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S1. Features identified from the initial review of images 

As stated in the main paper, the first step of the interdisciplinary consensus process of object 

identification involved reviewing 100 images and listing visual features relevant to mobility, safety, 

leisure and play, daily life activities like shopping, air and noise pollution and sanitation and 

hygiene. The 24 reviewers collectively listed the following 113 features: 

 

Air conditioning unit; air pressure; aircraft; ambulance; animal; asbestos; ATV (all-terrain 

vehicle/Quadbike); bicycle; billboard; bird; building; bus; bus station (presence of); bush; car; cart; 

cat; cell tower; chair; chimney; clothes; clouds; construction site (presence of); cooking bowl; 

day/night time; debris; dog; door; drain; dust; electric wire; factory; factory (presence of); fence; 

field (presence of); fire; flat surface (presence of); food; goat; grass; haze (presence of); house; 

industrial engine; “keep off grass” sign; landfill; lawn; livestock; lorry; lorry station (presence of); 

loudspeaker; manhole; mannequin; market (presence of); motorcycle; musical instruments; open 

gutter; park (presence of); person; playing field (presence of); post; poster; pothole; potted plant; 

public transport (presence of); pylon; rain (presence of); road; road barrier; road guard rail; road 

sign; roof; shade (presence of); sheep; ship; shoes; sidewalk; skateboard; sky; smoke; stall; state 

of weather; cookstove; street light; table; tap; taxi; temperature; toilet; traffic; traffic light; train; 

trash; trash can; tree; tricycle; trolley; tro tro; truck; TV antenna; umbrella; unoccupied land 

(presence of); van; vegetation; vehicle (presence of); vendor; visibility; wall; water; water tank; 

wind; wind passages; window.  



S2. Labelling of objects in images 

In a pilot test, two of the authors (RN and EM) labelled two objects, namely person and car, in 

200 of our images, to establish feasibility of labelling and determine the time needed for labelling. 

We decided to label on the order of 103 images (O(103)) for transfer learning – i.e., (re)training 

and testing of a pre-trained convolutional neural network (CNN) – to balance performance and 

the time needed for labelling by the research team as described in the next section. Prior work 

has demonstrated that transfer learning with O(103) images allows a retrained CNN to have 

sufficiently good performance for object detection1,2. Increasing the number of images improves 

performance but at a slower rate3, which was also the case in our data as described below. We 

decided on an initial set of 1,250 images for training and evaluating the model, which led to good 

performance as we describe in detail below. These 1,250 images were drawn as a stratified 

sample from the 95 sites that had been operated at the time of labelling, evenly split between 

colour and greyscale images.  

 

Eleven of the authors labelled objects in these 1,250 images with a bounding box using LabelBox, 

an online labelling platform. Labellers were given visual examples of each object and thorough 

instruction to enhance consistency of labelling under different conditions (e.g., partially obscured 

and overlapping objects). Over the two-month labelling period, labellers were given feedback and 

all labels were reviewed by two of the authors (RN or EM) to ensure consistency with the 

guidelines before being accepted into the final set. In addition, thirteen images were re-labelled 

by multiple researchers against a benchmark set to evaluate labelling consistency and quality. 

The median correlation between labellers and benchmark labels for the number of objects 

identified was 0.84 (interquartile range 0.79-0.88). The average percentage overlap between the 

area of the bounding boxes in all benchmark labels and the labellers’ labels for all object 

categories was 44%. The final 1,250 labelled images contained 10,694 identified instances of the 

above 20 objects.  



S3. Stratification of images into training, validation and testing sets 

We used a genetic algorithm for stratification of images to maximise even proportions in the 

training, validation and testing datasets for all object categories, simultaneously stratified by 

frequency, size, and colour versus greyscale images. Size categorisations were based on those 

used for MS-COCO, with small, medium and large objects defined as those of <322, 322 to <962!"

#$%"&'(2 pixels, respectively. In this algorithm, “population members” consist of a sequence of 

1,250 non-repeating indexes, with each index each referring to a different image (represented by 

the integers 1 to 1,250). Initially, the first 1,000 indices were designated to the combined training 

and validation sets, and the final 250 to the test set. We began with a randomly initialised 

population of 7,500 members. These members underwent crossovers (random sub-setting and 

combination of any two members) and mutations (random reshuffling of some indices in a 

member), followed by fitness evaluation, such that each new population member contains exactly 

one copy of each labelled image. The fitness of each member was determined by how close the 

proportion of each object’s counts, separated by size class, match the ideal proportion in each 

set (e.g., whether the fraction of all small bicycles in the 1,000 training and validation image set 

is close to its 80% share of all images), as well as the proportion of colour and black and white 

images. This process was then repeated 100 times (or generations) with the best performing 

population member selected to split the 1,250 images into a 1,000-image training-plus-validation 

set and 250-image test set. The entire process was then repeated to split the 1,000 training-plus-

validation images into the 750-image training set and 250-image validation set with an even 

distribution of objects. This approach ensured that even objects such as cookstoves and 

loudspeakers, which numbered in only 18 and 17 instances, respectively, across all 1,250 images, 

were distributed as evenly as possible across the training, validation and testing splits, under 

similar visibility conditions. The genetic algorithm was implemented using the Python library 



DEAP4. 

  



S4. Data augmentation 

As stated in the main paper, we used two types of data augmentation to avoid over-fitting during 

training and identify objects in a broader set of conditions. The first augmentation strategy, 

implemented in Tensorflow Object Detection API V15, involved simultaneously applying a range 

of image level transformations that broadly corresponded to diverse circumstances that commonly 

occur in image datasets like ours that are captured over space and time. Examples include 

switching colour images to greyscale, changing brightness and hue, and cropping images which 

reflect variations in factors like time of day, weather, angle and the image-taking environment 

(e.g., obstructions). These were applied independently, each with the default probabilities of the 

Tensorflow Object Detection API V1, which are all <0.5. The second form of augmentation 

involved a learned augmentation policy6 that itself combines several image level transformations 

which have been empirically shown to improve learning for the purpose of object detection in 

diverse data sets. We implemented this strategy in combination with augmentation with random 

Gaussian patches7, which probabilistically applies a pixel-level noise with a Gaussian distribution 

to images and has been shown to improve out of sample performance of object detection models7. 

Using both augmentation strategies improved performance in our analysis compared to no 

augmentation or either data augmentation strategy in isolation.  



S5. Optimisation of training approach and hyperparameters 

We first determined the data augmentation strategy, learning schedule and the number of 

proposals (initial suggestions or priors for object locations) used by the model by training on the 

750 images designated for training and measuring, and iteratively improving, out of sample 

performance estimated on the 250 images designated as the validation set.  

 

Training was performed on full resolution 1920×1009 pixel JPEG format images using an NVIDIA 

QUADRO RTX 6000 GPU with Tensorflow Object Detection API V1. The algorithm was first 

trained with a Momentum optimizer and initial learning rate of 0.0003 for eight epochs without any 

augmentation, followed by eight epochs with the first augmentation strategy. Then it was trained 

with the second augmentation strategy for eight epochs with a learning rate of 0.0003, then 23 

epochs at a learning rate of 0.00003 and finally at a learning rate of 0.000003 until the mAP, which 

was our metric of model performance as described below, no longer improved (nine further 

epochs).  

 

The optimal number of proposals for the first stage of the Faster R-CNN detector, found via grid 

search, was 500 compared to the default of 300. Furthermore, retraining performance (measured 

by validation set mAP) was highest when adopting the same learning rate as used during the 

original training procedure on the MS-COCO dataset (8 epochs of 0.0003, 23 epochs at 0.00003, 

and then an indefinite number of epochs at 0.000003), compared to smaller learning rates which 

are used in some transfer learning applications. This may be because our images differ from 

those of the MS-COCO dataset the algorithm was initially trained on, requiring larger updates of 

parameters in the initial stages of training to learn features relevant to the new dataset.  



S6. Measurement of model performance 

We report mean average precision (mAP), which measures whether the network accurately 

identifies both the presence of an object and localises its location and size, as represented by its 

boundaries8. A true positive is defined when the predicted bounding box overlaps with the ground 

truth box above a range of intersection-over-union (the overlapping area between two bounding 

boxes divided by the area of their union) thresholds, from 0.50 to 0.95 in 0.05 intervals, and is 

identified as the correct object category. Identification is defined as when the final layer object 

classifier produces a confidence score above a range of thresholds for a given object category. 

Precision is defined as the proportion of bounding boxes that are true positives while recall is the 

fraction of true-positive detections as a proportion of all ground truth boxes. The average precision 

is the area under the precision-recall curve, obtained from varying the confidence score 

thresholds. The mean refers to the mean taken across different intersection-over-union overlap 

thresholds, and confidence scores either for individual object categories or across object 

categories. This metric was originally constructed to evaluate performance of diverse models on 

the MS-COCO dataset9.  

 

At the time of model selection, state-of-the-art performance mAP for a model on a subset of MS-

COCO data was ~0.35, and median performance among commonly used models on this dataset 

was ~0.2. Transfer learning is able to improve performance mAP by ~0.1 as compared with 

training from scratch3. Consistent with the commonly used models, we set a target mAP of 0.2 for 

our fine-tuned network. This choice also takes into account some of the detection challenges 

posed by our data, compared to a dataset like MS-COCO. Specifically, images such as those in 

the MS-COCO dataset that were collated for the purpose of training an object detection model 

generally comprise higher resolution images with objects typically represented at a larger size or 

at the extreme as single object shots. In contrast, object density in many of our images is high 

(~100 objects in some images) and many objects overlap with one another in the field of view. 



This means that the task of localizing an object within an image, as measured by mAP, is 

particularly challenging. Further, as stated above, the number of images in our labelled data is 

many orders of magnitude smaller than what is typically needed to train an object detection 

algorithm. 

 

The network that was trained on 750 images achieved a mAP of 0.218 on the validation set of 

250 images, crossing our performance threshold for data labelling. We also trained, in distinct 

trials, on 100, 200, 300, 400, 500 images (stratified the same way as described in the main text) 

and fitted a curve to model the resultant mAPs as a function of the number of images used for 

training. We found that mAP followed an approximately logarithmic relationship with the number 

of images used for training (R2 = 0.978), as also seen in prior work3. With such a gain, a five-fold 

increase in data labelling beyond the selected number of 1,000 would only yield a +0.07 increase 

in mAP, guiding our choice of 750 for training optimisation and 1,000 for retraining the final 

network.  

 

On the independent test set of 250 images, the final model achieved a mAP of 0.211 when 

averaged across objects, close to a predicted value of 0.23; when weighted by frequency of 

different objects mAP was 0.318. Individual object categories similar to those found in MS-COCO 

(people, most types of vehicles, umbrellas and animals) generally achieved higher mAP than 

those of more novel classes such as market stalls, cooking pots/bowls, debris and trash 

(Supplementary Table 2). When the threshold for intersection-over-union was fixed at 0.5, the 

mAP increased for all object categories, more than doubling for categories whose boundaries are 

harder to identify (e.g., cooking pot/bowl, trash, food and market stall). The model identified zero 

instances of market vendors, loudspeakers and cookstoves during testing, possibly because they 

are novel, variable in their appearance and overlap with other categories (e.g., market vendors 



were identified as persons, which is correct but incomplete). There were nonetheless exceptions 

– for example, taxis (which are a type of car) were identified with a mAP of 0.480.  



S7. Fixed site data down-sampling for hour of day analysis 

When reporting object counts by time of day, we down-sampled the object-counts data from fixed 

sites so that fixed site data, which recorded images for 15 months, contributed the same amount 

of data as rotating sites, which recorded images for a single week each. Down-sampling was 

carried out for images containing each object type, at each hourly interval and at each of the ten 

fixed sites. For a given hourly interval at a given site, the counts of an object were ordered and 

every nth image was selected so that the resulting total number of down-sampled images was 

about 84, equivalent to 2,016 (= 24 × 84) images for an entire week (exactly one week's image 

quantity at a rotating site). For example, for images containing umbrellas at a site with one camera 

that took 3,678 images from 00:00:00 to 00:59:59 over its entire 15 months of operation, we 

ordered the images by the counts of umbrella from smallest to largest and selected every 45th 

image. Selecting every 45th image gave 82 (from 3,678/45) images which is close to the target of 

84 in an hour at a rotating site. In addition to every 45th count, the smallest and largest counts 

were also selected in order to preserve the full range of the distribution within each hour. Through 

the ordered sampling, each down-sampled hourly distribution has the same object count 

distribution as the original hourly-distribution range which is harder to preserve with simple 

random sampling.  
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Supplementary Figure 1. Extent of missingness of images. 

For each site, the figure shows the proportion of target measurement period with zero, one or two 

cameras (for sites with two cameras) and zero or one camera (for sites with one camera). Rotating 

sites are ordered by data availability.  



  



Supplementary Figure 2. Distribution of selected object counts across images by day of 

week.  

The distributions are shown for fixed sites because at these sites data were collected over an 

entire year which means each day of week was sampled multiple times. The figure used data for 

daytime (06:00-18:00) because night time variability was smaller. The figures show the cumulative 

probability distribution (CDF) which shows the cumulative percentage of images at each object 

count. The higher the CDF curve, the smaller the object count, and vice versa.  



   



Supplementary Figure 3. Co-occurrence of objects in images. 

The figure shows the correlation coefficient among object categories, calculated across all 

images. The number in parentheses shows the p-value for the correlation coefficient.  



  



Supplementary Figure 4. Object count distributions at different hours of the day at fixed 

sites. 

Each panel shows the distribution of object counts at each hour of the day for fixed sites. The 

sites are divided by land-use type: low- and medium-density (formal) residential; informal, mostly 

high-density, settlements and slums; commercial, business and industrial areas; and peri-urban 

areas that are predominantly forest, farmland, grassland or barren land.  



  



Supplementary Figure 5. Object count distributions at different hours of the day at rotating 

sites. 

Each panel shows the distribution of object counts at each hour of the day for rotating sites. The 

sites are divided by land-use type: low- and medium-density (formal) residential; informal, mostly 

high-density, settlements and slums; commercial, business and industrial areas; and peri-urban 

areas that are predominantly forest, farmland, grassland or barren land.  



  



Supplementary Table 1. Performance of the retrained model before and after optimisation. 

For each object category, and across all categories combined, the table shows mean average 

performance (mAP), which is defined in SI S6, before and after optimizing the training procedure. The 

network was trained on the 750 images in the training set and tested on the 250 images in the validation 

set.  

Object Counts in 
combined 
training set 

(750 images) 

Counts in 
validation set 
(250 images) 

mAP‡ before 
optimisation 

mAP‡ after 
optimisation 

Percentage 
change 

Person 2,543 788 0.408 0.408 0% 
Car 981 321 0.364 0.457 +26% 
Trash 637 189 0.117 0.122 +4% 
Tro tro 437 114 0.416 0.427 +3% 
Debris 392 118 0.057 0.057 0% 

Umbrella 359 119 0.404 0.445 +10% 
Taxi 267 96 0.343 0.464 +35% 
Cooking 
bowl/pot 

108 35 0.070 0.144 +106% 

Pick-up truck 105 35 0.273 0.249 -9% 
Market stall 97 36 0.065 0.152 +134% 
Food 99 29 0.121 0.143 +18% 
Motorcycle 95 31 0.360 0.345 -4% 
Lorry 82 25 0.166 0.244 +47% 
Van 79 26 0.069 0.121 +75% 
Street 
vendor 

77 20 0.001 0.035 +3500% 

Animal 55 19 0.178 0.185 +5% 
Bicycle 40 13 0.333 0.384 +15% 
Bus 15 5 0.002 0.115 +5750% 
Cookstove 11 3 0 0 0% 
Loudspeaker 11 2 0 0 0% 
Total 
(average of 
categories) 

6,490 2,024 0.187 0.225 20% 

‡ Mean average precision mAP was calculated as described in SI S6 with varying intersection-over-

union thresholds  



Supplementary Table 2. Performance of the final object detection model. 

For each object category, and across all categories combined, the table shows mean average 

performance (mAP), which is defined in SI S6. The network was trained on the 1,000 images in the 

training and validation sets and tested on the 250 images in the test set.  

Object Counts in combined 
training and validation 

set (1,000 images) 

Counts in testing 
set (250 images) 

mAP‡ mAP@0.5‡ 

Person 3,331 855 0.389 0.728 
Car 1,302 336 0.400 0.673 
Trash 826 211 0.092 0.205 
Tro tro 551 139 0.367 0.622 
Debris 510 128 0.061 0.122 
Umbrella 478 139 0.437 0.735 
Taxi 363 85 0.480 0.681 
Cooking bowl/pot 143 34 0.072 0.181 
Pick-up truck 140 34 0.272 0.425 
Market stall 133 35 0.098 0.192 
Food 128 32 0.064 0.165 
Motorcycle 126 31 0.314 0.729 
Lorry 107 28 0.336 0.473 
Van 105 26 0.044 0.088 
Street vendor 97 22 0 0 
Animal 74 19 0.295 0.579 
Bicycle 53 13 0.195 0.375 
Bus 20 5 0.307 0.438 
Cookstove 14 4 0 0 
Loudspeaker 13 4 0 0 
Total (frequency 

weighted) 
8,514 2180 

 
0.318 0.575 

Total (average of 
categories) 

NA NA 0.211 0.370 

‡ Mean average precision mAP was calculated as described in SI S6 with varying intersection-over-

union thresholds, and mAP@0.5 with a single intersection-over-union threshold of 0.5. 

 


