakes 102–115 and a single B31 linear beam element for Flange 101, for 
a total of 1,600,578 model dofs. Every input file was approximately 25 MB in size. A simple isotropic elastic material law was assumed 
for LA and LBA, while all (G)MN(I)A assumed an ideal elastic but rigid plastic formulation with a yield plateau but zero post-yield 
strain hardening for simplicity. However, the analyst may find a selection of material formulations permissible for use in GMNIA 
which include strain hardening in prEN 1993-1-14 [8]. 

These modelling details are illustrated in Fig. 1, together with the convention for a right-handed Cartesian coordinate system 
(where C1 – C3 identify the original nodal coordinates), nodal dofs (displacements U1 – U3 and rotations UR1 – UR3 in the right-hand 

Table 2 
Mesh design for the tower segment.  

Strake 
ID 

ρavg 

(mm) 
mmax nmax Mmin Nmin 

Flange 101 n/a n/a n/a n/a n/a 
Strake 102 2101.35 8.12 11.55 82 232 
Strake 103 2163.58 8.87 11.72 89 235 
Strake 104 2232.90 8.79 11.48 88 230 
Strake 105 2303.63 8.62 11.66 87 234 
Strake 106 2370.80 7.68 11.82 77 237 
Strake 107 2437.75 8.33 11.99 84 240 
Strake 108 2507.77 7.90 11.75 80 235 
Strake 109 2577.55 7.77 11.91 78 239 
Strake 110 2647.07 7.64 12.07 77 242 
Strake 111 2716.37 7.52 12.23 76 245 
Strake 112 2750.00 5.89 12.31 59 247 
Strake 113 2750.00 5.70 11.92 58 239 
Strake 114 2750.00 6.53 11.92 66 239 
Strake 115 2750.00 7.75 11.56 78 232 
Flange 116 n/a n/a n/a n/a n/a  

Overall: N = 247  
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screw rule) and reactions (forces RF1 – RF3 and moments RM1 – RM3) adopted in this paper. The 2 axis is the vertical axis through the 
tower centreline. A radial nodal displacement Uρ in the 1–3 axes’ plane is occasionally convenient and may be computed from the 
Cartesian quantities as: 

Uρ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(C1 + U1)
2
+ (C3 + U3)

2
√

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

U2
1 + U2

3

√

(8) 

The generic nature of this notation is intended to aid analysts in easily relating these quantities to whatever coordinate system and 
naming convention is used by their software. Lastly, in all analyses the self-weight load caused by gravity was included in the load set 
that was scaled by the respective algorithm. While it would be more physically realistic to apply self-weight to full intensity as a ‘pre- 
load’ in an initial analysis step (geometrically linear for LBA and MNA, nonlinear for GMN(I)A) so that the resulting stress state can be 
perpetuated through the next analysis step where all other tower loads would be subsequently applied and scaled to failure, it is code- 
compliant in that self-weight is then treated the same as any other design load. 

4. LA: Base reactions and tip dofs 

The six reactions at the base centroidal reference point (Fig. 1a) and the six dofs at the top centroidal beam node of Flange 101 
(Fig. 1b) are summarised in Table 3 for both load cases. These should serve as the first validation checkpoint. The mass of the tower 
model is 67.4136 t (0.66133 MN with g = 9.81 m/s2) as reported by ABAQUS. 

5. LBA: Reference elastic critical buckling resistances (eigenvalues) and eigenmodes 

A summary of the ten lowest (‘most critical’) LBA eigenmodes and their corresponding eigenvalues is presented in Table 4 with a 
selection illustrated in Fig. 2. The eigenvalues are load proportionality factors on the set of design loads characterising both load sets, 
and the lowest ones for either LC give the reference elastic critical buckling resistance Rcr for that LC. If self-weight is omitted from the 
analyses entirely it results in eigenvalues only ~ 0.1 % higher and very similar eigenmodes. The addition of a torsional moment (and a 
minor change in two other loads) results in a significant reduction in Rcr (~52 %) and a qualitative change in the critical eigenmode. 
While this may imply that torsion may have an important effect on the resistance of the tower, this conclusion cannot be drawn without 
first additionally considering the effect of plasticity as will be presented shortly. The Lanczos eigensolver was used with the stipulation 
that only non-negative eigenvalues are to be reported (to avoid physically erroneous situations such as ‘negative gravity’, see dis-
cussion in the companion paper). 

Although they are easy to compute, the eigenmode shapes presented in Fig. 2 should give the analyst significant pause if they are 
aiming to use them as equivalent geometric imperfections in GMNIA. For the non-torsional LC1 in particular, the critical eigenmode 
represents an imperfection localised in Strake 112 only which may or may not be globally critical if introduced into GMNIA. Higher- 
order eigenmodes would be necessary to obtain imperfections localised elsewhere (e.g. eigenmode no. 9 for Strake 114) and many 
hundreds of eigenmodes may need to be extracted at significant computational cost before a ‘desired’ localisation of buckling de-
formations is obtained (see discussion in Sadowski [13]). In any case, the claim for eigenmodes being representative of any 
manufacturing imperfections likely to arise in full-scale civil engineering towers is tenuous, and in this context the Reader is invited to 
consult the discussion by Rotter [16] of the different approaches to the design of imperfect shells against buckling. This discussion 
notwithstanding, the results of the LBA are revisited in detail in Sections 8 and 10 where they are used as equivalent geometric im-
perfections in GMNIA. 

6. MNA: Reference plastic resistances and tip dofs 

The MNAs were performed using the ‘Riks’ arc-length solver of ABAQUS with disabled geometric nonlinearity. The analysis step 
scaled the full set of design loads corresponding to either LC for exactly 100 increments with initial and maximum load proportionality 
factor (LPF) increments set at 0.1 (10 % of the intensity of the loads in the LC) and the algorithm being free to modify the increment 
size. Although terminating an MNA after a fixed number of increments does not guarantee that a fully-developed plastic collapse 
mechanism has been attained corresponding to a horizontal plateau on the equilibrium relationship, particularly for stress states 
involving significant through-thickness bending, this was a reasonable limit for the purposes of this illustration. The equilibrium paths 
of selected tip dofs vs the applied LPF are presented in Fig. 3 and demonstrate that while a significant plateau has developed after 100 

Table 3 
Summary of base centroidal reactions and tip centroidal dofs (reported to three significant figures based on single precision, see Fig. 1 for convention).  

Base reaction LC1 LC2 Tip dof LC1 LC2 

RF1 [N]  − 1.76 × 106  − 1.60 × 106 U1 [mm]  2.67 × 102  2.42 × 102 

RF2 [N]  4.66 × 106  4.66 × 106 U2 [mm]  − 3.20 × 100  − 3.20 × 100 

RF3 [N]  − 9.11 × 10-5† − 7.35 × 10-5† U3 [mm]  5.13 × 10-9† 5.97 × 10-9†

RM1 [Nmm]  − 2.64 × 100  − 2.19 × 100 UR1 [rad]  1.98 × 10-13† 6.50 × 10-13†

RM2 [Nmm]  − 6.90 × 10-1  − 2.20 × 1010 UR2 [rad]  1.70 × 10-13† 7.24 × 10-3 

RM3 [Nmm]  9.61 × 1010  8.74 × 1010 UR3 [rad]  − 1.48 × 10-2  − 1.35 × 10-2 

† represent values which are effectively negligible but have not been evaluated to exactly zero due to roundoff errors in the matrix solution procedure. 
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increments, it is clearly not yet fully horizontal. A full discussion of this phenomenon including a procedure to estimate the reference 
plastic collapse load based on only a partially-computed equilibrium relationship may be found in Doerich and Rotter [17], with an 
automated implementation in Sadowski et al. [18], and more recently in dos Santos et al. [19]. 

The MNA reference plastic resistances Rpl were determined to be 1.807 and 1.868 for LC1 and LC2 respectively (taken as the last of 
the 100 increments, black circles in Fig. 3), which can be compared with the LBA reference elastic critical buckling resistances Rcr of 
2.901 and 1.401 respectively. In both cases Rpl and Rcr are not too far apart suggesting that plasticity may play a significant role in the 
ultimate limit state, as will be demonstrated by subsequent GMN(I)A. The approximate plastic collapse mechanisms are illustrated on 
the left-hand side of Fig. 4, where collapse is primarily by the development of a plastic hinge at the junction of Strakes 111 and 112. The 
addition of torsion and modification of M and Q loads has a relatively minor effect, serving only to create an additional plastic hinge at 
the bottom of Strake 103, in significant contrast to the effect of torsion on Rcr. 

7. GMNA: Buckling resistances and tip dofs 

The GMNAs were performed under similar solver settings as the MNAs with the input files being identical except for the geometric 
nonlinearity flag being activated for both analysis steps and the initial and maximum LPF increments set to 0.05 (5 % of the intensity of 
the loads in the LC). The GMNA resistances were determined to be RGMNA = 1.167 and 1.256 for LC1 and LC2 respectively on the basis 
of the bifurcation load factor on the computed equilibrium curve (C2 criterion in prEN 1993-1-6), representing a significant reduction 

Table 4 
Summary of LBA eigenvalues and eigenmodes for both load cases (reported to 4 significant figures).  

Eigenmode LC1 
Eigenvalue 

Vertical position of |Uρ,max| 
[mm] 

Strake of |Uρ,max| 
[mm] 

LC2 
Eigenvalue 

Vertical position of |Uρ,max| 
[mm] 

Strake of |Uρ,max| 
[mm] 

LBA1 2.901 (≡ Rcr)  8138.2 Strake 112 1.401 (≡ Rcr)  23818.7 Strake 106 
LBA2 2.907  8313.4 Strake 112 1.401  23097.0 Strake 106 
LBA3 2.963  8208.3 Strake 112 1.559  21393.0 Strake 107 
LBA4 2.967  7998.0 Strake 112 1.559  28021.5 Strake 104 
LBA5 2.980  7822.7 Strake 112 1.673  30860.7 Strake 103 
LBA6 2.984  7998.0 Strake 112 1.673  31495.7 Strake 103 
LBA7 3.020  7962.9 Strake 112 1.768  31611.2 Strake 103 
LBA8 3.021  8173.2 Strake 112 1.768  16376.5 Strake 109 
LBA9 3.028  3722.2 Strake 114 1.854  16511.8 Strake 109 
LBA10 3.033  3901.6 Strake 114 1.854  14684.8 Strake 109  

Fig. 3. Equilibrium plot of the LPF vs selected tip dofs for MNA, GMNA and two sets of representative GMNIAs for FTQC A (see Table 8: {LC1,LBA1,- 
1} for both LC1 and LC2, and weld depression relative to lgx (simplified treatment)). Solid and white-fill squares represent critical load factors for 
LC1 and LC2 respectively, while solid and dashed lines represent equilibrium relationships for LC1 and LC2 respectively. Some curves have been 
separated out by a horizontal offset for enhanced readability. 
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in resistance relative to MNA owing to the additional influence of geometric nonlinearity. Remarkably, the change from LC1 to LC2 
only has a minor effect on the GMNA result as the von Mises stress state at buckling is very similar as illustrated by the contour plots on 
the right-hand side of Fig. 4. 

It is likely that both towers fail initially by localised elastic–plastic buckling at the junction of Strakes 111 and 112, the same 
location where MNA predicted plastic collapse by the development of a plastic hinge. The equilibrium relationship (red curves in 
Fig. 3) suggests a very linear pre-buckling response and a sudden and likely catastrophic elastic–plastic bifurcation buckling event. 
However, under the present analysis conditions it was not possible to follow the equilibrium path beyond the onset of the first buckling 
event, and no post-buckling increments could be obtained (red lines in Fig. 3). This results in a slight blurring of the distinction be-
tween the C1 (max. load factor on curve) and C2 (bifurcation load factor) criteria in prEN 1993-1-6, but it is acceptable here because it 
is obvious from the circumstances that a bifurcation must have been reached. As discovered in the companion paper [37], the general 
inability of modern nonlinear quasi-static finite element solvers to reliably follow the equilibrium path beyond the first critical 
buckling event appears to be a regrettable feature of most commercial software packages, a consequence of the basic path-tracing 
solvers having received little further development in recent decades. 

8. GMNIA #1 with LBA eigenmode imperfections: Amplitude calibration 

8.1. Background 

The LBA buckling eigenmode has a long history of usage as an imperfection form in investigations of the nonlinear mechanics of 
imperfect structures that predate the widespread adoption of computational finite element analysis. As an imperfection it was rela-
tively straightforward to define using basic mathematical functions and introduce into the governing differential equations that could 
then be solved directly [20,21], and for simpler systems such as columns or plates the bow-shaped buckling eigenmodes do indeed 
resemble gross geometric imperfections that could conceivably arise in construction. In the finite element era, an LBA requires only a 
relatively simple element formulation with limited treatment of geometric nonlinearity, is easy to perform as a singular value 
decomposition of a matrix system and almost always gives a physically meaningful result if membrane compression or shear is present 
in the pre-buckling stress state. Additionally, almost every finite element software now has a facility to import an eigenmode from one 
analysis to act as a scalable superimposed mesh imperfection in another. Consequently, such ‘eigenmode-affine’ imperfections have 

LC1
1.807

Yield flag

LC1
1.167

von Mises 

LC2
1.868

Yield flag

LC2
1.256

von Mises 

Strake 102

Strake 103

Strake 104

Localised 
yielding

Strake 105

Strake 106

Strake 107

Strake 108

Strake 109

Strake 110

Strake 111

Strake 112
Strake 113
Strake 114

Strake 115

Load case:
MNA LPF:
Contour:

Load case:
GMNA LPF:

Contour:

C2

C3 C1

Fig. 4. MNA plastic collapse mechanisms (with yielded regions in red) and GMNA deformed shape at buckling (von Mises stress contours) for both 
load cases (inner shell surface conditions). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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acquired a status as a ‘default’ imperfection form to be used where none other can be conceived, a position also adopted by the previous 
EN 1993-1–6 [2] (although the upcoming prEN1993-1–6 [9] is more careful about cautioning the analyst that these may not be the 
most realistic or the most unfavourable to the structure), and often are the only imperfection that is explored. 

Computed LBA eigenmodes are non-unique, sign-reversible, infinitely scalable and typically normalised by the software in some 
way before being reported to the user, for example to give a vector norm or peak nodal dof equal to unity (the convention will vary with 
the FE software). The calculation of a scaling factor, here called SFGMNIA,imp, that is specific to a particular computed LBA eigenmode 
shape and that when imported as a scaled mesh perturbation into a GMNIA achieves an imperfection amplitude δ0 compliant with prEN 
1993-1–6 is not trivial and requires two prior calibrations to be performed. Here the subscript ‘imp’ is a qualifier indicating that the 
scaling is specific to the given imperfection model or the ‘I’ in ‘GMNIA’ (i.e. the specific eigenmode). The two calibrations are illus-
trated here on localised and global ‘dimple’ imperfections which are characterised by smooth shape deviations perpendicular to the 
mid-surface of the nominal perfect shell geometry and are often the most damaging for thin cylindrical shell structures dominated by 
axial compression. Here it is critical to distinguish between the mathematical amplitude δm which is a parameter of the imperfection 
model under the control of the analyst (referring here to the maximum amplitude of the eigenmode to be used for generation of the 
imperfection), and the tolerance amplitude δ0 which is a measurement that can be done on the constructed structure using a specific 
gauge length to verify that a level of fabrication quality has been achieved in construction and is controlled by prEN1993-1–6 [9] or EN 
1090–2:A1 [22]. This distinction was not well appreciated in the past and has been a frequent source of misinterpretations. 

8.2. LBA eigenmode calibration 

A first calibration considers the computed LBA eigenmode exactly as reported by the software, a ‘default state’ that is here always 
assumed to correspond to a scaling factor SF = 1. The calibration then relates the peak computed absolute modal displacement normal 
to the nominal midsurface of the perfect shell (δm) to unity as 

cSF=1,imp =
1

δm,SF=1,imp
(9) 

which has dimensions of inverse length. This factor does not change if the eigenmode is sign-reversed, but it will be dependent on 
the normalisation performed by the software. It is frequently approximately unity. 

A second calibration then relates the controllable δm to its corresponding achieved δ0 as 

cδ,imp,s =
δm,imp,s

δ0,imp,s
(10) 

and must be established separately per sign direction s of the eigenmode. The values of δm,imp,s and δ0,imp,s used in Eq. (10) may be 
established at any scaling factor without greatly affecting the resulting cδ,imp,s, although it is usually simplest to do in the default state at 
SF = 1. Finally, the scaling factor to be applied on the default LBA eigenmode so as to generate an equivalent geometric imperfection in 
a GMNIA is 

SFGMNIA,imp,s = s ⋅ δ0 ⋅ cSF=1,imp ⋅ cδ,imp,s (11) 

where δ0 is the target amplitude of the dimple relative to the appropriate gauge length as defined by prEN 1993-1-6 and s = ±1 
depending on whether the eigenmode is taken ‘as computed’ (s = +1) or ‘sign-reversed’ (s = -1). The prEN1993-1-6 [9] GMNIA 
provisions require the imperfection to be ‘unfavourably oriented towards the centre of the shell curvature’, and since an LBA 
eigenmode can be sign-reversed and still remain a valid mathematical solution corresponding to the same eigenvalue (Rcr), the pos-
sibility cannot be discounted that a sign-reversed LBA eigenmode may result in a more unfavourable imperfection. The calculation of 
SFGMNIA,imp is illustrated here on the critical LBA eigenmodes for both load cases as they are qualitatively very different. The variables 
introduced here are summarised in Table 5. It should also be noted that the scaling factor SFGMNIA,imp applied to the eigenmode shape to 
achieve a target tolerance amplitude δ0 is not the same as the eigenvalue which is instead a scaling factor applied on the loads to 
achieve a singular stiffness matrix. 

Table 5 
Summary of LBA eigenmode calibration notation.  

Entity Description 

δm,SF=1,imp Peak absolute modal displacement normal to the nominal perfect shell midsurface in the ‘default state’ (mode shape normalized as returned 
from FEA) at SF = 1 for the LBA eigenmode imperfection ‘imp’ 

cSF=1,imp Calibration between actual δm,SF=1,imp and a target of unity for SF = 1 
δm,imp,s Peak modal displacement at some SF for the LBA eigenmode imperfection ‘imp’ which is in a direction that is either ‘as computed’ (s = +1) or 

‘sign-reversed’ (s = -1) 
δ0,imp,s Peak achieved (single-sided) tolerance amplitude under the same conditions as δm,imp,s 

cδ,imp,s Calibration between controllable δm,imp,s and achieved δ0,imp,s under the same conditions 
δ0 Target code-compliant GMNIA tolerance amplitude 
SFGMNIA,imp,s Scaling factor on the eigenmode imperfection ‘imp’ to achieve a code-compliant GMNIA target δ0 tolerance amplitude in direction s  

A.J. Sadowski and M. Seidel                                                                                                                                                                                        



Engineering Failure Analysis 148 (2023) 107133

10

8.3. Calibration of a localised eigenmode (LC1) 

For LC1, the critical LBA eigenmode is shown in detail in Fig. 5 where the peak eigenmode displacements are concentrated in Strake 
112 where r = 2750 mm and t = 15 mm. At SF = 1 the peak radial displacement of this normalised eigenmode is reported by the 
ABAQUS software to be Uρ,max ≡ δm,SF=1,{LC1,LBA1} ≈ 1 mm, such that cSF=1,{LC1,LBA1} = 1 / δm,SF=1,{LC1,LBA1} ≈ 1 mm− 1. According to 
prEN1993-1–6 sub-clause 9.8.2, this eigenmode may be used as an equivalent geometric imperfection if it is scaled to result in a target 
tolerance amplitude of δ0 relative to an appropriate gauge of length lg which for eigenmodes dominated by meridional compression is 
given by 

lgx = 4
̅̅̅̅
rt

√
(12) 

and evaluates to ~ 812.4 mm for Strake 112. If a straight gauge is ‘placed’ against the imperfection (from the outside) at the worst 
possible location (passing through points P1 and P2 in Fig. 5 where (Uρ,P1, C2,P1) ≈ (0.80, 8874.24) and (Uρ,P2, C2,P2) ≈ (1.00, 8138.17) 
respectively when SF = 1, the Euclidean distance between which is lg ≈ 736.1 mm < lgx), then the perpendicular distance between this 
straight gauge and the radially deepest point on the imperfect wall PA where (Uρ,PA, C2,PA) ≈ (-0.85, 8488.68) can be calculated using 
classical geometry as 

δ0,{LC1,LBA},s =

⃒
⃒
(
Uρ,P2 − Uρ,P1

)(
C2,P1 − C2,PA

)
−
(
Uρ,P1 − Uρ,PA

)(
C2,P2 − C2,P1

) ⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Uρ,P2 − Uρ,P1

)2
+
(
C2,P2 − C2,P1

)2
√ (13) 

which evaluates to ~ 1.75 mm when SF = 1. The calibration factor for this eigenmode if it is to be used as an imperfection is then 
cδ,{LC1,LBA},+1 = δm,{LC1,LBA1},+1 / δ0,{LC1,LBA1},+1 ≈ 1 / 1.75 ≈ 0.57 which indicates that the measured tolerance amplitude is almost 
twice that of the mathematical peak amplitude. It can be shown that another potential calculation involving point PB where 
(Uρ,PB, C2,PB) ≈ (-0.87, 7752.61) would instead lead to a higher calibration factor of ~ 0.60 and an imperfection where the target δ0 is 
exceeded at PA leading to an overly conservative evaluated resistance. For a Fabrication Tolerance Quality Class (FTQC) of A or 
‘Excellent’, the target tolerance amplitude is δ0 = δ0x = 0.006lgx ≈ 4.87 mm leading to SFGMNIA,{LC1,LBA1},+1 ≈ 1 × 4.87 × 1 ×
0.57 ≈ 2.79. Illustrated on the right of Fig. 5, the same but sign-reversed eigenmode exhibits δ0,{LC1,LBA1,rev},-1 ≈ 1.86 mm for which 
cδ,{LC1,LBA1},-1 ≈ 0.54 < cδ,{LC1,LBA1},+1 and thus SFGMNIA,{LC1,LBA1},-1 ≈ − 1 × 4.87 × 1 × 0.54 ≈ − 2.63. A summary of these calculations 
for FTQC A, B (‘High’) and C (‘Normal’) is presented in Table 6. 

8.4. Calibration of a global eigenmode (LC2) 

The provisions of prEN1993-1–6 recognise that eigenmode imperfections relating to torsional buckling modes do not generally 
occur in fabricated civil engineering shells, and permit such eigenmodes to be set aside as improbable or adopted at a laxer (though 
unspecified) target imperfection amplitude. These provisions notwithstanding, the calibration procedure for such eigenmodes is 
presented here for completeness due to its relative complexity. Illustrated in Fig. 6 for the torsional LBA eigenmode that is critical for 

Fig. 5. Calculation of the calibration factors cδ,imp for the first LBA eigenmode (localised) for LC1. 
† this angle is a right angle even if it does not appear so on the figure due to differences in scale of the vertical and horizontal axes. 

A.J. Sadowski and M. Seidel                                                                                                                                                                                        



Engineering Failure Analysis 148 (2023) 107133

11

LC2, the peak modal displacement occurs in Strake 106 at a vertical position of C2 = 23818.7 mm and at a default scaling factor of 
SF = 1 has an outward radial value of Uρ,max ≡ δm,SF=1,{LC2,LBA1} ≈ 1.01 mm leading to cSF=1,{LC2,LBA} ≈ 0.99 mm− 1. For eigenmodes 
dominated by circumferential compression or membrane shear, the relevant gauge is curved with radius of curvature equal to the local 
transverse radius r ≈ 2369.6 mm at that vertical position and a curved gauge arc length 

lgθ = min
{

2.3
̅̅̅̅̅̅̅̅̅
H2rt4

√
, r
}

(14) 

which also evaluates to r ≈ 2369.6 mm. 
This gauge arc is ‘placed’ against the wall (from the outside) between points P1 and P2 which are identified by trial and error so as to 

identify the end points of an arc of approximately the required curved gauge arc length r. It may be noted from Fig. 6 that a gauge will 
not necessarily pass through the obvious outward maxima of the eigenmode. This arc spans a one-radian sector of a circle of radius r 
whose centre is located at Oʹ and whose coordinates may be calculated through classical geometry as: 

C1,O′ =
1
2

(
C′

1,P1 + C′

1,P2

)
− a ⋅ sinα and C3,O′ =

1
2

(
C′

3,P1 + C′

3,P2

)
− a ⋅ cosα (15)  

where 

a =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − b2

√
, b =

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

C′
− C′

1,P2

)2
+
(

C′

3,P1 − C′

3,P2

)2
√

, C′

i,j = Ci,j +Ui,j and α = tan− 1

(
C′

3,P1 − C′

3,P2

C′

1,P2 − C′

1,P1

)

At SF = 1, Oʹ is located at (Cʹ1,Oʹ, Cʹ3,Oʹ) ≈ (0.38, 0.36) while the points P1 and P2 are located approximately at 
(Cʹ1,P1, Cʹ3,P1) ≈ (404.83, 2335.15) and (Cʹ1,P2, Cʹ3,P2) ≈ (2176.53, 938.02). Subsequently, the perpendicular distance between this 
curved gauge and the radially deepest point on the imperfect wall PA where (Cʹ1,PA, Cʹ3,PA) ≈ (1581.98, 1762.88) can be calculated 
using classical geometry as 

δ0,{LC2,LBA},s = r −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

C′

1,O′ − C′

1,PA

)2
+
(

C′

3,O′ − C′

3,PA

)2
√

(16) 

which evaluates to ~ 1.45 mm when SF = 1 and leads to a calibration factor cδ for this eigenmode of cδ,{LC2,LBA}.+1 =

δm,{LC2,LBA1}.+1 / δ0,{LC2,LBA1},+1 ≈ 1.01 / 1.45 ≈ 0.70. 
For FTQC A, the target tolerance amplitude is thus δ0 = δ0θ = 0.008lgθ ≈ 18.96 mm (conservatively assuming the 

higher dimple tolerance values from Table 9 in the prEN) such that the necessary scaling factor on this eigenmode is 
SFGMNIA,{LC2,LBA1},+1 ≈ 1 × 18.96 × 0.99 × 0.70 ≈ 13.03. When the eigenmode is sign-reversed (Fig. 6, bottom) it may be similarly shown 
that cδ,{LC2,LBA },-1 = δm,{LC2,LBA1},-1 / δ0,{LC2,LBA1},-1 ≈ 1.01 / 1.57 ≈ 0.64 and therefore SFGMNIA,{LC2,LBA1},-1 ≈ − 1 × 18.96 × 0.99 ×
0.64 ≈ − 12.05. A summary of these calculations for critical LBA eigenmodes for both load cases and all three FTQC’s is presented in 
Table 6. The computed GMNIA are explored in Section 10. 

8.5. A simpler approach? 

The above is admittedly an onerous procedure to be applied regularly for any load case and analysts may be tempted to simply 
assume cSF = 1 (implicitly assuming that the eigenmode is scaled to a peak normal displacement of ‘unity’ by the solver) and cδ = ½ 
such that SFGMNIA,imp,s = ½sδ0 for any LBA eigenmode imperfection. As illustrated in Table 6, this temptation should be resisted because 
it is not guaranteed to be conservative under all conditions. Here this assumption leads to scaling factors SF that are lower than those 
derived in the rigorous manner for either eigenmode and scaling direction and which would lead to GMNIA resistances that are 
unconservatively higher than they should be had the amplitude of the eigenmode imperfection been rigorously code-compliant. 
However, because of the nature of nonlinear behaviour it should never be assumed that a particular sign direction is more critical 
just because its |SFGMNIA| is higher (as illustrated shortly), and cSF does not always evaluate approximately to unity. As a final caution 
given the complexity of the eigenmode geometries being considered, is it generally difficult to guarantee that a configuration leading to 
a higher |SFGMNIA| has not been missed somewhere. Consequently, it is recommended that analysts wishing to do this calibration 
frequently should write their own scripts or macros to automate this procedure which can execute a more rigorous exhaustive search 

Table 6 
Summary of dimple imperfection calibration factors for LBA eigenmodes.  

LBA eigenmode imperfection Gauge Calibration factors Target δ0 [mm] Scaling factor SFGMNIA [-] 
Type Length 

[mm] 
cSF [mm− 1] cδ [-] FTQC 

A 
FTQC 
B 

FTQC 
C 

FTQC 
A 

FTQC 
B 

FTQC 
C 

LC1,LBA1,+1 lgx 812.4 1  0.57 4.87 8.12 13.0  2.79  4.65  7.44 
LC1,LBA1,-1  0.54  − 2.63  − 4.38  − 7.01 
LC1,LBA1(simple)  0.50  ±2.44  ±4.06  ±6.50 
LC2,LBA1,+1 lgθ 2369.6 0.99  0.69 18.96 40.28 85.30  13.03  27.69  58.63 
LC2,LBA1,-1  0.64  − 12.05  − 25.60  − 54.22 
LC2,LBA1(simple) 1  0.50  ±9.48  ±20.14  ±42.65  
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through the placement of ‘virtual gauges’ at all possible locations around the shell wall. The procedure is likely to be most straight-
forward for regular rectangular meshes constructed from quadrilateral shell elements where gauges automatically align with the 
element edges, and triangulations would require special handling. 

9. GMNIA #2 with axisymmetric weld depression imperfections: Amplitude calibration 

The Rotter and Teng [11] axisymmetric weld depression is an idealised model of the radially-inward curling of the edges of a 
cylindrical shell plate caused by anticlastic bending during rolling and additionally by shrinkage of a welded circumferential joint 
during cooling, suggested by field measurements to be a realistic representation of this manufacturing defect across a range of d/t ratios 

Fig. 6. Calculation of the calibration factor cδ,imp for the first LBA eigenmode (global torsional) for LC2.  
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[23–27]. Originally used to explore the mechanics of the stability of two-segment cylindrical shell with a single weld at the segment 
junction under uniform meridional compression and pressurisation, the weld depression model has since been widely used in more 
generalised form for multi-strake cylindrical silo structures where several weld instances are implemented at regular vertical locations 
[28–30]. The model has also been adapted in a naïve way for computational studies of multi-strake wind turbine support towers with 
both conical and cylindrical shell strakes [13,31], where the starting imperfect axisymmetric geometry of the entire tower was 
generated mathematically as 

R(z) = r(z) −
∑k

j=1
δm,je

− π
λj |z− zj|

[

cos
(

π
λj

⃒
⃒z − zj

⃒
⃒

)

+ sin
(

π
λj

⃒
⃒z − zj

⃒
⃒

) ]

(17)  

where 

λj =
π
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r
(
zj
)
tj,min

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(1 − ν2)4

√

such that R(z) and r(z) are the imperfect and nominally perfect radial geometries of the tower as a function of the vertical axis 
coordinate z respectively, k is the total number of individual weld depressions in the tower (currently 13, at the junctions of Strakes 
102–103 to 114–115) every j-th one of which has a different vertical position zj, associated bending half-wavelength λj (where tj,min is 
the smallest of the two joining plate thicknesses) and mathematical imperfection amplitude δm,j such that R(zj) = r(zj) – δm,j. A single 
weld depression extending ~ 2λj on either side of the junction is illustrated in Fig. 7a where, in relation to the generic coordinate 
system presented in Fig. 1c, z = C2 and R = Cρ = √(C1

2 + C3
2). This model is ‘naïve’ in the sense that the imperfection is always defined 

relative to the global radial direction rather than relative to the normal to the shell midsurface, making it simpler to program. When the 
shell is cylindrical the radial and normal directions are the same, but when it is conical, they are distinct. However, since conical 
strakes used in wind turbine support towers are usually very steep and ‘near-cylindrical’, any error in not rigorously correcting for the 
normal direction is likely negligible. 

In contrast to the LBA eigenmode, the extent of the j-th individual weld depression imperfection is controlled directly via the 
model’s mathematical amplitude δm,j and there is no need for a scaling factor SF. However, δm,j must still be calibrated to deliver a code- 
compliant target tolerance amplitude δ0,j at the zj location via a corresponding local factor cδ,j = δm,j / δ0,j relative to a local straight 
gauge of appropriate length lg,j. This gauge is ‘placed’ against the outside of the wall between positions P1 and P2 whose coordinates can 
be expressed analytically using Eq. (17) as (R(zj + Δj), zj + Δj) and (R(zj – Δj), zj – Δj) respectively, where Δj is the gauge half-length 
projected on the vertical axis, such that δ0,j is the perpendicular distance between point PA at (R(zj), zj) and this gauge: 

δ0,j =

⃒
⃒R
(
zj − Δj

)
+ R

(
zj + Δj

)
− 2R

(
zj
) ⃒
⃒Δj

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
R
(
zj − Δj

)
− R

(
zj + Δj

) )2
+ 4Δ2

j

√ (18) 

The calibration involves the optimisation of both cδ,j and Δj to minimise the absolute distance between δ0,j calculated by Eq. (18) 
and the target δ0 as required by prEN 1993-1-6, subject to the constraint that the Euclidian distance between P1 and P2 is equal to the 

Fig. 7. Junction of two shell geometries with a naïve axisymmetric weld depression.  
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appropriate gauge length lg. A separate calibration must be performed per weld and per FTQC, though it is straightforward to 
implement in Excel using the SOLVER functionality. A summary of each such result is presented in Table 7, where the calibration is 
done once for the gauge length given by lgx in Eq. (12) appropriate for shells dominated by meridional compression and, for 
completeness, again for a much shorter meridional gauge length lgw given by: 

lgw = 25t (19) 

This shorter gauge is prescribed in prEN1993-1–6 for the assessment of tolerances in constructed shells with circumferential welds 
of r/t ratio<400. Although it is not strictly required for GMNIA calculations, making it so was once an item of discussion and for this 
reason its effect is explored here. In both cases the thickness is chosen as that of the thinnest strake at the junction, t =min(tu,tl) where 
tu and tl are the thicknesses of the upper and lower strakes respectively, leading to a slightly shorter gauge length and a slightly more 
lenient amplitude. 

Some important observations can be made on the basis of Table 7. At every junction between two strakes where the change in angle 
of incline is negligible (dβ = |β1 – β2| = O(10− 3) for each junction except Strakes 102–103 and 111–112, see Table 1 for β values), the 
calibration factor cδ relative to the longer lgx gauge is approximately unity, meaning that δm ≈ δ0 is both a convenient and conservative 
approximation that was de facto assumed in previous studies [32,33]. In certain previous parametric studies of weld depressions in 
cylindrical shells involving the first Author [34,35] it was slightly incorrectly assumed (though with different notation) that 
cδ ≈ 1/1.04 ≈ 0.96 based on an effective gauge length of lg,2λ ≈ 2λ ≈ 4.9√(rt), the distance between the two outermost crests of the 
weld depression on either side of the midline (Fig. 7b), which is ~ 22 % longer than the code-compliant lgx = 4√(rt) (Eq. (12)). This led 
to adopted mathematical amplitudes δm calibrated relative to lg,2λ that were ~ 2 % smaller than they would have been had the cali-
bration been performed relative to the code-compliant lgx. 

Table 7 
Summary of naïve axisymmetric weld depression imperfections at each strake junction (13 in total) with target measurable tolerance amplitudes δ0, 
calibration factors cδ and mathematical peak amplitudes δm.  

Weld at junction of Strakes, with lgx and lgw FTQC lgx assuming t = min(tu,tl) lgw assuming t = min(tu,tl) 

δ0 [mm] cδ [-] δm [mm] δ0 [mm] cδ [-] δm [mm] 

102 & 103 A  3.99  0.90  3.57  1.95  1.43  2.79 
lgx = 665.45 mm B  6.66  0.93  6.18  3.25  1.48  4.82 
lgw = 325 mm C  10.65  0.95  10.08  5.20  1.51  7.86 
103 & 104 A  4.06  0.98  3.98  1.95  1.59  3.09 
lgx = 675.95 mm B  6.76  0.98  6.63  3.25  1.59  5.16 
lgw = 325 mm C  10.82  0.98  10.62  5.20  1.59  8.25 
104 & 105 A  4.28  0.98  4.19  2.10  1.55  3.26 
lgx = 712.69 mm B  7.13  0.98  6.97  3.50  1.55  5.44 
lgw = 350 mm C  11.40  0.98  11.16  5.60  1.55  8.70 
105 & 106 A  4.34  0.98  4.24  2.10  1.58  3.31 
lgx = 723.69 mm B  7.24  0.98  7.07  3.50  1.58  5.52 
lgw = 350 mm C  11.58  0.98  11.32  5.60  1.58  8.84 
106 & 107 A  4.40  0.98  4.30  2.10  1.60  3.36 
lgx = 733.49 mm B  7.33  0.98  7.17  3.50  1.60  5.60 
lgw = 350 mm C  11.75  0.98  11.48  5.60  1.60  8.97 
107 & 108 A  4.46  0.98  4.36  2.10  1.63  3.41 
lgx = 744.12 mm B  7.44  0.98  7.27  3.50  1.63  5.69 
lgw = 350 mm C  11.91  0.98  11.64  5.60  1.63  9.11 
108 & 109 A  4.69  0.98  4.59  2.25  1.59  3.58 
lgx = 781.05 mm B  7.81  0.98  7.64  3.75  1.59  5.97 
lgw = 375 mm C  12.50  0.98  12.23  6.00  1.59  9.55 
109 & 110 A  4.75  0.98  4.64  2.25  1.61  3.63 
lgx = 791.67 mm B  7.92  0.98  7.74  3.75  1.61  6.05 
lgw = 375 mm C  12.67  0.98  12.38  6.00  1.61  9.68 
110 & 111 A  4.81  0.98  4.71  2.25  1.64  3.68 
lgx = 802.12 mm B  8.02  0.98  7.84  3.75  1.64  6.14 
lgw = 375 mm C  12.83  0.98  12.55  6.00  1.64  9.82 
111 & 112y A  4.87  2.05  10.00  2.25  3.48  7.84 
lgx ¼ 812.40 mm B  8.12  1.62  13.18  3.75  2.75  10.33 
lgw ¼ 375 mm C  13.00  1.38  17.94  6.00  2.34  14.06 
112 & 113 A  4.87  0.98  4.76  2.25  1.66  3.73 
lgx = 812.40 mm B  8.12  0.98  7.94  3.75  1.66  6.22 
lgw = 375 mm C  13.00  0.98  12.71  6.00  1.66  9.96 
113 & 114 A  5.03  0.98  4.92  2.40  1.60  3.84 
lgx = 839.05 mm B  8.39  0.98  8.20  4.00  1.60  6.41 
lgw = 400 mm C  13.42  0.98  13.12  6.40  1.60  10.25 
114 & 115 A  5.03  0.98  4.92  2.40  1.60  3.84 
lgx = 839.05 mm B  8.39  0.98  8.20  4.00  1.60  6.41 
lgw = 400 mm C  13.42  0.98  13.12  6.40  1.60  10.25 

y See discussion in Section 10. 
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Where dβ is not negligible then simply assuming cδ ≈ 1 may be very incorrect, such as at the junction of Strakes 102 &103 
(dβ ≈ 0.12◦) where it would be mildly conservative but particularly at the junction of Strakes 111 & 112 (dβ ≈ 1.51◦, the ‘sharpest’ 
change in incline where the tower transitions from a cylindrical to a conical strake) where it would be very unconservative. For the 
much shorter lgw gauge, it is remarkable that the depression must be made to be quite ‘deep’ to achieve the target δ0 (Fig. 7c) with all cδ 
significantly exceeding unity, although the required δm are consistently smaller than those necessary for the longer lgx gauge. The 
relationship between cδ and the FTQC is nonlinear, and it is thus recommended that no value of cδ should be assumed a priori for conical 
geometries and that the calibration be performed rigorously each time using the minimisation procedure outlined above. However, in 
contrast to LBA eigenmodes, the calibrations are fully independent of the loads and need only be done once per structure. It is once 
again recommended to implement this procedure in an automated script or macro for convenience and consistency. 

10. GMNIA #1 & #2: Comparison of computed resistances 

10.1. GMNIA #1 with LBA eigenmode imperfections 

The computed GMNIA resistances of the tower under both cases and with different LBA eigenmode imperfections are summarised 
in Table 8, performed under identical solver settings as the GMNAs. Firstly, the non-reversed critical LBA eigenmode for LC1 (Fig. 5) 
was used as an imperfection in GMNIAs performed under both load cases for each of the three FTQCs. The ‘dimple-like’ nature of this 
eigenmode supports its use as a plausible equivalent imperfection for either load case and may be thought of as a model of a random 
local defect at a potentially unfavourable location. The imperfect tower design resists the loading but only at the highest FTQC A with 
GMNIA resistances falling below unity for FTQC B and C. Importantly, though the sign-reversed eigenmode requires a smaller |SFGMNIA| 
to achieve a target δ0 compliant with a particular FTQC than when non-reversed, for each FTQC it actually leads to slightly lower 
computed GMNIA resistances. This counter-intuitive result suggests that it is generally not possible to determine which eigenmode sign 
direction will be the most unfavourable on the basis of the magnitude of the scaling factor alone, and both possibilities must be 
explored. 

Equilibrium relationships for GMNIA with the reversed eigenmodefrom LC1 at FTQC A are presented as blue curves and squares in 
Fig. 3 and are representative of all computed results. Similar to GMNA, they illustrate a very linear initial response followed by an 
elastic–plastic bifurcation buckling event that the ABAQUS solver was generally unable to follow into the post-buckling domain due to 
reported convergence issues. A selection of incremental buckling modes (given by the difference between the global deformation state 
just after and just before the buckling event characterised by a reduction in the LPF) are illustrated in the first three examples in Fig. 8 
(corresponding to those resistances marked with an asterisk ‘*’ in Table 8). These are typical of all such computed results and illustrate 
that the GMNIA will most likely buckle into a mode similar in shape and location to the LBA eigenmode which was introduced as an 
imperfection. Lastly, although the critical torsional LBA eigenmode from LC2 is generally thought to be too improbable to be a realistic 
imperfection form, at code-compliant scaling factors it is quite a damaging one and leads to lower GMNIA resistances for LC2 than the 
dimple-like critical eigenmode from LC1. It, too, here is worse still when sign-reversed, leading to GMNIAs below unity for all FTQC B 
and C. 

Table 8 
Summary of GMNIA #1 & #2 with mathematical scaling factors SF to achieve target imperfection amplitudes δ0&δm) critical load proportionality 
factors.  

Analysis Imperfection FTQC & etc. LC1 LPF LC2 LPF 
LBA (≡ Rcr) n/a n/a 2.901 1.401 
MNA (≡ Rpl) 1.807 1.868 

GMNA 1.167 1.256 

GMNIA #1 
(with LBA eigenmode imperfections sourced from either load 
case; “LBA1” indicates that the first reported eigenmode has 

been used) 

LC1,LBA1,+1 
(non-reversed) 

A, SF ≈ 2.79 1.061* 1.131* 
B, SF ≈ 4.65 0.928 0.989 
C, SF ≈ 7.44 0.823 0.880 

LC1,LBA1,-1 
(sign-reversed) 

A, SF ≈ − 2.63 1.056 1.123 
B, SF ≈ − 4.38 0.916 0.979 
C, SF ≈ − 7.01 0.812 0.867 

LC2,LBA1,+1 
(non-reversed) 

A, SF ≈ 13.03 n/a 1.067* 
B, SF ≈ 27.69 n/a 0.895 
C, SF ≈ 58.63 n/a 0.666 

LC2,LBA1,-1 
(sign-reversed) 

A, SF ≈ − 12.05 n/a 1.032 
B, SF ≈ − 25.60 n/a 0.868 
C, SF ≈ − 54.22 n/a 0.649 

GMNIA #2 
(with naïve weld depression imperfections) 

Welds relative to 
gauge lgx 

A 1.040* 1.140† 1.121 1.174†
B 0.930 1.011† 1.002 1.037†
C 0.803 0.857† 0.862* 0.873†

Welds relative to 
gauge lgw 

A 1.127 1.186† 1.214 1.220†
B 1.030 1.080† 1.110 1.110†
C 0.906 0.941† 0.964 0.962†

* The corresponding incremental buckling modes are shown in Fig. 8. 
† For a model with a simplified treatment of the strake 111–112 junction. 
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Table 9 
Additional robustness GMNIA calculations (all FTQC A).  

Analysis Imperfection Conditions LC1 LPF LC2 LPF 

LBA (≡ Rcr) n/a  n/a  2.901 1.401 
MNA (≡ Rpl) 1.807 1.868 
GMNA 1.167 1.256 
GMNIA #1 LC1,LBA1,+1 

(non-reversed) 
SF ≈ 2.79 1.061* 1.131* 
90 % of amplitude 1.088 1.160 
Follower loads 1.082 1.154 

LC1,LBA1,-1 
(sign-reversed) 

SF ≈ − 2.63 1.056 1.123 
90 % of amplitude 1.084 1.157 
Follower loads 1.077 1.150 

LC1,LBA9,+1 SF ≈ 2.94 1.103 n/a 
LC1,LBA9,-1 SF ≈ − 2.61 1.117 n/a 
LC1,LBA13,+1 SF ≈ 2.36 1.048 n/a 
LC1,LBA13,-1 SF ≈ − 2.34 1.048 n/a 
LC1,LBA94,+1 SF ≈ 2.27 1.166 n/a 
LC1,LBA94,-1 SF ≈ − 2.13 1.166 n/a 
LC2,LBA1,+1 
(non-reversed) 

SF ≈ 13.03 n/a 1.067* 
90 % of amplitude n/a 1.086 
Follower loads n/a 1.073 

LC2,LBA1,-1 
(sign-reversed) 

SF ≈ − 12.05 n/a 1.032 
90 % of amplitude n/a 1.049 
Follower loads n/a 1.039 

GMNIA #2 Welds relative to gauge lgx Table 6 amplitudes 1.040* 1.121 
90 % of amplitude 1.079 1.161 
Follower loads 1.060 1.144 

* The corresponding incremental buckling modes are shown in Fig. 8. 

Fig. 8. GMNIA incremental buckling modes for both load cases and imperfections.  
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10.2. GMNIA #2 with axisymmetric weld depression imperfections 

The computed GMNIA resistances for the models with multiple axisymmetric weld depression imperfections are summarised in 
Table 8, again performed under identical solver settings as the GMNAs. A representative pair of incremental buckling modes is given in 
the last two examples of Fig. 8, which consistently identify the region of Strakes 111–112 as critical under both load cases. When the 
imperfections are defined relative to the lgx gauge, the resulting GMNIA resistances are quite comparable with those obtained for the 
critical LC1 LBA eigenmode although for FTQC A and C they are more conservative. Relative to the shorter lgw gauge, the resistances are 
all expectedly higher, a finding that suggests that this shorter gauge length need not be prescribed for use in GMNIA analyses even for 
thicker shells with r/t < 400. The analyses were found to suffer from the same convergence difficulties beyond the first buckling event, 
as reflected in the orange curves and squares in Fig. 3. 

The interested reader may wish to consider the single weld imperfection at the junction between Strakes 111 & 112 more closely. 
The non-negligible discontinuity in the meridional incline dβ angle at this location potentially poses a problem of interpretation for a 
straight gauge lg of any length, since as mathematical amplitude δm → 0 the geometry of the weld as defined by Eq. (17) becomes such 
that a meaningful tolerance amplitude δ0 eventually stops being well-defined. Although the cδ calibration illustrated in Table 7 is 
mathematically correct, it could potentially be argued that it is not physically meaningful and that an ‘angular gauge’ that followed the 
nominal meridional incline may instead be a more appropriate reference device at this location. Were such a device to have been used, 
the calibration would once again have been closer to cδ ≈ 1 such that δm ≈ δ0. Given that this location is also structurally the most 
critical, a second set of GMNIA was performed for both load cases assuming δm = δ0 at this location. Presented in Table 8 but marked 
with a ‘†’, the resulting resistances are from between 4 and 10 % and 0 to 5 % higher for LC1 and 2 respectively (with one result 
surprisingly being slightly lower) showing that some gains in resistance can be made with this possibly more physically realistic 
treatment. However, this speculative illustration should be taken with caution, since an angular gauge would have likely required a 
different code-compliant δ0 to have been defined with it and this issue will be looked into during future EN 1993-1-6 development. 

10.3. Additional robustness calculations 

As a sanity check, the analyst should use the buckling reduction curves in prEN 1993-1-6 to estimate the dimensionless buckling 
knockdown factor χ = Rk/Rpl to have a rough reference point against which the GMNIA calculations may be compared via the ratio 
RGMNIA/RMNA. The dimensionless slenderness λ = √(Rpl/Rcr) may be estimated as √(RMNA/RLBA) to give ~ 0.79 and ~ 1.16 for LC1 and 
LC2 respectively. For LC1, when this estimate is introduced into either the axial compression or bending capacity curves in Annexes D 
and E of the prEN respectively, and if reasonable assumptions are made regarding the average r and t together with a conservative 
dimensionless length of Ω ≈ 1.09 (see Table 1 in the companion paper [37]) then it may be estimated that χ ≈ 0.62 and 0.57 for the two 
capacity curves respectively for FTQC A. This is entirely commensurate with the typical RGMNIA/RMNA ratios seen in Table 8. For LC2, if 
the capacity curve for shear is used then it may similarly be estimated that χ ≈ 0.56 which is again consistent with the GMNIA pre-
dictions. This ballpark agreement serves to give some confidence in the integrity of the calculations. 

An additional array of GMNIA calculations were performed to the purposes of code compliance and to permit a final structural 
assessment of the tower segment to be made. These calculations were limited to FTQC A only assuming both the eigenmode and weld 
depression imperfections (lgx gauge only, Table 7 amplitudes). Firstly, prEN 1993-1-6 requires the analyst to verify that an imperfection 
amplitude 10 % smaller than the target δ0 does not unexpectedly lead to lower GMNIA LPF. This phenomenon is known to happen for 
shells under complex unsymmetrical load cases (see Fig. 13 in [29] Sadowski and Rotter (2011a) or numerous figures in [36] Sadowski 
and Rotter (2013)) which exhibit very nonlinear pre-buckling responses. However, as the pre-buckling path is here very linear in all 
cases (Fig. 3), this phenomenon it is not expected to be present and indeed GMNIA computed at 90 % of the code-compliant imper-
fection amplitudes are in all cases less conservative (Table 9). Secondly, the analyst is required to confirm that ‘follower’ load effects (i. 
e. loads which ‘follow’ the rotational dof at the nodes at which they are applied) are either improbable or insignificant. The design 
loads for both LCs originate either due to wind or to gravity, neither of which should physically lead to ‘follower’ effects. Additionally, 
when such effects are incorporated into the tip point loads, the resulting GMNIA load factors are in fact slightly unconservative. 

An important final robustness check concerns the validity of the choice of LBA eigenmode imperfection, in particular of the 
‘localised’ kind as computed for LC1. To mitigate against the risk of missing the possibility that a (modestly) higher-order LBA 
eigenmode could act as a more severe GMNIA imperfection, prEN 1993-1-6 suggests that a ‘sufficient number’ of LBA eigenmodes 
should be extracted and examined. An estimate can be made of the imperfection sensitivity of any shell strake in the segment by 
calculating α⋅Rcr for it and identifying an overall minimum, and to ensure that an eigenmode that has deformations in this location is 
trialled in a GMNIA. Here Rcr is the elastic critical buckling resistance for that strake while α = αG⋅αI is the product of an elastic 
reduction factor due to geometric nonlinearity αG and one due to imperfection sensitivity αI. Algebraic expressions may be found for 
these parameters in Annexes D and E for the reference system of a uniform cylinder under uniform axial compression and uniform 
bending respectively. It may be verified using the geometry in Table 1 that regardless of the equations used, α is approximately 
constant for each strake and these are therefore approximately similarly imperfection sensitive. The product α⋅Rcr does gradually 
decrease as r and t decrease with height to attain a minimum for Strake 102, but this is only a consequence of Rcr being calculated for a 
much simpler cylindrical reference system than the complex tower segment and should for this benchmark not be interpreted as a sign 
that an LBA eigenmode with buckling deformations localised near the tower top will be a particularly bad imperfection. The algebraic 
approach should be treated here only as indicative. 

A more thorough exploration was performed as follows. The first 100 LBA eigenmodes were extracted for LC1 and examined 
(Fig. 9). It was found that 57 % of eigenmodes have buckling deformations localised in the vicinity of Strakes 111 and 112 which have 
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been consistently found to be most critical in GMNIA (Figs. 2 & 7). The next most critical regions are Strake 114 (18 % of eigenmodes, 
first appearing as the 9th eigenmode with an eigenvalue of 3.028, see Table 4) and Strake 107 (23 % of eigenmodes, first appearing as 
the 13th eigenmode with an eigenvalue of 3.048). Only 2 % of eigenmodes occur near the top of the tower where α⋅Rcr is roughly at a 
minimum (first appearing as the 94th eigenmode with an eigenvalue of 3.309). If the 9th, 13th and 94th eigenmodes are used as 
imperfections in GMNIA at the appropriately calibrated amplitudes for FTQC A (termed LBA9, LBA13 and LBA94 respectively, see 
Table 9), the surprising result emerges that the 13th eigenmode is a slightly more critical imperfection than the first for LC1. It is 
generally not possible to detect such an eventuality except by direct investigation as shown here, and it may be quite onerous to extract 
the necessary number of eigenmodes without specialist modelling schemes such as the ‘hybrid’ beam-shell methodology detailed in 
Sadowski [13]. The analysis above was not repeated for LC2 since torsional eigenmodes are usually discounted as unrealistic, but a 
similar outcome is possible in principle. This example serves to illustrate that LBA eigenmode imperfections are in fact non-trivial to 
work with if a globally critical form is sought, and there is still no evidence that any of the eigenmode geometries considered here 
correspond to physically realistic systematic or random imperfections that actually occur during full-scale construction. 

10.4. Design resistance assessment 

After the robust set of GMNIA performed above, it is now possible to make an informed decision as to whether the present tower 
segment design is acceptable at the buckling ultimate limit state for FTQC A. Assuming for the purposes of this illustration that 
kGMNIA = 1 (it is stressed that this value is at least in part dependent on the analyst’s skill in reproducing a known result, see discussion 
in the Introduction) such that Rk = RGMNIA (Eq. (2)), then the tower segment passes the check if Rd ≥ 1 or if Rk ≥ γM = 1.1 (assuming the 
Eurocode 3 partial factor for stability). It may be concluded that the segment is generally not acceptable under LC1 except for the case 
of the most lenient interpretation of the weld depression imperfection amplitudes at the critical junction between Strakes 111 and 112. 
It is acceptable under LC2 except if the unrealistic LC2 LBA torsional eigenmode is used as an imperfection. It is stressed that the 
present design was chosen for illustration purposes only and does not correspond to a structure that has actually been constructed. 

11. Conclusions and recommendations 

This paper has presented a detailed worked reference solution to the benchmark problem recently used in an international ‘round- 
robin’ computational shell buckling exercise. The publication of this reference solution is intended to initialise a public repository of 
accumulated realistic benchmark problems for the verification and calibration of finite element models of full-scale civil engineering 
metal shells. This is particularly pertinent in light of new prEN 1993-1-6 and prEN 1993-1-14 both of which include rules for the 
standardisation of the use of finite element analysis in structural steel design and consequently place a significant emphasis on model 
verification and calibration. 

The provisions of prEN 1993-1-6 for GMNIA calculations are particularly challenging and require the careful calibration of 
imperfection models so as to achieve a code-compliant imperfection amplitude. A particular distinction should be made between a 
‘mathematical’ imperfection amplitude under the control of the analyst, and a ‘tolerance’ imperfection amplitude which is what could 
be measured in the completed structure. Establishing a calibration between the two is non-trivial, and the calibration procedure is 
illustrated here on three qualitatively different imperfection forms. These include a localised computed linear bifurcation buckling 
eigenmode, a global computed eigenmode with torsional deformations and an axisymmetric weld depression imperfection generated 
using algebraic formulae. These require the careful processing of imperfection models using provided formulae derived using classical 

Fig. 9. An analysis of the first 100 LBA eigenmodes for LC1.  
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geometry. 
A number of specific recommendations for code-compliant GMNIAs are as follows:  

• A meshing protocol conditioned on the Koiter ellipse gives an automated way to create meshes that scale appropriately with the 
tower geometry [13].  

• LBA eigenmodes are an obvious but somewhat risk-prone imperfection candidate for GMNIAs. Multiple higher-order eigenmodes 
corresponding to buckling deformations at different parts of the structure should be trialled to mitigate the very real possibility that 
the ‘critical’ (i.e. first) computed eigenmode may not be a globally critical imperfection in a GMNIA. This is particularly the case for 
eigenmodes which are localised in nature. Torsional eigenmodes can generally be discounted as unrealistic, as can any eigenmode 
geometries that clearly do not correspond to any physically realistic systematic or random imperfections.  

• Idealised weld depression imperfections may be readily adopted as design imperfections for GMNIAs as they are realistic models of 
systematic construction-relevant imperfections and are appropriately conservative for near-cylindrical shells that are predomi-
nantly governed by meridional compression. This is also consistent with the algebraic buckling curves in prEN 1993-1-6 [9] for 
meridional compression and bending buckling, both of which have been derived assuming weld depression imperfections. For the 
purposes of comparison, it is advised to use these in tandem with GMNIAs where at least a handful of LBA eigenmodes were used as 
imperfections. If significant deviations are found, it should be considered which sets of results should be used in design.  

• The correct implementation of weld imperfections with code-compliant amplitudes at conical transitions, particularly where there 
is a non-negligible change in the meridional incline angle, remains a matter of discussion. The use of a straight measurement gauge 
at such locations to establish the reference amplitude may not be entirely appropriate if this leads to unreasonably large deviations 
from the nominal geometry. Smaller amplitudes may be considered if reasonably argued and if accompanied by special quality 
control measures during construction. 
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