
Weather and Climate Extremes 39 (2023) 100546

Available online 30 December 2022
2212-0947/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Attribution of the 2015 drought in Marathwada, India from a 
multivariate perspective 

Mariam Zachariah a,d, Savitri Kumari b, Arpita Mondal a,b,*, Karsten Haustein c, Friederike E. 
L. Otto d 

a Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India 
b Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India 
c Institute for Meteorology, Universität Leipzig, Leipzig, Germany 
d Grantham Institute, Imperial College, London, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Probabilistic event attribution 
Drought 
Climate change 
Multivariate return period 
Copula 

A B S T R A C T   

The agricultural region of Marathwada in India incurred significant loss of crops and lives during the summer of 
2015, which was characterised by persistent hot and dry conditions. We use observations and large ensembles of 
regional climate model simulations to understand and attribute this joint occurrence of deficient rainfall and high 
temperature in a novel, multivariate framework. Highly unlikely in a world without anthropogenic climate 
change (1-in-256 year), the event is found to be frequent (1-in-38 year) in the actual world. Thus, the risk of this 
event is found to be atleast quintupled due to anthropogenic factors, implying that the 2015 event is more likely 
due to anthropogenic climate change. Interestingly, the 2015 dry event is not unprecedented (~1-in-15 year) 
based on observed records and for either of the model scenarios, suggesting that risk assessments based on 
rainfall alone may not be enough to reconcile the observed impacts. Further, such compound drought events are 
projected to become even more frequent under future end-of-the-century warming targets of 1.5 ◦C and 2 ◦C 
above pre-industrial levels, with expected doubling and tripling of the probability of the 2015 hot-dry conditions, 
respectively. Our findings highlight the role of human-induced warming on increased incidences of compound 
extreme events, thereby warranting adaptation strategies that aim at alleviating associated risks.   

1. Introduction 

Rainfall deficit is the principal driver of droughts; however, a com
pounding role of rising temperatures in prolonging and/or intensifying 
such extremes is increasingly reported from different parts of the world 
(Diffenbaugh et al., 2015; Mishra et al., 2020; Nicholls, 2004; Sarhadi 
et al., 2018; Zscheischler et al., 2018). Such compounded extremes are 
expected to have more disastrous impacts than their univariate coun
terparts (Hao et al., 2018). For example, higher regional temperatures 
during droughts can exacerbate heatwaves (AghaKouchak et al., 2014; 
Chiang et al., 2018; Panda et al., 2017; Sharma and Mujumdar, 2017). 
Furthermore, such conditions can also be detrimental to crop growth 
due to increased evapotranspiration rates (Goyal 2004) and reduction in 
soil moisture (Kumar et al., 2017; Mishra et al. 2014, 2019), thereby 
having important implications for the agricultural economy of India 
(Mishra et al., 2019, 2020). 

In 2015, India experienced extensive drought conditions, with the 

rainfall deficit accompanied by anomalously high temperatures in many 
parts of the country (Ghatak et al., 2017). Impacts included marked 
increases in crop loss and farmer suicides, both of which have been 
shown to be sensitive to rainfall deficits and rising temperatures due to 
climate change (Carleton, 2017; Parida et al., 2018). The effects were 
particularly catastrophic for the drought-prone, semi-arid, agricultural 
region of Marathwada in the state of Maharashtra (Fig. 1(a)). The total 
insurance amount claimed under crop loss in the state was estimated at 
$594.5 million (Jain 2016). Maharashtra also recorded the highest 
number of suicides in the farming sector at 4 291 deaths (NCRB, 2016), 
with most of these deaths reported from the Marathwada and Vidarbha 
sub-divisions (Gangan 2016; Vyas 2016). 

Existing studies differ in opinion as to whether the severe impacts of 
the 2015 drought event were primarily caused by local water manage
ment issues (Fernandes, 2016; Kulkarni et al., 2016; Seetharaman, 
2017), or a manifestation of climate change (Deulgaonkar and Joshi 
2016; Ghatge 2016). However, these studies are mostly conjectural and 
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based on preliminary analysis using observed data alone. The Probabi
listic Event Attribution (PEA) framework (Otto et al., & Allen, 2012; Pall 
et al., 2011; Stone and Allen, 2005; Stott et al., 2004) presents a formal, 
more robust means of investigating the role of anthropogenic climate 
change on individual extreme events such as droughts (Lott et al., 2013; 
Philip et al., 2018; Uhe et al., 2018). Studies on application of PEA to 
events in India are rather limited in number (Kumari et al., 2019; van 
Oldenborgh et al., 2018; Wehner et al., 2016). In particular, there are no 
studies to date that have attempted an attribution analysis on drought 
events in India. The vulnerability of agrarian communities to droughts, 
particularly in the semi-arid regions (D. Singh et al., 2014) necessitates 
the analysis of such events in a PEA framework, as the findings can have 
implications for a more inclusive decision-making that weigh in the role 
of anthropogenic climate change (Thompson and Otto 2015). 

The 2015 southwest monsoon over India was characterized by weak 
monsoon circulations due to canonical El-Niño conditions over the Pa
cific Ocean, and short-lived depressions with short tracks that limited 
the rainfall to localized downpours (Mujumdar et al., 2015). Conse
quently, the monsoons failed to produce widespread rainfall over the 
core monsoon zone, thus resulting in a 14% rainfall departure across 
India, and a more severe 40% deficit in Marathwada (Purohit and Kaur 
2017). Most parts of the country including Marathwada were also 
characterized by above-average temperature towards the end of the 
pre-monsoon (MAM) season and for the major part of the monsoon 
(JJAS) season (IMD, 2016). Ghatak et al. (2017) identified that local 
land-atmosphere feedbacks due to dry soils in the pre-monsoon period 
played a significant role in compounding the 2015 drought in India, by 
raising the temperatures that led to the heatwave conditions in parts of 
the country. Prior to the onset of the monsoons, clear skies and dry at
mospheric conditions led to elevated incoming shortwave radiation that 
resulted in land surface warming (Ratnam et al., 2016). This caused soil 
moisture deficits to develop, leading to drying of the surface, which in 
turn caused the hot conditions to persist into the monsoon months due to 
the sensible heat flux associated with drying. The study (Ghatak et al., 

2017) also highlighted that the semi-arid, agricultural landscape of 
North and Central India that includes Marathwada is prone to heat ex
tremes under dry conditions, as also confirmed by later studies (Mishra 
et al., 2020; Sharma and Mujumdar 2017). 

Kulkarni et al. (2016) examined long-term rainfall records and found 
that the deficient JJAS rainfall in 2015 over Marathwada was within the 
observed variability over Marathwada, thus challenging the role of 
climate change. The authors also argued that the event should have been 
expected given that El-Niño was predicted for the season. However, 
using observed records of rainfall and temperature and climate model 
simulations that capture the coupling between El-Niño and the Indian 
Summer Monsoon Rainfall (ISMR), Mishra et al. (2020) showed that hot 
and dry extremes over India, are found to be made more frequent due to 
greenhouse gas warming. Therefore, a multivariate framework that ac
count for the interdependencies between rainfall and temperature 
(Chiang et al., 2021; Hao and Singh, 2020) is necessary for a realistic 
attribution of the drought characteristics in the region, as opposed to 
standard approaches based on rainfall alone that may underestimate the 
risk (AghaKouchak et al., 2014; Zscheischler and Seneviratne, 2017). 

In this study, we present a first-of-its-kind attribution study on the 
compounded drought of 2015 in Marathwada, India. We use a copula- 
based multivariate framework for characterizing the event. Copulas 
have the distinct advantage of combining meteorological information 
about the event based on their dependency structure (e.g., AghaKouchak 
et al., 2014; Hao et al., 2018), and require no assumptions about the 
marginal distributions of these variables or their functional relationship 
with the event (e.g., Roberts et al., 2013).While the PEA framework has 
been successfully applied to several extreme weather events globally, to 
the best of our knowledge, this study presents the first application of 
PEA analysis from a multivariate perspective. We compute the joint 
return period of deficient rainfall and anomalously high temperature 
based on both observations, and large ensembles of regional climate 
model simulations for multiple scenarios: Actual-the (factual) world 
under current warming conditions, Natural-a counterfactual world that 
might have been without anthropogenic influence, and two future 
warming targets that limit global warming to 1.5 and 2 ◦C above 
pre-industrial levels at the end of the 21st century (UNFCCC United 
Nations Framework Convention on Climate Change, 2016). Finally, we 
compare the event probability in the different scenarios, for deducing 
the evolution of the event’s recurrence characteristics from past through 
present, to future warming projections. 

2. Data and model simulations 

2.1. Observed data 

Gridded datasets of daily rainfall and temperature from India 
Meteorological Department (IMD; available at http://www.imdpune. 
gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html), for the 
period 1951–2015 (Pai et al., 2014; Srivastava et al., 2009) constitute 
the observed data. While rainfall is available at 0.25◦ × 0.25◦ spatial 
resolution, interpolated (Shepard, 1968) from 6 995 rain gauge station 
records across India (Pai et al., 2014), temperature is available at a 
relatively coarser resolution of 1◦ × 1◦, interpolated from records in 395 
stations across the country (New et al., 2000; Shepard, 1984; Willmott 
et al., 1985). These products have been widely used in hydrometeoro
logical studies (e.g., Bhavani et al., 2017; Chaudhary et al., 2017; 
Duncan et al., 2016; Mazdiyasni et al., 2017; Soora et al., 2013; Vin
narasi and Dhanya, 2016). The gridded data are spatially averaged over 
Marathwada (17.5◦N – 20.5◦N, 74.5◦E − 78.5◦E; red box in Fig. 1(a)). 

2.2. Model simulations-weather@home 

The climate model simulations consist of large ensembles of the 
factual and counterfactual worlds from the volunteer-distributed 
computing project, weather@home (Guillod et al., 2017; Massey 

Fig. 1. Map of India showing the Marathwada region. The blue box (17.5⁰N- 
20.5⁰N, 74.5⁰E− 78.5⁰E) is the representative domain for Marathwada. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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et al., 2015). Using large ensembles significantly improves the confi
dence of the results, thus enabling a statistically robust attribution of the 
weather/climate extreme event (Sippel and Otto, 2014). The simula
tions are generated at ~50 km resolution, centered over South Asia 
(https://www.climateprediction.net/weatherathome/regions/) by the 
regional climate model (RCM) Hadley Centre Regional Climate Model 
version 3P (HadRM3P). This RCM is nested in the atmosphere-only 
global climate model Hadley Centre Atmospheric Model version 3P 
(HadAM3P), and is driven by observed sea surface temperatures (SST) 
and sea ice concentration from Operational Sea Surface Temperature 
and Sea Ice Analysis (OSTIA) dataset (Donlon et al., 2012). 

The model scenarios consist of 200 realizations of the simulated 
climate variables under the factual (Actual) and two counterfactual 
(Natural and GHG-only) scenarios, for the period 1986–2015. The 
Natural scenario envisages a world without anthropogenic emissions 
while the GHG scenario represents a world with no anthropogenic 
aerosols. Further, 100 shorter realizations (10 years that correspond to 
the 2006–2015 period) of these variables for two projected future sce
narios (1.5 ◦C warmer and 2 ◦C warmer) are also used for a prognosis of 
compound drought risks under future climate change. These scenarios, 
post the Paris Accord (UNFCCC United Nations Framework Convention 
on Climate Change, 2016), presume 1.5 ◦C and 2 ◦C global warming 
above pre-industrial levels by the end of 21st century and are intended 
for assessments under Half a degree Additional warming, Prognosis and 
Project Impacts (HAPPI) framework (Mitchell et al., 2017). More details 
about the HadRM3P-HadAM3P nested model setup and construction of 
the different scenarios considered in the study are provided in Supple
mentary Section S1. 

3. Methodology 

Fig. 2 shows the schematic of the methodology adopted in this study 
for attributing the observed hot and dry conditions that characterized 
the 2015 drought event in Marathwada, hereafter called as the 2015 hot 
and dry event. Firstly, an event definition that reflects the extremity of 
the impacts in the region is arrived at, based on insights available for the 
region in general, and specific to the event (discussed in Section 4.1). In 
the next step, the climate model is evaluated for assessing its suitability 
for simulating the rainfall and temperature features in Marathwada 
(discussed in Section 4.2). Finally, the return period of the 2015 hot and 
dry event under the factual and counterfactual scenarios and the relative 
probabilities are calculated, for assessing the change in likelihood of the 
event under the different scenarios. 

3.1. Joint probability distributions and multivariate return period 

The joint probability distributions of rainfall and temperature from 
which the return periods of the 2015 hot and dry event are estimated for 
different scenarios, are derived using copulas (e.g., Pandey et al., 2018; 
Wazneh et al., 2020). Copulas are statistical functions that map the 
marginal cumulative distribution functions (CDFs) of multiple variables 
- rainfall and temperature in this case, to their joint CDFs through a 
function that models the dependence between the variables. The 
best-fitting marginal probability distributions for reverse rainfall series 
(X = 0 − X′ , where the actual rainfall series is X′ ; AghaKouchak et al., 
2014; Serinaldi, 2016) and temperature (Y) are selected based on 
goodness-of-fit measures, from among a candidate set of parametric 
models, namely, Log-normal, Normal, Gamma and Weibull 

Fig. 2. Illustration of the multivariate attribution framework.  
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distributions. The parameters of the distributions are estimated using 
the maximum likelihood method (Myung 2003). Three metrics are used 
for evaluating the goodness-of-fit of the candidate distributions- Mean 
Squared Error (MSE), Akaike Information Criterion (AIC; Akaike, 1386; 
Bozdogan, 2000) and Kolmogrov-Smirnov (K–S) distance (Kolmogorov 
1933; Massey 1951; Smirnov 1948). The empirical CDF distributions of 
the variables required for calculating the goodness-of-fits are estimated 
from the Gringorten plotting position formula (Gringorten 1963). For 
each of the variables, the distribution corresponding to the lowest esti
mates for these metrics is chosen as the best-fitting probability 
distribution. 

Similarly, the joint probability distribution of X and Y is modelled 
using an appropriate copula, chosen from among different copula fam
ilies by comparing with the empirical bivariate CDF estimates from a 
modified version of the Gringorten formula (Yue 2001). The copulas 
considered in this study are the Gaussian, Frank and Students-t copulas 
(AghaKouchak et al., 2014; Serinaldi 2016). The best-fitting copula is 
chosen as the one which gives the lowest estimates for MSE, AIC and K–S 
distance. These joint probabilities are then used to compute the joint 
return period of the 2015 hot-dry event, as follows (AghaKouchak et al., 
2014):  

i. From the best-fitting cumulative distribution functions (CDFs) FX and 
FY that respectively model X and Y, we obtain paired CDF estimates 
(u,v), where u = FX(x) = Pr (X≤ x) and v = FY(y) = Pr(Y ≤ y), for all 
(x,y) ∈ (X,Y).  

ii. The joint cumulative distribution function FXY are estimated from the 
marginals FX and FY , using copulas (Nelsen 2006), as: 

FXY (x, y)=Pr(X ≤ x, Y ≤ y)=C(u, v) (1)   

iii. The joint survival function FXY(x, y) = Pr(X> x,Y > y) is esti
mated from the marginal survival functions FX(x) = 1 − u and 
FY = 1 − v, using survival copula (Nelsen 2006), as: 

FXY(x, y)= Ĉ(FX(x),FY(y))= 1 − u − v + C(u, v) (2)    

iv. For any (X,Y)εR2, there exists a survival critical layer (or isoline) 
L p

F on which a subset (x, y) ∈ (X,Y) shares the same probability 
p. i.e., 

L p
F =

{
(x, y)εR2 : F(x, y)= p

}
(3)    

v. The corresponding survival return period (T)is given by T = 1
p. This 

information is utilized for plotting the isolines (contours) corre
sponding to a subset of return periods. 

3.2. Assessing change in event probability to climate change 

Probability ratio (PR = P1/Po) is calculated from the probabilities of 
the event in the factual (P1) and counterfactual scenarios (P0) for 
quantifying the change in likelihood of the 2015 event due to observed 
and expected future climate change. The probability ratio PR ∈ (0,∞)

gives the factor by which the event in the factual world is more (PR < 1)
or less (PR> 1) likely as compared to the world that might have been. 
Therefore, PR = 1 indicates that the event is equally likely in the 
counterfactual and factual worlds. We use the calibrated language 
proposed by Lewis et al. (2019) for communicating the attribution re
sults from this study. Accordingly, the likelihood category (see Table 1 
in Lewis et al. (2019)) of the event is reported, based on a lower confi
dence bound, which in this case is the 10th percentile value of PR 
associated with the 90% confidence interval. 

Table 1 
The return periods and probability ratios (PR), at a glance, for the different observed time periods and model scenarios.  

For the 2015 hot-dry event 

Observations Model simulations 

Period/Scenario Return period Range Pair PR Best estimate Likelihood 

pre-1985 570 170–6 500 post-1985/pre-1985 0.57 5  
post-1985 110 50–470 
Climatology 100 90–110 
Natural 262 216–330 Actual/Natural 5.3 6.5 More likely 
Actual 38 33–44 Actual/GHG-only 0.5 0.6 Exceptionally less likely 
GHG-only 22 20–25 1.5 ◦C warmer/Actual 2.1 2.6 More likely 
1.5 ◦C warmer 15 13–17 2 ◦C warmer/Actual 2.8 3.4 More likely 
2 ◦C warmer 12 10–14 2 ◦C warmer/1.5 ◦C warmer 1 1.3 Very much less likely 

For the 2015 dry event 
Observations Model simulations 
Period/Scenario Return period Range Pair PR Best estimate Likelihood 
pre-1985 16 9–45 post-1985/pre-1985 0.5 1.1  
post-1985 15 11–28 
Climatology 14 12–15 
Natural 17 16–19 Actual/Natural 1 1.2 Very much less likely 
Actual 15 13–17 Actual/GHG-only 1.3 1.5 Did not alter 
GHG-only 22 19–24 1.5 ◦C warmer/Actual 0.8 1 Exceptionally less likely 
1.5 ◦C warmer 15 13–17 2 ◦C warmer/Actual 1.1 1.3 Less likely 
2 ◦C warmer 12 10–14 2 ◦C warmer/1.5 ◦C warmer 1 1.3 Very much less likely 

For the 2015 hot event 
Observations Model simulations 
Period/Scenario Return period Range Pair PR Best estimate Likelihood 
pre-1985 108 46–555 post-1985/pre-1985 2.1 6.8  
post-1985 16 10–36 
Climatology 10 9–11 
Natural 55 50–63 Actual/Natural 11.4 12.9 Very much more likely 
Actual 4 3–5 Actual/GHG-only 0.3 0.32 Exceptionally less likely 
GHG-only 1 1–3 1.5 ◦C warmer/Actual 3 3.2 More likely 
1.5 ◦C warmer 1 1–3 2 ◦C warmer/Actual 3.9 4.1 More likely 
2 ◦C warmer 1 1–3 2 ◦C warmer/1.5 ◦C warmer 1.2 1.3 Did not alter  
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4. Results and discussions 

4.1. Event definition 

For performing robust attribution analyses, it is necessary to adopt a 
definition that best reflects the event extremetity as well as its impacts, 
and over a homogeneous region (Philip et al., 2020). Based on 
country-wide averages, Mishra et al. (2020) showed that concurrent hot 
and dry monsoons in India including the one in the year 2015, were 
associated with shortfall in crop yields. Therefore, the feasibility of 
adopting a similar definition for the 2015 drought event in Marathwada 
is explored. To this end, we define the 2015 hot and dry event by the 
cumulative rainfall and average temperature in the JJAS season, 
spatially-averaged over the study region (Fig. 1(a)). This is a justified 
choice, given that Marathwada is homogeneous in climate and topog
raphy (Kelkar and Sreejith 2020; Fig. 1(a)), and the impact during the 
2015 event was primarily agrarian (see Section 1). 

Fig. 3(a–b) shows the observed time series of JJAS cumulative 
rainfall and average temperature for Marathwada, for the period 
1951–2015. The rainfall shows decreasing trends, both in this period, 
and the recent 1986–2015 period. However, the observed decrease in 
the rainfall post-1985 is not significant at the 90% confidence level 
(Fig. 3(a)). ISMR is fraught with significant internal variability and 
sensitivity to large-scale teleconnections (Kripalani and Kulkarni, 1997; 
K. K. Kumar et al., 2006) which partly explains the lack of statistically 
significant trends for shorter spans. Temperature, on the other hand, 
shows higher rates of warming during the post-1985 period, as 
compared to the long-term trend, both significant at 90% confidence 
level (Fig. 3(b)). This observation is consistent with other studies that 
report higher rates of warming globally and over India after 1980 (e.g., 
Hansen et al., 2012; Panda et al., 2017). 

Fig. 3(c–d) shows the ranked plots of cumulative monsoon season 

(JJAS) rainfall and average JJAS mean temperatures in Marathwada for 
65 years, from 1951 to 2015. The temperature in 2015 is the third 
highest, after 2009 and 1995 (Fig. 3(c)). The rainfall deficit is not as 
rare, with similar rainfall amounts observed in 1952, 1971, 1972 and 
1984 (Fig. 3(d)). 

For the rest of the analysis, the observed data is split at 1985 to create 
pseudo-counterfactual (1951–1985 or pre-1985) and factual 
(1986–2015 or post-1985) datasets (e.g. Sippel and Otto, 2014). Over 
India, the post-1980 period is found to show increased rates of warming 
and drying (Panda et al., 2017; D. Singh et al., 2014) due to the rapid 
warming of western Indian Ocean as compared to the sub-continent 
(Roxy et al., 2015), rising regional anthropogenic aerosol emissions 
(Bollasina et al., 2011) and changes in land use/land cover character
istics (Paul et al., 2016), all of which can be linked to increased human 
activities. The split point is categorically chosen as the year 1985 to also 
allow direct comparisons with the weather@home model climatology 
period of 1986–2015 (details in Section 4.2). 

The standardized anomalies of JJAS rainfall and temperatures in 
Marathwada are shown in Fig. 3(e). The anomaly scatter features a 
negative slope, suggesting that the droughts in the region concur with 
anomalously high seasonal temperature. The second quadrant that is 
characterized by hot and dry conditions has a higher concentration of 
events from post-1985 (43%), as compared to 33% of the events from 
pre-1985 period. The years with concurrent country-wide hot and dry 
extremes that significantly impacted crop productivity (Mishra et al., 
2020), are highlighted in yellow. It is interesting to note that all of these 
years are characterized by concurrent hot and dry conditions in Mar
athwada, as well. Therefore, the 2015 hot and dry event is defined by the 
jointly observed, spatial-averaged cumulative rainfall and mean tem
perature for the 2015 JJAS season. 

Fig. 3. (a) Time series of JJAS cumulative rainfall 
from 1951 to 2015. The linear trends for 1951–2015 
(green) and 1985–2015 (red) are superimposed on 
the time series. (b) same as (a), for JJAS mean tem
perature (c) Ranked JJAS cumulative rainfall and (d) 
JJAS mean temperature, from 1901 to 2015. Red bars 
denote the corresponding values for 2015. The rain
fall (temperature) lie in the lower (upper) 10th 
percentile of the observed records. (e) Standardized 
anomalies of JJAS rainfall and JJAS average tem
perature, w.r.t the 1960–1990 mean. The green dots 
and the red dots are standardized annual anomalies, 
pre-1985 (1901–1985) and post-1985 (1986–2015), 
respectively. The 2015 event is denoted by the red 
pentagram. Previous historical drought events in 
2014, 1984, 1972 and 1920, are shown by blue, 
green, yellow and cyan pentagrams respectively. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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4.2. Climate model evaluation 

The 30-year period from 1986 to 2015 is chosen as the reference 
climatology for evaluating the climate model simulations against 
observed data. The observed global average warming over this period is 
unbiased by short-term variability (Allen et al., 2018), thus making it 
suitable for studies seeking to discern anthropogenic climate change 
effects. Further, as explained in Section 4.1, this period is characterized 
by increased warming and drying over the Indian sub-continent, due to 
increased anthropogenic activity. 

Fig. 4 shows the performance of the regional model HadRM3P in 
simulating the southwest (JJAS) monsoon (Fig. 4(a–b)) and the JJAS 
seasonal average temperature (Fig. 4(c–d)) over the Indian sub- 
continent. In contrast to rainfall (Fig. 4(a–b)), temperature is a rela
tively smooth variable with a large degree of randomness and less-noisy 
patterns driven by the topology. Therefore, apart from mountainous 
regions being noticeably cooler than low-lying areas, most of the 
country including Marathwada shows no discernible spatial patterns in 
observed and model-based temperatures (Fig. 4(c–d)). Overall, the ob
servations and the model simulations are found to match well for both 

Fig. 4. JJAS cumulative rainfall averaged over the period 1986–2014 for (a) observations and, (b) weather@home simulations. Seasonal (JJAS) average temper
ature, averaged over 1986–2014 for (c) observations and, (d) weather@home simulations. The Pearson spatial correlation between the observed and model 
simulated averages of rainfall and temperature are 0.74 and 0.83, respectively, and both significant at 5% significance level (s.l). 
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rainfall and temperature, correlated at 0.74 and 0.83, respectively. 
The model is also found to simulate the daily monsoon cycle in the 

region reasonably well, as shown in Fig. 4(e). However, unlike rainfall, 
the temperature is discernibly underestimated by the model (Fig. 4(d)). 
Therefore, for the study area, the monthly cumulative rainfall and 
average temperature estimated from the model simulations are cor
rected against observed records for removing systematic biases, by using 
a multivariate bias correction approach (MBC; Cannon, 2016). MBC is a 
multivariate analog of univariate quantile mapping (Li et al., 2010), and 
iteratively corrects the Pearson correlation between the variables along 
with the marginal distributions, so as to minimize the maximum abso
lute error between the observed data and the model simulations (Can
non 2016). The MBC approach has wide applications in climate model 
evaluations (e.g., D. Li et al., 2020; Tam et al., 2019) and impact as
sessments (Galmarini et al., 2019; J. Wu et al., 2021). 

Fig. 5 shows the monthly and seasonal characteristics of the area- 
averaged ensemble mean of rainfall and temperature over Marath
wada, along with the respective 90% envelope, before and after bias 
correction. Post bias correction, the monthly climatologies of the model 
simulated variables are seen to move closer to those of the observations, 
as shown in Fig. 5(a) and (c) for rainfall and temperature, respectively. 
The observed rainfall and temperature magnitudes are found to fall 
within the model envelope after bias correction. The model-averaged 
time-series of the cumulative rainfall (Fig. 5(b)) and the average tem
perature estimates (Fig. 5(d)), both aggregated over JJAS season, are 
also found to match well with the observed data, with statistically sig
nificant correlation coefficients of 0.434 and 0.517, respectively. The 
close agreement in the spatiotemporal characteristics of rainfall and 
temperature, between observed records and model simulations, allows 
an overall rating of medium confidence (Lewis et al., 2019) for the 
attribution results reported in this study. 

For judicious comparison, the 10-year period from 2006 to 2015 that 
is common to all scenarios (Table S1) is adopted as the reference period 
for the model-based assessments in this study. Fig. 6 shows the decadal 
(2006–2015) mean of the bias corrected JJAS cumulative rainfall and 
average JJAS temperature over Marathwada under the different climate 
model scenarios (Fig. 6(a–b)), along with their respective probability 

distributions (Fig. 6(c–d)). It is observed that there is no discernible 
shifts in the seasonal rainfall among the different scenarios, although the 
seasonal average temperature is found to consistently shift to hotter 
regimes under human influence (Actual), in the hypothetical absence of 
aerosols (GHG-only), and future warming (1.5 ◦C warmer and 2 ◦C 
warmer). The closeness in the rainfall climatology between the factual 
and counterfactual scenarios is to be expected, on account of the 
observed and projected disparities in the rainfall distribution patterns 
and the spatial rainfall trends in India, even as Indian Summer Monsoon 
Rainfall (ISMR) is expected to increase under future warming (Ghosh 
et al., 2016; Guhathakurta and Rajeevan, 2008; Preethi et al., 2019). The 
increase in ISMR is expected to contribute primarily to the Himalaya 
region, the northeast of the Bay of Bengal and the west coast of India 
(Katzenberger et al., 2021), partially explaining the smaller increase 
(2%) in rainfall under future warming in Marathwada, that is situated on 
the rain shadow area of the Western Ghats. 

4.3. Fitting marginal and joint distributions 

The probability density function (PDF) and CDF plots from the 
candidate probability distributions (Section 3.1), when fitted to the 
observed JJAS rainfall (Fig. 5(b)) and temperature (Fig. 5(d)) for the 
period 1951–2015 are shown in Fig. 7(a–b) and Fig. 7(c and d) respec
tively. Table S2(a) shows the goodness-of-fit of each of these distribu
tions based on KS-distance, MSE and AIC. The Log-normal distribution is 
found to be the best-fit distribution for both rainfall and temperature. 
The goodness-of-fit statistics of joint probability distributions by fitting 
the rainfall-temperature CDF pairs with the candidate copulas (Section 
3.1) are given in Table S2(b). From these statistics and from visual in
spection (Fig. 7(e–f); e.g., Cong and Brady, 2012), Frank copula is found 
to be the best-fit copula for modelling the joint probability of rainfall and 
temperature. 

4.4. Multivariate return periods and probability ratios for the 2015 hot 
and dry event 

Fig. 8(a) shows the return period contours of concurrent hot and dry 

Fig. 5. (a) Monthly climatology of rainfall in the 
Marathwada region w.r.t. 1986–2015 period. (b) 
JJAS cumulative rainfall from 1986 to 2015. The 
black, red and blue lines are the observations and the 
model simulations-raw and bias-corrected, respec
tively. The 10th-90th percentile bounds are also 
shown for the model simulations. The Pearson cor
relation between observations and model simulations 
is 0.434, significant at 5% significance level (s.l). (c) 
same as (a), for average JJAS temperature. (d) same as 
(b), for JJAS average temperature. The Pearson cor
relation between observations and model simulations 
is 0.517, significant at 5% significance level (s.l).   
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events for 20, 50 and 500 years, based on the observed records, for the 
pre-1985 and post-1985 periods. Fig. 8(b) shows similar return period 
contours for the five scenarios- Natural, Actual, GHG-only, and the 
1.5 ◦C and 2 ◦C warmer world, for the 2006–2015 decade. Additionally, 

the return period contours for the model climatology (from Actual runs 
for 1986–2015 period) are plotted, for comparing with the estimates 
based on observed data (Fig. 8(a)). The red pentagram denotes the 2015 
hot and dry event. The migration of the observations-based contours to 

Fig. 6. Long-term averages of (a) JJAS cumulative 
rainfall, and (b) Annual average temperature over 
Marathwada, from the weather@home simulations, 
for the Natural (green), Actual (black), 1.5 ◦C (blue) 
and 2 ◦C warmer world (red) scenarios. The aver
aging period for the Natural and Actual scenarios is 
2006–2015 while that of the 1.5◦ and 2 ◦C warmer 
(red) worlds is representative 2091–2 100. The 
probability density function (PDF) estimates for all 
the four scenarios, are also plotted for (c) rainfall, and 
(d) temperature. (For interpretation of the references 
to colour in this figure legend, the reader is referred 
to the Web version of this article.)   

Fig. 7. (a) Marginal probability density function (PDF) from selected parametric distributions, and empirical histogram and, (b) Marginal CDF from selected 
parametric distributions and empirical CDF of JJAS cumulative rainfall for 1951–2015 period, over Marathwada. (c) same as (a), and (d) same as (b), for JJAS 
average temperature. (e) Joint CDF of JJAS cumulative rainfall and JJAS average temperature over Marathwada, from Gaussian copula, along with the empirical 
CDF. (f) same as (e), with the parametric CDF from Frank copula. 

M. Zachariah et al.                                                                                                                                                                                                                             



Weather and Climate Extremes 39 (2023) 100546

9

hotter and drier regimes in the post-1985 period (Fig. 8(a)) indicate that 
concurrent hot and dry events in Marathwada have intensified and have 
become more frequent in recent years. Similar inferences can be drawn 
from the model-based contours too (Fig. 8(b)). The hot and dry events 
are more frequent and graver in magnitude in the Actual world as 
compared to the Natural world. Such events are expected to intensify 
further and become more frequent in the future warmer worlds, and in 
the absence of aerosols (GHG-only). 

The return period of the 2015 hot and dry event from the model 
climatology runs is 100 years (range: 90–110 years; Table 1(a)). The 
closeness of the return period estimates between the model climatology 
(100 years) and the observed post-1985 period (110 years), underlines 
the reliability of the weather@home model runs for this study. The 2015 
event has a high recurrence interval of 262 years (uncertainty range: 
216–330 years) in the Natural world without anthropogenic greenhouse 
gas (GHG) and aerosol emissions, whereas it is a much more frequent 1- 
in-38 year event (uncertainty range: 1-in-33 year to 1-in-44 year) in the 
Actual scenario, suggesting that the event is made more likely due to 
anthropogenic climate change (PRActual/Natural 

= 5.3; best estimate: 7; 

Fig. 9(a) and Table 1(a)). 
For discerning the role of anthropogenic aerosols in the occurrence of 

hot and dry conditions in Marathwada, we compare the return period of 
the 2015 hot and dry event in the GHG-only scenario. We note here that 
the aerosols effects reported in the study are with respect to the reflec
tive (cooling) sulfate aerosols only. HadRM3P does not model absorbing 
aerosols and associated feedbacks (Massey et al., 2015) which are also 
important for the Indian region as they tend to warm the atmosphere in 
contrast to sulfate (Ramanathan et al., 2002; Venkataraman et al., 
2005). As far as rainfall is concerned, both absorbing black carbon and 
sulfate aerosols tend to suppress rainfall as long as temperatures do not 
change. Concurrent hot and dry events are expected to intensify and 
become more frequent in the absence of anthropogenic aerosols (Fig. 8 
(b)). The 2015 event is found to be more frequent (1-in-22 year) in the 
GHG-only scenario as compared to Actual due to the warmer atmo
sphere (Fig. 6(b)), presumably, due to the absence of cooling effect of 
sulfate aerosols (Huang et al., 2007; Kiehl and Briegleb, 1993; J. F. B. 
Mitchell et al., 1995; Reader and Boer, 1998). In other words, the 
presence of aerosols makes the event exceptionally less likely in the cur
rent climate (PRActual/GHG− only

= 0.5; best estimate: 0.6; Fig. 9(a) and 

Table 1(a)), by abating the warming due to GHG emissions. 
Finally, for a prognosis of the expected change in the likelihood of 

hot and dry events under future warming, we also examine the return 
period characteristics of the 2015 event under the 1.5 ◦C and 2 ◦C 

warmer world scenarios. The event is expected to become much more 
frequent, with recurrence intervals of 1-in-15-year (uncertainty range: 
1-in-13-year to 1-in-17-year) and 1-in-12-year (uncertainty range: 1-in- 
10-year to 1-in-14-year) in the 1.5 ◦C and 2 ◦C warmer worlds, respec
tively (Fig. 8(b)). The warming due to the reduction in aerosol emissions 
(1/3rd of the Actual world concentrations) and increase in GHG emis
sions under these scenarios (Fig. 6(b)) along with almost no increase in 
rainfall in the region (Fig. 6(a)) is likely the reason for the increased odds 
of such event occurring. From Fig. 9(a) and Table 1(a), we can see that 
the probability of the event is 2.1 times (PR1.5◦C/Actual

; best estimate: 2.6) 

and 2.8 times (PR2◦C/Actual 
best estimate: 3.3) that of Actual, under 1.5 ◦C 

and 2 ◦C warmer scenarios, respectively, suggesting that the event is 
expected to become more likely under future climate change. 

Our findings highlight the need to curb the warming at well-below 
1.5 ◦C above pre-industrial levels, as evidenced by the quintupled risk 
of the hot-dry event in the factual world as compared to the Natural 
scenario (Fig. 8 (b); Table 1), along with expected doubling and tripling 
of risk under future 1.5 ◦C and 2 ◦C warming, respectively. However, it is 
also necessary to compare with univariate estimates based on each of 
rainfall deficits and temperature exceedances, in order to be able to 
reconcile our results with existing evidence for the region. 

4.5. Univariate return periods and probability ratios for the 2015 
individual rainfall (dry) and temperature (hot) events 

Fig. 10(a) shows the observation-based return period curves for JJAS 
cumulative rainfall, for the pre-1985 and post-1985 periods. The 2015 
event has return periods of 1-in-16 and 1-in-15 year in the pre-1985 and 
post-1985 periods, respectively, suggesting that the event is not un
precedented upon considering rainfall deficits alone. This observation is 
qualitatively comparable with the conclusion from an earlier study that 
examined the characteristics of long-term observed rainfall variability in 
this region (Kulkarni et al., 2016). The return period curves are also 
similar in the Actual and Natural scenarios, at 17 years (uncertainty 
range: 16–19 years) and 15 years (uncertainty range: 13–17 years), 
respectively (Fig. 10(b)), with probability ratio PRAct/Nat

= 1 (best esti

mate: 1.2; Table 1(b) and Fig. 9(b)), which indicates the event may have 
become at least less likely due to climate change. The temperature, on the 
other hand, shows discernible shifts both in the observed splits and the 
model-simulated Natural and Actual scenarios. The 2015 hot event, 
which used to be a 1-in-108 year event in the pre-1985 period, is seen to 
have become a 1-in-16 year event, post-1985 (Fig. 10(c)). The return 
period estimates from the Natural and Actual scenarios also show a 

Fig. 8. (a) Multivariate return periods of concurrent 
temperature and rainfall extremes over Marathwada 
from observations. Dashed green and solid black iso
lines show various return levels in pre-1985 and post- 
1985 period, respectively. The event has return pe
riods of 570 and 110 years, in the pre-1985 and post- 
1985, respectively. (b) same as (a), but from the 
weather@home model simulations for Pre-industrial 
(green), Actual (black), GHG-only (magenta), 1.5 ◦C 
(blue) and 2 ◦C (red) scenarios, and for the clima
tology runs (grey). The event has return periods of 
262, 38, 22, 15, 12 and 100 years, in the Natural, 
Actual, GHG-only, 1.5 ◦C and 2 ◦C warming scenarios, 
and the climatology runs, respectively. (For inter
pretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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considerable shift from 1-in 55 years to 1-in-4 years (Fig. 10(d)), which 
translates into a 11-fold increase in risk of anomalously high tempera
tures due to anthropogenic climate change (Fig. 9(c) and Table 1(c)). 

It is difficult to discern the role of aerosols on the regional rainfall, 
presumably owing to the differing direct and indirect effects of sulfate 
aerosols (Ackerley et al., 2011; Giorgi et al., 2003). In the absence of 
aerosols (GHG-only), the rainfall in the region would have been higher 
(Fig. 6(a)), also reflected as a slight increase in the return period of the 
2015 dry event (1-in-22 year) as compared to Actual (Fig. 10(b)). 
However, this increase is not significant, as highlighted by the proba
bility ratio, PRActual/GHG− only

= 1.3 (best estimate: 1.5; Fig. 9(b) and 

Table 1(b)) which suggests that the risk of the event is not likely to have 
altered even in the absence of aerosols. Unlike rainfall, the absence of 
cooling aerosols (GHG-only scenario) will have resulted in a warmer 
atmosphere (Fig. 6(b)). Therefore, the 2015 hot event would have been a 
very frequent, annual event (Fig. 10(d)). 

The return periods of the 2015 dry event under 1.5 ◦C and 2 ◦C 
warmer worlds are also close to the estimates from the other scenarios 

(Fig. 10(b)), at 15 years (uncertainty range: 13–17 years) and 12 years 
(uncertainty range: 10–14 years), respectively. However, this marginal 
to no change in the recurrence characteristics of rainfall in the different 
model scenarios cannot be conclusively attributed to the absence of 
climate change signal; rather, it is an indication that the climate signals 
may be confounded due to the high variability in the Indian Summer 
Monsoon Rainfall (Singh 2016; Tebaldi et al., 2011). The 2015 hot event 
is expected to become an annual event under future warming, likely due 
to the reduction in aerosols (1/3rd of concentration in Actual; Supp S1) 
and change in GHG concentrations. It may be noted that our experi
mental set-up is designed to isolate the climate change signal from 
natural variability due to other global SST patterns (Guillod et al., 
2017), on account of the scenarios being forced with observed SST 
patterns that are shifted to the respective warming levels (see Supp. S1; 
Table S1). Therefore, for any given year, such as 2015, the influence of 
ENSO is the same across all scenarios. This influence gets smoothed on 
considering a range of years (2006–2015). This difference is also re
flected in the probabilities and therefore the PRs, as shown in Table S3 
for the 2015-only ensembles as compared to the estimates based on the 

Fig. 9. Probability Ratio (PR) of the 2015 event based on (a) both rainfall and temperature, (b) for rainfall alone, and (c) for temperature alone, for different 
combinations of model scenarios. 
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2006-15 ensemble in Table 1. 
Overall, it is interesting to note that for either of the observed periods 

and for all of the climate scenarios, the 2015 rainfall deficit itself is not 
unprecedented (Fig. 10(a–b)); however, the corresponding hot-dry 
event is rare, and poised to become more frequent under warming 
(Fig. 8(a–b)). For instance, the return period of the 2015 rainfall event is 
only 15 years for the post-1985 period, while the corresponding hot-dry 
event is rare, with a return period of 110 years. In a nutshell, the findings 
from this study emphasize the role of temperature in compounding 
droughts in the region by causing concurrent hot-dry conditions, and 
provide a pragmatic attribution (with medium confidence, as discussed in 
Section 4.2) of the 2015 event to anthropogenic climate change. 

5. Concluding remarks 

The 2015 drought in Marathwada was a catastrophic event, poten
tially amplified by the compounded role of anomalously high temper
ature and rainfall deficits, and resulting in large loss to agriculture and 
lives (Gruère and Sengupta 2011; Sridhar 2006). In this study, we car
ried out a PEA analysis of this hot and dry event in a first-of-its-kind 
copula-based multivariate attribution framework. On comparing the 
return period of the 2015 hot-dry event against the traditional univar
iate return period of the 2015 rainfall, in both observed records and 
model scenarios from the weather@home climate model simulations, 
we found that the rainfall event was not unprecedented, whereas the 
compounded hot and dry condition was rare. 

The two important findings from this study are as follows - (i) it is 
more likely that the 2015 hot and dry event can almost entirely be 

attributed to anthropogenic emissions (PRActual/Natural
= 5.3

)
, and (ii) 

such an event is also likely to occur under future 1.5 ◦C and 2 ◦C warmer 
worlds with expected doubling and tripling of risks, respectively, as 
compared to the factual world. For an agriculture-driven economy such 
as that of India, these results bear strong implications and highlight the 
importance of a multivariate analysis to study compound extreme 
events. Therefore, it is imperative to focus on strategies that strive to 
limit warming in the region well below 1.5 ◦C, recognizing the plausible 
impacts in terms of agricultural loss and mortality caused by increased 
future occurrences of such events. Furthermore, the multiplied change 
in risk of droughts in Marathwada under future warming scenarios also 
seem to suggest an unequal and unjust ramification of global climate 
change in vulnerable regions of the world. 

An important caveat in this study is that we have not used multiple 
model ensembles. However, the model evaluations against observed 
data and the return period estimates from the observed and model cli
matologies are found to match closely, thus making the evidence robust. 
Further, an in-depth analysis of the large-scale teleconnections that 
drive ISMR (e.g., Cherchi and Navarra, 2013) and the interactions of 
meteorological and hydrologic variables, atmospheric chemistry at 
regional scales and the local feedback from irrigation (e.g., Ambika and 
Mishra, 2021) on the associated risks can form a part of future studies in 
this area. 

The multivariate approach presented in this study can also be 
modified for estimating the conditional relationship between the two 
variables (Hao et al., 2018). For example, the conditional distribution of 
rainfall given an antecedent JJAS average temperature can be used to 
estimate the impact of high temperatures on droughts under different 
scenarios, which is a reflection of the soil moisture-climate interactions 
(Seneviratne et al., 2010). Further, our framework is generic and can be 
applied to include other relevant variables such as soil moisture and 

Fig. 10. (a) Univariate return periods of rainfall over 
Marathwada from observations. Dashed green and 
solid black isolines show various return levels in pre- 
1985 and post-1985 period, respectively. The event 
has return periods of 16 and 15 years, in the pre-1985 
and post-1985, respectively. (b) same as (a), but from 
the weather@home model simulations for Pre- 
industrial (green), Actual (black), GHG-only 
(magenta), 1.5 ◦C (blue) and 2 ◦C (red) scenarios, 
and for the climatology runs (grey). The event has 
return periods of 17, 15, 22, 15, 12 and 14 years, in 
the Natural, Actual, GHG-only, 1.5 ◦C and 2 ◦C 
warming scenarios, and the climatology runs,respec
tively. (c) same as (a), for temperature. The event has 
return periods of 108 and 16 years, in the pre-1985 
and post-1985, respectively. (d) same as (b), for 
temperature. The event has return periods of 55, 4, 1, 
1 and 1 and 10 year(s), in the Natural, Actual, GHG- 
only, 1.5 ◦C and 2 ◦C warming scenarios, and the 
climatology runs, respectively. (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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groundwater information. Finally, an end-to-end framework (Mitchell 
et al., 2016; Schaller et al., 2016) that links attribution analyses to im
pacts such as crop loss or (indirect) farmer suicides can provide addi
tional guidance on how to mitigate risks. 
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