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Abstract
Buoy data in the form of multivariate time series are routinely recorded at many locations in the world’s oceans. 
Such data can help characterise the ocean wavefield by modelling the frequency-direction spectrum. State-of- 
the-art methods for estimating the parameters of such models do not make use of the full spatiotemporal 
content of the buoy observations due to unnecessary assumptions and smoothing. We explain how the 
multivariate debiased Whittle likelihood can be used to jointly estimate all parameters of such frequency- 
direction spectra directly from recorded time series. We apply the method to North Sea buoy data and 
discuss challenging practical issues.
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1 Introduction
Applications of multivariate time series and spatiotemporal statistics are ubiquitous, for example 
using the affordable and widespread availability of GPS and accelerometer technology to track in-
dividuals and objects in three spatial dimensions over time. Applications include clinical studies of 
human rest/activity cycles (actigraphy) (Geraci, 2019), player activity in sports (Tierney et al., 
2016), motor vehicle tracking (telematics) (Verbelen et al., 2018), animal and wildlife tracking 
(Rivest et al., 2016), the tracking of large-scale currents and drifting objects in oceanography 
(O’Malley et al., 2021; Sykulski et al., 2016), as well as measuring ocean surface waves using 
buoys—the final of which is the focus of this paper. The raw time series obtained from such devices 
are high frequency, but often noisy, and current practices throw away or over-smooth data with-
out utilising their full potential. In this paper, we present a likelihood-based stochastic modelling 
approach that can meaningfully extract and estimate more spatiotemporal features from ocean 
wave observations than current methods—but we present our methodology in such a way that 
it can be applied more broadly to spatiotemporal data, including handling model misspecification, 
anisotropy, high- and low-frequency noise, aliasing, non-stationarity, and uncertainty 
quantification.
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Wind-generated surface gravity waves are an important feature of the ocean environment. 
Understanding the behaviour of such waves is of great scientific and engineering interest, with ap-
plications ranging from the design of ships and marine structures to modelling coastal flood risk. 
As such, large quantities of high-frequency time series data are routinely recorded in order to help 
improve our understanding of the waves, generating a variety of statistical challenges. 
Characterisation of the wave environment needs to reflect the evolving nature of multiple weather 
systems, and the presence of measurement uncertainty.

From a modelling perspective, we typically seek to model the vertical displacement of the ocean 
surface over two-dimensional horizontal space and time. The second-order characteristics of this 
spatiotemporal process are usually summarised by the frequency-direction spectrum, which ‘is the 
fundamental quantity of wave modelling and the quantity that allows us to calculate the conse-
quences of interactions between waves and other matter’ (Barstow et al., 2005). Heuristically, 
the frequency-direction spectrum quantifies the contribution to the variance of the wave process 
from multiple sinusoidal components with different frequencies travelling in different directions.1

This description assumes that the wave process is stationary; however, in reality this is not gener-
ally the case. To address this, wave records are usually partitioned into shorter intervals of time 
series (referred to as sea states), each of which can be treated as stationary (Holthuijsen, 2007).

High-resolution measurements of the ocean surface in space and time are rarely available. 
However, recordings of the vertical displacement of the ocean’s surface at a single location 
(e.g., using a wave staff or downward-facing radar) or of the motions of floating devices (e.g., 
buoys) are common (Jensen et al., 2011). In particular, modern buoy measurements provide 
time series of the buoy’s full three-dimensional displacement. Such measurements are then used 
to estimate the frequency-direction spectrum, though in general this estimation is not trivial to 
perform.

Parametric estimation of the frequency-direction spectrum usually uses either a method-of- 
moments or least-squares approach. In general, neither approach is optimal statistically. 
Furthermore, these techniques rely on non-parametric estimates of the frequency-direction spec-
trum, which exhibit substantial bias. As a result, these approaches perform poorly and can only 
reliably estimate simple location parameters such as the peak frequency or mean direction of 
the observed wave process. We propose using likelihood inference directly on the buoy data, 
avoiding both the poor performance of method-of-moments and least squares; and the issues gen-
erated by the non-parametric estimation. Ideally, parametric inference would be made using 
maximum-likelihood estimation with the full sample likelihood; however, the full likelihood is ex-
pensive to compute. Fortunately, adoption of the Whittle likelihood (Whittle, 1953) provides a 
computationally efficient alternative to full maximum-likelihood inference, which produces con-
sistent parameter estimates and is optimally convergent. Furthermore, debiased Whittle likelihood 
inference (Sykulski et al., 2019) removes the finite sample bias present in Whittle likelihood infer-
ence, without compromising standard error or computational efficiency.

Grainger et al. (2021) demonstrated in a univariate setting that debiased Whittle likelihood in-
ference yields significant improvements over competitors, when estimating parameters of the spec-
tral density function of ocean waves recorded only over time. The paper we present here seeks to 
generalise this methodology to incorporate directional characteristics of the wavefield. However, 
this extension is nontrivial, since the full spatiotemporal process, which constitutes the wavefield, 
is not recorded, and hence the spatial debiased Whittle likelihood of Guillaumin et al. (2022) can-
not be applied directly. Instead we describe computationally efficient parametric estimation of a 
frequency-direction spectrum fitted directly to multivariate time series buoy data. Using a multi-
variate extension of the debiased Whittle likelihood we are able to obtain parameter estimates 
with lower bias and variance than competitor techniques. Our real-world data analysis reveals ro-
bust parameter estimates and captures their evolution over time during a storm; in contrast, such 
an analysis using existing techniques results in estimates that evolve erratically over time.

The structure of the paper is as follows. Section 2 gives some background on ocean waves, in-
troduces an example data set and describes a model for the frequency-direction spectrum of wind- 
sea waves. Section 3 describes the debiased Whittle likelihood inference, and demonstrates its 
performance by simulation. In Section 4, we then apply the debiased Whittle inference to the 

1 See Appendix for a more formal definition.
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example data set introduced in Section 2.2, discussing a number of important practicalities of the 
analysis. Finally, Section 5 provides a discussion and conclusions.

2 Background
2.1 Ocean waves and frequency-direction spectra
Much of the interest in ocean waves relates to the surface displacement of the water over space and 
time, which is treated as a stochastic random field.

Usually, the waves are assumed to be stationary and mean-zero within a given time window 
(often 30 min), referred to as a sea state. The covariance structure of the random field for this 
sea state is then described by the frequency-direction spectrum, S(ω, ϕ), the frequency-domain 
equivalent of the spatiotemporal autocovariance (see Appendix A.1 for more details).

Examples of frequency-direction spectra are shown in Figure 1, corresponding to: left, wind-sea 
only; middle, wind sea and swell; and right, wind sea with two swells. Heuristically, if we think 
about the spectral representation of a process as decomposing that process into a ‘sum of sinus-
oids’, then S(ω, ϕ) can be thought of as describing the contribution to the variance from a wave 
of a given angular frequency, ω (measured in rad Hz), travelling from a given direction, ϕ (meas-
ured in radians). For example, the left-hand panel of Figure 1 describes a process where most of the 
variance is generated by sinusoids travelling from a southwards direction (π radians) with angular 
frequencies around 0.8 rad Hz. In contrast, the right-hand example describes a process with major 
contributions to the variance from sinusoids with three different directions and frequencies. 
Notice that the direction is measured clockwise from North in radians and is the direction a 
wave is travelling from and not towards.2

Direct characterisation of the wavefield would require measurements of surface displacement 
over space and time. Outside of laboratory wave tanks (Forristall, 2015; Schubert et al., 2020), 
shallow lakes (Young et al., 1996), or coastal regions (Eastoe et al., 2013; Long & 
Oltman-Shay, 1991), this is very difficult to achieve with current technology. However, it is rela-
tively straightforward to measure some characteristics of the wavefield, and to use these measure-
ments to infer properties of the latent spatiotemporal process. For example, we can use 
measurements of the motion of a floating buoy to approximate the Lagrangian motion of a particle 
on the water’s surface, recording time series Z(t), X(t), and Y(t), of the vertical, northwards and 
eastwards displacements of the buoy, respectively.

We may also describe the covariance structure of the vector-valued stochastic process P(t) = 
[Z(t), X(t), Y(t)]T (which is assumed to be stationary and mean-zero) by the spectral density ma-
trix function

f (ω) =
fzz(ω) fzx(ω) fzy(ω)
fxz(ω) fxx(ω) fxy(ω)
fyz(ω) fyx(ω) fyy(ω)

⎡

⎣

⎤

⎦ =
1
2π

∫∞−∞ c(τ) e−iωτ dτ, (2.1) 

provided certain technical conditions are satisfied (see Brockwell & Davis, 2006, for example), 

where c(τ) = E P(τ)P(0)T
 

. Under linear wave theory (see Holthuijsen, 2007, for example), there 

is a transfer function G(ω, ϕ) = [1, i cos ϕ, i sin ϕ]T for ω > 0, which is conjugate symmetric and 
zero at ω = 0 (Isobe et al., 1984), such that

f (ω)= ∫2π
0 G(ω, ϕ)G(ω, ϕ)HS(ω, ϕ) dϕ, (2.2) 

where AH denotes the conjugate transpose of a matrix A. This directly relates the frequency- 
direction spectrum, S(ω, ϕ), to the spectral density matrix function, f (ω), which is a feature we 
shall exploit to perform inference. From (2.2), we can immediately see that, for all ω ∈ R, f (ω) 
is non-negative definite for any non-negative choice of S(ω, ϕ) (and indeed for any choice of 

2 Both conventions are used in the literature (Barstow et al., 2005); however, we favour direction from as it means 
that the relation to the autocovariance is the same as the one used in the statistics literature (see Appendix A) and is the 
same as the convention for wind direction, making comparisons easier.
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G(ω, ϕ), which may be required for other measurement systems, such as a heave-pitch-roll buoy). 
Therefore, if we specify a model for S(ω, ϕ) then we can obtain a model for f (ω). However, the 
relation in (2.2) is not invertible in general.

Figure 2 shows an example of the relationship between S(ω, ϕ) and f (ω) for four different sea 
states, differing only by mean direction (indicated by the four colours). The difference in mean dir-
ection is obvious in S(ω, ϕ) in the left-hand panel, and can still be identified from f (ω) in the right- 
hand panel, even though f (ω) does not provide a complete description of S(ω, ϕ).

2.2 Example data
For the purpose of illustration, we consider a z, x, y time series recorded using a Datawell 
Waverider MkIII buoy (Datawell, 2006) in the southern North Sea, at a sampling rate of 
1.28 Hz. This particular five-day period is chosen to provide an illustration of various physical 
phenomena often present in the ocean. Within the period, 30-min sea states (assumed stationary) 
range from being straightforward to being difficult to model, allowing us to explore the practical 
applicability of the technique we propose.

Figure 3 shows a summary of the five-day period in question. The first panel of Figure 3 shows 

significant wave height, Hs = 4
�����������

var Z(t)
( 

, for each of the sea states, quantifying the roughness of 

Figure 1. Example frequency-direction spectra. The left-hand panel shows the frequency-direction spectra 
corresponding to a single wind-sea, the middle shows a wind sea and single swell and the right shows a wind sea 
and two swells. Direction here is the direction the waves are travelling from. The polar plots have direction from 
north (rad) on the angular axis and angular frequency (rad Hz) on the radial axis.

Figure 2. The effect of varying the mean direction of a wind-sea model on both the frequency-direction spectrum 
(S(ω, ϕ), left) and the corresponding spectral density matrix function (f (ω), right). The elements of f (ω) are shown as 
a ‘matrix of functions’, plotting the real part in the lower triangle and imaginary part in the upper triangle. Due to the 
conjugate symmetry of f (ω), this representation contains all of the information present.
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the ocean’s surface. The second panel shows wind speed recorded at a nearby platform. The third 
panel shows a spectrogram plotted on the decibel scale, computed using multitapering (Thomson, 
1982) with half overlapped 30-min windows (with NW = 4 and K = 7 Slepian tapers), describing 
the time-frequency characteristics of the record. The fourth panel shows the mean direction of the 
waves at different frequencies over time, as defined by Kuik et al. (1988), again computed using 
half overlapped 30-min windows. The final panel shows the wind direction over time at a nearby 
platform.

The record is made up of a variety of component weather systems, which are most easily iden-
tified from the mean wave direction (fourth panel). At the start of the record there are two com-
ponents present, a high-frequency wind sea and lower-frequency swell. These components fade 
out throughout day 0, as can be seen from Hs (first panel). A new high-frequency wind sea devel-
ops from the start of day 1, with a clear change in mean wave direction (fourth panel). Throughout 
day 1, this new component increases in magnitude and transitions to lower frequencies (see third 
panel), peaking at the start of day 2. Half way through day 2, the wind drops off and then increases 

Figure 3. Summary of the storm data, showing significant wave height, wind speed, a spectrogram on the decibel 
scale, mean wave direction over time and frequency (direction the waves are travelling from, in radians clockwise 
from North) and the wind direction over time (direction the wind is travelling from, in radians clockwise from North) 
recorded at a nearby platform. The x-axis labels are at the start of the day, e.g., day 1 denotes the start of day 1.
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(second panel) and changes direction (fifth panel). In response, we see another wind-sea compo-
nent develop with a different direction to the previous component (fourth panel). Towards the 
end of day 3, a similar event occurs (though to a lesser degree) and we again see a change in dir-
ection. Meanwhile, the swell persists in a low-frequency band throughout (third and fourth pan-
els), though it is small in magnitude and narrow-banded in frequency compared to the wind sea (as 
can be seen from the spectrogram).

2.3 Models for wind sea
When modelling the frequency-direction spectrum, the spectrum is decomposed as

S(ω, ϕ) = f (ω)D(ω, ϕ) (2.3) 

where f (ω) is the marginal spectral density function of the vertical displacement and D(ω, ϕ) is the 
so-called spreading function. The marginal spectral density function, f (ω), can be thought of as 
describing the contribution to the variance from waves of a given frequency regardless of direction, 
whereas the spreading function, D(ω, ϕ), describes the distribution of wave variance for waves of a 

given frequency over direction. The spreading function satisfies ∫2π
0 D(ω, ϕ) dϕ = 1 and D(ω, 0) = 

D(ω, 2π) for all ω ∈ R. Figure 4 shows an example of the decomposition given in (2.3) for the 
model described in the remainder of this section.

For the purpose of this paper, we use the JONSWAP spectral density function first described by 
Hasselmann et al. (1973), which we denote f (ω; θ), where θ is the vector of parameters. The 
JONSWAP spectral density function is widely used for modelling the univariate vertical surface 
displacement resulting from wind-sea waves. Based on physical observations, Hasselmann et al. 
(1973) developed the JONSWAP spectral density function with an asymmetric peak and a poly-
nomial decay in the high-frequency tail. There is debate about the rate of this tail decay (e.g., 
Hasselmann et al., 1973; Hwang et al., 2017; Phillips, 1985; Toba, 1973), and so we treat the 
tail decay index as a free parameter in our analysis. The form of the JONSWAP spectral density 
function for ocean surface gravity waves can also be motivated from basic physical considerations. 
Wind waves are generated by the wind blowing over the ocean’s surface, through a combination of 
three physical processes. Wind field turbulence disturbs the water’s surface, creating high- 
frequency surface water waves. Then, wind–wave interaction causes these surface waves to 
grow in amplitude. Thereafter, wave–wave interactions propagate wave energy from higher to 
lower frequencies. This produces a wave spectral density function with a single spectral peak 
and long high-frequency tail, with peak frequency evolving from higher to lower frequency during 
an ocean storm of limited duration.

Various models have been proposed for the directional spreading of wind-sea waves. A large 
number of experimental studies (e.g., Ewans, 1998; Wang & Hwang, 2001; Young et al., 
1995) indicate that the spreading function is bimodal with direction, for frequencies exceeding 
the peak frequency. This finding is supported by theoretical arguments involving directional en-
ergy transfer through wave–wave interactions (Banner & Young, 1994; Toffoli et al., 2010; 

Figure 4. Example of the decomposition of a frequency-direction spectrum, showing the frequency-direction 
spectrum (left), marginal spectral density function (middle) and spreading function (right). Plots are given using 
Cartesian coordinates as this makes the arms of the spreading function easier to visualise.
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Young et al., 1995). For this reason, we adopt the bimodal wrapped Gaussian model of Ewans 
(1998) in this work. At each frequency, the spreading function over direction is assumed to be 
a bimodal wrapped Gaussian with means ϕm1(ω; θ) and ϕm2(ω; θ), but the same standard devi-
ation3 σ(ω; θ). In other words,

D(ω, ϕ; θ) =
1

2σ(ω; θ)
���
2π
√

∞

k=−∞

2

i=1

exp −
1
2

ϕ − ϕmi(ω; θ) − 2πk
σ(ω; θ)

 2
 

. (2.4) 

Table 1 gives a description of the parameters of the model, as well as the equations to which they 
relate. A more complete description of the model is given in Appendix A. Note that the inference 
approach described in this paper is applicable for other models, but the model described here has 
been chosen for definiteness.

3 Modelling process
We aim to jointly estimate all the parameters of Table 1, both marginal and spreading, given a 
sample of three-dimensional displacement. In this section, we describe the proposed inference 
technique, and demonstrate in simulations that it yields significant improvements in performance 
over the existing least-squares and moments-matching approaches, described in Appendix B. For 
brevity, we shall refer to such techniques as competitor techniques for the remainder of this paper. 
In contrast to competitor techniques, we convert the model for the frequency-direction spectrum 
to a model for the spectral density matrix function of the data we actually observe, and then fit the 
model directly to the data. This is statistically more appealing as we fully exploit the degrees of 
freedom in the observational data, rather than performing unnecessary smoothing transforma-
tions before model fitting, and is the key reason our method performs better.

3.1 Model fitting
Due to the quantity of available data, computationally efficient inference techniques are desirable. 
For a Gaussian process, full maximum likelihood would require the inversion of a 3n × 3n matrix. 
This is expensive when n = 2304 as in our case, especially given that we have a different time series 
every half an hour. Furthermore, we may wish to only model a certain frequency range (see e.g., 
Section 4.1 for our application study), which is hard to achieve with full maximum likelihood. 
Frequency-domain psuedo-likelihoods such as the debiased Whittle likelihood (Sykulski et al., 
2019) provide a nice alternative to full maximum-likelihood inference. Debiased Whittle likeli-
hood inference has been shown to perform well in a variety of applications, including for planetary 
topography (Guillaumin et al., 2022), ocean drifters (Sykulski et al., 2016) and univariate record-
ings of ocean waves (Grainger et al., 2021). For these reasons, we use a multivariate extension of 
the debiased Whittle likelihood due to Guillaumin et al. (2022).

Let PtΔ = P(tΔ) for t ∈ Z be the discrete-time process arising from sampling {P(t)} every Δ sec-
onds. Assume we have a sample of length n, the periodogram, In(ω), is defined as

In(ω) = Jn(ω)Jn(ω)H where Jn(ω) =
�����
Δ

2πn


n−1

t=0

PtΔ e−itΔω, 

usually evaluated at the Fourier frequencies Ωn = {2πj/n ∣ j ∈ { − ⌈n/2⌉ + 1, . . . , ⌊n/2⌋}} using the 
Fast Fourier Transform (Cooley & Tukey, 1965). The multivariate Whittle likelihood (Whittle, 
1953), in its discrete form, is given by

ℓW(θ) = −


ω∈Ω
log |f (ω; θ)| + tr{In(ω)f (ω; θ)−1}, (3.1) 

where Ω ⊆ Ωn and f (ω; θ) denotes a parametric spectral density matrix function with parameter 

3 The standard deviation is referred to as angular width by Ewans (1998).
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vector θ. The multivariate Whittle likelihood suffers from finite sample bias, especially as the di-
mension grows, so a debiased version may be used to improve estimates, accounting for sampling 
effects such as aliasing and blurring. Aliasing results from regular discrete sampling of a 
continuous-time process. Blurring results from sampling a time series for finite duration. 
Specifically, the finite sample results in a convolution in the frequency domain which causes spec-
tral density estimates to ‘blur’ or ‘leak’ across frequencies. In the case of 1.28Hz wave data re-
corded for 30 min, the blurring is minor; however, for shorter records this is not the case, and 
using the debiased Whittle likelihood is beneficial.

The multivariate debiased Whittle likelihood (Guillaumin et al., 2022) is

ℓD(θ) = −


ω∈Ω
log |E In(ω); θ[ ]| + tr{In(ω)E In(ω); θ[ ]−1}, (3.2) 

where the expected periodogram can be efficiently computed using the relation

E I(ω); θ[ ] =
Δ
2π

n−1

τ=−n+1

(1 − |τ|/n)c(τ; θ) e−iωΔτ.

In our case, the autocovariance, c(τ; θ), is not known analytically, and instead must be approxi-
mated numerically from the spectral density matrix function. Since models are specified for the 
continuous-time process, the most efficient way to approximate the autocovariance is to first ap-
proximate the spectral density of the discrete-time process, then approximate the autocovariance 
(Grainger et al., 2021). The first step requires aliasing the spectral density of the continuous-time 
process by wrapping in contributions from infinitely many frequencies above the Nyquist fre-
quency, i.e., computing

f Δ(ω) =
∞

k=−∞
f (ω + 2πk/Δ). (3.3) 

To do this numerically, we have to use a truncated version of the sum in (3.3). In practice, the in-
strument may not respond to waves with frequencies above a certain threshold, or the data may 
have been filtered in preprocessing (Datawell, 2006). Therefore, the recorded process may not 
be aliased to the same extent as the theoretical sampled process. In our case, we treat the buoys 
as if no aliasing has occurred (i.e., retaining only the k = 0 term in (3.3)) due to the observed drop- 
off in the spectral density at the highest frequencies, as can be seen from panel 3 of Figure 3. 
However, we note that this technique is able to account for aliasing, should it be felt that aliasing 
is present.

Table 1. Parameter descriptions and relevant equations

Parameter Description Parameter space Equation

α scaling parameter (0, ∞)

ωp peak frequency (0, ∞) f (ω; θ) = αω−r exp { − r
4 ( |ω|ωp

)−4}γδ(ω; θ)

γ peak enhancement factor [1, ∞)

r spectral tail decay index (1, ∞) δ(ω; θ) = exp { − 1
2(0.07+0.02·1ωp>|ω|)

2 ( |ω|ωp
− 1)2}

ϕm mean direction [0, 2π)

β limiting peak separation [0, 2π)

ν peak separation shape [0, ∞)
ϕm1(ω; θ) = ϕm + β exp { − ν ·min (ωp/|ω|, 1)}/2

ϕm2(ω; θ) = ϕm − β exp { − ν ·min (ωp/|ω|, 1)}/2
σl limiting angular width [0, ∞)

σr angular width shape [0, ∞) σ(ω; θ) = σl − σr
3 {4( ωp

|ω| )
2 − ( ωp

|ω| )
8}

Note. . The first four rows describe the parameters for f (ω; θ) whilst the others describe the parameters for D(ω, ϕ; θ) as 
described in (2.4).
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In both (3.1) and (3.2), summation is over a set Ω. Usually Ω = Ωn; however, we may wish to 
remove some frequencies to avoid model misspecification (see Section 4.1) or because at some fre-
quencies in the periodogram the ordinates can be highly correlated for finite samples, which harms 
Whittle estimation. We then maximise this likelihood function using numerical methods, detailed 
further in Appendix C.

3.2 Simulation study
We now present a simulation study comparing the debiased Whittle likelihood inference proposed 
in Section 3.1 with the least-squares and moments-matching techniques described in Appendix B. 
We have chosen three different scenarios that represent possible conditions seen in practice, in-
cluding cases where certain parameters are on the boundary of the parameter space (as this is likely 
to cause problems for estimation techniques). The parameters for each scenario are given in 
Table 2, and the corresponding frequency-direction spectra are given in Figure 5.

Scenario 1 is a classic example of a fetch-limited wind sea, with directional shape parameters 
fixed to the standard values from Ewans (1998), and γ = 3.3 from Hasselmann et al. (1973). 
Scenario 2 is almost identical, except that σr is set to 0, meaning that σ(ω; θ) is constant over fre-
quency. Heuristically, this corresponds to a frequency-direction spectrum where the width of each 
arm in the spreading function is constant over frequency (see Figure 4 for the notion of an arm). 
This scenario is included because we often see this parameter tending towards the boundary of the 
parameter space in practice (as in Section 4.2), and it is useful to explore the effect of this on other 
parameter estimates (though we cannot say anything about the impact of model misspecification 
from this). Finally, scenario 3 is a Pierson–Moskowitz spectrum for a fully developed sea (Pierson 
& Moskowitz, 1964), also using the standard spreading parameters from Ewans (1998). This is a 
special case of the JONSWAP spectrum with γ = 1, and so is of particular interest as it lies on the 
boundary of the parameter space.

We simulate 1000 time series from each of the scenarios and estimate the model parameters us-
ing each of the techniques from Appendix B alongside the debiased Whittle likelihood inference 
from Section 3.1.4 In particular, we use the least-squares technique described in Appendix B.1
with both MLM- and MEM-based estimation of frequency-direction spectrum and the moments- 
matching approach described in Appendix B.2. Whilst there are three different methods from the 
existing literature in our comparison, they all use the same technique to estimate the parameters of 
the marginal spectral density function. As such, Figure 6 shows the marginal parameters estimated 

Table 2. Table showing the parameters for each scenario in the simulation study

α ωp γ r ϕm β ν σl σr

Scenario 1 0.7 0.8 3.3 5 π/2 4 2.7 0.55 0.26

Scenario 2 0.7 1.1 3.3 5 π/2 4 2.7 0.55 0.00

Scenario 3 0.7 1.0 1.0 5 π/2 4 2.7 0.55 0.26

Figure 5. Frequency-direction spectra for Scenario 1 (left), Scenario 2 (middle), and Scenario 3 (right), as defined in 
Table 2.
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using least squares (the marginal technique for the competitor techniques), univariate debiased 
Whittle on only the vertical displacement, and multivariate debiased Whittle on all three time ser-
ies. Figure 7 shows the spreading parameters where the least-squares technique is now split into 
the three directional variants: least squares with MLM, least squares with MEM, and the 
moments-matching approach; and the univariate debiased Whittle is not included (as it cannot 
be used to estimate the spreading parameters).

From Figure 6, we see a clear improvement in the debiased Whittle when comparing to least 
squares, especially in terms of variance, as has already been reported by Grainger et al. (2021). 
Additionally to the results already seen in Grainger et al. (2021), there is also a benefit to estimat-
ing the parameters of the marginal spectral density function from all three series (as opposed to 
from the vertical displacement alone). Traditionally, estimating the marginal parameters has 
been treated as a separate problem from estimating the spreading parameters, with only the ver-
tical displacements used to estimate the marginal parameters. However, this clearly throws away 
useful information about the marginal parameters which is present in the x and y time series. 
Furthermore, in Scenario 3, debiased Whittle likelihood recovers all of the parameters well, despite 
the true value of γ being on the boundary of the parameter space (though clearly the estimates of γ 
are not normally distributed).

Similarly, Figure 7 demonstrates a stark difference between competitor techniques and debiased 
Whittle likelihood inference. Other than the mean direction ϕm, we see substantial bias in all the 
other parameter estimates from each of the three existing techniques which is not present in the 

Figure 6. Boxplots of the parameter estimates from the simulation study for parameters of the marginal spectral 
density function, with the true values indicated by dashed lines. Marginal parameters estimated using least squares 
(LS), univariate debiased Whittle (DW uni), and full multivariate debiased Whittle (DW) are shown.

4 In Scenario 2, for nine of the replications, the least squares with MEM optimisation did not converge. For this rea-
son, in the results for Scenario 2 we include only the 991 replications for which the optimisation of all objective functions 
converged.
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debiased Whittle likelihood estimates. We also see that the debiased Whittle estimates exhibit sig-
nificantly less variance across all parameters and scenarios. From Scenario 2, we see that debiased 
Whittle likelihood inference still performs well when σr is on the boundary of the parameter space 
(though again estimates are not normally distributed). Additionally, when estimating β, we see 
that least squares with MLM in scenario 1 and moments-matching in Scenarios 2 and 3 the ma-
jority of the estimates are on the upper boundary of the parameter space, an issue which debiased 
Whittle likelihood inference does not have.

4 Modelling the example data set
We now apply debiased Whittle inference for S(ω, ϕ; θ) (Table 1) to the data set introduced in 
Section 2.2. Both wind sea and swell are present in our example record. However, we have chosen 
to model only the wind sea as the purpose of this paper is to introduce a new inference technique, and 
this is easiest to illustrate and scrutinise with a simple wind-sea only model. The debiased Whittle 
procedure could naturally be used on a swell-only model (or indeed a joint wind-sea and swell mod-
el) should the swell characteristics be of further interest, but this is reserved for future work.

Figure 7. Boxplots of parameter estimates from the simulation study for parameters of the spreading function, with 
the true values indicated by dashed lines. Spreading parameters estimated using least squares with MLM (LS mlm), 
least squares with MEM (LS mem), the moments-matching approach (moment), and multivariate debiased Whittle 
(DW) are shown.
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Due to issues with the measurement device and other contaminating processes, certain fre-
quency regions do not reflect the process we are interested in modelling. Therefore, careful selec-
tion of the frequencies included in the objective function must be performed prior to inference. 
Selecting these frequencies is difficult, but there are principled ways to choose them. In particular, 
the buoy data do not accurately represent the data which we are interested in modelling at the low-
est and highest frequencies (van Essen et al., 2018). As such, we select a low- and high-frequency 
thresholds and use only the frequency interval between the thresholds in our analysis, as we shall 
now detail in Section 4.1.

4.1 Specification of low- and high-frequency thresholds for inference
Model misspecification presents a significant challenge for the fitting techniques discussed in this 
paper. Such misspecification can be generated in a variety of ways. Firstly, other component wea-
ther systems that we do not want to (or cannot) model may be present. Secondly, there may be 
noise due to the buoy not following the true motion of a particle on the water’s surface. 
Finally, the approximations made by linear wave theory that justify the transfer function in 
(2.2) may not be valid. All of the aforementioned problems affect some frequencies more than 
others. Therefore, we shall remove frequencies that are heavily contaminated before fitting models 
to the data. Because we are using a frequency-domain pseudo-likelihood, this is easy to do, and 
essentially just involves omitting the appropriate Fourier frequencies from the likelihood (as dis-
cussed in Section 3.1).

However, choosing which frequencies to remove is not trivial. One useful guide comes from 
(2.2), which implies that fzz(ω) = fxx(ω) + fyy(ω) under linear wave theory. Motivated by this, 
we define the error function R(ω) = log (fxx(ω) + fyy(ω)) − log (fzz(ω)).5 An estimate, R̂(ω), of the 
error function can be obtained by first estimating the spectral density functions, then plugging 
them into the above formula for R(ω). Clearly, we would expect R̂(ω) ≈ 0 for all ω ∈ [0, π/Δ], 
so deviations from zero may indicate that there is a problem with a certain frequency range. 
Figure 8 shows a plot of R̂(ω) for each half hour period from our example data set introduced 
in Section 2.2 using multitapering (again with NW = 4 and K = 7 Slepian tapers).

From Figure 8, we see a blue band in the very lowest frequency range with a red band sitting in 
the frequency range just above this, where the absolute value of the error function is significantly 
larger than zero. Therefore, in low frequencies the transfer function mentioned above is not valid, 
and as a result these frequencies are removed when fitting the model. Additionally, R̂(ω) is slightly 
negative in the highest frequencies. In other words, the spectral density of the {X(t)} and {Y(t)} 
processes decays more rapidly than that of the {Z(t)} process in the high-frequency tail. This is pos-
sibly because the accelerometers for measuring the horizontal displacement of the buoy are 
mounted in a different way to the accelerometer measuring the vertical displacement, though 
more investigation is needed to ascertain the source of this discrepancy. Regardless, it is the general 
consensus that these instruments are more reliable for the middle of the frequency range than they 
are at the highest and lowest frequencies, and standard quality control of buoy data include checks 
for excessive level of low- and high-frequency spectral density (Christou & Ewans, 2014, for 
example).

Additionally, an old wind sea and a swell are present in the early sea states with the swell per-
sisting, albeit with little energy, for most of the record. Since models for such conditions are be-
yond the scope of this paper, we only begin modelling when the new wind sea has become 
dominant, and remove frequencies in which the swell is large or R̂ is sufficiently far from zero. 
In particular, for each half hour period, we pick the cut-off frequency to be the largest frequency 
below the peak frequency which either has an average R̂ larger than some threshold6 or has a mean 
direction sufficiently far from the average of the wind-sea mean direction. For more details, see the 
code provided on GitHub (Grainger, 2022a). Additionally, frequencies beyond 3.8 rad Hz are also 
removed due to the observed drop-off in spectral density. Figure 9 shows this choice of modelling 

5 Note that this relation is for the deep water case. The finite water depth version is slightly different and given in 
Appendix A.4. The finite water depth version is used in Figure 8, though for simplicity we state the deep water version 
here. The quantity R(ω) is related to the check ratio often used in quality control for buoy data ((2019), U.S.).

6 By average here we mean the average R̂ in some window centred on the frequency in question, and we use a thresh-
old of 2.
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period and low-frequency threshold with the modelling period delimited by dashed vertical lines 
and the threshold shown by dotted lines, indicating that only frequencies between these lines are 
included.7

4.2 Parameter estimates
Here we estimate model parameters for S(ω, ϕ; θ) using debiased Whittle inference, for the fre-
quency intervals specified in Section 4.1. Most of the parameters are initialised from standard val-
ues, with the only exceptions being ωp and ϕm which are initialised by picking the frequency 
corresponding to the maximum of a non-parametric estimate of the marginal spectral density 
function, and the mean direction corresponding to this frequency respectively.

Figure 10 shows the parameter estimates, with 95% approximate confidence intervals, calcu-
lated using the expected Hessian matrix and assuming parameters are Gaussian distributed. 
The location parameters ωp (the peak frequency) and ϕm (the mean direction) behave as expected, 
following the spectral mode and reacting to changes in wind direction respectively. They also 
evolve smoothly in time, despite fits being performed independently on non-overlapping sea states. 
The shape parameters for the marginal spectral density function (γ and r), clearly have time- 
varying behaviour. The peak enhancement factor, γ, increases as each component wind sea 
evolves, then decreases as the component wind sea dies out. Similarly, from the estimates for r, 
the tail decay becomes less steep between components. It is likely that this is due to model misspe-
cification, as we really have two wind-seas present, but are only modelling one of them. 
Furthermore, the shape parameters for the directional spreading (β, ν, σl and σr) also show anom-
alous behaviour during these overlaps. In particular, we see large values of β (hitting the upper 
bound of the parameter space). Large values of β correspond to a wide spreading over direction, 
which likely occurs because there is another component present with different directional proper-
ties. However, outside these overlap periods we see stability in the parameters estimates, which is 
encouraging. Additionally, some of the estimates of σr drop-off to zero, because the low-frequency 

Figure 9. Spectrogram of the example data set on the decibel scale, with the period used in the fitting delimited by 
solid vertical lines, and the choice of frequency range over the period of interest shown by the dotted lines.

Figure 8. Heatmap of R̂(ω) for each half hour period in the example data set, computed using multitapering.

7 Some of the highest frequencies are also removed from the objective function. This is because the response of the 
buoy falls off rapidly at the highest frequency, which is likely a result of the instrument’s inability to respond to the waves 
and the use of digital filters during post processing, details of which can be found in Datawell (2006).
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threshold can make σr unidentifiable as much of the information about σr resides in frequencies 
below the peak frequency. As a result, we have an identifiability-bias trade off as lowering the 
threshold frequency introduces more of the noise processes, which tends to result in biasing of β, 
but raising the threshold makes σr unidentifiable. This is a difficult problem and is an important 
area of further research which we discuss more thoroughly in Section 5.

In summary, the parameter estimates converge to sensible values in the majority of sea states 
where a single wind-sea is present. Furthermore, looking at sea states where parameter estimates 
go to boundaries or unrealistic values helps to extract time periods of interest where the model fails 
and separate investigation is warranted.

5 Discussion and conclusions
This paper describes estimation of the parameters of frequency-direction spectra for ocean surface 
gravity waves from three-dimensional buoy displacement time series, using debiased Whittle like-
lihood inference. In simulation studies, debiased Whittle inference is shown to outperform infer-
ence using competitor techniques. Debiased Whittle inference for a sequence of sea states provides 
a means to characterise the joint evolution of spectral parameters in time, and allows uncertainties 
in parameter estimates to be quantified in a principled manner. The observed smooth nature of 
parameter evolution estimated from North Sea data, and the dependencies evident between pa-
rameters, are consistent with physical intuition.

Typically, the wave environment at a location is the product of different physical drivers, includ-
ing swell and local wind forcing. In the current work, we focus on sea states corresponding to 
wind-sea conditions only, for clarity of description. More generally, debiased Whittle inference 
for mixed seas consisting of wind-sea and one or more swells is possible; in simulation studies 
of data for mixed seas (not shown), debiased Whittle inference again performs well. In simulation 

Figure 10. Parameter estimates using debiased Whittle likelihood inference over the period in question with 
approximate 95% confidence intervals. The two panels in the second row also include the spectrogram and wind 
direction for context. In order left to right then down, the panels show: Ĥs; α̂; ω̂p over the spectrogram on the decibel 
scale; ϕ̂m and wind direction; γ̂; β̂ and ν̂; r̂; and σ̂l and σ̂r , with approximate 95% confidence intervals.
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studies on samples of 30-min records corresponding to wind-sea conditions, the debiasing proced-
ure makes a small but marginal improvement over standard multivariate Whittle estimation. 
However, when fitting the joint wind-sea and swell model to mixed sea states, estimates using 
standard Whittle inference exhibit substantially greater bias than those from debiased Whittle 
inference.

In-situ measurement of the ocean environment is invariably problematic. In the present study, 
buoy displacement time series are contaminated by additional low-frequency processes, leading to 
spurious low-frequency spectral features not represented in the assumed parametric spectral form 
to be estimated. At very high frequencies, buoy displacement time series are further subject to on- 
board low-pass filtering effects not represented in the assumed spectral form. We adjust the infer-
ence procedure for these sources of model misspecification by only considering a central band of 
frequencies in the likelihood, set using low- and high-frequency thresholds. In general, the low- 
frequency threshold in particular should be chosen carefully, to achieve a good balance between 
model misspecification (when the threshold is too low) and identifiability (when the threshold is 
set so high that aspects of the spectral form cannot be resolved). We have explored extending 
the spectral form to accommodate an additional low-frequency noise feature, but found that 
achieving this reliably required a large number of extra parameters, and resulted in greater loss 
of efficiency in estimating the wind-sea (and swell) components of interest compared with fre-
quency thresholding.

Spectral estimates in the current work are based on data for the ocean’s surface displacement 
only. In general, it would be advantageous to incorporate the effects of covariates such as the 
evolving wind field on the spectral form, particularly for characterisation of mixed seas. For ex-
ample, the direction associated with a wind-sea component at a location is dependent on local 
wind speed and direction, whereas the characteristics of a swell component do not vary substan-
tially with the local wind field. These covariate dependencies are often exploited by physical ocean-
ographers to partition the frequency-direction domain into sub-domains corresponding to 
wind-sea and swell components (Hanson & Phillips, 2001, for example).

The spectral characteristics of ocean waves evolve smoothly in time. In this paper, as is com-
mon practice, we accommodate temporal non-stationarity by partitioning time series into con-
secutive 30-min sea states which are considered stationary for purposes of spectral inference. 
Improved bias-variance properties of parameter estimates from debiased Whittle inference sug-
gest that spectral estimation using sea states of shorter duration is feasible for more-rapidly 
evolving ocean environments; initial simulation studies (not shown) support this finding. 
More generally, simultaneous spectral estimation for a sequence of consecutive sea states ex-
ploiting smooth time-varying basis representations for spectral parameters (e.g., using splines), 
or adaptive estimation of evolving spectral forms (e.g., using dynamic linear models) are obvious 
research avenues.

The methodology for spectral inference described in this paper is generally applicable, pro-
vided that an appropriate model for the spectral density matrix function can be obtained by 
applying a suitable transfer function to the model for the frequency-direction spectrum. 
Thus, in addition to three-dimensional buoy displacement time series, debiased Whittle infer-
ence is applicable to heave-pitch-roll buoy data, for example. A collection of useful transfer 
functions for commonly used oceanographic devices is given by Benoit et al. (1997). The meth-
odology can be modified for similar applications involving observations of a process viewed as 
a linear time-invariant filter of some latent process of interest. Practical issues encountered in 
the current work, relating to time series aliasing, unusual sources of measurement noise and 
complex likelihood functions are common across many applications (e.g., involving acceler-
ometers and GPS tracking). Hence, we hope that the methodology presented and the ideas it 
incorporates will prove useful to the practising oceanographer, ocean engineer, and applied 
statistician.
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Appendix A. The frequency-direction spectrum
A.1 Definition and relation to autocovariance
We are interested in modelling the spatiotemporal process {η(x, y, t)}(x,y,t)∈R3 , which constitutes 
the surface displacement of the water over time and space. Let τ be the temporal lag, and 
l = [lx, ly] be a vector of spatial lags. Then, assuming stationarity, cη(l, τ) = E η(lx, ly, τ)



η(0, 0, 0)] is defined to be the autocovariance of the spatiotemporal process. Denote the angular 
frequency by ω and wave-vector by κ = [kx, ky]. The spectral density function of the spatiotemporal 

Figure A.1. The effect of varying different parameters on different components of the model. One parameter is 
varied while the others are held constant. The parameters being varied are as follows. Top row: the effect of α, ωp , γ 
on the marginal spectral density function, f (ω). Middle row: the effect of r on 10 log10 f (ω); ϕm, β on the mean 
functions, ϕm1(ω) and ϕm2(ω). Bottom row: the effect of ν on the mean functions; σl , σr on the standard deviation 
function, σ(ω). Parameters are held constant with the values α = 0.7, ωp = 0.8, γ = 3.3, r = 5, ϕm = π, β = 4, ν = 2.7, 
σl = 0.55, and σr = 0.26. Lines become progressively more solid as the value of the parameter increases, and we use 
values: α ∈ {0.4, 0.6, 0.8, 1.0}; ωp ∈ {0.8, 0.9, 1.0, 1.1}; γ ∈ {1, 2.5, 4, 5.5}; r ∈ {4, 4.5, 5, 5.5}; 
ϕm ∈ {π/2, 5π/6, 7π/6, 3π/2}; β ∈ {3, 4, 5, 6}; ν ∈ {1, 2, 3, 4}; σl ∈ {0.45, 0.5, 0.55, 0.6}; σr ∈ {0.15, 0.2, 0.25, 0.3}.
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process is then

fη(κ, ω) =
1

(2π)3 ∫R∫R2 cη(l, τ) e−i(ωτ+κ·l) dl dτ 

Note that this is different to the definition given in some oceanography texts (e.g. Barstow et al. 
(2005)), this is because the angle ϕ = arg(kx + iky) is defined as the direction the wave is coming 
from, and so we need ωτ + κ · l as opposed to ωτ − κ · l in the exponential function (which is present 
in definitions when the author wants direction to be the direction the waves are propagating to-
wards). Of course, this is only a convention, but it is worth noting the difference when applying these 
techniques.

Now, whilst in general a process such as {η(x, y, t)}(x,y,t)∈R3 requires a spatial spectral density 
function expressed in terms of a frequency and two wavenumbers (a wave-vector), under a simpli-
fication of the governing equations for wave dynamics known as linear wave theory, the absolute 
value of the wave-vector is specified uniquely by the absolute value of the frequency, using a dis-
persion relation. For this reason, the covariance structure of the process is usually specified by a 
frequency-direction spectrum, which we denote S(ω, ϕ), with the relation

kfη([k cos (ϕ), k sin (ϕ)], ω) = S(ω, ϕ)δ(ω2 − kg tanh(kh)) 

where h denotes the water depth when the water is still (which is assumed constant). More details 
can be found in Barstow et al. (2005) and references therein, for example.

A.2 Models for a wind-sea frequency-direction spectrum
One of the most widely used spectral density functions for modelling the univariate vertical surface 
displacement resulting from wind-sea waves is the JONSWAP (Hasselmann et al., 1973) spectral 
density function, given by

f (ω; θ) = αω−r exp −
r
4
|ω|
ωp

 −4
 

γδ(|ω|;θ) for |ω| > 0,

0 for ω = 0.

⎧
⎪⎨

⎪⎩

where

δ(ω; θ) = exp −
1

2σ(ω; θ)2

ω
ωp

− 1
 2

 

, σ(ω; θ) = 0.07 for ω ≤ ωp,
0.09 for ω > ωp,



with parameters α, ωp, γ, r.
For the spreading function, we use the bimodal wrapped Gaussian model proposed by Ewans 

(1998). The bimodal wrapped Gaussian spreading function is defined as

D(ω, ϕ; θ) =
1

2σ(ω; θ)
���
2π
√

∞

k=−∞
exp −

1
2

ϕ − ϕm1(ω; θ) − 2πk
σ(ω; θ)

 2
 

+ exp −
1
2

ϕ − ϕm2(ω; θ) − 2πk
σ(ω; θ)

 2
 

for ω ∈ R and ϕ ∈ [0, 2π]; where ϕm1(ω; θ) and ϕm2(ω; θ) are the mean direction functions and 
σ(ω; θ) is the angular width function. These functions are themselves parameterised. Ewans 
(1998) gives a parameterisation with fixed values based on observed data, with a single location 
parameter to determine the mean direction. We shall use a less restrictive description by adding 
parameters for the shape and scale of the spreading (a similar parametrisation was used by 
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van Zutphen et al. (2008), but we use slightly fewer parameters as some of the parameters in 
van Zutphen et al. (2008) have little effect on the frequency-direction spectrum). In particular, 
we write

ϕm1(ω; θ) = ϕm + ϕs(ω; θ)/2,

ϕm2(ω; θ) = ϕm − ϕs(ω; θ)/2,

ϕs(ω; θ) =
β exp ( − νωp/|ω|) for |ω| > ωp,

β exp ( − ν) otherwise,



σ(ω; θ) = σl −
σr

3
4

ωp

|ω|

 2

−
ωp

|ω|

 8
 

.

This adds an additional five parameters, namely ϕm, β, ν, σl, σr.
Figure A.1 shows the effect of varying these parameters on the relevant functions. Parameter 

names indicate parameter behaviour in a general sense, but some parameters have secondary ef-
fects. In particular, ωp, γ and r all change the variance (the area under the spectral density) as 
well as determining the peak frequency, peak enhancement and tail decay. Whilst α, ωp, ϕm effect 
the whole-frequency range, γ only changes the behaviour in a narrow window around the peak 
frequency. Similarly, r, β, σl and σr only modify the behaviour for the high-frequency tail.

A.3 Corresponding models for particle displacement
From (2.2), we can see that the corresponding model for the spectral density matrix function of the 
displacement of a particle in a wind-sea is

f (ω; θ) = f (ω; θ)
1 −wxz(ω; θ) −wyz(ω; θ)

wxz(ω; θ) wxx(ω; θ) wyx(ω; θ)
wyz(ω; θ) wyx(ω; θ) wyy(ω; θ)

⎡

⎣

⎤

⎦ (A1) 

where

wxx(ω; θ) =
1
2

(1 + cos (2ϕm) cos (ϕs(ω; θ)) e−2σ2(ω;θ)), wxz(ω; θ) = i cos (ϕm) cos (ϕs(ω; θ)/2) e−σ2(ω;θ)/2,

wyy(ω; θ) =
1
2

(1 − cos (2ϕm) cos (ϕs(ω; θ)) e−2σ2(ω;θ)), wyz(ω; θ) = i sin (ϕm) cos (ϕs(ω; θ)/2) e−σ2(ω;θ)/2,

wyx(ω; θ) =
1
2

sin (2ϕm) cos (ϕs(ω; θ)) e−2σ2(ω;θ).

A.4 Finite water depth correction
The relation given in (2.2) is for waves in deep water. For finite water depths a slightly different 
relation is required. In particular, we have

G(ω, ϕ) = [1, i cos ϕ/tanh(kh), i sin ϕ/tanh(kh)]T 

where h is the water depth (in metres)8 and ω2 = k tanh(kh). Consequently, we have

fzz(ω) = (fxx(ω) + fyy(ω))tanh(kh)2 

8 In our case, h ≈ 40.
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meaning that the correct definition for R(ω) is

R(ω) = log (fxx(ω) + fyy(ω)) + 2 log (tanh(kh)) − log (fzz(ω)).

It is this definition for R(ω) we use in Figure 8.

Appendix B. Alternate inference techniques
In this appendix, we describe competitor techniques for estimating the parameters of model 
frequency-direction spectrum from observed buoy data. Typically, a two stage approach is taken. 
Firstly, the parameters of the spectral density function of the vertical displacement are estimated 
using least squares9 and then the parameters of the spreading function are estimated separately. 
The latter is usually done in one of two ways: a moments-matching approach (e.g. Ewans 
(1998)); or by producing a non-parametric estimate of the spreading function, then fitting using 
least squares. Both of these techniques start from writing the spreading function as a Fourier series 
(which is possible from the periodicity of the spreading function):

D(ω, ϕ) =
1
π

1
2

+
∞

n=1

an(ω) cos (nϕ) + bn(ω) sin (nϕ)

 

.

From (2.2) we can see that

a1(ω) =
ℑ(fxz(ω))

fzz(ω)
, b1(ω) =

ℑ(fyz(ω))
fzz(ω)

, a2(ω) =
fxx(ω) − fyy(ω)

fzz(ω)
, b2(ω) =

2fxy(ω)
fzz(ω)

.

The remaining coefficients cannot be obtained from the cross-spectra in general. The approach to 
solving this problem has typically been to guess at the remaining Fourier frequencies either based 
on the Fourier coefficients of a model or by making some other assumptions about the behaviour 
of the spreading function. Of course, this assumes we know the cross-spectra, but we must esti-
mate them. This distinction is not trivial.

B.1 Least-squares fitting to estimates of the spreading function
A commonly used technique involves fitting the model spreading function to a non-parametric es-
timate of the spreading function using least squares. In other words, given D̂(ω, ϕ), an estimate of 
the spreading function,10 the parameters are obtained by solving

argmin
θ



ω∈Ω



ϕ∈Φ
D(ω, ϕ; θ) − D̂(ω, ϕ)
( 2

.

The problem with this is that such a technique assumes that the estimator used for the spreading 
function is unbiased, normally distributed, homoscedastic and that at different pairs of frequency 
and direction estimates are uncorrelated; however, none of these are satisfied in practice. In par-
ticular, correlation across frequency is high for both MLM and MEM methods, and bias is sub-
stantial. As a result, estimation of anything other than location parameters using this technique 
performs poorly.

B.2 Moments-matching approach
Early approaches to fitting parametric spreading functions to data from buoys, such as Mitsuyasu 
et al. (1975), tended to match the Fourier coefficients estimated from the buoy to the theoretical 
Fourier coefficients from the model (under the relevant transfer function). These approaches 

9 which has been shown to perform poorly for many parameters of interest (Ewans & McConochie, 2018; Grainger 
et al., 2021).

10 using techniques such as MLM (Isobe et al., 1984) and MEM (Lygre & Krogstad, 1986). See Benoit et al. (1997)
for a summary of these.
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actually work by first estimating the parameters of the spreading function at each frequency 
(which are different from the model parameters), and then essentially doing regression analysis 
to work out the parameters of the model for the behaviour of the spreading function over fre-
quency. In our case, following Ewans (1998), at each frequency estimate θω = [ϕm1(ω), 
ϕm2(ω), σ(ω)] using

θ̂ω = argmin
θω

|c1(ω; θω)ĉ1(ω)|2 + |c2(ω; θω)ĉ2(ω)|2 

where cj(ω; θ) = aj(ω; θ) + ibj(ω; θ) and ĉj is an estimate for cj(ω; θ) obtained by plugging in esti-
mates for the relevant cross-spectra (typically estimated using some variation on Welch’s Method), 
for j = 1, 2.

The parameters of interest (β, ν, σl, σr) are then estimated by

θ̂ = argmin
θ



ω∈Ω
(ϕm1(ω; θ) − ϕ̂m1(ω))2 + (ϕm2(ω; θ) − ϕ̂m2(ω))2 + (ω; θ) − σ̂(ω))2.

Such a technique is usually not applied to a single sea state, but instead is applied to multiple sea 
states with the view to fixing the parameters of the spreading function (bar the mean direction). 
You can apply this to a single sea state but, as we show in Section 3.2, this performs poorly. 
However, it should be remembered that this technique can still be useful for getting a general 
idea of the shape different aspects of the spreading function can take, but it is not useful for esti-
mating the parameters of a single sea state.

Appendix C. Optimisation and gradient calculation
Parameters are estimated jointly by optimising the debiased Whittle likelihood using the interior 
point Newton method as implemented in Optim.jl (Mogensen & Riseth, 2018). We use Fisher 
scoring as the expected Hessian of the debiased Whittle likelihood can be computed analytically 
from the first derivatives of the autocovariance (whilst the Hessian would require the second de-
rivatives as well). This results in very fast optimisation compared to other approaches. For further 
details, see the Julia package WhittleLikelihoodInference.jl (Grainger, 2022b).
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