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Abstract

We present asymptotic solutions for turbulent mass trarmsfa smooth conduit at high Schmidt number in the preseneefio$t-
order chemical reaction in the fluid. Exact far-field solo8@are derived for a case dominated by 1) mass transfer athamwd 2)

the first-order chemical reaction. An approximate solutgoderived for the regime where both are important. The swistare in
good agreement with numerical solutions and with the liteea At high DamBhler numbers the system is governed by a reaction-
diffusion equation and the observed increase in mass trangféiciant is caused by thinning of the mass transfer boundaer lay
due to the fast chemical reaction in the fluid. We presentecldsrm solutions for the far-field behaviour of Dirichl&eumann
and Robin boundary conditions and comment on grid resalugguirements to accurately resolve the mass transferdaoyn
layer. The solution strategy presented can be straigh#iaty extended to non-linear wall- and bulk-reactions.

Keywords: Mass transfer; Turbulent wall-bounded flow; If one is interested in the far-field behaviour only, it suf-

High Schmidt number; Asymptotic solution; bulk-reaction fices to determine the lowest eigenvalue. Such a method was
proposed by Sookhak Laeit al. [19], and has the advantage
1. Introduction that it is straightforward to implement and fast to exectre-
sults were presented for a first-order wall reaction, i.eohiR

Turbulent mass transfer in conduits is of relevance to t':boundary condition (BC) and a closed-form solution for con-
large number of engineering problems [1, 2]. Of particularcentration was developed. Garcia-Ybarra and Pinelli [20] a
interest is the determination of the mass transferffiment  rived at the same closed-form solution using the method of
[3, 4, 5, 6, 7, 8], which allows for a direct calculation of the matched asymptotic expansions for a Dirichlet BC. Sookhak
mass flux without a need to know details of the complex pro4 ari et al. later extended their work with a first order bulk
cesses taking place in the fluid layer. In some situatiorss, threaction [21], and concluded that wall and bulk-reactioas ¢
mass transfer is augmented by a chemical reaction in the fluighe modelled independently, even at high Dafmller numbers
often referred to as a bulk-reaction. An example is the feact (pa).
of chlorine with natural organic matter which occurs durihg Recently, we generalized the work of Sookhak Leirial.
transmission of drinking water [9, 10, 11]. The chemicakrea [19] and Garcia-Ybarra and Pinelli [20] to arbitrary BCs [22
tion has the potential to significantly enhance the massfean Key to the method was the largefidirence between the small
codficient [2, 12, 13, 14]. The aim of the present work is to pro-jengthscales in the wall-normal direction and the larggtien
vide closed-form solutions for this process and to undetsta  scales in the streamwise direction. This allowed fast varia
detail the physics behind this phenomenon. tions in the wall-normal direction to be solved indepentient

A popular way to obtain predictions for mass transfer is tofrom the slow variations in the streamwise direction, ardi le
apply the method of separation of variables to the Reynoldsgy asymptotic solutions both for linear and nonlinear BCs. A
averaged mass-transport equation [15, 16, 17, 18]. Thisadet jnteresting finding was that the mass transferfitcient ko

transforms the partial derential equation (PDE) into an infi- [ T-1] js entirely independent of wall reaction type and given
nite series of ordinary ¢lierential equation (ODE) pairs each by [22]

sharing a common eigenvalue. The eigenvalue problem can be

solved straightforwardly, although the predictions areally 9 b\
numerical because of the non-constantfioents of the PDE. Ko = 27r—\/§ (g)
The solutions provide information both of the near-field vene

the concentration boundary layer is developing (and thesmadere, the Schmidt numb&crepresents the ratio of kinematic
transfer cofficient varies as a function of the streamwise co-Viscosity to molecular diusivity andu, [LT ] is the shear ve-
ordinate), and the far-field where the concentration bognda locity. The parametel represents a turbulence ¢beient and

Sc?3,. 1)

layer is fully developed (mass transfer @ogent constant). Scr is the turbulence Schmidt number. The Gmgentb can
be inferred from the wall-normal variation in the eddy visco
“Corresponding author. email: m.vanreeuwijk@imperial.ac.uk ity and is found to be close to 0.001 [6, 22, 2], although other
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values are reported [6, 20, 23]. The fio@entSc is approx-  be nested inside the viscous sublayer at t8ghthe velocityu
imately unity away from the wall, but is known to vary very and eddy diusivity Dt can be characterised by

close to the wall for higlisccompounds [23, 24, 25, 26, 27].

The implications on the present work will be discusse@4n ut =y, Dr biyﬂ, (6)

ands6. D Ser

In this paper, we extend the work of Van Reeuwijk andhereyt = u/u, andy* = y/é,. Here,u, = m [LT-Y
Sookhak Lari [22] by adding a chemical reaction taking piace s the shear velocityry [ML-1T2] is the wall shear stress,
the fluid §2). First-order reactions will be considered here, but[ML-s] is the fluid densitys, = v/u, [L] is the viscous length-

the method is equally applicable to nonlinear reactionth(bo  ¢c51e and [L2T-1] is the kinematic viscosity. Equation (6)

the bulk and on the wall). We present far-field solutiof8)(  can pe obtained with a Taylor series expansion [28, 2, 20] for
and discuss the enhancement of the mass transféiicert 5 pirichlet BC for concentration. For other concentratioBsB

due to the presence of the bulk-reactigr)( We calculate the  p. may have a dierent leading order term [29] although it is
decay cotficient for Dirichlet, Neumann and Robin BCs and ¢yrently unclear how influential this is. For a detailedcdis-

compare the results with numerical solutio§S); Concluding

- sion on this topic we refer to [22]. In this paper we will use
remarks are made i§6.

the classical assumption thBtr is a cubic and thaSg is a
constant [6, 2].
2. Governing equations Using Eq (6), a typical MTBL thicknes&,, can be defined
as the distance from the wall whelde= D+, with result [6, 22]
Consider the transport of a hig@tsolute through a conduit at
high Reynolds numbdRewhich exchanges mass with the con- 3/ SCr )

. . . ) . . . Omo = 4/ —==0v-
duit walls and is subject to a first order chemical reactiothwi mo bSc"

reaction coficientk, [T~*]. For fully developed flow through a  Here, it is noted thayy is the MTBL thickness in absence of
pipe with radiusR, the governing equation is the axisymmetric the chemical reaction in the fluid, which can make the MTBL
Reynolds-averaged, steady-state mass transport eq{@tion  thinner (se3).
oC As the variations in concentration occur in the MTBL, a suit-

U— - =— [r (D + D7) —=|+k,C =0, (2) able change of variablesis= £¢ andr = R— 6o, WhereL is

ox ror ar a yet unspecified lengthscale. Substitution of (6) in ()H(&n

where x [L] and r [L] are the streamwise and radial direc- leads to
tions, andC(x,r) is the (Reynolds-averaged) mass concentra-
tion [ML~3]. The velocity, molecular and eddyftlisivity are

denoted by [LT-Y, D [L2T-4] and Dy [L2T-1], respectively. >~ 21+ ) E s e =0, (®)
Streamwise difusion has been neglected, as is common for o on an
these problems [18]. The axisymmetric coordinate system is oC = 9(Cw) (9)
used for convenience of presentation; the approach is lgqual on lw e
valid for non-circular cross-sections as long as the visaoall C(&,n — o0) = Cp(&), (10)
region is much thinner than the local surface curvature.
Equation (2) is supplemented by BCs of the form whereg(Cy) = 6moG(Cy) and
C(x=0,r) = Co 3) ez S _2GThpo (11)
%l - s @ vog s
or lw ' K= kb% - (S_Gr) Da.%/ZSCl/G. (12)
COx1 = 0) = Co(¥) (5) b b

Here,r, = R/2 [L] is the hydraulic radiusRe = u,Rv!is
; . . . the shear Reynolds number which represents the conduitsize
dC/or(x, R) andG(C,) is a generic function which depends on plus-units anda, = kyy/u2 is the Damihler number which

the wall concentration. We note that (5) is an unusual BG it i . . o
. ; represents the ratio of the viscous to the reaction times@dle
common to impose a Neumann BC on the centerline. However

the physics of this problem is such that the concentratidghen parametee expresses the ratio of near-field (entrance) length-

bulk is constant which is why it will prove more convenient to scaIeS_cTcs\,/b [22] to far-field Iengthsca_lgj, \.Nh'IStK represents
. the ratio of the lengthscal&y to the difusive lengthscale as-
impose (5) [20, 22].

sociated with the bulk reactio(ky)Y2.

Indeed, for higlscmass transfer, the area of interest is a very . .
thin layer of fluid immediately adjacent to the wall where €on The governing equation of the bulk concentratincan be
y y adj obtained by averaging (2) over the cross-section:

centration gradients are large [6, 20, 19, 21, 22], refetoeas
the mass transfer boundary layer (MTBL). Outside the MTBL, d D aC
the concentration is approximately uniform. As the MTBLIwil d_x<u )~ ook, t ko (C) =0, (13)

2

whereCy is the initial concentratiorC,, = C(x, R), dC/dr|y =



Here(C) = % fOR rC dr and(uC) = % fOR ruC dr are the aver- parametes,o/R is not visible in (8) because this equation is
age concentration and streamwise mass flux, respectively. Bwritten in terms of the inner variablg

causeC is constant throughout the cross-section except in the We will assume that is so small that the advective term can
MTBL for the problem under consideratioyCy ~ UC, and  be neglected, whichfkectively means restricting attention to
(C) ~ Cyp, whereU = (uy is the average velocity. This results the far-field. Substituting (18) into (11) results in

in

2Ser (Da 273 St]
€= —|—+——|. (21)
UL 0, 14 P \R& 9 Re
_ " _ i Requiring thate < 10~ and assuming tha®e. = 1000, the
wherelJ,, is the wall mass flux per unit areM[T —L<]: equation above implieBa < O(10-3) andSt< O(10°%). These
5C D 4cC restrictions are satisfied in many applications [12, 20,221,
Jw=-D—| =— —| . (15)  The problem then simplifies to
orlw omo Only
Substitl_Jting (15) into (14) and a change of coordinates.L£ N (1 n 773) ac +x2C =0, (22)
results in on on
dcy DL &oC KoL which is a classical boun_dary Iaye_r problem tha}t can be dolve
— + —| +—Cp=0. (16)  using matched asymptotic expansions [30]. This approach wa
d¢  SpornU anl, U

pursued by Garcia-Ybarra and Pinelli [20] who derived asolu
The equation above provides guidance on how to define thgon to the problem fok = 0. They found that the outer solu-
typical streamwise lengthscale. Depending on whether the tion is trivial: the concentration is constant. This waslier
wall reaction or the bulk reaction dominateSwill take a dif-  confirmed by van Reeuwijk and Sookhak Lari [22] who per-
ferent form. If bulk-reactions are negligibl&/ry, ~ 6oU/D.  formed a detailed comparison between the asymptotic soluti
When bulk-reactions dominaté,/r, ~ U/korn. Hence, itisim-  and a numerical approximation of (2). As the only nontrivial
possible to define one simple parameter group which capturdsehaviour inC takes place within a few inner units [20, 22], it

the behaviour in both limits. suffices to study (22) in inner variables only and no asymptotic
A definition of £ which picks up the correct limiting be- matching is necessary.
haviour in both situations is Because the flierential operators in (22) are in termspf

only, this equation can be solved independently frométiake-

L _(kn D \™* (17) rection, and the& dependence will only enter the solution via
h U Ubmo| the integration constants. Below, we will present closemnf
Using (1), we can rewrite (17) as .solutlons. forck < 1,k > 1 and an approximate solution for
intermediatex.
-1
r£ = (Da+ ?St} , (18) 3l.k<1
h_ _ Upon assuming < 1, (22), (9) and (10) reduce to the sys-
whereDa = korn/U is the bulk Damihler number andt = tem considered by Van Reeuwijk and Sookhak Lari [22]; the
Using (18), equation (16) becomes
C(&.m) = Cp + (Cp — Cw)F(m), (23)
dc, oC
o +1-9) anl, +QC =0, (19) whereF () is defined as
where
V3 n+1 bis 2n-1
Da F(7) = — |log ——— - \/1_%(— — arctan )
Q= ———— (20) 2 (V1 2
Da + 27 V3SY/9 nmom+l V3 o
is a parameter representing the importance of the bulk-
reactions. IfQ ~ 0, the problem is dominated by mass transferThe functionF increases monotonically fro&(0) = -1 to
at the wall, and if2 ~ 1 the problem is dominated by the first- F(c0) = 0.
order bulk-reaction.
32.k>1
3. Far-field solutions for concentration Whenk > 1, the difusive Iengthscale associated with the

bulk reaction Dk;1)*2 will be smaller tharsyo. Consequently,
Equation (8) is a singular perturbation problem involvinmpt  the MTBL will become thinner and therefore turbulence will
small parameters anddnp/R, the former associated with en- become less important. This can be made explicit by the chang
trance &ects and the latter with the extremely thin MTBL. The of variablesp, = n/«, which transforms (22) in
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0 seesss =8 3.3. Intermediate
We were unable to obtain closed-form solutions to equation
-0.2 (22). However, an approximation can be obtained by noticing
3 that the second term of (22) is only important for lakg& here-
Ll) 04 fore, (27) is substituted into the second term which resalts
57
= 0 ocC
3 06 i: 2_1 ~ o 1+ rﬁ)a—n + Cyk® exp(—«n) = 0. (28)
| - e =
e - = -«k=3 This approach follows [12] where it was successfully used to
0.8l k=10 i create an approximate correlation far. The solution to Eq.
: o Numerica| P
(28) is given by
-1 { L
0 1 2 3 4 5
n C(&n) =Cp + (Co - Cw)F(n)
= Cw [B(7; €) = Beo; K)(F(m) + 1)],  (29)
where
10°f o Numerica ] 3
_ KZm EXP(KZm)
—— Eq.(32) By k) = ) " (Ex (k(7 ~ 2m)) — Ex (~zm).
m=1
(30)
Here, E; is the exponential integral [31]zn, = exp(fm),
s 6m = (2m - 1)r/3 andi®> = —1. Note thatB is a real func-
10° 1 tion because; = 73 andE;(2) = E;(2) where the overline de-
notes the complex conjugate. Note tiBfto; x = 0) = 0 and
B(OO, K= oo) = 1
Figure 1(a) shows concentration profiles as a functiopfof
variousk (lines). The BCs used wefg, = 1 andCy, = 0, the
L ‘ ‘ former having no influence on the figure and the second a ne-
10102 10-1 10° 10t cessity becaudgy = 0 in the far-field for > 1. Fork < 1, the
K solution is equal td=(n) defined in (24) (thick black line). As

Figure 1: (a)C as a function of; for variousk. Eg. (29) (lines) and numerical « becomes Iarger, the @usive _rea(_:tlon Igngthscal@(kb)l/z
solution to Eq. (22) (circles). (l3) as a function ok. Eq. (32) (thick solid line) becomes smaller th%’ resultmg m_ a thinner MTBL. .
and numerical solution to Eq. (22) (circles). In order to determine the appropriateness of the approgimat
analytical solution (29) the results are compared to nucakri
solutions of (22). The numerical integration is performathw
P 3\ 4C a Runge-Kutta /th scheme, and a shooting method is used
_9 [(1 4 (@) )_] +C=0. (25)  to enforce the zero concentration in the center of the candui
Ono Kk b By decreasing the tolerance, it was confirmed that the soisti
In the limit of x — o, the equation above confirms that turbu- presented here are fully converged.
lence does not play a role and the system behaves as a dlassicaFigure 1(a) demonstrates that the approximate solutioh (29
reaction-difusion problem. The general solution is then given(lines) matches excellently with the numerical solutior(2)
by for k < 1 andk > 1, which is no surprise because the solution
is exact in these limits. At = O(1) the approximation is less

C = AL explnp) + Az expl), (26)  accurate but still acceptable.

whereA; andA; are constants determined by the BCs. The only

permissible BCs aré&; = C,, andA; = 0, the latter implying 4. The enhancement factor

thatC, = 0. From a physical perspective this is understand-

able, because the reactions are so fast that there is naviagnai ~ The mass transfer cfiicientks can be found by substituting
solute mass in the bulk. In terms pfthe solution is therefore (29) into (15) and plugging the result into the definitilon =

given by Jw/(Cp — Cy) Which results in
C = Cuexpleir). 27) |2~ _Cu (K _ 9B(0;4) )} D ey
27v3 Cp-Cy 27V3 /] 6mo



The second term will only be important4fis large, for which

Cp ~ 0 and thereforeC,,/(Cp — Cy) ~ —1. It is interesting 10t} & Pusw

to note that as opposed to (1), (31) is not strictly univerisal —— ¢wp

the sense that it requires BC information through the t€gymn

This is a result of the consumption of solute mass in the MTBL.

Fork < 1, k; is consistent with (1). Fot > 1, we find that

ke ~ (kD)2 = Dar/’sc*u,. e
The enhancement factgrwhich is defined ag = k¢ /ksg is 10

given by Sc= 1% 10°, 104 10°

¢ = [1 - cbcfwcw (Z”T‘/‘B’K — B(co; K)H . (32)
Figure 1(b) demonstrates that Eq. (32) (thick solid linepis 107" — — ‘
: : . . 10 10 1° 10
good agreement with the numerical solutions (circles). hBot p
limits xk < 1 and« > 1 are captured correctly, and the cross-
over from one regime to the other is picked up well. The max-Figure 2:¢4 as a function ok. Eq. (32) (thick solid line); Eq. (33) (Hanre al,
imum difference inp between (32) and the numerical solution It.r|angles) and Eq. (34) for vario®c(Mitrovic and Papavassiliou, dash-dotted
is 7 percent. nes).
Figure 2 shows a comparison of (32) (solid line) with the the-
oretical correlation proposed by Hanetgal. [12] (triangles): thatb/Se o« Sc®13. Substituting this into (12) shows that the
cross-over point is then expected to varkas: Sc%%4, which
o 2|2 is weaker tham. o« Sc%1* for ¢yp but has the correct trend.
1+ (@) ] . (33) The second dierence, the diierence in slope betweenand
) ¢mp for high « is not so straightforward to pinpoint. Mitrovic
Here we note that their is simply the square af Thetwo cor- and Papavassiliou [13] explain that fors> 1 most Lagrangian
relations are practically indistinguishable, which is antirely ~ markers will have reacted before they reach the so-calé&t tr
surprising as both approaches are theoretical and makksimi sition zone, which is the region where the particles areifepk

PHsW =

assumptions. away from the compact cloud of markers in th&sive sub-
Also shown in Figure 2 is the correlation proposed by Mitro-layer [32]. Our analysis confirms that this is indeed the case
vic and Papavassiliou [13] (dash-dotted lines) for « > 1 the governing equation is a reactiorffdsion equa-
tion and (32) shows that thatc « in that case. However, the
N [l+ (0.748(9‘11/<)2'4]l/3 (34)  DNS correlation (34) suggests thayp o« «°8 at highk. It

might be the case that the highesults in [13] were influenced

for variousSc This correlation was obtained from a fit to data b . h b £ th ' v thin MTBL at
obtained using classical Eulerian Direct Numerical Sirtioia héggge”cs’ perhaps because of the extremely thin a

(DNS) for the flow and a Lagrangian method to simulate the
mass transfer. Two mainftiérences betweaehandgyp can be
observed: 1) the cross-over pointbetween the two regimes 5 Far-field solutions for Dirichlet, Neumann and Robin
is a function ofScfor ¢\p, and 2) the slopes af andgyp are BCs

different at high. We define the cross-over poiqtas the value

for « for which the term of involving « takes the value 1. For  asymptotic solutions for Dirichlet, Neumann and Robin BCs
¢nswthis occurs ak = 0.827 (noScdependence) and f@up  can be derived by considering the linear BC
this occurs ak. = 1.355c %L, For ¢, a root finding algorithm
is required which results ir. = 1.439. oC

The first diference, theSc dependence of the cross-over aCw +8 anl, " (35)
point, may be explained by noting that the present work does o
not take into consideration th&g is not constant very close Wheree, g andy are constants. By flerentiating (24), we
to the wall and is also dependent 8e[23, 24, 25, 26, 27]. °btain
The variation inSc; implies that the assumed cubic behaviour
of Dt in (6) may not be representative for the entiréutive Cw=Cp— 2”\/§g(CW). (36)
sublayer [26, 29]. This will directly influence the massaster 9
characteristics of the MTBL. In the context of these &ects Using Egs (9), (35) and (36), the wall concentration and igrad
will introduce a newScdependence in the boundary layer thick- ent are given by
nessdno Which will in turn influence the cross-over from the
mass-transfer regime to the reaction-regime. Indeed)tsesu
from DNS obtained by Schwertfirm and Manhart [26] indi- Co— BCp — 21 V3y/9 oCl vy «

cate thatsyp o« Sc2°, which when compared to (7) implies Y 2eNEa9 "B ECW (37)
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Substituting (37) into (19), solving fd€, and making use of
(3) results in

A A
Co =7 +(Co- 7 )exp(-kt). (38)
where
-— ¥ ___@-o0, (39)
B+ 271V3a/9
k = 1- ;. 40
e+ Q)—,B+27r\/§oz/9 (40)

Shown in Figure 3 is the decay d&eientk for a Robin BC
(¢ = -0, B = 1,y = 0). The parametes is representative
for the wall reaction speed. The Robin BC was chosen becaust
it reproduces the behaviour of a Neumann BCdox 1 and
a Dirichlet BC foro- > 1. Figure 3(a) shows the dependence
of kono. In absence of bulk-reaction®(= 0), k is linearly
dependent omr, whilst for largeo saturation occurs because
of the finite conductivity of the MTBL [19, 22]. For nonzero
Q, a cross-over can be observed between a conkténthe
problem is dominated by bulk-reactions,and an increakiifig
the problem is dominated by wall-reactions [21]. Figure)3(b
showsk as a function of2. for o < 1 (i.e. a Neumann BCk ~
Q. Foro > 1 (i.e. a Dirichlet BC)k ~ Q + 9(1 - Q)/(27 V3).

6. Concluding remarks

This paper presented closed-form asymptotic solutions for
turbulent mass transfer in the presence of a first-order-bulk
reaction. Two dimensionless groups were identifiedvhich
was the ratio of entrance lengthscale to far-field lengtlesca
and k which was the ratio of diusive reaction lengthscale to
MTBL thickness in absence of wall-reactions. Exact farefiel
solutions were presented for 1 andk > 1, and an approxi-

mate solution was presented for intermediate ~

The enhancement factgrwas in good agreement with nu-
merical solutions and also with the theoretical approxiomat
¢nsw developed by Hannat al. [12] over the entire range of
k. As the approximatioyws is much simpler to implement
than ours but has similar accuracy, equation (33) is prefera
for mass transfer calculations.

A comparison with the DNS correlatiagf,p of Mitrovic and
Papavassiliou [13] highlights that the present work camipe i
proved by improving the assumed profile 0. Indeed, spa-

~ 10t

10

1°

Z Q=102
-
- - - -Q=107?
102 F / Q=101
- = Q=10
1073 - - :
1078 1072 101 10° 10t
a
Dirichlet (o= = )
i e — ———————_ —
b
7,
’e
10 - - — — — -7
oc=103
o =102
102k - - -g=101
o =10
- = =10
Neumann{ = 0)
1073 : X
1073 1072 10t 10°

Q

tial and Scdependent variations i8¢ , which influence the  Figure 3: (a) Decay cdcientk as a function ofr for variousQ. (b) k as a
boundary layer thicknes&y, were not taken into account in function ofQ for variouso-.

the present work. A dimensional argument showed that includ
ing this variation produced qualitatively the same behawvis
observed in (34). However, we were unable to explain the dif-
ference in slope betweemand¢yp at very highk, for which
the problem reduces to a reactiorffdsion equation which has
an exact solution.

An important opportunity for future work is to quantify in
detail the profile ofDy as a function ofRe and Sg using
laboratory experiments or DNS. These results could then be
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straightforwardly incorporated into the present methoddby  [15]
ting b/Sc: become an feective mass-transfer “conductivity”
parameter. The calculation is explained in Ref. [22] Append [16]
A and involves mapping the profile &+ onto a cubic under

the restriction that the profiles are equally “conductivdhe  [17]
net dfect of this procedure is théif Sc- becomes a parameter
with a functional dependence &tandRe. [18]

The solutions presented here are valid B < 1073 and
St< 1073, if e = 1072 is accepted as an upper bound in (21).[19]
For highere it will become necessary to resort to more sophis-
ticated techniques, as 1) the separation of scales assumed[io]
the present work will no longer be valid and 2) the assumption
of uniform concentration in the bulk will cease to hold [19].

Within the range of applicability, the solution strategggented (21]
here can be straightforwardly extended to non-linear veadt
bulk-reactions. [22]
A practical aspect of the current work is that it providesdgui
ance for the design of grids. Using (31) and (32) it followatth [23]

the MTBL thicknesss, = ¢ 16y0. Using approximation (33)
and assumin@p/Sc = 0.001 the expected MTBL thickness in [24]

plus-units is therefore
-1/2
K 2
1+ (0.827) }

There should be several grid-points in the MTBL. Note that
for high «, the horizontal resolution can be much lower that[27
the wall-normal resolution because the problem then eisdignt
reduces to a one-dimensional reactiofftdiion problem.

(25]

6t~ 10Sct3 (41)

(26]
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