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the global spectrum of plant  
form and function: enhanced 
species-level trait dataset
Sandra Díaz et al.#

Here we provide the ‘Global Spectrum of Plant Form and Function Dataset’, containing 
species mean values for six vascular plant traits. together, these traits –plant height, 
stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, 
and diaspore (seed or spore) mass – define the primary axes of variation in plant form and 
function. The dataset is based on ca. 1 million trait records received via the TRY database 
(representing ca. 2,500 original publications) and additional unpublished data. It provides 
92,159 species mean values for the six traits, covering 46,047 species. The data are 
complemented by higher-level taxonomic classification and six categorical traits (woodiness, 
growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and 
leaf type). Data quality management is based on a probabilistic approach combined with 
comprehensive validation against expert knowledge and external information. Intense data 
acquisition and thorough quality control produced the largest and, to our knowledge, most 
accurate compilation of empirically observed vascular plant species mean traits to date.

Background & Summary
Plant traits are the morphological, chemical, physiological or phenological properties of individuals1. They 
determine how plants as primary producers capture, process and store resources, how they respond to their 
abiotic and biotic environment and disturbances, and how they affect other trophic levels and the fluxes of water, 
carbon and energy through ecosystems2–8.

Despite the overwhelming diversity of plant forms and life histories on Earth, single plant organs, such as 
leaves, stems, or seeds, show comparatively few essential trait combinations9. Evidence for recurrent trait syn-
dromes beyond the level of single organs has been rare, restricted geographically or taxonomically, and often 
contradictory. Díaz et al.9 addressed this question by analyzing the worldwide variation in six major traits crit-
ical to growth, survival and reproduction, namely: plant height (H), stem specific density (SSD), leaf area (LA), 
leaf mass per area (LMA), leaf nitrogen content per dry mass (Nmass) and diaspore (seed or spore) mass (SM). 
Díaz et al.9 found that occupancy of the six-dimensional trait space is highly constrained, and is captured in 
a two-dimensional global spectrum of plant form and function, indicating strong correlation and trade-offs 
among traits. These results provide a foundation and baseline for studies of plant evolution, comparative plant 
and ecosystems ecology, and predictive modelling of future vegetation based on continuous variation in essential 
plant functional dimensions.

Here we provide the trait dataset that served as basis for the analysis of the global spectrum of plant form and 
function presented in Díaz et al.9 –the ‘Global Spectrum of Plant Form and Function Dataset’ (short here ‘Global 
Spectrum Dataset’). The dataset is predominantly based on trait records compiled in the TRY database10,11 and 
provides trait values corresponding –to the extent possible–to mature and healthy plants grown under natural 
conditions within the species distribution range. The dataset provides species mean values for the six plant traits 
mentioned above plus leaf dry matter content, used for the imputation of stem specific density. The dataset 
covers >46,000 of the approximately 391,000 vascular plant species known to science12. Despite the rapid devel-
opment of large plant trait datasets, the Global Spectrum Dataset stands out in terms of coverage and reliability. 
First, it provides quantitative information for a very high number of species, including about 5% of them with 
‘complete coverage’ (all six traits). Second, it represents a unique combination of probabilistic outlier detection 

#A full list of authors and their affiliations appears at the end of the paper. 

DaTa DeScRIpToR

opeN

https://doi.org/10.1038/s41597-022-01774-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01774-9&domain=pdf


2Scientific Data |           (2022) 9:755  | https://doi.org/10.1038/s41597-022-01774-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

and comprehensive validation of trait values against expert knowledge and external information for data quality 
assurance. Third, it contains the attribution of data to original references, even if datasets contributed to TRY 
had been assembled from multiple original sources.

The quantitative trait data are enhanced by higher-level taxonomic information, based on the Angiosperm 
Phylogeny APG III (http://www.mobot.org/MOBOT/research/APweb/) and categorical traits, based on the 
‘TRY – Categorical Traits Dataset’13, enriched by field data and various literature sources. This information facil-
itates stratification of species and quantitative traits according to phylogenetic and morpho-functional criteria.

The present dataset results from the integration of trait measurements from many datasets received via TRY 
and additional, partly unpublished, data. The data come from largely independent studies, that address a wide 
variety of questions at different scales, and using different measurement methods, units and terminologies14. 
The development of the dataset therefore faced three challenges: (1) to derive a dataset of species mean values 
covering all six traits with the aim of being representative of vascular plant species worldwide; (2) to detect 
erroneous trait records (due to errors in sampling, measurement, unit conversion, etc.); and (3) to ensure that 
correctly measured extreme values of traits in nature were not mistakenly identified as outliers and therefore 
excluded from the dataset. To deal with these challenges, we collected as many trait observations as possible. The 
dataset was developed over a period of six years (2009–2015) with continuous addition of new trait records as 
data became available. The final dataset is based on almost 1 million trait records, which can be traced back to ca. 
2,500 references (see file: ‘References_original_sources.xlsx’). We identified outliers and potential errors based 
on a probabilistic approach10 combined with validation by domain experts and external information.

These combined efforts of data acquisition, integration and quality control resulted in the most comprehensive 
and probably most accurate dataset for species mean traits of vascular plants published so far.

Methods
Selection of plant traits. There is an extensive literature summarized in Díaz et al.9 and Pérez-
Harguindeguy et al.6 supporting the key importance of the six core traits chosen – H, SSD, LA, LMA, Nmass and 
SM – to growth, survival and reproduction. Díaz et al.9 went further by showing that, together, these traits capture 
the essence of plant form and function at the broad scale: a two-dimensional space, with one major dimension 
reflecting the size of whole plants and its organs, and the other representing a balance between leaf construction 
cost against growth potential, captures roughly three-quarters of total trait variation. The core quantitative traits 
were complemented with the categorical traits: woodiness, growth form, succulence, adaptation to terrestrial or 
aquatic habitats, nutrition type, and leaf type.

Definition of traits. In the following section we provide the names and definitions used for the continuous 
traits in the original publication of the global spectrum9, plus the names and definitions used in the Thesaurus Of 
Plant Characteristics (TOP)14. The detailed rationale, ecological meaning and key references for each of them can 
be found in the methods section of Díaz et al.9 and in Garnier et al.7. For the categorical traits we provide names, 
definition where available, and the categories used in the database. Traits were mostly measured following the 
protocols and definitions specified in the ‘New Handbook for Standardised Measurement of Plant Functional 
Traits Worldwide’6 (http://www.nucleodiversus.org). In the case of data from the LEDA database, measurements 
followed the protocols developed in the context of the LEDA project16 (https://www.leda-traitbase.org). In the 
case of published datasets individual measurement protocols are available in the original publications listed in 
Table S1.

Plant height (H) (unit: m). Adult plant height, i.e. typical height of the upper boundary of the main photosynthetic 
tissues at maturity (TOP: vegetative plant height; the plant height considering the highest vegetative component).

Stem specific density (SSD) (unit: mg mm−3). Stem dry mass per unit of stem fresh volume (TOP: stem specific 
density; the ratio of the mass of the stem or a unit thereof assessed after drying to its volume assessed without 
drying). SSD is much more commonly measured on woody species (particularly trees), than on non-woody spe-
cies. Therefore, gaps in SSD for non-woody species were filled by estimates derived from leaf dry matter content 
(see Data Imputation below).

Leaf area (LA) (unit: mm2). One-sided surface area of an individual lamina (TOP: leaf lamina area; the area of 
the leaf lamina in the one-sided projection; in case of compound leaves the area of a leaflet lamina).

Leaf mass per area (LMA) (unit: g m−2). Leaf dry mass per unit of lamina surface area (TOP: leaf mass per area, 
the ratio of the dry mass of a leaf to its area).

Leaf nitrogen per mass (Nmass) (unit: mg g−1). Leaf nitrogen content per unit of lamina dry mass (leaf total N) 
(TOP: leaf nitrogen content per leaf dry mass; the ratio of the quantity of nitrogen in the leaf or component 
thereof, i.e. leaf lamina or leaflet, per respective unit dry mass).

Diaspore mass (SM) (unit: mg). Dry mass of an individual seed or spore plus any additional structures that 
assist dispersal and do not easily detach (TOP: seed dry mass; mass of an individual seed or spore assessed after 
drying; seed dry mass). Spore mass of pteridophytes, rarely reported in the literature, was estimated from pub-
lished values of diaspore diameter and density (see Data Imputation below).

https://doi.org/10.1038/s41597-022-01774-9
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Leaf dry matter content (LDMC) (unit: g g−1). The ratio of the dry mass of the leaf or component thereof, i.e. 
leaf lamina, to the corresponding water saturated fresh mass. In addition to the six focal traits, we compiled 
LDMC for herbaceous plants to calculate missing values for SSD (see Data Imputation below).

Adaptation to terrestrial or aquatic habitats. On the basis of the type of habitat in which the species naturally 
grows. Categories: aquatic, aquatic/semiaquatic, semiaquatic, terrestrial.

Woodiness. A feature of the whole plant defining the occurrence and distribution of wood along the stem. 
Categories: woody, non-woody, semi-woody (woody at base of stem(s) only).

Growth form. Growth form is mainly determined by woodiness and the direction and extent of growth, and 
any branching of the main shoot axis or axes. Categories: bamboo graminoid, climber, fern, herbaceous grami-
noid, herbaceous non-graminoid, herbaceous non-graminoid/shrub, succulent, shrub, shrub/tree, tree, other.

Succulence. Succulence characterizes plants with parts that are thickened, fleshy, and engorged, usually to 
retain water in conditions where climate or soil characteristics strongly limit water availability to plants. This cri-
terion aims to provide more detailed information to the succulent growth form whenever available. Categories: 
leaf and stem succulent, leaf rosette and stem succulent, leaf rosette succulent, leaf rosette succulent (tall), leaf 
succulent, stem succulent, stem succulent (short), stem succulent (tall), succulent.

Nutrition type. Nutrition type here refers to whether the major source of energy and nutrients for the plant 
is photosynthesis, animals, dead material or other plants. Parasitism categories: hemiparasitic, holoparasitic, 
independent, parasitic. Carnivory categories: carnivorous, detritivorous.

According to the ‘New Handbook for Standardised Measurement of Plant Functional Traits Worldwide’6 
succulence and nutrition type are part of growth form. We here treat them separately for simplicity and to avoid 
combined categories.

Leaf type. A classification of presence/absence of photosynthetic active leaves and their basic forms. Categories: 
broadleaved, needleleaved, scale-shaped, scale-shaped/needleleaved, photosynthetic stem.

Definition of representative trait records. The six core quantitative traits certainly show intraspecific 
variation, amongst others caused by different ontogenetic stages and growth conditions. The dataset, focused 
on mean trait values for species rather than intraspecific variation, was intended to represent species mean trait 
values for mature and healthy (not obviously unhealthy) plants grown under natural conditions within the species 
distribution range. Leaf traits were intended to represent young but fully expanded and healthy leaves from the 
light exposed top canopy. Trait records not conforming to these requirements, i.e. records from plants grown in 
laboratories under experimental conditions and records measured on juvenile plants, were excluded from the 
dataset. This decision was made based on the respective metadata in the TRY database (see below).

Data sources. The vast majority of quantitative trait data was provided by the TRY Plant Trait Database10 
(https:// www.try-db.org, TRY version 2.0 accessed July 2010, updated by TRY version 3.0 accessed May 2015). 
This dataset was supplemented by a small number of published data not included in TRY and original unpub-
lished data contributed by W. J. Bond, J. H. C. Cornelissen, S. Díaz, L. Enrico, M. T. Fernandez-Piedade, L. D. 
Gorné, D. Kirkup, M. Kleyer, N. Salinas, E.-D. Schulze, K. Thompson, and R. Urrutia-Jalabert.

Categorical traits were derived from the TRY Categorical Traits Dataset (https://www.try-db.org/TryWeb/
Data.php#3), enhanced by field data and various literature sources.

The datasets contributing via TRY to the quantitative traits are described in Supplementary Table S1, 
which contains data from refs. 4,16–233 and the following unpbublished datasets: French Weeds Trait Database; 
Photosynthesis and Leaf Characteristics Database; South African Woody Plants Database (ZLTP); Tundra Plant 
Traits Database; Leaf N-Retention Database; Traits for Herbaceous Species from Andorra; Leaf Characteristics 
of Pinus sylvestris and Picea abies; Plant Coastal Dune Traits (France, Aquitaine); Dispersal Traits Database; 
LABDENDRO Brazilian Subtropical Forest Traits Database; Growth and Herbivory of Juvenile Trees; Cold 
Tolerance, Seed Size and Height of North American Forest Tree Species; Harze Trait Intravar: SLA; LDMC and 
Plant Height for Calcareous Grassland Species in South Belgium; Functional Traits for Restoration Ecology 
in the Colombian Amazon; Komati Leaf Trait Data; Baccara - Plant Traits of European Forests; Traits of 
Bornean Trees Database; Meadow Plant Traits: Biomass Allocation, Rooting depth; New South Wales Plant 
Traits Database; Traits for Herbaceous Species from Andorra; Catalonian Mediterranean Shrubland Trait 
Database; The Netherlands Plant Height Database; Plant Traits from Spanish Mediterranean Shrublands; 
Crown Architecture Database; Maxfield Meadow, Rocky Mountain Biological Laboratory – LMA; Herbaceous 
Plants Traits From Southern Germany; Leaf Area, Dry Mass and SLA Dataset; Herbaceous Leaf Traits Database 
Old Field New York; Plant Functional Traits From the Province of Almeria, Spain; Traits for Common Grasses 
and Herbs in Spain; Midwestern and Southern US Herbaceous Species Trait Database; Overton/Wright New 
Zealand Database; San Lorenzo Epiphyte Leaf Traits Database.

The reference for each individual trait record contributing via TRY to the Global Spectrum Dataset before 
exclusion of non-representative trait records, errors and duplicates is documented in the data file ‘References.xlsx’.

Data integration and quality management. Semantic integration of terminologies from different data-
sets. Ecological studies are carried out for a large number of different questions at different scales and researchers 
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often work independently and with little coordination among them. This results in idiosyncratic datasets using hetero-
geneous terminologies14. The first step was therefore a semantic integration of terminologies. The core traits were stand-
ardized according to the definitions and measurement protocols provided in the Thesaurus Of Plant Characteristics 
(TOP)14 and the ‘New Handbook for Standardised Measurement of Plant Functional Traits Worldwide’6,15. The meta-
data for plant and organ maturity (juvenile, mature), health (healthy, not healthy), growth conditions (natural condi-
tions, experimental conditions), and sun- versus shade-grown leaves were harmonized across datasets.

Consolidation of taxonomy. Species names were standardized and attributed to families according to The Plant 
List (http://www.theplantlist.org), the commonly accepted list for vascular plants at the time of publication of 
Díaz et al.9, using TNRS234,235, complemented by manual standardization by experts. Attribution of families to 
higher-rank groups was made according to APG III (2009) (http://www.mobot.org/MOBOT/research/APweb/).

Conversion and correction of units, and exclusion of errors. Different datasets often used different units for the 
same trait. After conversion to the standardized unit per trait, differences among datasets - sometimes in the order 
of magnitude - became obvious. These differences could often be traced back to errors in the original units and 
were corrected. Obvious errors (e.g. impossible trait values like LMA < 0 g/m2) were excluded from the dataset.

Data imputation. To improve the number of species with values for all six core traits, trait records for stem 
SSD, LMA, Nmass and SM were complemented by trait values derived from records of related traits:

- Imputation of SSD. Trait records for SSD are available for a very large number of woody species, but only 
for very few herbaceous species. To incorporate this fundamental trait in the analyses by Díaz et al.9, we com-
plemented SSD of herbaceous species using an estimation based on leaf dry matter content (LDMC), a much 
more widely available trait, and its close correlation to stem dry matter content (StDMC, the ratio of stem dry 
mass to stem water-saturated fresh mass). StDMC is a good proxy of SSD in herbaceous plants with a ratio of 
approximately 1:1199, despite substantial differences in stem anatomy among botanical families236, including 
those between non-monocotyledons and monocotyledons (where sheaths were measured). We used a data set 
of 422 herbaceous species collected in the field across Europe and Israel, and belonging to 31 botanical fami-
lies, to parameterize linear relationships of StDMC to LDMC. The slopes of the relationship were significantly 
higher for monocotyledons than for other angiosperms (F = 12.3; P < 0.001, from a covariance analysis); within 
non-monocotyledons, the slope for Fabaceae was higher than that for species from other families (F = 4.5; 
P < 0.05, from a covariance analysis). We thus used three different equations to predict SSD for 1963 herbaceous 
species for which LDMC values were available in TRY (Table 1): one for monocotyledons, one for Fabaceae, and 
a third one for other non-monocotyledons. Estimated data are flagged.

- Imputation of LMA. Trait records for SLA (leaf area per leaf dry mass) were converted to LMA (leaf dry mass 
per leaf area): LMA = 1/SLA.

- Imputation of Nmass. Trait records for leaf nitrogen content per leaf area (Narea) were converted to records of 
leaf nitrogen content per leaf dry mass (Nmass) if records for LMA were available for the same observation (leaf): 
Nmass = Narea/LMA.

- Imputation of SM. To be able to include trait data for pteridophytes in the analyses in Díaz et al.9, diaspore 
mass values were estimated based on published data for spore radius (r). We assumed that spores would be 
approximately spherical, with volume = (4/3)πr3, and that their density would be 0.5 mg mm−3 (refs. 237–240). 
Although these assumptions were imprecise, we are confident they result in spore masses within the right 
order of magnitude and several orders of magnitude smaller than seed mass of spermatophytes. Most data were 
from Page237, data for Sadleria pallida were from Lloyd238, for Pteridium aquilinum from Conway239, and for 
Diphasiastrum spp from Stoor et al.240.

Dataset Slope (SE) Intercept (SE) r2 N

All species 0.698 (0.042) 0.058 (0.011) 0.398*** 422

Monocots 0.888 (0.071) 0.027 (0.022) 0.467*** 181

Fabaceae 0.692 (0.129) 0.048 (0.033) 0.367*** 52

All dicots except Fabaceae 0.524 (0.076) 0.096 (0.017) 0.203*** 188

Table 1. Summary statistics for model I regressions between LDMC and StDMC (dependent variable) for the 
whole data set and various subsets of species. Coefficients in italics were used in linear regressions to predict 
StDMC from LDMC in various subsets of herbaceous species for which LDMC values were available in the TRY 
database. Units for StDMC and LDMC are g g−1, giving SSD estimates in equivalent units of mg mm−3. Note 
that in Díaz et al.9, the coefficients of the regressions are given for LDMC and StDMC values expressed in mg 
g−1, yielding SSD estimates in g cm−3.
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Probabilistic outlier detection. The hierarchical taxonomic classification of plants into families, genera and spe-
cies has been shown to be highly informative with respect to the probability of trait values241–243. We therefore 
used it to conduct outlier detection at each of these levels.

The six core traits provided in the Global Spectrum Dataset are approximately normally distributed on a loga-
rithmic scale10. We therefore assume that on log-scale, traits sample from normal distributions. In the context of a 
normal distribution the density distribution is symmetric to the mean with 99.73% (99.99%) of data to be expected 
within the range of mean +/− 3 standard deviations, and 99.99% of data within +/− 4 standard deviations. Using 
these wide confidence intervals ensures that extreme values that correspond to truly extreme values of traits in 
nature are not mistakenly identified as outliers and therefore excluded from the dataset.

The z-score indicates how many standard deviations a record is away from the mean:

‐ = −z score (value mean)/standard deviation

Trait values with absolute z-scores >4 (>3) have a probability of less than 0.1% (0.3%) to be true values of the 
normal distribution. These trait values are most probably caused by errors not yet detected for these individual 
records, e.g., wrong unit, decimal error of trait value, wrong species (e.g. by mistake attributing a herb species 
name to a height measured on a tree), problems related to the trait definition or non-representative growth or 
measurement conditions. We acknowledge however that our z-score cutoff choice is an arbitrary one.

In many cases the number of trait values per taxon (e.g. a given species) was too small for a representative 
sample and did not provide a reliable estimate of the standard deviation (see Fig. 1). To circumvent this problem, 
we used the average standard deviation of trait values at the given taxonomic level, e.g., species, genus, family or 
all vascular plants. This average is an approximation of the standard deviation to be expected for an individual 
taxon, if a sufficient number of observations would be available (Fig. 1)10.

This probability-based data quality assessment on the different levels of the taxonomic hierarchy is routinely 
conducted within the TRY database for all traits with more than 1000 records. The z-score values for each trait 
record are made available on the TRY website and the highest absolute value is provided with each data release.

Trait values with an absolute z-score >4 (more than 4 standard deviations from at least one taxon mean) were 
excluded from the dataset unless their retention could be justified from external sources. Trait records with an 
absolute z-score 3 to 4 (3 to 4 standard deviations from at least one taxon mean) were checked by domain experts 
among the authors for plausibility, and retained or excluded accordingly.

Exclusion of duplicate trait records. Duplicate trait records were identified on the basis of the following criteria: same 
species (after standardization of taxonomy), similar trait values (accounting for rounding errors after semantic inte-
gration, unit conversion and data complementation), and no information on different measurement locations or dates.

Calculation of species mean trait values. The resulting dataset was used to calculate species mean trait values, 
without further stratification along, e.g., datasets or measurement sites. As trait distributions of the six core traits 
have been shown to be log-normal9, the mean species trait values were calculated after log-transformation of the 
trait values (geometric mean).

Addition of categorical traits. Data for the categorical traits were added and, if in doubt, checked against expert 
knowledge and independent external information from specialized websites in the Internet.

Final validation of taxonomy and mean trait values. Taxonomy was finally checked once more manually against 
the Plant List and APGIII. The ten most extreme species mean values of each trait (smallest and largest) were 
checked manually for reliability against external sources. Finally, outliers of species mean traits – after categori-
zation of species according to the categorical traits and in bi- and multivariate trait space – were validated against 
external sources (see Díaz et al.9 Fig. 2, Extended Data Fig. 3, and Extended Data Fig. 4).

Data Records
The dataset is available under a CC-BY license at the TRY File Archive (https://www.try-db.org/TryWeb/Data.php):

Díaz, S. et al. The global spectrum of plant form and function: enhanced species-level trait dataset. TRY File 
Archive https://doi.org/10.17871/TRY.81 (2022)244

The dataset consists of two data files. 

•	 Species_mean_traits.xlsx
•	 References.xlsx

Species_mean_traits.xlsx. The file provides mean trait values of plants grown under natural conditions 
for 46,047 species (including a small number of genus level classifications, sub-species and local varieties). Species 
names and mean trait values are complemented by taxonomic hierarchy (genus, family and phylogenetic group), 
the number of trait records contributing to each mean trait value and by categorical traits. Values of all six traits 
were available for 2,214 species. In total the dataset contains 476,932 entries for quantitative and categorical trait 
records and higher-level taxonomy (92,159 entries for quantitative traits, 200,585 entries for categorical traits, and 
184,188 entries for higher-level taxonomy).

https://doi.org/10.1038/s41597-022-01774-9
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The quantitative species-level trait information is based on about 1 million trait records (see Table S1), meas-
ured on >500,000 plant individuals (number of different Observations in References (see below)). One trait 
record reported in the datasets is often based on several replicated measurements from different representative 
individuals at a site. The New Handbook for Standardised Measurement of Plant Functional Traits Worldwide6 
recommends measurements on 10 to 25 individual plants or leaves, depending on the trait. Therefore in the cases 
that followed this or related protocols, a trait record in the original database probably represents the site-specific 
mean trait value for a given species. Reporting only the site-specific mean trait value was standard procedure 
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Fig. 2 Climatic and geographical coverage of the dataset. Green points, occurrences according to the Global 
Biodiversity Information Facility (GBIF) (http://www.gbif.org) of species with information on at least one 
core trait (upper panels) and all six core traits (lower panels). Right panels show distribution in the global 
map (Robinson projection); grey: land surface. Maps are based on the R package ‘maps’, accessed at The 
Comprehensive R Archive Network (https://cran.r-project.org/web/packages/maps/index.html). Left panels 
show distribution in major climatic regions of the world; grey: MAP and MAT as in Climate Research Unit 
(CRU) CL v.1.0 0.5 degree climatology (http://www.cru.uea.ac.uk/data, ref. 245); Biome classification according 
to Whittaker246. This figure is reproduced from ref. 9 with permission.

Fig. 1 Scatterplot indicating the relation of standard deviation within species and sample size on the example of 
SLA data (1/LMA) derived from the TRY database version 1 (Kattge et al.10, Fig. S1).
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in older publications and aggregated databases, assuming a common approach to replicated measurements on 
different individuals. More recent datasets tend to provide all individual measurements, among other reasons 
because this allows better treatment of intraspecific trait variation.

The present dataset was derived from 157 datasets (Table S1). Trait records can be traced to ca. 2500 original 
publications (see References_original_sources.xlsx). All species are complemented with higher-level taxonomic 
information; 92.5% and 84.8% of species are attributed to categories according to woodiness and basic growth-form, 
respectively. The raw data are available via the TRY Database (https://www.try-db.org/TryWeb/Home.php).
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Fig. 3 Frequency distributions of species for the six core traits. Grey: species with all six traits; white: species 
with at least one trait. (a) Plant height, (b) Seed mass, (c) SSD: stem dry mass per stem fresh volume (stem 
specific density), (d) Leaf area, (e) LMA: leaf dry mass per leaf area, (f) Leaf Nmass: leaf nitrogen content per leaf 
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References.xlsx. This file contains the references of all trait data, which contributed to the core traits of the 
Global Spectrum Dataset via the TRY database. If datasets contributed to TRY were already compiled from orig-
inal publications, the table also provides the references of these original publications. The references are linked to 
the data in the species mean trait dataset via species unique identifiers and trait names.

The sum of replicates in the species mean trait table is about 100,000 trait records less than the sum of 
979,924 trait records in References and Supplementary Table S1, because the species mean trait table contains 
mean trait values and information on number of trait records only for those species-trait combinations that were 
retained after data cleaning and imputation.

technical Validation
The dataset has a global coverage in geographic and climate space (Fig. 2, also Díaz et al.9 Extended Data Fig. 1), 
however with known gaps9–11. The numbers of species characterized per trait are similar to the TRY Database 
version 5, published in 201911. This indicates the efficiency of data collection and curation for the Global 
Spectrum Dataset. All species mean trait values (Table 2) are within the ranges published in Kattge et al.10. 
Histograms of trait frequency distributions are provided in Fig. 3. The coverage of species per trait with respect 
to woodiness is presented in Fig. 4. The dataset has so far been used in Díaz et al.9, where the data show a high 
internal consistency in bi- and multivariate analyses: known bivariate relationships were well reproduced (Díaz 
et al.9 Extended Data Figs. 3 and 4) and individual species were located in the first axes of the principal compo-
nent analysis in positions expected from general knowledge about these species (Díaz et al.9 Fig. 2).

Usage Notes
In case the dataset is used in publications, both this paper and Díaz et al.9 should be cited.

The six quantitative traits compiled here (plus LDMC) are among the best-covered quantitative traits in the 
TRY database. However, as is typical for these kinds of observational data, the numbers of records per species are 
unevenly distributed: few species mean trait values are based on a large number of records, while a large fraction 
of the species mean estimates is based on only a few or a single trait record(s) (see difference between mean and 
median number of trait records per species and trait in Table 2, the number of trait records per species mean is 
also indicated in the dataset file ‘Species_mean_traits.xlsx’). The representativeness of these mean values should 
be taken with caution, because the trait measurements have to be treated as samples from the variation of traits 
within species, which – for some traits – can be substantial10. However, as mentioned above, one trait record is 
often based on several trait measurements on characteristic individuals and therefore represents a species per 
site-specific mean value. In the context of large-scale analyses the variation within species has been shown to be 
considerably smaller than the variation between species10.

code availability
Does not apply.
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No. of 
species Mean

Range

Mean & median n per speciesMin. Max.

H 24704 1.62 0.001 to 90 9.5 (2)

SSD 11350 0.47 0.06 to 1.39 8.9 (2)

LA 12164 1336 0.8 to 2.79E6 10 (3)

LMA 10486 72.4 4.9 to 1507 15.4 (5)

Nmass 8689 19.2 2.48 to 68.98 9.3 (3)

SM 24766 2.65 5.15E-6 to 2.05E7 8.6 (6)

Latitude 55 S to 83.17 N

Altitude −59 to 5249

MAT −27.22 to 29.97

MAP <5 to 7693

Table 2. Number of species and range of variation of species mean traits, geographic distributions and climatic 
conditions in the Global Spectrum Dataset. No. of species: number of species characterized; Mean: geometric 
mean of species traits; Range: lowest and highest species mean trait values; Mean & median n per species: mean 
and median (in brackets) number of trait records per species; H: adult plant height (m); SSD: stem specific 
density (mg mm−3); LA: leaf area (mm2); LMA: leaf mass per area (g m−2); Nmass: N content per unit leaf mass 
(mg g−1); SM: diaspore (seed or spore) mass (mg); Latitude in degrees; Altitude in m; MAT: Mean annual 
temperature (°C); MAP: Mean annual precipitation (mm). Mean annual temperature and precipitation refer to 
CRU0.5 degree climatology. Modified from ref. 9 with permission.
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