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A B S T R A C T   

The potential utility of wastewater-based epidemiology as an early warning tool has been explored widely across 
the globe during the current COVID-19 pandemic. Methods to detect the presence of SARS-CoV-2 RNA in 
wastewater were developed early in the pandemic, and extensive work has been conducted to evaluate the 
relationship between viral concentration and COVID-19 case numbers at the catchment areas of sewage treat
ment works (STWs) over time. However, no attempt has been made to develop a model that predicts wastewater 
concentration at fine spatio-temporal resolutions covering an entire country, a necessary step towards using 
wastewater monitoring for the early detection of local outbreaks. 

We consider weekly averages of flow-normalised viral concentration, reported as the number of SARS-CoV- 
2N1 gene copies per litre (gc/L) of wastewater available at 303 STWs over the period between 1 June 2021 
and 30 March 2022. We specify a spatially continuous statistical model that quantifies the relationship between 
weekly viral concentration and a collection of covariates covering socio-demographics, land cover and virus 
associated genomic characteristics at STW catchment areas while accounting for spatial and temporal 
correlation. 

We evaluate the model’s predictive performance at the catchment level through 10-fold cross-validation. We 
predict the weekly viral concentration at the population-weighted centroid of the 32,844 lower super output 
areas (LSOAs) in England, then aggregate these LSOA predictions to the Lower Tier Local Authority level (LTLA), 
a geography that is more relevant to public health policy-making. We also use the model outputs to quantify the 
probability of local changes of direction (increases or decreases) in viral concentration over short periods (e.g. 
two consecutive weeks). 

The proposed statistical framework can predict SARS-CoV-2 viral concentration in wastewater at high spatio- 
temporal resolution across England. Additionally, the probabilistic quantification of local changes can be used as 
an early warning tool for public health surveillance.   

1. Introduction 

Wastewater-based epidemiology (WBE) is defined as a collection of 

tools and methods for surveillance and monitoring of disease outbreaks 
using biochemical analysis of wastewater samples as the primary 
outcome measure. The first use of WBE was to track illicit drug use; see 
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for instance Daughton (2001) as the first published paper on the topic 
and Huizer et al. (2021) for a recent review of the field. Over the years, 
WBE has been successfully used in polio eradication (Asghar et al., 2014; 
Hovi et al., 2012) and for retrospective prediction of several disease 
outbreaks, such as noroviruses and hepatitis A (Hellmér et al., 2014), 
especially in resource-limited settings. During the COVID-19 pandemic, 
WBE has been recognised as an economically efficient approach for 
disease surveillance (Manuel et al., 2022) and methods to detect the 
presence of SARS-CoV-2 RNA in wastewater have been developed in a 
number of countries (Tlhagale et al., 2022). In addition to its relatively 
low cost, an attraction of working with wastewater is that it avoids the 
selection bias that is an inherent feature of other widely used pandemic 
metrics such as community testing. However, viral load can be affected 
by several factors other than local prevalence of COVID-19, including 
meteorology, type of sewage system, and population characteristics; for 
example, children shed virus at a lower rate than adults (Wade et al., 
2022). Additionally, the relationship between wastewater viral load and 
COVID-19 prevalence is susceptible to changes in the nature of the 
epidemic over time, such as vaccination rates or the shedding properties 
and epidemiology of different variants (Wu et al., 2020; Nattino et al., 
2022). 

Several studies have evaluated the relationship between viral load in 
wastewater and prevalence of COVID-19 disease. In particular, Shah 
et al. (2022) conducted a systematic review of wastewater surveillance 
methods for monitoring the COVID-19 pandemic. They focused on the 
period between 1 January 2020 and 31 July 2021 and identified 84 
studies spanning 34 countries that reported a potential relationship 
between viral concentration in wastewater and COVID-19 cases in the 
community. In England, Hillary et al. (2021) quantified concentration of 
SARS-CoV-2 RNA from six sewage treatment works (STWs) in large 
urban centres during the first wave of the pandemic (March-July 2020) 
and reported a correlation with number of COVID-19 cases. More spe
cifically, they found that a decline in the wastewater virus concentration 
preceded by two to four days the reduction in community cases after 
lockdown measures were implemented. More recently, Morvan et al. 
(2022) analysed data from 45 STWs across England between July 2020 
and March 2021. Using multilevel modelling they reported that waste
water samples can be used to predict COVID-19 prevalence, with a lead 
time of four to five days. Proverbio et al. (2022) proposed a mechanistic 
approach to integrate wastewater data and COVID-19 case numbers 
across different countries using an extended Kalman filter (Durbin and 
Koopman, 2012, Chapter 10), and showed how this can be used for early 
detection of outbreaks. Srinivas et al. (2021) used Bayesian networks to 
evaluate the best geographical locations and population characteristics 
for using wastewater to detect regions of outbreaks over 13 US states. 

Scientific contributions to date have focused on STW sites and their 
associated catchment areas where the measurements of RNA from 
wastewater are obtained. No attempt has been made to develop a 
spatially resolved model to predict wastewater concentration over a 
spatially continuous domain, required for the use of wastewater as a tool 
for the early detection of local outbreaks. Geostatistical methods (Diggle 
and Ribeiro, 2007; Diggle et al., 1998) are naturally suited to this task, as 
they allow the combination of observations on the outcome variable of 
interest at a fixed set of point locations with a set of predictors available 
at fine-scale spatial resolution throughout the area of interest. They 
account for a combination of covariate effects and residual spatial and 
temporal structure to deliver predictions of the outcome at any point in 
space. We specify a Bayesian geostatistical model which quantifies the 
relationship between weekly viral concentration at STW catchment 
areas and covariates (socio-demographics, land cover and virus genomic 
properties) while accounting for spatial and temporal correlation. We 
then use the model to predict weekly viral concentration together with 
the associated predictive uncertainty at the population weighted cen
troids of Lower Super Output Areas (LSOAs), a set of small geographical 
areas used in census reporting in the UK. These LSOA predictions can be 
combined to produce predictions at coarser geographical scales. We 

present results at the Lower Tier Local Authority (LTLA) level, larger 
administrative areas than LSOAs, as an example of a geographical scale 
that is relevant for public health policies. In addition, the probabilistic 
output from this flexible modelling framework can be used to make a 
variety of predictive inferences, for example to detect areas where the 
level of viral concentration in wastewater exceeds a pre-defined 
threshold or where the temporal pattern shows increases over consec
utive weeks. 

2. Methods 

2.1. Study area and data 

SARS-CoV-2 viral concentrations were obtained through reverse 
transcriptase quantitative polymerase chain reaction (RT-qPCR) anal
ysis of wastewater samples, as described in Hillary et al. (2021). Three to 
four weekly samples were taken at each sewer network sites (serving 
local areas) and STWs (serving cities or towns) by the Environmental 
Monitoring for Health Protection (EMHP) wastewater surveillance 
programme (Wade et al., 2020), formerly part of the Joint Biosecurity 
Centre, now UK Health Security Agency (UKHSA). In the present study 
we consider only the 303 STWs for which the data were publicly 
available from EMHP. The locations of the STWs and their catchment 
areas are presented in Fig. 1 (A). 

The data that we use in our analysis consist of the weekly average of 
the three/four flow-normalised viral concentration measurements, re
ported as the number of SARS-CoV-2 N1 gene copies per litre of 
wastewater (gc/L), at each STW over the period from 1 June 2021 to 30 
March 2022. 

We include the following covariates to inform the spatio-temporal 
variability of viral concentration in wastewater:  

• Index of Multiple Deprivation (IMD, 2019). This composite index is a 
weighted average of seven aspects of socio-economic deprivation: 
Income; Employment; Health Deprivation and Disability; Education, 
Skills Training; Crime; Barriers to Housing and Services; Living 
Environment.  

• Black, Asian and Minority Ethnic (BAME) proportion in each area as 
reported in the 2011 Census.  

• Land cover, calculated by intersecting boundaries with the latest 
(2018) Corine Land Cover data set and computing the total fraction 
of area in urban, vegetation, industrial, and “all other” classes. The 
data is on a 1 km grid and available from https://land.copernicus. 
eu/pan-european/corine-land-cover and © European Union, Coper
nicus Land Monitoring Service 2018, European Environment Agency 
(EEA).  

• Population density, estimated by the Office for National Statistics 
(ONS) in 2019.  

• Age structure, defined as the percentages of population younger 
than16 years and older than 75 years, estimated by the ONS in 2019.  

• Wastewater genomic data have been collected by UKHSA and have 
shown generally high correlation with clinical cases over time, sug
gesting that they could be used as predictors in our model. We 
consider the percentage coverage of the SARS-CoV-2 genome in each 
sample, as obtained from position read file, and the Single Nucleo
tide Polymorphism (SNP) data. These two measures are included as 
time-varying covariates at the national level. For both covariates, 
there were no measurements taken over the week commencing 28 
March 2022, the last week of the study period. We impute the 
missing value of that week by using the previous week’s value. For a 
majority of the 43 weeks, the genomic measurements were taken at 
over 80% of the 303 STW sites but there are still some weeks where 
measurements were only taken at a small number of sites. We 
calculated a rolling average over three weeks on either side to obtain 
more reliable national averages and entered the resulting averages in 
the model. 

G. Li et al.                                                                                                                                                                                                                                        

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover


Environment International 172 (2023) 107765

3

The index of multiple deprivation, BAME percentage and age struc
ture are included as they provide area-specific information, which might 
be related to the exposure to the virus and were used as a proxy for 
occupation and for living conditions (see for instance Padellini et al, 
2022). Alternatively, they could also inform about the shedding; for 
instance it is known that children shed less virus than adults (Wade et al, 
2022). Land cover and population density provide information about the 
composition of the area, hypothesised to be related to the disease spread 
(Smith et al., 2021) and consequently to viral concentration in waste
water; for instance an area which is more rural or with lower population 
density is expected to have lower viral concentration in wastewater. 
Genomic data provide information about the characteristics of the virus 
in wastewater (Karthikeyan et al., 2022). 

If not explicitly stated above, the covariates are available at LSOA 
level. We map STW catchment areas to LSOAs by comparing their 
respective boundaries and aligning the covariates to STW catchment 
areas as follows. For IMD, BAME, age structure and population density, 
we calculate the population-weighted average over the LSOAs within 
the geographical boundaries of the catchment. As land cover is available 
at grid level we average the grid values covering each LSOA and 
catchment areas to obtain the variable at each of these geographical 
scales. The LSOA-to-catchment mapping is carried out via the lookup 
table from Hoffmann et al. (2022) which was created based on the 
wastewater catchment area data provided by the sewerage service 
providers in Great Britain. This look-up table covers all STWs in England 
except the 21 STWs in the Southwest, the locations with a red diamond 
shape in Fig. 1A. For these 21 STWs, we approximated their catchments 
using circles that are centered at the STW locations and include the 
centroids of at least 10 LSOAs. 

Our approach enables prediction of SARS-CoV-2 viral concentration 
at the highest spatial resolution for which all the relevant covariates are 
available, while fully accounting for spatial variability. These pre
dictions can then be aggregated to other geographical scales that might 
be more relevant for public health policies. With this in mind, we predict 
concentration at LSOA level in England and then aggregate these to 
LTLA level; see Fig. 1(B) for an example of LSOA and LTLA boundaries in 
a representative part of England. LSOAs are intended to include 

approximately 1,500 individuals and therefore cover smaller areas in 
densely populated areas. When aggregating from LSOA to LTLA level we 
used the 2019 LSOA population estimates as weights. 

2.2. Statistical model 

The log-transformed number of gene copies per liter (henceforth 
concentration) at catchment area i = 1,…,303 and week t = 1,…,44 is 
modelled as: 

yit ∼ Normal(μit, σ2
y) (1)  

where σ2
y is the measurement error variance. For the latent mean con

centration μit we specify a linear model: 

μit = α+ xitβ+ gregioni + ui + vt + zit (2)  

where α is the average concentration across the study area and xit = {

x1it , x2it , ..., xmit} is the vector of m = 8 covariates as specified above. The 
gregioni term is a regional-level random effect with regioni indicating the 
region in which STW i is located. The regional random effects are 
modelled using an exchangeable prior, gk ∼ Normal(0, σ2

g ) with k = 1,…,9 

over the nine regions of England. The ui term is a catchment-level spatial 
random effect modelled using an exchangeable prior, ui ∼ Normal(0,σ2

u). 
The vt term is a temporal random effect, which we model as a first-order 
random walk, vt Normal(vt−1, σ2

v ). Finally, we allow for additional flex
ibility by including a spatio-temporal interaction component, zit , to 
capture local departures from the global spatial and temporal patterns. 
For this, we specify a temporal autoregressive structure with spatially 
correlated innovations, similar to Cameletti et al. (2011): 

t = 1 zt Normal(0,Σz)

t > 1 zt Normal(ρzt−1,Σz)with ρ as the temporal autoregressive co
efficient. The Σz matrix represents the spatial structure and is defined 
using a Matérn covariance function: 

∑
(zi, zs) =

σ2
2

Γ(λ)2λ−1(kdis)
λKλ(kdis)

Fig. 1. (A): SWT catchment areas in England (blue) except Southwest Water STW locations (red); (B): LTLA and LSOA boundaries for a representative part of 
southern England. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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where Γ(λ) is the gamma function, Kλ is the modified Bessel function of 
the second kind with order λ and dis is the distance between the i-th and s- 
th sites. The parameter λ > 0 controls the smoothness of the z random 
field. As is common practice to avoid issues with identifiability, we fix 
the value λ = 1 to correspond to a mean-square differentiable spatial 
process (Diggle and Ribeiro, 2007; Whittle, 1954). Lastly, κ > 0 is a 
scaling term which is linked to the range parameter r =

̅̅̅̅̅
8λ

√
/κ as defined 

in Lindgren et al. (2011). This parameter r is interpreted as the distance 
at which the spatial correlation is approximately 0.1 for all λ. 

2.2.1. Priors and implementation 
We complete the Bayesian model specification by assigning the 

following priors. On the intercept α and the fixed effects β in Eq.(2) we 
assign independent Normal distributions centered on 0 with variance 
equal to 103. All covariates were standardised so this specification 
corresponds to a minimally informative prior on the covariate effect. 
Following Simpson et al. (2017), on the random effect variances and 
parameters associated with the spatiotemporal interaction component 
we specify Penalised Complexity (PC) priors that are defined via proba
bility statements. Specifically, the PC prior on σ2

g , σ2
u

, σ2
v and σ2

z is spec
ified based on Pr(σ > 10) = 0.05. Given the log-scale of the viral 
concentration, this specification is weakly informative, assuming that 
the standard deviations are highly likely to be between 0 and 10, with 
only a small probability being greater than 10. For the Matérn covari
ance function, we specify a PC prior on r, the range parameter such that 
Pr(r < 10) = 0.05. This is a weakly informative prior, assuming that the 
range is likely to be greater than 10 km. On the autoregressive parameter 
ρ, the PC prior is defined such that Pr(|ρ|〉0.1 ) = 0.9. Finally, a Gamma 
with shape parameter equal to 1 and inverse-shape parameter equal to 
0.00005 is assigned as prior to the error precision, 1/σ2

y . 
The inferential task is to estimate the joint posterior distribution of 

the regression coefficients, α, β, the regional, space, time and space–time 
random effects g, u, v, z and the parameters σ2

g , σ2
u , σ2

v , ρ, r, σ2
z , σ2

y : 

π(α, β, g, u, v, z, σ2
g, σ2

u, σ2
v , ρ, r, σ2

z , σ2
y |y) (3) 

We implement the model in R-INLA (Rue et al., 2009), an inferential 
method based on Integrated Nested Laplace Approximations (INLA). 
INLA provides fast approximation of the posterior and predictive dis
tributions by exploiting the conditional independence on the structure of 
the model parameters. When the interest is in a continuous spatial 
domain and the data are available at point locations (as in the current 
case, where we have the coordinates of the STWs), R-INLA can be 
coupled with Stochastic Partial Differential Equations (SPDE) (Lindgren 
et al., 2011). To provide fast inference, SPDE discretises the continuous 
space using weighted basis functions defined at the vertices of a trian
gulation (mesh) of the study-region. We use the mesh shown in Fig. 2. 
More details on the INLA and SPDE approach are available at Krainski 
et al. (2018) or Blangiardo and Cameletti (2015). The code and the data 
to reproduce the results are available at https://github.com/gqlNU/ 
publicWW/. 

2.3. Predicting viral concentration at a set of prediction locations 

A strength of the modelling approach developed here is the ability to 
use the posterior distribution in Eq.(3) to predict the concentrations at 
any set of spatial locations in the study region. In particular, we consider 
the population-weighted centroids of all the 32,844 Lower Super Output 
Areas (LSOAs) in England, these being the smallest areas for which all 
the covariates are available. 

The weekly concentration of the j − th LSOA is calculated based on Eq. 
(2): 

μjt = α+ xjtβ+ gregionj + uj + vt + zjt  

where xjt denotes the covariate profile of the j−th LSOA at time t and 

regionj indicates the region in which this LSOA is located. Given 
observed data y we sample y′ , the viral concentrations at the 32,844 
LSOA centroids over 44 weeks, from the posterior predictive 
distribution: 

π(y′

|y) =
∫

p(y′

|θ)p(θ|y)dθ (4)  

θ = {α, β, g, v, z, σ2
u, σ2

y} (5) 

In practice, this involves sampling values of θ directly from the joint 
posterior distribution at Eq.(3) followed by the sampling of u. For ui, 
having first sampled σ2

u from the joint posterior, we sample 
ui ∼ Normal(0, σ2

u). Effectively, ui adds random noise to the predictions 
of each LSOA, reflecting the between-site variability estimated from the 
data, so widening the predictive interval. 

The posterior sampling of the space–time interaction component, zjt, 
at a prediction location is somewhat more involved because its values at 
non-mesh points are not automatically outputted in the joint posterior. 
From the joint posterior, we first sample jointly zbt (b = 1, ...,B; t = 1, ...,
44), all the terms in the space–time interaction component across all 
time points and all B locations that form part of the SPDE mesh used for 
model-fitting (see Fig. 2). We then project each time slice of the sampled 
vector z1:B,t onto a mesh that extends the fitting mesh to include all the 
prediction locations, i.e. in our case all LSOA centroids, to form zjt for j =
1,…,32,844, as required to complete the weekly LSOA-level prediction. As 
space–time interactions are strongly correlated both spatially and 
temporally, the prediction of this component must be carried out jointly 
over space and time to account for the space–time dependency. 

Finally, the posterior predictive distribution at the LSOA centroids 
can be combined to return corresponding predictions at coarser 
geographical scales, as required. Here we consider all the 309 LTLAs in 
England by averaging the corresponding LSOA predictions, weighted by 
the population in each LSOA. A similar approach has proven successful 
in other environmental applications (see for instance Mukhopadhyay 
and Sahu, 2018). 

2.4. Cross-validation 

We evaluate the model predictive performance via 10-fold cross 
validation. We partition all the 303 sites randomly into 10 subgroups, 9 
groups of 30 sites and one group of 33. For each of the 10 cross- 

Fig. 2. Mesh used for model fitting in INLA with England boundary super
imposed. The solid dots represent the locations of the 303 sewage treatment 
works (STWs) included in the study. 
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validation runs, we leave out the viral concentration data in one sub
group in turn, fit the model to the data in the remaining 9 subgroups, 
then predict the weekly viral concentrations for each of the sites in the 
left-out group. To assess the agreement between the predicted and 
observed concentrations at each left-out site we use the following met
rics: a) the mean bias and the mean absolute bias with bias defined as the 
difference between predicted and observed values; b) the root mean 
square error, defined as the square root of the average of the squared 
differences between predicted and observed values; and c) the 95 % 
coverage, defined as the percentage of the observed concentration 
values that lie within the 95 % predictive intervals from the model. We 
also compare the predictive performance of the full model as formulated 
in Section 2.2 against two reduced models, the fixed effects only model 
(with μit = α + xitβ) and the random effects only model (μit = α +

gregioni + ui + vt + zit). 

2.5. Detection 

The posterior predictive distribution can be used to detect increases 
in the wastewater viral concentration. In particular, for each LTLA (l =
1,…,L) an increase in viral concentration over two consecutive weeks is 
the event (E): 

E = I(μlt > μl(t−1) > μl(t−2)) (6)  

where I(⋅) is the indicator function. A high predictive probability, 
Prob(E)〉c for a pre-specified threshold c, would then trigger a warning of 
a potential outbreak. This approach has been used for public health 
surveillance in both high-income (Diggle et al., 2005) and low-to- 
middle-income countries (Diggle et al., 2007). Selecting the threshold 
is a key point: lower and higher values increase the false positive and 
false negative rates, respectively. We follow the recommendation in 
Richardson et al. (2004) that c = 0.8 is a good compromise to minimise 
the overall false detection rate, whilst recognising that in specific ap
plications it may be preferable to prioritise protection against one or 
other of the two kinds of detection error. 

3. Results 

3.1. Spatial and temporal patterns 

Viral concentrations in wastewater varied substantially across En
gland over the observation period between 1st June 2021 and 30th 
March 2022. Fig. 3 (A) presents the overall time trend of log- 
concentration in England. A sharp increase is visible at the beginning 
of the study period, with a peak around 10 log(gc/L) in July-August 
2021. A second increase is seen around November 2021, with a peak 
just after Christmas, followed by a final increase in February-March 
2022. Fig. 3 (B) and (C) visualise the LTLA-level and regional-level 

Fig. 3. Posterior mean and 95% credible interval of weekly wastewater viral concentration at country level (A); posterior mean at LTLA level (B) and posterior 
distribution at regional level (C). 
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variation, respectively. Across the nine regions of England, London 
shows the highest overall viral concentration level. NorthWest and 
Yorkshire and The Humber are the two regions with the lowest levels of 
viral concentration across the study period. 

3.2. Spatio-temporal dynamics 

Fig. 4 offers further insights into the spatio-temporal dynamics of 
viral concentration, showing the posterior mean of the predicted log 
concentration for the first week of the study period (1st-6th June 2021) 
then one week in every-four until 30th March 2022. The rise and fall of 

viral concentrations at the national level did not happen at the same 
time across all LTLAs. At the beginning of June 2021 (Fig. 4 top, left), 
low values are estimated across most LTLAs while inner London shows 
higher values, around 8–9 log(gc/L). By mid-July 2021, an increment is 
clearly visible across the country, but a high degree of variation is 
noticeable, with the highest values in pockets of LTLAs in the north, 
around East Midlands and for the whole of London, whereas parts of East 
and Southwest remain relatively low. 

A similar pattern of gradual spatial spread can be seen between 
December 2021 and January 2022 and then between February and 
March 2022. For both periods, rises in concentration started principally 

Fig. 4. Spatio-temporal log-concentration. The figure shows the posterior predicted mean of the weekly concentration at LTLA level over June 2021 to March 2022. 
The dates shown are the Mondays of the weeks (apart from Tuesday, 1st June 2021). Red colors identify higher values (see legend in the bottom right plot). The insets 
correspond to Greater London. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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in the south of England but then reached most parts of the country 
within the following month (Fig. 4, second and third plots on the third 
and fourth rows). The extent of the spatio-temporal dynamics is quan
tified by the parameters of the spacetime interaction component, zit in 
Eq. (2): the temporal AR1 coefficient, ρ, and the range parameter in the 
Matérn covariance function, r, are estimated as 0.858 (0.822–0.899) and 
59.53 km (52.82–68.78), respectively, revealing a fully spatio-temporal 
correlation structure. To visualise these rich model outputs, we have 
created a dynamic and interactive dashboard, accessible at https://b-ro 
wlingson.gitlab.io/wwatlas/, that allows users to interrogate levels and 
changes in viral concentration at both local and national scales. The 
dashboard also features the weekly maps highlighting areas with sus
tained increases in concentration over consecutive weeks, using the rule 
described in Section 2.5. 

3.3. Covariate effects 

While the main aim of this analysis is to predict concentration at 
specific locations, covariate effects (Table 1) are also of interest. Popu
lation density is strongly associated with viral concentration in waste
water. The posterior mean of the corresponding regression coefficient is 
0.278 (95 % credible interval: 0.136–0.420). This corresponds to the 
amount of increase in log viral concentration when population density 
increases by about 1600 people per km2. Similarly, the percentage of 
genome coverage at national level is strongly associated with waste
water viral concentration, with a posterior mean of 0.518 (95 % CI: 
0.140–0.895), suggestive of a greater number of viral RNA fragments 
present in collected samples when the sample covers more of the SARS- 
CoV-2 genome. For the remaining covariates there is weaker evidence of 
an association with viral concentrations as their 95 % credible intervals 
include 0 (see Table 1). 

3.4. Cross-validation 

Cross-validation of predicted log-concentrations gives an overall 
mean bias, averaged across all sites and all time points, of 0.0093 log 
(gc/L) and the standard deviation of all biases is 1.27. No individual 
week within the observation period shows a particularly large mean bias 
(Fig. 2 in supplementary material). The site-specific mean bias, averaged 
over the weeks with no missing data at each cross-validation site, ranges 
from −1.70 (Wycombe) to 3.48 (Burton on Trent). The variation in 
prediction quality across all sites does not appear to be associated with 
how close a cross-validation site is to an in-sample site (Fig. 1 in sup
plementary material). The overall 95 % coverage rate, representing the 
percentage of observed values falling within the corresponding 95 % 

predictive interval, is 94.1 %, which is close to the 95 % nominal value 
thus indicating that our method provides reliable predictions. Table 1 in 
supplementary material provides further details on the model’s predic
tive performance by region; overall it shows better predictive perfor
mance against the two reduced models, one with fixed effects only and 
the other with random effects only. Performance of the model is not 
systematically different across the 10 cross-validation folds (Fig. 3 in 
Supplementary material). 

3.5. Wastewater concentration and COVID-19 debiased prevalence 

We illustrate the correspondence between the predicted wastewater 
concentration and COVID-19 debiased prevalence, over the period from 
1st June 2021 to 27th March 2022. Debiased prevalence was estimated 
combining testing data and the REal-time Assessment of Community 
Transmission (REACT) randomised survey (Riley et al., 2020) using the 
method proposed by Nicholson et al. (2022); for more details on this 
method, see Supplementary Material, Section B.1. The prevalence esti
mates were made weekly for all LTLAs in England apart from City of 
London and Isles of Scilly. Specifically, Fig. 5 maps the posterior prob
ability of detecting an increase as described in Section 2.5 for the pre
dicted wastewater concentration and for the estimated debiased 
prevalence over three specific periods, from 1st June 2021 to 4th July 
2021, from 4th October 2021 to 7th November 2021 and from 27th 
December 2021 to 6th February 2022. We use a biscale legend where the 
green colours represent agreement between the two metrics. The first 
period coincides with a sharp increase in prevalence and we observe a 
good agreement between the two metrics, with most of the LTLAs 
moving from pale green (both metrics having posterior probability < 0.8 
of an increase over the previous 2 weeks) to dark green (both metrics 
having posterior probability > 0.8 of an increase over the same period). 
Prevalence during the second period from 4 October 2021 to 7 
November 2021 remained relatively stable, a pattern that we can also 
observe in the viral concentration estimates, thus giving rise to the 
almost completely pale green maps on the second row of Fig. 5. Over the 
third period from 27th December 2021 to 6th February 2022, preva
lence showed a decreasing pattern nationally. The majority of LTLAs in 
the maps on the third row of Fig. 5 are pale green (i.e. no evidence of an 
increase in both metrics), indicating a good agreement between the two 
metrics over a period where prevalence was decreasing. Over the entire 
period from 1st June 2021 to 27th March 2022, 79.7 % of the LTLA- 
three-weekly comparisons show concordance between wastewater 
viral concentration and COVID-19 prevalence with both metrics having 
probability > 0.8 of a rise over the previous two weeks or both having 
probability < 0.8 of a rise over the same time period. While the two 
metrics are in good agreement, we found that the relationship between 
viral concentration in wastewater and COVID-19 prevalence is complex, 
nonlinear and varying over both space and time (see Supplementary 
Material, Figs. 4-5). 

4. Discussion 

In this paper we have proposed a geostatistical approach to model 
wastewater viral concentration at STW catchment areas as a function of 
covariates, while accounting for residual spatio-temporal correlation. To 
the best of our knowledge this is the first study to go beyond catchment- 
level estimates by predicting viral concentrations on a spatially resolved 
domain that can then be aggregated to any required spatial resolution to 
inform public health decisions. Specifically, we inferred the joint pos
terior predictive distribution on the population-weighted centroids of 
the 32,844 LSOAs across England and then aggregated these predictions 
to LTLA level, a geographical scale more relevant for public health 
policy setting. Additionally, our approach uses probability statements to 
detect areas characterised by sustained increases in concentration over a 
specified period, providing a tool for early warning of local outbreaks. 
Due to the large dimension of the dataset, we carried out statistical 

Table 1 
Posterior estimates of covariate effects (one standard deviation change) and of 
parameters associated with the spatio-temporal random effects.   

Posterior mean 
(95 % credible interval) 

Covariates  
IMD −0.032 (−0.139, 0.075) 
BAME proportion −0.056 (−0.196, 0.084) 
Population density 0.278 (0.136, 0.420) 
% population aged below 16 0.057 (−0.083, 0.197) 
% population aged over 75 −0.052 (−0.201, 0.097) 
Industrial fraction −0.038 (−0.138, 0.062) 
Genome coverage 0.518 (0.140, 0.895) 
SNP number −0.038 (−0.273, 0.197) 
Hyperparameters  
σy

2, residual variance 0.865 (0.835, 0.898) 
σg

2, variance of the regional random effect 0.027 (0.002, 0.051) 
σv

2, variance of the temporal random effect 0.253 (0.190, 0.344) 
r, correlation range (km) in the Matèrn covariance 59.53 (52.82, 68.78) 
σz

2, variance in the Matèrn covariance 0.509 (0.444, 0.595) 
ρ, temporal AR1 coefficient 0.858 (0.822, 0.899)  
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inference using INLA, an approximate method which has gained popu
larity over the past decade due to its ability to perform fast computation. 
INLA has been used in a similar fashion to predict air pollution con
centration at high spatial resolution across the world (Shaddick et al. 
2018) and we believe our proposed approach could be scaled up for 
larger spatio-temporal domains. 

This study provides a necessary foundation for investigating the link 
between wastewater and COVID-19 prevalence at any desired spatial 
resolution. A previous study (Morvan et al., 2022) considered the rela
tionship between wastewater concentration and COVID-19 prevalence 
using the ONS-CIS survey and testing data on 45 STW catchment areas 
over the period July 2020 to March 2021. Specifying a spatio-temporal 
Bayesian model, they reported an overall good correspondence between 
the wastewater concentration and prevalence, concluding that waste
water can be used to provide reliable estimates of COVID-19 infections. 
Our approach similarly demonstrates the potential use of wastewater to 
track the space–time evolution of prevalence but also provides a 

comparison at LTLA level across England, while Morvan et al. (2022) 
focused only on the ONS-CIS sub-regions intersecting with the catch
ment areas. 

In line with Faraway et al. (2022), our results suggest that the 
spatiotemporal relationship between wastewater and prevalence is dy
namic, complex and potentially nonlinear. For example, the Spearman 
rank correlation between contemporaneous weekly LTLA-level pre
dicted values of viral concentration and debiased estimates of COVID-19 
prevalence reported by Nicholson et al. (2022), although predominantly 
positive, varied between about −0.25 and + 0.75 over the whole of the 
study-period; see Fig. 4 in Supplementary Material. The variability in the 
correlation could be driven by shedding still present in the vaccinated 
population (Nattino et al., 2022). Vaccination can also influence age- 
distribution of the disease, which in turn is related to shedding in 
wastewater (Sanjuán and Domingo-Calap, 2021). Additionally, external 
variables such as meteorology can play a role in diluting viral concen
tration (Foladori et al., 2021). All these aspects need to be accounted for 

Fig. 5. Correspondence between changes in wastewater viral concentration and changes in debiased prevalence. We show three periods: A. 1 June − 4 July 2021, B. 
4 October – 7 November 2021 and C. 27 December 2021 – 6 February 2022. Each LTLA is colour coded such that a dark green colour represents high probability 
(>0.8) of rise in both viral concentration and prevalence. Pale green indicates an LTLA at which neither viral concentration nor prevalence exhibited high probability 
of rise. Dark pink and light pink indicate, respectively, LTLAs where rise was detected in prevalence but not in viral concentration and those where rise was detected 
in viral concentration but not in prevalence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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in a principled way, calling for future research on modelling the rela
tionship between wastewater and prevalence. Nevertheless, we have 
demonstrated a high concordance between local week-on-week increases 
in wastewater concentration and debiased prevalence (Fig. 5), sug
gesting that the difficulties of calibrating current values of these two 
metrics need not prevent the use of wastewater-based epidemiology as a 
cost-efficient method for producing early warnings of local outbreaks 
that could be followed up by additional, more intensive sampling and/or 
focused public health action. 

In this study we have used weekly data, but we recognise that daily 
data may be better suited to assessment of leads or lags between the 
signals from wastewater and from traditional epidemiological metrics. 
However, this would present additional modelling challenges to account 
for potential weekly periodicity, the irregular pattern of wastewater 
sampling days leading to missing values (Safford et al., 2022) and the 
relatively greater variability in the lag between the times of infection 
and detection. Additionally, we assume that the temporal patterns of 
viral concentration are spatially correlated depending on the distance 
between STWs, which we acknowledge as a limitation of our model. A 
more realistic assumption would consider the sewage network structure 
and account for directions of the flows. However, this was not possible 
due to the lack of data regarding the sewage system at the high spatial 
resolution required for the model. As the predictor included in the model 
vary only in space (with the exception of the genomic characteristics), 
the temporal pattern of the viral concentration is covered mainly by the 
random effects. Future work will focus on extending the model to 
include spatio-temporal predictors, for instance related to environ
mental and hydrological dimensions. 

To conclude, in this paper we present a geostatistical framework that 
can be used for predicting wastewater concentrations over a continuous 
spatial domain. Our predictions are based on sampling from the pre
dictive distribution of the complete spatio-temporal surface of concen
trations over the area of interest. They can therefore be transformed 
directly into samples from the predictive distribution of any required 
summary of this surface. For example, they can be aggregated to 
whatever set of spatial units that is most relevant for public health 
policy, or can be used to detect locations that, with high probability, 
show a sustained increase over time. Also, the probabilistic basis of the 
predictions delivers measures of predictive uncertainty that can inform 
adaptive sampling strategies, for example by directing additional sam
pling effort at areas of high uncertainty (Srinivas et al., 2021). Our 
approach should be seen as a starting point for the development of a 
cost-effective public health surveillance framework in which 
wastewater-based epidemiology can play a valuable role. However, we 
stress that any such framework should be extended to include other data 
sources, such as randomised surveys and testing data, to enable quan
titatively accurate monitoring of disease evolution across a population. 
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