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Aerosol effects on clouds are concealed by
natural cloud heterogeneity and satellite
retrieval errors

Antti Arola 1 , Antti Lipponen 1, Pekka Kolmonen1, Timo H. Virtanen 1,
Nicolas Bellouin 2, Daniel P. Grosvenor3, Edward Gryspeerdt 4,
Johannes Quaas 5 & Harri Kokkola 1

One major source of uncertainty in the cloud-mediated aerosol forcing arises
from the magnitude of the cloud liquid water path (LWP) adjustment to
aerosol-cloud interactions, which is poorly constrained by observations. Many
of the recent satellite-based studies have observed a decreasing LWP as a
function of cloud droplet number concentration (CDNC) as the dominating
behavior. Estimating the LWP response to the CDNC changes is a complex task
since various confounding factors need to be isolated. However, an important
aspect has not been sufficiently considered: the propagation of natural spatial
variability and errors in satellite retrievals of cloud optical depth and cloud
effective radius to estimates of CDNC and LWP. Here we use satellite and
simulated measurements to demonstrate that, because of this propagation,
even a positive LWP adjustment is likely to bemisinterpreted as negative. This
biasing effect therefore leads to an underestimate of the aerosol-cloud-climate
cooling and must be properly considered in future studies.

The climate warming effect of increases in greenhouse gases (GHGs)
has been offset to some extent by a cooling effect induced by emis-
sions of anthropogenic aerosols and their precursors1. Aerosols affect
the Earth’s energy budget and climate directly by scattering and
absorption of radiation and indirectly by the alteration of cloud
properties via increasing the number of cloud condensation nuclei
(CCN) and the cloud droplet number concentration (CDNC). The total
effective radiative forcing due to this increase in aerosols is the most
uncertain component of the historical radiative forcing of Earth’s
climate1. Themost significant part of this aerosol related uncertainty is
linked to aerosol-cloud interactions (ACI)1,2.

The effect of ACI, expressed as an aerosol-inducedperturbationof
the net radiative energy flux into the climate system, is typically
quantified as the effective radiative forcing of ACI (ERFaci). ERFaci from
liquid water clouds probably dominates the total ERFaci

2 and is usually
divided into two components: (1) an instantaneous radiative forcing
induced by an increase in CDNC, often called the Twomey effect3, the

cloud albedo effect, or the 1st indirect effect, and (2) rapid adjustments
of other cloud properties in response to this increase in CDNC. The
most important pathways of these rapid adjustments are the CDNC
driven changes in the cloud liquid water path (LWP) and in the cloud
fraction (CF), with corresponding forcings.

It has been hypothesized that an increase in aerosol load can
cause an increase in the cloud liquid water content through a delay in
precipitation4 that would manifest itself as a positive cloud LWP
adjustment. On the other hand, modeling evidence has shown that the
altered droplet size distributions can affect the entrainment mixing of
clouds with the surrounding dryer air thus reducing LWP (e.g., ref. 5).
Early studies investigating the LWP response to aerosol
perturbations6–9 considered the relationship of LWP with aerosol
optical depth or related quantities. Such aerosol measurements are
prone to aerosol swelling effects leading to flawed relationships10

between LWP and aerosols. Also, as demonstrated by Ma et al.11, the
low aerosol loading conditions are typically not well characterized by
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satellites, conditions that are the most relevant ones for the aerosol-
cloud interaction studies. Only rather recently have there been
satellite-based studies on LWP adjustments that use CDNC as an
aerosol proxy. The results have not given a clear and consistent picture
about the LWP adjustment effect; some studies have postulated that
changes inCDNCcan enhance LWP12, some showed that they have only
aminimal overall effect13, and others have shown that enhanced CDNC
can even reduce LWP10,14,15. It is a complex task to estimate the LWP
responses to the CDNC changes since various confounding factors
need to be isolated, e.g., the co-variability between CDNC and LWP
induced bymeteorological effects15. As such, it is challenging to isolate
and estimate the true one-way causal effect16.

We argue here that there are important aspects of the estimation
of LWP adjustments using satellite observations that have not been

sufficiently considered before: the treatment of retrieval errors in the
satellite-based cloud optical depth (COD) and cloud effective radius
(CER) retrievals, and the effects due to spatial heterogeneity in cloud
fields caused by, for example, clouds in different stages of their
development and spatial variability in updraft velocities. There are
several sources of uncertainty in cloud retrievals, such as the sub-pixel
inhomogeneity or 3-D cloud effects. These and other sources of
uncertainty are discussed in detail in e.g., Grosvenor et al.17. However,
based on the cloud fields we examined more closely in this study, it
would seem that the natural heterogeneity of cloud fields plays amore
substantial role in causing a bias in the LWP adjustment estimate than
COD or CER retrieval uncertainties. The errors and spatial hetero-
geneity in COD andCER retrievals propagate into CDNC and LWP17 and
are very likely to confuse the interpretation of LWP adjustments using
the commonly-employed method of logarithmic-scale relationships
between LWP and CDNC10,15. In this paper, we first show how errors in
real satellite COD and CER retrievals or spatial heterogeneity in cloud
fields influence the CDNC-LWP relation. Then, we use synthetic data to
demonstrate howadding realistic retrieval errors and spatial variability
changes an imposed strongly positive CDNC-LWP relationship into a
negative one of the type seen in previous studies (e.g., refs. 10, 15).

Results
CDNC-LWP patterns obtained with MODIS aerosol and cloud
products
We analyzed level-2 (L2) Moderate Resolution Imaging Spectro-
radiometer (MODIS) data over the ocean, both for aerosol and cloud
products, covering four subtropical regions that are often focused on
in satellite-based studies of aerosol-cloud interactions, namely the
North and South Atlantic and the North and South Pacific. We calcu-
lated CDNC and LWP using 1 km L2 resolution cloud products, as
explained inmore detail in “Methods", and then aggregated them into
0.25° or 1° spatial resolutions depending on the particular analysis
being performed.

First we examine the relationships obtained over large spatial
regions of order a few thousand kilometers across and using data
gathered over a period of five years (2014–2018). Figure 1a shows the
results for the Pacific North with the other regions shown in Supple-
mentary Figs. 1–3. In all four regions we observed similar logarithmic-
scale relationships between LWP and CDNC to those that have been
shownpreviously in the literature (e.g., in Fig. 3 inGryspeerdt et al.10 or
in Fig. 4 in Possner et al.15). Over such large spatial and temporal scales
it is likely that co-variability between aerosols and clouds will be
influencing the relationship between LWP and CDNC. For example,
particular climatological meteorological features in one part of a

10 100 1000

10

100

1000

1

10

100

N

Binned mean LWP

10 100 1000

10

100

1000 N: 72

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 D
ai

ly
 m

ea
n 

ae
ro

so
l i

nd
ex

10 100 1000

10

100

1000 N: 13

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 D
ai

ly
 m

ea
n 

ae
ro

so
l i

nd
ex

Fig. 1 | Liquidwaterpath (LWP) vs clouddroplet number concentration (CDNC)
relationships obtained from satellite data over decreasing spatiotemporal
scales. Similar increasing and then decreasing paired LWP vs CDNC relationships
are observed in all cases indicating that processes occurring at small spatio-
temporal scales are causing the relationships. Panel a shows a 2Dhistogramof LWP
and CDNC 1 × 1° daily datapoints taken over 1825 days for the whole of the Pacific
North region (20–35° N, 110–150° W; ocean only) with colors showing the number
of datapoints and the circles/bars showing the mean LWP± the standard deviation
for specific CDNC bins. Panel b shows LWP binned by CDNC for the same area and
period, but now using only daily snapshot data for each line in order to limit
meteorological variability over time. Additionally, the daily standard deviation of
the Aerosol Index is limited to below 0.04 in order to limit the impact of aerosol
changes on the observed relationships. N shows the number of days in the plot and
only those days are shown for which the number of datapoints Nday exceeds 150.
Only those points are shown for which the number of datapoints per CDNC bin
exceeds 4. Lines are colored by the area mean AI. Panel c shows the same as for
b except that amuch smaller region (5 × 5°) is used in order to limitmeteorological
variability, and thresholds Nday > 100 and NB > 3 are used. MODIS data aggregated
to 0.25 × 0.25° scale was used in c to increase the number of datapoints.
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region may be associated with low CDNC and high LWP whereas the
meteorological regime in another part of the regionmay be associated
with high CDNC and low LWP; combining the two would produce a
negative relationship between LWP and CDNC.

To combat this we also consider the relationships obtained when
considering only one snapshot in time (Fig. 1b), which removes the
effect of meteorological variability over time and then further restrict
the analysis to much smaller regions (5 × 5°; Fig. 1c) in order to reduce
the impact of larger scale spatial meteorological variability. Further-
more, we only show the LWP vs CDNC relationships from those
snapshots where the spatial aerosol variability was very low in order to
choose cloud fields with a constant aerosol load. In such cases the
dependence of relationships between LWP and CDNC on confounding
large-scale meteorological factors or changes in CCN concentrations
should be reduced. The relationships would therefore be most likely
due to satellite retrieval errors in the COD and CER variables used to
estimate CDNC and LWP, or to be due to natural spatial heterogeneity
in COD and CER fields occurring in such a way as to violate the
assumptions made for the CDNC and LWP retrievals (see Methods).

As can be concluded from both Fig. 1b, c (and from the Supple-
mentary Figs. 1–3), the patterns are very similar no matter the spatial
scale: a negative CDNC vs. LWP slope appears at higher cloud droplet
concentrations. Since we deliberately excluded the effects of aerosols
and large-scale meteorology here, the CDNC-LWP patterns are mainly
due to spatial heterogeneity in the cloud fields or retrieval errors in
LWP or CDNC. Spatial variability could arise due to variation in updraft
velocities, varying stages of cloud development, varying degrees of
cloud top entrainment, etc., which may introduce changes in CER or
COD that are not consistent with the assumptions of the CDNC and
LWP retrievals (see Methods) and may therefore cause biases in the
CDNC and LWP values. CER and COD retrieval errors would also
introduce biases in CDNC and LWP. Hence the obtained relationship
between them could also be biased.

The LWP vs CDNC relationships can be also affected by the
occurrence of precipitation (e.g., refs. 16, 18). Therefore, we made one
additional analysis by separating our dataset to include only cases
when CER was smaller than 15μm, which threshold has been often
used as an approximate indicator of precipitation (e.g., refs. 19, 10).
These results are shown in Supplementary Fig. 5. Regardless of howwe
separately focus on raining vs. non-raining clouds, it is apparent that
the biasing effect exists and becomes even more obvious in the con-
ditions of non-raining clouds. This is fully understandable and in line
with our main message: the spatial variability of CER introduces a bias
whichmoreover becomes stronger in conditions where the CER values
are lower on average.

On CDNC-LWPpatterns obtained with simulatedmeasurements
Now we use simulated satellite measurements with varying levels of
spatial variability and retrieval error in COD and CER to show how they
can lead to the misinterpretation of the LWP-CDNC relationship. We
could not separate these two effects in our simulations and so we are,
strictly speaking, simulating the impact of both spatial variability and
retrieval errors, which will be referred to collectively as “error” from
here onwards.

We constructed a simulated dataset by assuming adiabatic cloud
liquid water content profiles with constant CDNC throughout the
cloud depth as is also assumed for CDNC and LWP satellite retrievals.
Starting with given LWP and CDNC values we varied the CDNC
according to a prescribed dlnCDNC/dlnCCN value, and also assumed a
prescribed LWP adjustment effect (described in detail in “Methods").
This dataset forms our “truth” cloud dataset with a built-in positive
relationship between LWP andCDNC.We then also created a dataset in
which we separately applied CER and COD errors to the values from
the truth dataset using samples from a normal distribution of errors
with zero mean and with a given standard deviation (σe). These were

then used to generate a new set of LWP and CDNC values to simulate
the effect of random errors and variability.

Figure 2a shows one simulated example case of COD and CER with
errors. In this case we set a lower bound for CDNC of 40 cm−3 corre-
sponding to aCCNvalue of 100 cm−3 and LWPof 80g/m2. CDNCwas set
to increase towards higher CCN amounts following a fixed dlnCDNC/
dlnCCN value of 0.8. The LWP adjustment was set as dlnLWP/
dlnCDNC=0.5. With these selections, our overall range in LWP was
similar to that observed in someprevious studies (e.g., ref. 10). The LWP
adjustment thatweassume is stronger than that found in earlier studies.
In this example, we deliberately introduced a strong positive LWP
adjustment to demonstrate that the data with errors can easily disguise
a positive adjustment and lead to a negative or ambiguous diagnosed
LWP-to-CDNC relationship. In Fig. 2a the simulated CDNC is shown
against LWP. The true imposed LWP adjustment in the error-free data-
set is shown by circles. Despite the assumption of a positive LWP
response to CDNC, it seems unlikely from the form of the data cloud
that the prescribed positive slope could be obtained by fitting a linear
regression line using standard methods.

From the Fig. 2b where the data has been binned by CDNC it
becomes clear that this emerging LWP adjustment pattern very much
resembles the increasing and then decreasing LWP vs CDNC relation-
ship obtained in several earlier studies10,15 and in the previous section.
In this case, a relative error distribution with σe = 15% in COD and CER
was used, while the Fig. 2c shows the effect of varying the relative and
absolute error. As the errors in COD and CER increase, the peak in the
LWP curve moves towards a lower CDNC (Fig. 2c). In all cases here the
prescribed LWP adjustment of dlnLWP/dlnCDNC was a positive value
of 0.5, which is illustrated by the simulationwith zero error in COD and
CER (black line).

In the analysis shown in Fig. 2 we introduced various levels of
variability/error into COT andCER,while the Equation (1) suggests that
the possible variability of αwould introduce a similar effect toCODbut
more strongly (COD is taken to the power of 0.5). This variability could
be caused, for example, by the fact that the true adiabatic fraction
deviates from constant sub-adiabacity assumed in the bulk coefficient
of α. This motivated us to make one additional simulation, where COT
and CER uncertainties were 15%, and the relative variability/error of α
parameter was 0%, 15%, and 25%. Those results are shown in Supple-
mentary Fig. 4, and show that the descending branch of LWP vs. CDNC
starts with somewhat higher CDNC values, if α is varied too. However,
the main pattern and the negative “LWP branch" is there, still in line
with the main message of our study.

Overwhelmingly, the main cause of the negative LWP vs CDNC
slopes is the error in CER. The error in COD causes a slightly more
positive slope than that imposed, but it is a very small increase.
Figure 3 shows simulations where the impacts of the relative COD or
CERerror distributions (with σe = 25%)were separately removed for the
CDNC and LWP calculations in order to test their effect on the LWP vs
CDNC relationship. The combined errors for both COD and CER were
also removed for just the CDNC calculations and then for just the LWP
calculations. There are a few details worth highlighting. First, in the
case where the COD and CER errors affected only the LWP calculation
(panel (d) and purple line in panel (f)), the observed relationship
becomes very close to the black line case of no error. This should not
be surprising, since the data are binned againstCDNC. Then, of course,
the relative error in COD and CER causes a significant error in LWP,
which however gets almost averaged out and themedian LWP for each
CDNC bin is very close to the no error case. This suggests that any
improvements in data quality should be focused on the CDNC calcu-
lation rather than in the LWP calculation; this fact also likely explains
why using LWP data from the Advanced Microwave Scanning Radio-
meter for EOS (AMSR-E) produces LWP vs CDNC relationships that are
not substantially different from that obtained using MODIS LWP data.
The second point is that it is the variability in CER that is the main
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Fig. 2 | Simulated liquid water path (LWP) against cloud droplet number con-
centration (CDNC) for thecaseof cloudopticaldepth (COD) andcloudeffective
radius (CER) error of 15%. dlnCDNC=dlnCCN=0:8 and dlnLWP/dlnCDNC=0.5
were prescribed. The initial values of 100 cm−3 for cloud condensation nuclei
(CCN), 40 cm−3 for CDNC and 80 gm−2 for LWPwere assumed. a The CER is shown
as color bar. The circles show the imposed relationship in the LWP adjustment

(dlnLWP/dlnCDNC). b The box-plot of the same results shown in panel a. The red
dots show the mean, blue horizontal lines show the median and the box height is
determined by the first and third quartiles. cMedian values resulting from varying
levels of relative/absolute error. Unit of absolute CER error is μm and absolute
COD error is unitless.
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ment was set to 0.5. a Variability was applied to both CER and COD and propagated
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Both COD and CERwere without variability (black line); CERwas accurate but COD
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(red line); CER and COD errors influenced only LWP calculation (purple line); CER
and COD errors influenced only CDNC calculation (yellow line); CER and COD
errors influenced both LWP and CDNC calculation (dashed black line).
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reason for the negative slope, which can be seen from the red line case
where only the error in CER was included.

In the previous simulation case, the CCN concentration
increased from100 to 700 cm−3, which corresponded toCDNCvalues
from 40 to 190 cm−3 given our assumed relationship between CDNC
andCCN. But perhaps evenmore visually clear is to consider only two
separate cases of CCN concentrations, representing for example less
and more polluted sectors; e.g., out-of-plume and in-plume regions
in analyses of aerosol plumes or pre-industrial and present-day
conditions. Therefore, we also simulated a less polluted case
assuming values of CER and LWPof 13 μmand 100 gm−2, respectively,
and a more polluted case values of CER and LWP of 10 μm and
130 gm−2, respectively. These values were assessed based the Table in
Toll et al.14, as typical/reasonable values to represent these two sec-
tors. We then applied a relative error distribution with σe = 25% for
both COD and CER. In Fig. 4 CDNC-binned mean values of LWP are
shown separately for both cases and for the combined dataset
(dashed line). The prescribed conditions are shown by large circles,
whereas the variation in individual “observations" due to the
imposed error distributions, is considerable and bends both the less
and more polluted LWP lines down as a function of the CDNC. The
dotted line shows the mean LWP of the combined dataset and thus
represents the pattern that has been often interpreted as LWP
adjustment. However, it is to be emphasized that the errors in both
datasets are only due to the variability in CODandCERwe introduced
and only the comparison between the low and high CCN datasets
could reveal the cloud response to aerosol perturbation.

In the simulations shown in Fig. 4, the errors inCOD andCERwere
not correlated. In Supplemenary Fig. 6, we show also cases when there
was a perfect positive (Supplementary Fig. 6a) or negative correlation
(Supplementary Fig. 6b) between COD and CER errors. As can be seen,
the negative slope cannot be avoided, even in the case of perfect
negative correlation. On the other hand, it gets very pronounced with
the positive correlation and evidence suggests20 that some level of
positive correlation is more likely than negative correlation for COD
and CER errors, in other words the kind of cases when optically thicker
clouds are more likely to have higher cloud top CER.

Supplementary Figure 7 illustrates the inter-dependencies
between LWP and CDNC when calculated by satellite-measured COD
and CER using Eq. (1) and (2). If one imagines a positive slope of
increasing LWP as a function of CDNC, it is apparent that the error in
CER introduces errors in CDNC and LWP roughly along a COD isoline.
So this further explains the more important role of CER error. One
additional point can be raised from this figure. In many cases a COD
threshold of 4 has been used to exclude cases of lower COD. As shown
by this figure, in some cases it can contribute to amplifying the nega-
tive slope of dlnLWP/dlnCDNC when the threshold of LWP values
excluded is increasing with decreasing CDNC. In the Figure, there are
also a few circles and lines connecting them to further illustrate the
simulation cases of the previous figure. The large red and blue circles
show the mean conditions in the less and more polluted cases,
respectively. Positive LWP adjustment was again assumed, which is the
y-axis distance between the red and blue circles. Given the large
variability in data (and illustrated by the Fig. 4), it is not straight-
forward to isolate the impact on the LWP vs CDNC relationship due
only to aerosols from the impact of the errors. However, this is fun-
damentally important to consider in future studies.

We have emphasized that both the spatial cloud variability and
retrieval errors in CER and COT are similar sources for negative bias in
LWP adjustment. Regarding our simulations, we also emphasized that
it was not possible to separately assess these. It is similarly difficult to
separate and quantify the roles of the retrieval errors and spatial cloud
variability using satellite data. We tried, however, at least on some
level.We analyzedNovember-December 2018MODISdata fromPacific
South region, day-by-day and visualizing LWP and CDNC fields sepa-
rately and then their common behavior (LWP vs. CDNC). Very typical
case is selected and shown in the Supplementary Fig. 8, demonstrating
that even if the MODIS COD and CER data is restricted to cases with
lower uncertainty, the negative behavior between LWP and CDNC is
very evident, albeit the pattern becomes somewhat less steep. With
this data over limited spatial and temporal region, wet get further
confirmation that both spatial cloud variability and retrieval errors
play a role and indeed biasing to the same direction.

Discussion
In earlier studies resulting in negative LWP adjustments inferred from
satellite measurements, physical cloud processes were discussed as the
main candidates for these effects, and there are indeed entirely plau-
sible physical mechanisms that could have produced the inferred
relationships. However, it should be stressed that now in our simulated
dataset only two possible reasons could have caused any LWP vs. CDNC
patterns: (1) the prescribed LWP adjustment, and (2) the retrieval errors
and spatial variability in COD and, particularly, in CER. In the particular
case shown in Fig. 2, the prescribed LWP adjustment was significantly
positive. Nevertheless, we see similar patterns to those obtained in
many earlier studies that concluded a negative LWP adjustment effect.

As we demonstrated in this study, the retrieval errors in satellite-
based cloud parameters and/or spatial variability in cloud properties
can cause a clear bias in estimates of LWP adjustment. It would
therefore be extremely important to find a way forward, which could
be through much more accurate estimates of LWP and CDNC, the
latter in particular. One avenue for improving CDNC estimates could
include synergy and data fusion of active and passive remote sensing
capabilities. This could also help to alleviate the issues caused by
natural variability of the type represented by our simulated dataset
whereby there is variability in CER that is inconsistent with the
assumptions of the retrievals. On the other hand, even then true spatial
cloud field variability remains, which may be causing LWP vs CDNC
relationships that are not caused by aerosol variability due to
meteorological co-variability, which we have not directly tested in our
simulated dataset. Therefore, advances should be made to better
explore and characterize such variability.

Fig. 4 | Simulation of less and more polluted cases. For less polluted case (red
dots) assuming values of cloud effective radius (CER) and liquid water path (LWP)
of 13μm and 100gm−2, respectively, and for more polluted case (blue dots) values
of CER and LWP of 10μm and 130gm−2, respectively. Relative error of 25% was
assumed for both cloud optical depth (COD) and CER. Cloud droplet number
concentration (CDNC) binned mean values of LWP are shown for both cases
separately and also for the combined dataset including both cases (dashed line).
Large red and blue circles show the initial values for CDNC and LWP for the less and
more polluted case, respectively.
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We believe that one promising way forward could be Bayesian
inference, where both cloud albedo and LWP adjustment effects are
simultaneously estimated and the underlying errors are modeled and
taken into account as thoroughly as possible. The use of Bayesian
inference is an ongoing study in our group and will be the topic of a
futurepaper. Anotherway forwardwouldbe todirectly retrieve CDNC,
rather than inferring it fromCER and COD. This would at least partially
alleviate the problem and allow for a statistical treatment of mea-
surement errors. This avenue, too, is the subject of ongoing research.

Methods
Droplet concentration and LWP estimates
It should be emphasized that in the MODIS cloud product, cloud
effective radius (CER, re) and cloud optical depth (COD, τc) are the only
retrieval products, while liquid water path (LWP) and cloud droplet
number concentration (CDNC) are calculated by specific functional
relationships from re and τc, in our case using the following equations:

CDNC=α × τ0:5c × r�2:5
e ð1Þ

LWP=5=9× re × τc, ð2Þ

where α is 1.37 × 10−5 m−0.521. These equations have been used in several
publications e.g., in the Appendix A of Gryspeerdt et al.10. For such
derivations it assumed that the cloud liquid water content profile is a
constant fraction of its adiabatic value, that the CDNC is constant
throughout the cloud depth and that CER is proportional to the
volume mean radius. Our version (Equation (1)) is making use of the
adiabatic assumption21.

Generation of simulated measurements
We constructed a simulated dataset in order to demonstrate how
natural variability in cloud properties and errors in cloud property
satellite retrievals influence the satellite-based estimate of the aerosol
impact on LWP. In our simulations, we varied the relative and absolute
levels of random errors in COD and CER. It is to be emphasized that
such errors could result both from errors in satellite-retrieved cloud
parameters and from natural variability in cloud fields.

Wefirst of all created a baseline ("true”) dataset basedon the same
assumptions used for the CDNC derivation described above. We
selected initial values of 100 cm−3 for CCN, 40 cm−3 for CDNC and
80gm−2 for LWP and calculated the correspondingCER andCODusing
Eq. (1) and (2). Then, we increased CDNC based on
dlnCDNC=dlnCCN=0:8, followed by an increased LWP based on
dlnLWP/dlnCDNC=0.5, which introduced a positive LWP adjustment
effect. CCN was then increased step-wise until it reached a value of
700 cm−3. In each step, we calculated CDNC, LWP, CER, and COD.
These values can be considered to represent “true" values since none
of the variables include spatial variability or retrieval errors.

Satellite-based LWP adjustment effects (the patterns of dlnLWP/
dlnCDNC) can potentially get biased due to the variability in COD and
CER. This variability in COD and CER may come from two sources.
First, satellite-retrieved CER and COD include some amount of error.
Second, there is “natural" CER and COD variability over large-scale
heterogeneous clouds, which is not related to the aerosol concentra-
tion, and which may arise, for example, due to cloud top entrainment
or other processes causing clouds to deviate from the assumptions
made in the CDNC and LWP derivations. We call this natural variability
in this paper.

Because of the above-mentioned retrieval errors and natural
spatial variability in cloud parameters, we introduced errors into the
CER and COD values and used those values to create a new dataset of
CDNC and LWP values using Eq. (1) and (2). For simplicity, we chose
100,000 CCN samples from a given CCN range and calculated

corresponding ’true’ CER and COD values. Then, random error from a
normal distribution was added to the CER and COD distributions,
respectively. Unphysical negative CER and COD values were removed
before new corresponding CDNC and LWP values were calculated. The
normal distributions are centered on zero and we quote the standard
deviation of the error distribution in the text. We did this for both
relative and absolute errors.

MODIS L2 measurements
We used the level-2 (L2) Moderate Resolution Imaging Spectro-
radiometer (MODIS) cloud product from Collection 6.122 to obtain
COD and CER, as well as aerosol product23 to obtain AOD and
Ångström Exponent. We intentionally selected regions of marine
clouds that have been previously frequently studied and thus a rea-
sonable choice was to select the same four areas as in Painemal et al.24:
two regions in the Pacific Ocean (Pacific North 20–35°N, 150–110°W;
Pacific South 10–30°S, 110–70°W) and two regions in the Atlantic
Ocean (Atlantic North 20–35°N, 50–10°W; Atlantic South 0–30°S,
15°W–15°E). In calculating CDNC and LWP according to Eq. (1) and (2),
we included only liquid, single-layer clouds with a top warmer than
268K at 1 km resolution. We applied exactly the same filtering as
suggested in Gryspeerdt et al.10, for instance, pixels with COD<4 or
CER < 4μm were excluded due to the increased uncertainty in retrie-
vals for these values.

Data from years 2014–2018 was aggregated to 1 × 1° and
0.25 × 0.25° bins, respectively. For Fig. 1a the Pacific North region was
divided into smaller subregions, as shown in Supplementary Fig. 1. For
the daily plots we calculated the average ln(LWP) for 15 ln(CDNC) bins,
with CDNC ranging from ~1 to 1000 cm−3. Each line in Fig. 1b represents
CDNC-binned mean LWP values for a single day. For these cases, the
daily data plots are limited todayswithmore than 150samples, and the
binned means are calculated only for bins with more than four sam-
ples. In Fig. 1c the data are collected from smaller areas, and the lines
correspond to days with more than 100 samples, and the binned
means are calculated if there are more than 3 samples in the bin.
Moreover, the standard deviation of AI within the sampling area was
calculated for each day respectively, and only those days were inclu-
ded for which this value is less than 0.04.

Data availability
All MODIS data used in this study are open data and were obtained
from the NASA Level-1 and Atmosphere Archive & Distribution System
Distributed Active Archive Center (LAADS DAAC) https://ladsweb.
modaps.eosdis.nasa.gov/. The simulated data generated in this study
have been deposited in the Zenodo database under accession code
https://doi.org/10.5281/zenodo.710053625.

Code availability
The scripts used in producing the figures in this manuscript are
available at https://doi.org/10.5281/zenodo.710053625.
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