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The dissipation of magnetized turbulence is an important paradigm for describing heating and en-
ergy transfer in astrophysical environments such as the solar corona and wind; however, the specific
collisionless processes behind dissipation and heating remain relatively unconstrained by measure-
ments. Remote sensing observations have suggested the presence of strong temperature anisotropy
in the solar corona consistent with cyclotron resonant heating. In the solar wind, in situ magnetic
field measurements reveal the presence of cyclotron waves, while measured ion velocity distribu-
tion functions have hinted at the active presence of cyclotron resonance. Here, we present Parker
Solar Probe observations that connect the presence of ion-cyclotron waves directly to signatures
of resonant damping in observed proton-velocity distributions using the framework of quasilinear
theory. We show that the quasilinear evolution of the observed distribution functions should absorb
the observed cyclotron wave population with a heating rate of 10−14 W/m3, indicating significant
heating of the solar wind.

PACS numbers:

Introduction Observations of the solar corona reveal
plasma that is millions of degrees hotter than the black-
body temperature of the solar surface. While the energy
required to heat the corona, and accelerate the solar wind
originates from solar convection and the magnetic fields
produced by the solar dynamo, the specific pathways to
heating and particle acceleration remain elusive [1]. The
dissipation of Alfvénic turbulence at kinetic scales has
become a common paradigm in explaining the dynamics
of coronal heating and solar wind acceleration [2–5]; pos-
sible dissipative mechanisms include Landau or cyclotron
resonant damping [6–10], stochastic heating [11], or mag-
netic reconnection [12, 13]. Additionally, the portion of
energy deposited by these processes at ion scales, versus
that which is subject to a kinetic cascade and dissipated
by electrons, remains an open question [10, 14–17].

It is well known that the observed ion temperature
profiles in the solar wind require significant perpendic-
ular heating [18, 19], which is likely initiated at ion ki-
netic scales where particles interact efficiently with elec-
tromagnetic waves [9, 16, 20–24]. Cyclotron resonant
coupling of electromagnetic fluctuations with ion gyro-
motion [25], has received particular attention as a po-
tential perpendicular heating mechanism [26–30]. Ultra-
violet spectroscopic measurements of coronal ion tem-
perature anisotropy suggest large T⊥/T‖, consistent with
cyclotron resonant heating [28, 31–33]. The presence of
ion-cyclotron waves has been well documented in in-situ

observations throughout the heliosphere both as solitary
waves and as part of the background spectrum of fluctu-
ations [34–40]. Observations of magnetic-helicity at ion
scales have been interpreted as evidence for active cy-
clotron damping of quasi-parallel Alfvénic fluctuations,
which contribute to turbulent heating [8, 9, 41, 42].

Theoretical signatures of resonant interactions in par-
ticle distribution functions are often studied in the frame-
work of quasilinear (QL) diffusion [15, 43–45]; observa-
tions of the solar wind have suggested evidence for QL
cyclotron resonant diffusion in signatures of the proton
velocity distribution function fp(v) [46–48]. While the
generation of cyclotron waves through instabilities has
been widely discussed [37, 38, 40, 49, 50] and signatures
of cyclotron resonant dissipation have been suggested
[8, 9, 46, 48, 51–53], definitive cyclotron resonant heating
sufficient to power the solar wind has not been observed.

In this Letter, we apply the QL theory of resonant cy-
clotron interactions [43, 44] to empirically measured cy-
clotron wave spectra and ion-distribution functions. Our
results provide evidence of substantial heating at levels
comparable with bulk solar wind heating rates, providing
a compelling picture of ion-heating in the solar wind.

Data Parker Solar Probe (PSP, [54]) observations
from the electromagnetic FIELDS [55] and Solar Wind
Electron Alpha and Proton (SWEAP, [56]) instruments
aim to constrain fundamental processes of around coro-
nal heating and solar wind acceleration. PSP has re-
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FIG. 1: (a) Magnetic field measurements from PSP/FIELDS.
(b) Velocity measurements from PSP/SPANi. (c) Spectra
of magnetic field data. Spectral indices at -3/2,-4 and -2.7
are shown. Wavelet coefficients for total power are shown as
black �. Wavelet coefficients filtered by left/right handed σb

is shown in red/blue �.

vealed prevalent ion-scale electromagnetic waves [39, 40],
ion-distributions out of thermal equilibrium [57, 58],
and evidence for resonant wave-particle interactions pre-
dicted by QL theory [59]. To constrain cyclotron reso-
nant heating, we study a stream from PSP perihelion 4
from 2020-01-30/00:00-08:00 with resolved proton distri-
butions. During the interval PSP was ∼ 30R� from the
solar surface. We use merged search coil and fluxgate
magnetometer data from PSP/FIELDS [55, 60] enabling
measurement of the inertial, transition, and kinetic scales
of turbulence; the merged data set only has two axes
available [61], thus we use vector-fluxgate magnetometer
data to study wave-polarization. Fig 1(a) shows B in
Radial-Tangential-Normal (RTN) coordinates. Proton
velocity distribution functions fp(v) are obtained from
the PSP/SWEAP Solar Probe ANalyzer (SPANi). The
proton population is often parameterized with a pair of
drifting bi-Maxwellian fits to model fp(v) using separate
thermal (core) and non-thermal (beam) populations [1].
Fits to a proton core and field-aligned beam provide es-
timates of bulk velocity u, anisotropic temperatures per-
pendicular and parallel the background magnetic field
T‖,⊥, and the beam-to-core proton density ratio nb/nc
[56, 58]. Fig 1(b) shows measurements of u in RTN co-
ordinates. The stream is relatively slow with an average
speed of ∼220 km/s, and moderately Alfvénic with a

cross helicity of ∼0.85.
The phase-space density of fp(v) is calibrated to quasi-

thermal noise from FIELDS to recover the absolute den-
sity [55, 62]. The mean proton density is np = 1100/cm3,
SPANi gives an average beam to core density ratio of
0.48. The core/beam have T⊥ of 15 eV/22 eV and T‖ of
12 eV/30 eV. The average drift of the beam relative to
the core is 83 km/s. The individual core and beam have
βc = 0.65 and βb = 1.1. The mean magnetic field was
directed sunward, with an Alfvén speed of 60 km/s. Fig
1(c) shows the magnetic field spectra of the interval with
a steep transition range at ion-kinetic scales [63–65].

We apply a Morlet wavelet transform to the vector
magnetic field data rotated into field aligned coordinates
[66]. Signatures of circular polarization are found using

σB(f, t) = −2Im(B⊥1B
∗
⊥2)/(B2

⊥1 +B2
⊥2), (1)

with left/right handed waves corresponding to posi-
tive/negative σB [35, 36, 67, 68]. Circular polarization is
measured in the spacecraft frame, such that the measured
sign may not correspond to the innate plasma frame po-
larization [67]. A sign change in σB occurs if the wave
is Doppler shifted to negative frequencies in the space-
craft frame. However, it has been demonstrated that
the majority of waves propagate outward, and thus, that
Doppler shift does not change their handedness when ob-
served in the spacecraft frame [69].

Previous work has shown that circularly polarized ion-
scale waves are parallel propagating and evident when
θvB ∼ 0 [40]. However, observations of parallel propagat-
ing, circular polarized, waves are strongly inhibited when
the angle between the solar wind and the mean mag-
netic field is oblique. This effect occurs because a) the
wave polarization plane is not well resolved by the space-
craft and b) the turbulence is anisotropic with increasing
power with larger θvB [67, 70–72]. The lack of circular
polarization signatures when θvB is moderately oblique
is consistent with sampling effects of quasi-parallel waves
at oblique angles in anisotropic turbulence [40], suggest-
ing that ion-scale waves can persist at oblique θvB . In
order to estimate the parallel propagating left-hand po-
larized spectrum, wavelet power with σB > 0.9 is iden-
tified when θvB < 15◦. We assume homogeneity, and
stationarity, such that the circularly polarized spectrum
measured at θvB < 15◦ represents the wave spectrum
at all times (i.e. when θvB > 15◦). Fig 1(c) shows the
power spectrum of circularly polarized fluctuations with
σB > 0.9 and σB < −0.9, corresponding to strong left
and right-handed power. The right handed modes have
been shown to be statistically consistent with a fast mag-
netosonic mode [69].
Distribution Functions Fig 2 shows the SPANi pro-

ton distribution function fp(v⊥, v‖) from the stream at
2020-01-30/04:10:21. Figure 2(a) shows a interpolation
of the 3D measurements in the v⊥−v‖ plane constructed
by identifying values of v⊥ and v‖ for each 3D energy
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FIG. 2: (a) Interpolation of fp(v) from SPANi in the v⊥ −
v‖ plane, with the mean magnetic field pointing vertically.
Points show SPANi measurement locations. Solid lines show
v‖th, and set of cyclotron-resonant diffusion contours are plot-
ted. (b) Drifting bi-Maxwellian fit to fp(v). (c) Hermite rep-
resentation of fp(v). Integration of fp(v) in a-c over v⊥ − v‖
is normalized to the QTN density. (d) Contours of fp(v) de-
termined by interpolating the gyrotropic distribution along
QL diffusion contours for parallel cyclotron resonance. (e-
f) Drifting bi-Maxwellian and the Hermite representations of
fp(v) evaluated along cyclotron resonance contours.

bin, assuming gyrotropy. A drifting two-component bi-
Maxwellian fit, assuming gyrotropy, is shown in Fig 2(b).
The drifting bi-Maxwellian fit provides an approximation
to fp(v) using two individual proton populations, though
this parametrization may not resolve all non-thermal
features that affect resonant interaction with cyclotron
waves. Indeed, the presence of strong and persistent
cyclotron-resonant interactions should affect the shape
of fp(v), leading to an equilibrium distribution that de-
viates from a bi-Maxwellian [44]. To explore a nonpara-

metric fp(v⊥, v‖), which may better represent the data
[73–75], we fit a set of orthonormal Hermite functions
using linear least square methods:

fp(v⊥, v‖) =
∑
m,n

gmnφm(v⊥/v⊥th)φn(v‖/v‖th) (2)

Hn(v) = (−1)nev
2 dn

dxn
e−v

2

(3)

φm =
Hm(v)√

2mπ1/2m!
e−v

2

(4)

[76, 77]. Fig 2(c) shows the best-fit estimate to fp(v)
for Hermite functions of order mmax = 6, nmax = 6.
The distributions are shown in field aligned coordinates
with B̂0 along the vertical axis. In carrying out this fit,
we effectively extend f(v⊥, v‖) to negative values of v⊥
by treating f(v⊥, v‖) as an even function of v⊥, thereby
omitting the terms in the sum corresponding to odd val-
ues of m. Our use of Hermite functions is meant solely
as a nonparametric interpolative scheme, and is not in-
tended to represent a natural-basis for fp(v) [76]. Over
the studied interval, the average χ2 residual of the Her-
mite representation is 90% of the bi-Maxwellian fit. No
intervals were significantly better fit by the drifting bi-
Maxwellian, though some distributions are equally well
represented by either approximation.

The ion cyclotron resonance condition is ω(k‖) =
Ω +k‖v‖ such that outward-propagating cyclotron waves
resonate with the inward propagating portion of the dis-
tribution function. The evolution of fp(v) in the presence
of resonant interactions can be described by QL diffusion
theory [43, 44]. In a reference frame moving with a wave,
the particles conserve kinetic energy as they scatter off
that wave, tracing contours in v⊥ and v‖ that can be
computed using the wave dispersion relation and reso-
nance condition [29, 43, 44, 46]. The QL diffusion con-
tours [44, 78] are overlaid on fp(v) in Fig 2(a-c). If fp(v)
decreases as v⊥ increases along the contours, cyclotron
resonance diffuses energy across in the region where res-
onant waves are present, heating the plasma. Conversely,
if fp(v) increases as v⊥ increases, then fp(v) is unstable,
generating waves and cooling the plasma. Cyclotron res-
onant equilibrium corresponds to a flattening of fp(v)
along the contours. Fig 2(d-f) shows fp(v) evaluated
along QL diffusion contours, parameterized on v⊥; for
each representation, fp(v) is characteristically flat along
contours, suggesting that fp(v) has been processed by
cyclotron-resonance [46, 48].

The QL proton heating rate due to resonance with
parallel-propagating cyclotron waves is given by

H =

∫
mpv

2

2

∂fp(v)

∂t
d3v =

πe2

2m2
p

∫ ∞
0

dk‖
1

v⊥
Ĝkv⊥δ(ωk − k‖v‖ − Ωp)

ω2
k

k2‖c
2
I(k‖)Ĝkfp(v)d3v

(5)
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with

Ĝk = (1−
k‖v‖

ω
)
∂

∂v⊥
+
k‖v⊥

ω

∂

∂v‖
(6)

[43]. Using the observed left-handed spectrum in Fig 1,
the cold-plasma dispersion relation, along with the bulk
velocity to correct for Doppler shift [69], an average par-
allel left-handed cyclotron spectrum I(k‖) is established.

For each observed fp(v), a value of H is obtained nu-
merically through Eq 5 using bi-Maxwellian and Hermite
representations of f(v⊥, v‖). For the distribution shown
in Fig 2, a heating rate of 10−14 W/m3 is found using
the Hermite representation and 4 × 10−15 W/m3 using
the drifting bi-Maxwellian spectrum. The measured H is
similar to estimates of bulk ion heating due to turbulent
dissipation at the spacecraft’s location (30R�) [79–81].

Fig 3(a-d) shows the differential volumetric heating
rate H as a function of resonant parallel velocity mea-
sured in each distribution function. The top panels, Fig
3(a-b), show positive H, the “heating” rate, as a func-
tion of v‖ and time for the bi-Maxwellian (a) and Her-
mite (b) representations. The bottom panels Fig 3(c-d)
shows negative H, the “cooling” rate over the interval
as a function or resonant v‖ due to emission of waves
through instability. Fig 3(e) shows the net integrated H
for each measured distribution function. The integrated
H is uniformly positive, indicating that cyclotron waves
present in the plasma are likely absorbed. There is very
little cyclotron resonant emission from this plasma. How-
ever, the Hermite representation shows that cylotron-
instability, when present, is focused at the parallel ther-
mal speed,v‖th. The median heating rate is 3 × 10−15

W/m3 for the bi-Maxwellian fits, and 1×10−14 W/m3 for
the Hermite representation. Using third order moments
of the inertial range turbulence, [82], a cascade rate of
4.7 ×10−14 W/m3 is measured, which is consistent with
previous measurements of the energy cascade rate at a
similar radius [83, 84]. The measured cyclotron heating
H ranges from approximately 10-20% percent of the mea-
sured cascade rate. While uncertainties on the cascade
rate exist due to the assumption of stationarity, isotropy,
and homogeneity [82], previous work has suggested that
the cascade rate estimates through third-order moments
are accurate to a factor of approximately two or three
[83, 85, 86].

Observations from SPANi are partial measurements of
fp(v) and are subject to both uncertainties and ongoing
calibration work. However, during this interval, fp(v) is
well resolved, and while uncertainties in fp(v) will dom-
inate uncertainties in our measured heating rates, we ar-
gue that the measurements reliably suggest net energy
transfer from waves to the particles. Specifically, the
biMaxwellian fit removes fine-structure in fp(v) that is
present in the measurements and replicated by the Her-
mite function; importantly, we find that removing fine
structure (i.e. the bi-Maxwellian fit) produces heating
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FIG. 3: (a) Differential volumetric heating rates (positive H)
as a function of resonant parallel velocity computed from ob-
served cyclotron spectra and drifting biMaxwellian fit to ion-
distribution functions. The total heating rate is the sum over
v‖. Solid lines show the average v‖th for the interval (49
km/s). (b) Measured heating rates for a Hermite function
approximation. (c-d) Corresponding cooling rates (negative
H). (e) Distribution of total H for biMaxwellian and Hermite
representations; respective lines show median value of H The
turbulent cascade rate estimated from third-order moments
is shown in green.

rates of the same sign and order of magnitude as when
fine structure in fp(v) is included. In essence, while fine
structure in fp(v) is observed by SPAN, it neither drasti-
cally affects the order of magnitude, nor, importantly, the
sign of the cyclotron heating rate, H. However, these re-
sults highlight the importance of modeling fine structure
and local gradients in fp(v), e.g. with Hermite func-
tions, which may yield heating rates more than double
those found by smoother approximations to fp(v), e.g. a
bi-Maxwellian fit.

Discussion Cyclotron resonance may play a signifi-
cant role in shaping observed magnetic field spectra and
distribution functions [8, 9, 23, 42, 46, 48, 52] observed
in the solar wind. While flattening along QL diffusion
contours has been previously reported [46, 48, 59] our
observations directly couple an observed spectrum of cy-
clotron waves to heating rates in measured distribution
functions. Our measured heating rates are on the order
of the measured energy cascade rates (∼ 10−14 W/m3),
obtained through third order moments of the observed
turbulence [82]; while this estimate may have significant
uncertainty, we find good agreement with previous esti-
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mates of the cascade rate [83, 84]. We furthermore show
that incorporating fine, nonthermal, structures in the dis-
tribution function using a Hermite functional decompo-
sition introduces relatively little effect on the extent or
sign of measured cyclotron heating. We thus argue that
the measured levels of cyclotron heating provide signifi-
cant evidence for the mediation of turbulent dissipation
through cyclotron resonance that is potentially sufficient
to power the solar wind [79–81]. Studying the radial scal-
ing of the turbulent energy cascade alongside quasilinear
cyclotron heating rates promises to further constrain cy-
clotron resonance as a dissipation process.

There are several sources of uncertainty in this analy-
sis, rising predominantly in the estimate of the cascade
rate and in the gradients of fp(v) due to limited resolu-
tion. Furthermore, if the occurrence rates of cyclotron
waves decreases with θvB , then the heating rate may be
limited at oblique θvB . Additionally, there is the po-
tential that heating by oblique kinetic Alfvén waves or
oblique cyclotron waves may generate parallel cyclotron
waves as a secondary process [87, 88]. The spectrum of
oblique cyclotron waves is difficult to distinguish due to
the strong anisotropy of the background turbulence [40],
though future work will explore signatures of oblique cy-
clotron resonance. In any case, observed ion distributions
are often flat along the quasi-parallel cyclotron diffusion
contours and are rarely unstable to the growth of the
waves. This flattening suggests that even if other phys-
ical processes contribute to bulk heating, the parallel-
cyclotron resonance [43, 44] plays a significant role in
shaping the distribution functions.

The measured heating rate indicates a near total lack
of cyclotron emission through instabilities; thus, the ori-
gin of cyclotron waves remains an important unresolved
point. Our observations show that 95% of the time left
handed signatures are present, the net heating rate is
positive, suggesting absorption of waves [53]. We note
the studied interval does not have strong cyclotron wave
storms [40, 57], though application of our method to
a similar interval with more significant cyclotron wave
events similarly suggests net heating. There are two main
possible physical origins for these Alfvén/ion cyclotron
waves. First, it is possible they are excited by beam in-
stabilities [89], though recent work has suggested that
dominant instability associated with the strong beam is
associated with right-handed modes [57, 58]. Second,
they may be generated by turbulence, though canonical
theories of Alfvénic nonlinearity preferentially transport
energy to large k⊥ but not large k‖ [90, 91], which is a
hurdle to the turbulent generation of cyclotron resonant
waves. However, recent work suggests that imbalance,
i.e. the dominance of the outward Alfvén mode, may pre-
vent energy from cascading to kinetic scales [92]. Fully
kinetic simulations in the presence of such a barrier [88]
show the generation of quasi-parallel cyclotron modes,
similar to those observed in the solar wind, providing a

novel method for generating cyclotron waves that is con-
sistent with a variety of observations [39, 40, 65, 93–98].
Further work is required to specifically investigate the
origin of the observed cyclotron waves and their connec-
tion to turbulence, though our observation of localized
instability at the proton-core thermal speed (Fig 3) may
be a clue regarding the origin of the waves and their con-
nection to the net heating measured in this study.

This work explicitly shows that the measured distri-
bution functions in the solar wind contain evidence of
cyclotron resonant heating at a level that may power the
expanding solar wind. These results are significant step
towards understanding the underlying physics of colli-
sionless heating and a kinetic description of astrophysical
plasmas.
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