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ABSTRACT 
Motivated by the need for an efficient fatigue crack growth prediction infrastructure for both legacy and 
novel materials, we have initiated the development of an automated computational framework capable 
of determining crack growth model parameters for an equationally defined model. As a first step in ad-
dressing this need, the present paper focuses on the Hartman-Schijve crack growth variant of the NASGRO 
equation by exploring and comparing various global optimization methods for parameter determination 
and evaluating their performance by using both synthetic and actual data. It also introduces the concept 
of the total least-squares minimization criterion within the context of crack growth modeling. The devel-
opment of an open-source software library and an application implementing the approach are also de-
scribed and are available for distribution to the technical community. 

1. INTRODUCTION. 
Since the introduction and use of the first generation of fatigue crack growth models [1], many more 
phenomenological and empirical ones have been developed and proliferated, as noted in [2], [3], [4]. One 
of the enduring challenges associated with utilizing these models has been the determination of the un-
known parameters given a set of experimental data.  Fatigue Crack Growth Model Parameter Identifica-
tion (FCGMPI) has been traditionally based on a mix of semi-automated methods, custom systems, indi-
vidual user experience, and proprietary software [5], [6]. The lack of open source software and automated 
processes to identify these parameters has motivated us to pursue the development of relevant method-
ologies and associated software.  

The objectives of our effort are to: (a) develop a method for calculating the model parameters from ex-
perimental data that requires minimal to no user intervention; (b) provide computable crack-growth mod-
els that can be easily integrated into engineering workflows associated with qualification and certification; 
(c) establish the basis for a general, automated and rigorous approach to determining and using crack 
growth models for structural life predictions, and (d) provide the outcomes of this research in an open-
source manner for widest dissemination and utilization purposes. 

In developing methodologies that can satisfy these objectives, we realized that the fatigue crack growth 
and life prediction research could benefit from the availability of a framework that includes higher level 
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(graphical user interface based) and lower level (functions and benchmarking) facilities. The higher-level 
facilities can be appropriate for performing FCGMPI for engineering purposes. The lower-level facilities 
can be integrated into engineering and research workflows and tools for further dissemination. In addi-
tion, the lower-level facilities can be used to explore alternative crack growth rate models or allow en-
gagement in other advanced uses. 

The most widely used software that can perform FCGMPI is NASMAT [6], which is a module of the NASGRO 
software suite [7]. The particular software requires an iterative process, where the user selects parame-
ters, and the software performs part of the parameter identification. The process requires the user to 
modify the provided values until a good fit is achieved [6].  A significant concern raised in [6]  that relates 
to work in [5], [8], [9]  and [10], is that  the effects of the generally asymmetric nature of performing 
FCGMPI using the Ordinary Least Squares Method (oLSM).  The authors of  [6]  propose a modification of 
the oLSM to adjust for the difference in magnitude due to the asymmetries in the data scales. In addition, 
they propose fixing, at regular intervals (along x- or y-axes), the number of representative data points to 
achieve a more uniform representation of each of the regions of the crack propagation curve.  Although 
the method seems to perform fairly well for the presented data sets, it does not address the fundamental 
issue of the asymptotic nature of fatigue crack growth curves in Regions I and III, and only considers reg-
ular --as opposed to logarithmic distances-- that can address the issues raised in [6].  

Therefore, and as the means to overcome difficulties emanating from the generally asymptotic nature of 
fatigue crack propagation models, we introduce the notion of the total least square optimality criterion. 
Instead of considering the vertical (parallel to the y-axis) deviation from the experimental data, the total 
least squares method considers the perpendicular to the curve deviation from the experimental data. 
Therefore, all the data are given the same treatment, whether they are located at the beginning (Region 
I), middle (Region II), or end (Region III) of the crack propagation curve. 

In the past, we have used various approaches to determine the Hartman-Schijve model parameters. In 
these, several assumptions and constraints have been used in a manner that supports the communal un-
derstanding of the role of these parameters as material constants or not and their role in satisfying the 
similitude principle. However, in the present work, we have not employed any of these assumptions and 
constraints to focus on the numerical and computational aspects of the proposed effort. Accordingly, the 
determined values of the parameters in all the cases involving actual physical experiments are expected 
that they may be different from those in our previous publications. 

The present work is divided into seven sections. First, we describe the role of objective functions in pa-
rameter determination and the advantages of total least squares when used in FCGMPI. In the same sec-
tion, we derive and present the numerical aspects of implementing it. The subsequent section describes 
the various optimization methods we have explored, along with the addition of a custom method we 
developed particularly for FCGMPI. Comparisons using synthetic data follow. In the following section ex-
amples of applying the developed framework on experimental data follow. Finally, the paper closes with 
the conclusions and future plans. 

2. OBJECTIVE FUNCTIONS IN PARAMETER DETERMINATION. 
Performing parameter determination on a model from experimental data is usually performed with re-
gression analysis and various curve fitting methods. The curve fitting problem can be described as:  
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Given a model 𝑦𝑦 = 𝑓𝑓(𝑥𝑥; 𝑎𝑎1,𝑎𝑎2, … ) that relates the independent variable 𝑥𝑥 with the dependent variable 𝑦𝑦, 
and given a list of N experimental pairs {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}, 𝑖𝑖 = 1 …𝑁𝑁, identify the values of the parameters 𝑎𝑎1,𝑎𝑎2, … 
such that the curve, optimally fits the experimental pairs in some quantitative sense called here the ‘opti-
mality criterion’. 

Therefore, before presenting the actual optimization process that identifies the Hartman-Schijve param-
eters, the appropriate objective function needs to be defined. We will present two such objective func-
tions (ordinary least squares and total least squares) and discuss the pros and cons of each.  

2.1. Ordinary Least Squares 
By far the most popular optimality criterion is based on ordinary least squares. In other words, one tries 
to find the values of the parameters such that the sum of squares  

 𝑅𝑅2 = ∑ [𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖 ; 𝑎𝑎1, 𝑎𝑎2, … )]2𝑁𝑁
𝑖𝑖=1 , (1)  

of vertical deviations from the curve is minimized. The deviations of ordinary least squares are shown in 
the example of Fig. 1a. Determining the parameters of the Hartman-Schijve model for the case of ordinary 
least squares is described in detail in [11] and [12]. 

2.2. Total Least Squares 
Another approach that is far less popular, is that of total least square [13], [14], [15]. In total least square, 
the objective function takes a form that accounts for the minimum distance of each experimental point 
to the curve (Fig. 1b).  

The disadvantages of total least squares are (a) the computational cost and (b) the generally more 
complex derivation requirements of the objective function, that in the case of FCGMPI cannot be per-
formed analytically and needs to be performed in a numerical manner. To address these issues for the 
curve fitting of the Hartman-Schijve model, we have developed a methodology that performs a numerical 
derivation and have implemented it in a high-performance C++ library. 

One distinct advantage of total least squares is its ability to handle cases of asymptotic curves. 
This is particularly useful in the case of fatigue crack growth modeling, because the initial (stage I) and 
final (stage III) segments of the available models, exhibit asymptotic behavior along asymptotes parallel 
to the 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 axis. The resulting effect of both types of curve fitting is illustrated in Fig. 2.  

Fig. 2a, shows the case of ordinary least squares. In this case, if one aims at including all points for 
the regression process, then the asymptote will necessarily have to be outside the boundaries of the point 

                       
(a) Ordinary Least Squares offsets              (b) Total Least Squares offsets 

Figure 1: (a) The objective function considers the vertical deviation (blue lines) of the model curve (black) from 
the experimental points (brown). (b) Total least squares offsets. The objective function considers the 
perpendicular deviation (blue lines) of the model curve (black) from the experimental points (brown). 
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set. Otherwise the included points need to be selected based on some subjective metric. In traditional 
fitting, where the engineer must manually adjust values and select points, the quality of the resulting fit 
depends heavily on his/her experience.  

On the other hand, in the case of total least squares (Fig. 2b), the fit takes a much more natural 
form, considering even the points that may be outside the limits of the asymptote. Therefore, any outliers 
do not need to be excluded based on subjective criteria, but if desired can be selected based on regular 
probabilistic treatments that fall outside the scope of the present work. 

2.2.1. Numerical computation of the sum of total squares 
To calculate the sum of total squares of a point set {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}, 𝑖𝑖 = 1 …𝑁𝑁  from a function 𝑓𝑓�𝑥𝑥;𝑎𝑎𝑗𝑗�, with 
known parameters 𝑎𝑎𝑗𝑗 , 𝑗𝑗 = 1 …𝑀𝑀, one needs to find the minimum distance of each point {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}, from the 
curve represented by 𝑓𝑓(𝑥𝑥;𝑎𝑎𝑖𝑖). The problem can be defined as the following minimization problem: 

 minimize g(𝑥𝑥) =[𝑥𝑥𝑖𝑖 − 𝑥𝑥]2 + �𝑦𝑦𝑖𝑖 − 𝑓𝑓�𝑥𝑥𝑖𝑖;𝑎𝑎𝑗𝑗��
2

. (2) 

 The minimum of function g(𝑥𝑥) of Eqn. 2 can be identified by solving the following equation: 

 ℎ(𝑥𝑥) = 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

= 0. (3) 

 Because for the case of crack growth curves Eqn. 3 will be non-linear, it is necessary to solve it by 
numerical methods. In particular, we selected the bisection method [16] for its stability and simplicity. We 
furthermore explored root finding based on the Newton-Raphson [17] and the Halley’s [18] methods, but 
the non-convex nature of the function studied, rendered them less stable and in some cases non-converg-
ing.  

 After the minimum value of 𝑥𝑥, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 has been computed for each data point 𝑖𝑖 = 1 …𝑁𝑁, the sum of 
total squares can be calculated by: 

 𝑅𝑅2 = ∑ g�𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖�
𝑁𝑁
𝑖𝑖=1 . (4) 

In the present paper we are using the Hartman-Schijve variant of the NASGRO crack growth equation, viz: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐷𝐷  �∆𝐾𝐾− ∆𝐾𝐾thr

�1−𝐾𝐾max
𝐴𝐴

�

𝑝𝑝

= 𝐷𝐷  �∆𝐾𝐾− ∆𝐾𝐾thr

�1− ∆𝐾𝐾
(1−𝑅𝑅)𝐴𝐴

�

𝑝𝑝

. (5) 

                       
(a) Ordinary least squares                            (b) Total least squares 

Figure 2: Fitting of asymptotic curves. The blue line represents the offset of the rightmost point from the fitted 
curve. (a) In ordinary least squares, all points need to be to the interior of the or considered outliers curve (red 
point). (b) In total least squares, the points can be outside the asymptote limit. In (a) the curve is necessarilly 
biased to allow for encompassing all points or is biased towards rejecting potentially valid ones. 
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where 𝑎𝑎 is the crack length/depth, 𝑁𝑁 is the number of cycles, 𝐷𝐷 is a material constant, p is a  constant  
and is often approximately 2, 𝐴𝐴 is the cyclic fracture toughness, 𝐾𝐾 is the stress intensity factor and ∆𝐾𝐾 =
 (𝐾𝐾max − 𝐾𝐾min) is the range of the stress intensity factor seen in the cycle, and ∆𝐾𝐾thr is an effective lower-
bound fatigue threshold value. 

To stay consistent with the log-log representation of crack growth curves, the numerical operations are 
performed in the log-log space ( [11], [12]). Therefore, the problem of identifying the total square for a 

fatigue crack growth data point �∆𝐾𝐾𝑖𝑖,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖
� to the Hartman- Schijve curve can be written: 

 minimize 𝑞𝑞(∆𝐾𝐾) =[log10(∆𝐾𝐾)− log10(∆𝐾𝐾𝑖𝑖)]2 + �𝑠𝑠 �log10 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖
� − log10 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(∆𝐾𝐾)���
2

. (6) 

The parameter 𝑠𝑠  represents a normalization term. By introducing Eqn. 5 in Eqn. 6 and taking the deriva-
tive with respect to ∆𝐾𝐾, we derive the following equation: 

 ℎ(ΔK) =
2(Log[ΔK]−Log[ΔK𝑖𝑖])

ΔK −

𝑝𝑝𝑠𝑠2(Log[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑖𝑖
]−Log[D(

ΔK−ΔKthr

�1+ ΔK
𝐴𝐴(−1+𝑅𝑅)

)𝑝𝑝])(2𝐴𝐴(−1+𝑅𝑅)+ΔK+ΔKthr)

(𝐴𝐴(−1+𝑅𝑅)+ΔK)(ΔK−ΔKthr)

Log[10]2
, (7) 

After solving the equation ℎ(ΔK) = 0 using algorithm 1, for all data pairs, it is elementary to calculate the 

total squares of a set of points �∆𝐾𝐾𝑖𝑖,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖
� , 𝑖𝑖 = 1 …𝑁𝑁 from a known curve of the form of Eqn. 5, as shown 

in algorithm 2. 

The parameter 𝑠𝑠 is utilized to normalize the ℝ2space upon which the total least squares evaluation will 
be performed. Without the particular normalization, the space will be considerably skewed because of 
the large difference between the magnitudes ∆𝐾𝐾 and 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 and the lack of scale invariance of the total least 

square method. Fortunately, such a parameter can be calculated by the use of the datapoints themselves 
to provide with an optimal aspect ratio between the ranges of the two parameters: 

 𝑠𝑠 = log10�max�∆𝐾𝐾𝑖𝑖��−log10�min�∆𝐾𝐾𝑖𝑖��
log10�max�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�𝑖𝑖

��−log10�min�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�𝑖𝑖

��
 (8) 

In the future we plan to investigate methods based naturally scale invariant approaches [19], [20], [21], 
[22], although because of the asymptotic nature of the crack propagation curves, we currently postulate 
these approaches may not be applicable. 
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Input:  
Hartman-Schijve parameters( ∆𝐾𝐾thr,𝐴𝐴,𝑝𝑝,𝐷𝐷 ). 
R : Fatigue R ratio. 
𝛥𝛥𝛥𝛥𝑖𝑖: 𝛥𝛥𝛥𝛥 of the 𝑖𝑖th data point. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖
: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 of the 𝑖𝑖th data point. 

𝛽𝛽: Asymptote restriction offset ratio, default: 1 × 10−5. 
max_iter: maximum number of iterations in the optimization loop 

Output: 
Minimum distance of data point �∆𝐾𝐾𝑖𝑖,

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖
� from curve 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 of Eqn. 5. 

1. ∆𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙 ← ∆𝐾𝐾thr(1.0 + 𝛽𝛽) 
2. ∆𝐾𝐾ℎ𝑖𝑖𝑖𝑖ℎ ← 𝐴𝐴(1.0− 𝑅𝑅)(1.0− 𝛽𝛽) 
3. 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙 ← h(∆𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙) 
4. 𝑑𝑑ℎ𝑖𝑖𝑖𝑖ℎ ← h�∆𝐾𝐾ℎ𝑖𝑖𝑖𝑖ℎ� 
5. If 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙 > 0 & 𝑑𝑑ℎ𝑖𝑖𝑖𝑖ℎ > 0 

a. Return q(∆𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙) 
6. If 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙 < 0 & 𝑑𝑑ℎ𝑖𝑖𝑖𝑖ℎ < 0 

a. Return q�∆𝐾𝐾ℎ𝑖𝑖𝑖𝑖ℎ� 
7. If 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙 > 0  

a. 𝑥𝑥+ ← ∆𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙 
b. 𝑥𝑥𝑖𝑖 ← ∆𝐾𝐾ℎ𝑖𝑖𝑖𝑖ℎ 

Else 
a. 𝑥𝑥+ ← ∆𝐾𝐾ℎ𝑖𝑖𝑖𝑖ℎ 
b. 𝑥𝑥− ← ∆𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙 

8. tol ← �log10�∆𝐾𝐾ℎ𝑖𝑖𝑖𝑖ℎ� − log10(∆𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙)�× 1 × 10−4 
9. span ← log10(𝑥𝑥+)− log10(𝑥𝑥−) 
10. niter ← 0 
11. while  niter + +< max _iter && span > tol 

a. 𝑥𝑥ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑥𝑥+ + 𝑥𝑥−)
2�  

b. 𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑥𝑥ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
c. If 𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎 > 0 

i. 𝑥𝑥+ ← 𝑥𝑥ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
Else 

i. 𝑥𝑥− ← 𝑥𝑥ℎ𝑎𝑎𝑎𝑎𝑎𝑎 
d. span ← log10(𝑥𝑥+)− log10(𝑥𝑥−) 

12. Return q �(𝑥𝑥+ + 𝑥𝑥−)
2� � 

Algorithm 1: Calculation of minimum square distance of a data point �∆𝐾𝐾𝑖𝑖 ,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖
�  from the Hartman-Schijve curve 

with known parameters in the log-log space. 
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3. OPTIMIZATION METHODS FOR PARAMETER DETERMINATION. 
For linear problems, the objective function of Eqn. 1 can be minimized by converting it to a linear system 
of equations. In non-trivial models though and for non-linear systems a non-linear optimizer is needed, 
that depending on the model can take a multitude of forms.  Furthermore, because the objective function 
may have multiple minima (which is the case in the present work), one needs to employ a global optimizer 
that tries to minimize the objective function, by some sort of reasonable scanning of the parametric space. 
Likewise, a global optimizer needs to be employed for minimizing the objective function in the case of 
total least squares. 

 Several global optimization methods were investigated, aiming at identifying their performance in 
identifying the Hartman-Schijve equation parameters from the input data. The implementation of these 
algorithms can be found in [23]. In addition, a new method is introduced herein, that we term, Contracting 
Uniform Hyper-Rectangles Sampling for Optimization (CUHYSO) that as it will be demonstrated below 
seems to perform very well for the particular problems of fitting fatigue crack-growth data.  

A description of the algorithms used in the comparison analysis of the present effort follows.      

3.1. Locally biased DIviding RECTangles (DIRECT-L). 
The DIRECT algorithm is a classical algorithm in global optimization methods [24]. The algorithm simulta-
neously searches the parametric space using all possible Lipschitz constants from zero to infinity. There-
fore, it eliminates the need for specifying a Lipschitz constant.  Here we are employing a variation of the 
DIRECT algorithm called locally biased DIRECT [25] that gives emphasis to local searches. The algorithm 
has been shown to be more appropriate in cases where there is a single global minimum and a few local 
minima.  

Input:  
Hartman-Schijve parameters( ∆𝐾𝐾thr,𝐴𝐴,𝑝𝑝,𝐷𝐷 ). 
R : Fatigue R ratio. 
�∆𝐾𝐾𝑖𝑖,

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖
� , 𝑖𝑖 = 1 …𝑁𝑁 experimental data points. 

𝛽𝛽: Asymptote restriction offset ratio, default: 1 × 10−5. 
max_step: Min step in root finding loop, default: 1 × 10−3. 
max_iter: maximum number of iterations in the optimization loop 

Output: 
Total Squares (𝑅𝑅2). 

1. J2 = 0 
2. Foreach data point in the �∆𝐾𝐾𝑖𝑖,

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖
� , 𝑖𝑖 = 1 …𝑁𝑁 dataset 

a. J2 = J2 + 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 // From Alg. 1 
3. Return J2 

 
Algorithm 2: Calculation of the sum of total squares of a data point set �∆𝐾𝐾𝑖𝑖 ,

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑖𝑖
� , 𝑖𝑖 = 1 …𝑁𝑁 for the Hartman-

Schijve curve with known parameters in the log-log space. 
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3.2. Controlled Random Search with Local Mutation (CRS_LM). 
The CRS algorithm [26],  is a method based on higher-dimensional random sampling. It successively up-
dates a list of minimum locations until a certain search stop criterion is satisfied. Here we are using a 
variation of the algorithm that adopts a local mutation strategy to better capture local minima [27], [28]. 
The local mutation is introduced in a global point generation scheme that uses linear interpolation.   

3.3. Multi-Level Single-Linkage (MLSL) and MLSL with a Sobol Low-Discrepancy Se-
quence (MLSL_LDS). 
The Multi-Level Single- Linkage (MLSL) method is a multi-start method. It performs several local optimiza-
tions by using a predefined local optimizer. The sampling is either random or low-discrepancy. We are 
using both the legacy variant (MLSL) and one that utilizes a Sobol low-discrepancy sequence [29] (MLSL 
LDS). The latter is used to reduce the negative effects of totally random sampling. 

3.4. Improved Stochastic Ranking Evolution Strategy (ISRES). 
The particular algorithm ( [30], [31]) uses an evolution strategy that combines a mutation rule and an 
update rule (differential evolution). The method supports linear and non-linear equality and inequality 
constrains as well as regular bound constrains. 

3.5. ESCH - evolutionary algorithm. 
This is an evolutionary algorithm based on the work presented in [32],  [33]. The method incorporates 
ideas found in [34] and [35]. The evolution algorithm is based on population evolution along generations 
with the candidate solutions on two distinct groups “parents” and “offsprings”. The population succes-
sively increases and decreases in size to imitate the average natural evolution of a species. 

3.6. Minimization of multiextremal functions under nonconvex constraints (AGS). 
The particular algorithm [36] uses the Hilbert curve to reduce the parametric space to a single parameter 
space. Then the algorithm divides the single parameter space into intervals. The search space is sampled 
based on posterior probabilities. The method generally does not work well for a parametric space of size 
over 5, because the 64-bit machine precision does not allow one to generate a tight Hilbert curve. 

3.7. Contracting Uniform Hyper-Rectangle Sampling for Optimization (CUHYSO). 
Uniform deterministic sampling is generally recognized both theoretically and in practice to offer more 
accurate results than random sequences [29]. In addition, the determinism provides with the same result 
for the same problem, while stochastic optimization methods do not. Stochastic optimization methods 
may result in the identification of different parameters for different executions of the same optimization 
problem. This can be confusing or outright unacceptable when reproducible minimization results are ex-
pected. To address this issue and certain unwanted behavior that we observed in the other algorithms, a 
new algorithm that uses uniform deterministic sampling was developed.  

The algorithm requires an input of bound constraints in the form of two lists, the number of subdivisions 
𝐾𝐾 in each direction and a contraction ratio 𝑟𝑟 > 1.0. The lower bound can be represented by a vector 𝒍𝒍 ∈
ℝ𝑁𝑁, 𝒍𝒍 = {𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑁𝑁}𝑇𝑇, and the upper bound by a vector, 𝒖𝒖 ∈ ℝ𝑁𝑁,𝒖𝒖 = {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑁𝑁}𝑇𝑇 with 𝑁𝑁 the num-
ber of parameters and 𝑢𝑢𝑖𝑖 ≥ 𝑙𝑙𝑖𝑖. 

Subsequently, a uniform sampling list is constructed by subdividing the space between the bounds for 
each of the parameters. 𝒔𝒔𝑖𝑖 = {𝑠𝑠𝑘𝑘𝑘𝑘}𝑇𝑇 = {𝑠𝑠1𝑖𝑖, 𝑠𝑠2𝑖𝑖, … , 𝑠𝑠𝐾𝐾𝐾𝐾}𝑇𝑇 = {𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖 + ∆𝑖𝑖, 𝑙𝑙𝑖𝑖 + 2∆𝑖𝑖, … , 𝑙𝑙𝑖𝑖 + (𝐾𝐾 − 1)∆𝑖𝑖}, with 



9 
 

∆𝑖𝑖=
𝑢𝑢𝑖𝑖−𝑙𝑙𝑖𝑖
𝐾𝐾−1

. The list is comprised of all possible combinations �𝑠𝑠𝑘𝑘11, 𝑠𝑠𝑘𝑘22, … , 𝑠𝑠𝑘𝑘𝑁𝑁𝑁𝑁�
𝑇𝑇

 with 𝑘𝑘𝑖𝑖 = 1 …𝐾𝐾,𝑖𝑖 =
1 …𝑁𝑁 of the sampling points. 

The objective function is then evaluated for each of the samples. For the values of the parameters 𝒔𝒔𝑚𝑚 =
{𝑠𝑠𝑚𝑚1, 𝑠𝑠𝑚𝑚2, … , 𝑠𝑠𝑚𝑚𝑚𝑚}𝑇𝑇 where the objective function is minimum, the algorithm calculates a new bound by 
performing contraction assuming as 𝒔𝒔𝑚𝑚 a higher-dimensional center point. The new bounds are calcu-
lated based on the following equations: 

 𝑙𝑙𝑖𝑖+1 = max[𝑙𝑙𝑖𝑖, 𝑠𝑠𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑖𝑖], (9) 

 𝑢𝑢𝑖𝑖+1 = min[𝑢𝑢𝑖𝑖, 𝑠𝑠𝑚𝑚𝑚𝑚 + 𝑤𝑤𝑖𝑖], (10) 

with 𝑤𝑤𝑖𝑖 = 𝑢𝑢𝑖𝑖−𝑙𝑙𝑖𝑖
2𝑟𝑟

 . The max and min functions are used to ensure that the new bounds are always inside or 
on the previous step bounds. 

To address the asymptotic behavior of the data, CUHYSO is implemented in a manner that ignores any 
choice of parameters that lead to non-finite ordinate results. This particular feature provides CUHYSO 
with a distinct advantage when used with a traditional ordinary least square optimality criterion based on 
scattered experimental data. 

The described algorithm may be augmented with several features. For example, the number subdivisions 
may be specified per parameter or based on some predefined heuristic. Because our focus is on minimiz-
ing or eliminating user choices, we have decided to implement such features as we identify how they can 
be automated. These extensions will be the subject of future research efforts. 

4. OPTIMIZATION METHODS COMPARISON. 
To obtain insight in the optimization methods efficiency in identifying the Hartman-Schijve model param-
eters, a number of comparison tests were performed. The tests were based on synthetic data. For pur-
poses of demonstration we are showing the results for the following set of model parameters: 

 𝐷𝐷 = 3.9 × 10−10,𝑝𝑝 = 2.29,∆𝐾𝐾𝑡𝑡ℎ𝑟𝑟 = 3.04 MPa√𝑚𝑚,𝐴𝐴 = 116.81 MPa√𝑚𝑚 (11) 

The synthetic data involved both smooth and perturbed datasets. We will first focus on the results on the 
smooth synthetic data. 

Fig. 3 shows the convergence evolution to the values of the model parameters for the case of ordinary 
least squares with unperturbed data. It can be observed that some optimization methods could identify 
the reference parameters in a satisfactory manner while others performed a little worse. The plots for the 
crack propagation curves that use the identified values can be seen in Fig. 4, while Table 1 shows the 
identified parameters for each optimization method. It can be concluded that for the case of the unper-
turbed data perfectly satisfying the model, almost all optimization methods can identify the model pa-
rameters. However, the optimization method evaluation approach just described can be misleading be-
cause the unperturbed data do not reflect actual experimental situations.   
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Figure 3: Convergence of the various global optimization methods to the reference Hartman-Schijve parameters 
by using an ordinary least squares optimality criterion for the case of the synthetic unperturbed data.  
 

 
Figure 4: Evaluation of the Hartman- Schijve equation using the values of the identified parameters for the ordi-
nary least square method for the synthetic unperturbed data 
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Fig. 5 shows the convergence evolution of the values of the model parameters for the case of total least 
squares with unperturbed data. It can be observed that all the algorithms perform very well.  Fig. 6 shows 
the evaluated curves for the identified parameters for each of the optimization methods. It can be shown 
that most methods provide excellent results.  The final values of the identified parameters are shown in 
Table 2. From this table it can be observed that the final values produced from some of the optimization 
methods are not the as the ones (i.e. the reference values) used to generate the synthetic data, even if 
the fit appears very satisfactory. This is an expected outcome given that the model presented has a non-
convex nature.  

 

Table 1: Final values of the Hartman-Schijve model parameters as determined by the various methods using total 
least squares for the unperturbed synthetic data set. The results correspond to Figs. 3 and 4. 

Method Objective 
value @ min 

𝐷𝐷 𝑝𝑝 ∆𝐾𝐾𝑡𝑡ℎ𝑟𝑟 (MPa√𝑚𝑚) 𝐴𝐴 (MPa√𝑚𝑚) 

Reference 3.9e-10 2.29 3.04 116.81 
CUHYSO <0.0001 3.9e-10 2.29 3.04 116.81 
DIRECT-L <0.0001 3.9e-10 2.29 3.04 116.89 
CRS2 <0.0001 3.9e-10 2.29 3.04 116.81 
MLSL <0.0001 3.9e-10 2.29 3.04 116.83 
MLSL LDS <0.0001 3.5e-10 2.33 3.00 117.53 
ISRES <0.0001 3.9e-10 2.29 3.04 116.81 
ESCH <0.0001 4.2e-10 2.26 3.07 116.12 
AGS <0.0001 3.9e-10 2.29 3.04 116.81 

 

  

  

Figure 5: Convergence of the various global optimization methods to the reference Hartman-Schijve parameters 
by using a total least squares optimality criterion for the unperturbed synthetic data set. 
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Although the previous benchmarks provide an initial estimate of the efficiency of the various optimization 
methods, a more realistic understanding can be obtained by performing the tests to give perturbed data 
which corresponds to a situation that relates better to actual experiments, particularly if multiple data-
sets are present for the same type of experiment. The perturbed data were generated by randomly off-
setting the values of the dataset ∆𝐾𝐾 values at the log scale. The distribution used was uniform with a log 
range between -0.05 and 0.05.  

The evaluated results for both the ordinary and total least squares evaluations are shown in Fig. 7, where 
the superiority of total least squares is evident. In the ordinary least squares, all of the solvers but CUHYSO 
fail to provide proper model identification. CUHYSO performs better than the others, because of the spe-
cial provisions in handling nonfinite results. The main reason of the failure of the other optimizers is the 
unconditional rejection of points when the optimizers search at regions outside the asymptote limits of 
the curve.  

However, the latter is not a problem for the total least square criterion and as shown in Fig. 7b, all the 
optimizers are able to compute very similar crack propagation curves. Furthermore, as shown in Table 4, 
all the optimizers manage to identify the reference value in a very satisfactory manner even at the pres-
ence of perturbation. Also, in Table 3 it can be seen that the same is not true for the ordinary least square 
criterion tests. In this case only CUHYSO finds parameter values that can be considered close to the refer-
ence values. 

 
Figure 6: Evaluation of the Hartman- Schijve equation using the values of the identified parameters for the total 
least square method for the unperturbed case. 
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(a) 

 
(b) 

Figure 7: Evaluation of the Hartman- Schijve equation using the values of the identified parameters for the per-
turbed case. (a) Using the ordinary least squares criterion and (b) using the total least squares criterion 

 

It should be pointed out that because some methods rely on random number generation, re-executing 
the identification programs may not yield the same results for these methods. 

It should also be noted that CUHYSO is the only algorithm that currently supports parallelization and can 
take advantage of multi-core computer systems. This gives CUHYSO a considerable advantage and alt-
hough it might take more iterations to converge, it completes the identification task much faster than 
other algorithms. Regardless, all of the methods are able to perform a satisfactory parameter identifica-
tion in the first 10-20 seconds while their converged values are identified on an average after about 60 
seconds on a regular desktop computer. 

 

Table 2: Final values of the Hartman-Schijve model parameters as determined by the various methods 
for the case of using total least squares for the unperturbed synthetic data set. The results correspond 
to figures 5 and 6. 

Method Objective 
value @ min 

𝐷𝐷 𝑝𝑝 ∆𝐾𝐾𝑡𝑡ℎ𝑟𝑟 (MPa√𝑚𝑚) 𝐴𝐴 (MPa√𝑚𝑚) 

Reference 3.9e-10 2.29 3.04 116.81 
CUHYSO <0.0001 3.9e-10 2.29 3.04 116.81 
DIRECT-L <0.0001 3.9e-10 2.29 3.04 116.89 
CRS2 <0.0001 3.9e-10 2.29 3.04 116.81 
MLSL <0.0001 3.9e-10 2.29 3.04 116.81 
MLSL LDS <0.0001 3.8e-10 2.30 3.03 116.97 
ISRES <0.0001 3.9e-10 2.29 3.04 116.81 
ESCH <0.0001 3.6e-10 2.32 3.01 117.56 
AGS <0.0001 4.3e-10 2.25 3.05 116.92 
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5. SOFTWARE 
To facilitate the widest dissemination possible of the proposed approach, a software package was archi-
tected and prototyped targeting a variety of use cases. These use cases include: 

1. Automated parameter identification using experimental data. This facility is provided as an application 
with a Graphical User Interface (GUI). It is expected that it will fulfil end-user needs, including the needs 
for materials research and regular engineering practice. 
2. Core library. The software core library is aimed at more customizable user cases. These use cases in-
clude development of custom software development or/and GUI applications. 
3. Benchmark Tests. The tests include several benchmark facilities that can used to compare fitting ap-
proaches, optimization methods or develop additional crack growth models. The present work utilizes 
these tests to generate method comparisons presented earlier. 
4. Language bindings for use from user’s language of choice. This facility is at the planning stage and will 
include interface for the C language, and bindings for Python, Java, Matlab, Octave and other common 
languages and environments used in science and engineering. 

Table 3: Final values of the Hartman-Schijve model parameters as determined by the various methods 
for the case of using ordinary least squares for the perturbed data set. The results correspond to figure 
7a. 

Method Objective 
value @ min 

𝐷𝐷 𝑝𝑝 ∆𝐾𝐾𝑡𝑡ℎ𝑟𝑟 (MPa√𝑚𝑚) 𝐴𝐴 (MPa√𝑚𝑚) 

Reference 3.9e-10 2.29 3.04 116.81 
CUHYSO 0.110135 4.90E-10 2.26 3.12 124.34 
DIRECT-L 0.097735 5.00E-10 2.05 3.13 88.98 
CRS2 0.101609 5.00E-10 1.74 3.14 60.27 
MLSL 0.099688 5.00E-10 1.75 3.14 59.85 
MLSL LDS 0.108303 5.00E-10 1.71 3.14 59.94 
ISRES 0.110554 5.00E-10 2.1 3.13 91.61 
ESCH 0.105475 5.00E-10 2.04 3.13 88.47 
AGS 0.105475 4.80E-10 1.73 3.14 59.54 

 

Table 4: Final values of the Hartman-Schijve model parameters as determined by the various methods 
for the case of using total least squares for the perturbed data set. The results correspond to figure 7b. 

Method Objective 
value @ min 

𝐷𝐷 𝑝𝑝 ∆𝐾𝐾𝑡𝑡ℎ𝑟𝑟 (MPa√𝑚𝑚) 𝐴𝐴 (MPa√𝑚𝑚) 

Reference 3.9e-10 2.29 3.04 116.81 
CUHYSO 0.0006 4e-10 2.30 3.04 120.11 
DIRECT-L 0.0006 3.5e-10 2.35 2.99 121.40 
CRS2 0.0006 3.5e-10 2.35 2.99 121.40 
MLSL 0.0006 3.4e-10 2.36 2.98 121.64 
MLSL LDS 0.0006 3.5e-10 2.36 2.99 121.53 
ISRES 0.0006 3.5e-10 2.35 2.99 121.40 
ESCH 0.0006 3.7e-10 2.33 3.01 120.87 
AGS 0.0006 3.4e-10 2.37 2.99 123.12 
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The software was developed in modern C++ and requires a compiler supporting the ISO C++20 Standard 
[37]. The basic algorithmic components are in the public domain and therefore can be used and modified 
at will. The software’s online repository is located at [38]. For MS-Windows, the software executables are 
distributed using a regular installer with the latest release located at [39]. 

5.1. Architecture 
The adopted toolchain utilizes the CMake build system [40] and allows for architecting the software by 
separating it in three main components as planned for the target uses: a core library, a testing framework 
and an GUI application. The build system is computer architecture agnostic, although currently it has been 
tested only on Microsoft Windows. For some components, the toolchain automatically downloads and 
compiles library dependencies, reducing the setup time for development setups. The only external de-
pendence is that of the Qt Software Development Kit (SDK) [41]. One component that has not been im-
plemented yet is that of the bindings for other languages.  

5.1.1. Core Library 
The core library is based a single header library using templates for defining the numeric type [42]. The 
single header library has the advantage the it does not require separate compilation. Therefore, it allows 
for very simple dissemination, distribution and most importantly inclusion into other codes.  Furthermore, 
the use of a generic numeric type allows the user to use arbitrary, multi or even mixed precision arithmetic 
to increase the numerical accuracy if desired.  

The core library defines a basic data point type that encapsulates the values of ∆𝐾𝐾 and d𝑎𝑎/d𝑁𝑁 in a single 
pair. A test data structure describes a single test and encapsulates the test’s 𝑅𝑅 value and the list of data 
points for the test. Finally, a templated test set type-name is used to represent a generic list of multiple 
tests. 

The main algorithm employs CUHYSO and it is called using the function named fit. The parameters of this 
function include the bounds of the global optimization, the number of subdivisions and the contraction 
ratio as well as callback functions to report progress. 

5.1.2. Benchmark Tests 
The software contains 3 main test folders that share a common architecture. The test code implements 
the comparisons that were presented previously in the paper and can be modified accordingly if evalua-
tions of different methods are desired. 

The tests are using the library found in [23], that implements the global optimizers, except for CUHYSO. 
Plotting and publication preparation graph export is provided by the cxxplot library [43]. 

5.1.3. Graphical User Interface 
The graphical user interface uses the Qt SDK [41] library to provide graphical widgets. Qt is cross-platform 
and can be compiled for Windows, Linux and Mac OS X. The plotting functionality is provided by the QCus-
tomPlot library [44]. 

The GUI uses the core library by making calls to the fit function. The execution is performed asynchro-
nously on a different thread and the interface updates the graphical view to indicate the progress of the 
parameter identification. It should be noted that the CUHYSO optimizer is parallelized and takes ad-
vantage of the cores available in the system. 
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5.2. Graphical User Interface Description 
The GUI of the application is shown in Fig. 8. Besides regular controls for creating, opening, and saving a 
project, the application provides a “Compute” button that starts the computation assuming a single mas-
ter curve is desired to be computed for all datasets. A “Compute individually” button on the other hand, 
instructs the software to compute individual curves for each data set.  An export button provides the 
functionality to exports the computed formula to MS Excel by copying the formula into the OS clipboard. 
A “To Table” button generates the model results into the clipboard for general use and reporting.  A spe-
cial dialog box provides the means to input the test data, that can be copy/pasted from and to regular 
spreadsheet applications like MS Excel and Libreoffice calc. The GUI application stores its data in a json 
format, that is both machine and human readable.  

The user has the options to define the optimization limits for each of the four Hartman-Schijve parame-
ters. Automatic limits can be selected for the ∆𝐾𝐾𝑡𝑡ℎ𝑟𝑟 and 𝐴𝐴 parameters. In the latter case the software 
attempts to identify reasonable limits based on the range of the experimental data points. 

The CUHYSO global optimization options are provided in a dedicated entry box and include the number 
of subdivisions per dimension per optimization sampling sequence, the amortization (or contraction ratio) 
and the Norm (ordinary least squares or total least squares). 

The application also provides plotting options that can be used to modify the size of the various elements, 
like line and marker thicknesses. There is also a save image option to store the current graph in a format 
appropriate for publication. 

The GUI application includes several data sets that have been curated by the authors and can be found in 
the examples folder. 

                        
Figure 8: CGROW Graphical User Interface. 
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6. APPPLICATION ON EXPERIMENTAL DATA 

6.1. Application on Additively Manufactured Ti-6Al-4V  
A set of fifty-seven tests of Additively Manufactured Ti-6Al-4V were compiled from various sources, ( [45], 
[46]) and were subsequently input in the CGROW software. The R-ratio for all the tests was 0.1. Default 
parameter ranges were used, and both the ordinary and total least squares methods were applied. It 
should be noted that both executions are using the CUHYSO optimizer. The software processes each data 
set and computes the model parameters for all the data sets automatically. Afterwards the data was sep-
arated in eight sets for clarity of visualization purposes and the results of the application of the two dif-
ferent methods are shown in Figs.  9 to 16.  

                       
Figure 9: Results of processing of the first dataset of Ti-6Al-4V. The graph represents the data points and the 
identified parameters of the total Least Squares approach (tLS) and of the ordinary Least Squares approach (oLS). 
The model parameters relate to Eqn. 5. 
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From the graphs in these figures it can be observed that although both methods fit the data very well, the 
respective computed values of the parameters vary drastically between those computed with tLS and oLS. 
This observation may be interpreted as a strong argument corroborating the view that the values of the 
parameters correlate very loosely with material properties if one seeks to identify an optimal curve. For 
example, the value of 𝐴𝐴 that can be used to infer the limiting or critical fatigue crack length, is usually 
over-estimated if compared to the last data point. Similarly, the value of ∆𝐾𝐾𝑡𝑡ℎ𝑟𝑟 is underestimated. This 
observation relates to the inability of the particular model to properly represent the response both in 
terms of the actual physical response and also in terms of its utility as an engineering tool. The latter 
though can be remedied by additionally including the limiting response of 𝐴𝐴 and ∆𝐾𝐾𝑡𝑡ℎ𝑟𝑟 with the identified 
model parameters, or by following approaches similar to the ones discussed in [6]. The authors are in 
pursuit of investigating additional crack growth model types, including machine learning and data driven 
based ones, that can inherently include this information without the need to rely on a disjoint description 
of the various data components that are needed to relay the crack growth model information.  

                       
Figure 10:  Results of processing of the second dataset of Ti-6Al-4V. The graph represents the data points and the 
identified parameters of the total Least Squares approach (tLS) and of the ordinary Least Squares approach (oLS). 
The model parameters relate to Eqn. 5. 
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Figure 11:  Results of processing of the third dataset of Ti-6Al-4V. The graph represents the data points and the 
identified parameters of the total Least Squares approach (tLS) and of the ordinary Least Squares approach (oLS). 
The model parameters relate to Eqn. 5. 

 

                       

Figure 12:  Results of processing of the fourth dataset of Ti-6Al-4V. The graph represents the data points and the 
identified parameters of the total Least Squares approach (tLS) and of the ordinary Least Squares approach (oLS). 
The model parameters relate to Eqn. 5. 
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Figure 13:  Results of processing of the fifth dataset of Ti-6Al-4V. The graph represents the data points and the 
identified parameters of the total Least Squares approach (tLS) and of the ordinary Least Squares approach (oLS). 
The model parameters relate to Eqn. 5. 

                       

Figure 14:  Results of processing of the sixth dataset of Ti-6Al-4V. The graph represents the data points and the 
identified parameters of the total Least Squares approach (tLS) and of the ordinary Least Squares approach (oLS). 
The model parameters relate to Eqn. 5. 
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Figure 15:  Results of processing of the seventh dataset of Ti-6Al-4V. The graph represents the data points and 
the identified parameters of the total Least Squares approach (tLS) and of the ordinary Least Squares approach 
(oLS). The model parameters relate to Eqn. 5. 
 

                       
Figure 16:  Results of processing of the eighth dataset of Ti-6Al-4V. The graph represents the data points and the 
identified parameters of the total Least Squares approach (tLS) and of the ordinary Least Squares approach (oLS). 
The model parameters relate to Eqn. 5. 
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6.2. Application in nanocomposites consisting of nano-SiO2 particles in an anhy-
dride-cured epoxy polymeric matrix  
This application example involves the results in [47], which examined crack growth in nanocomposites 
consisting of nano-SiO2 particles in an anhydride-cured epoxy polymeric matrix. The epoxy polymers pos-
sessed a glass transition temperature of about 150oC. The spherical nano-SiO2 particles were very well 
dispersed and possessed a mean diameter of 20 nm with a narrow range of particle distribution. The 
concentrations of the nano-SiO2 fillers studied were 0, 5, 10, 15,20, and 25 wt.%.   

The results of the analysis are shown in Fig. 17. It can be observed that the proposed algorithm computes 
the crack growth curves in a very satisfactory manner. It should be noted that the same default parame-
ters were used as in the case of Ti-6Al-4V, demonstrating that the approach is robust and automated even 
if the materials have a vastly different crack growth response. 

An interesting observation that can be made in Fig. 17, is that for the ‘Neat Epoxy’ case, the total Least 
Squares approach calculates a more reasonable curve that models the first and last stages of the experi-
ment in a more intuitively correct manner than the oLS approach. This is an expected outcome as dis-
cussed in previous sections. It should be noted that we expect that the advantageous characteristics of 
the tLS method will be more prominent when models that provide higher flexibility in describing stages 1 
and 3 are employed. The latter is a topic for future research direction. 

6.3. Application in NASA experiments of the ‘IM7-8552’ CFRP composite 
To demonstrate the flexibility of the proposed algorithm and software, we applied them to yet another 
dataset of ‘IM7-8552’ carbon-fibre reinforced plastic (CFRP) composite fatigue crack growth tests that 

                       
Figure 17: Epoxy with nano-SiO2 results at various concentrations.  The graph represents the data points and the 
identified parameters of the total Least Squares approach (tLS) and of the ordinary Least Squares approach (oLS). 
The model parameters relate to Eqn. 5. 
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exhibit particularly high variability [48]. The particular dataset is provided in terms of the maximum en-
ergy-release rate, 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚. For the specific 𝑅𝑅 ratio, the maximum energy release rate can be converted to 
an equivalent range of the energy release rate, ∆√𝐺𝐺 [49],  and Eqn. 5 can be rewritten as: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐷𝐷  �∆√𝐺𝐺− ∆√𝐺𝐺thr

�1− ∆√𝐺𝐺
(1−𝑅𝑅)√𝐵𝐵

�

𝑝𝑝

. (12) 

It can be readily observed that Eqns. are 5 and 12 are related 1 to 1 and therefore the implemented com-
putational infrastructure can be utilized, as is, to identify the model parameters. 

The results of the parameter identification can be seen in Fig. 18 where it can be observed that both 
methods identify models that represent the experimental data points very satisfactorily.  The software 
was again used with its default parameters and even if it is used in a different metric (i.e. ∆√𝐺𝐺), the only 
interaction the user had to perform, was to input the data and instruct the software to perform the iden-
tification, further corroborating about the feasibility of an automated method for the identification of 
fatigue crack growth model parameters.  
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7. CONCLUSIONS AND PLANS. 
In the present paper we presented a comparison between various global optimizers and two optimality 
criteria for the purpose of the automatic identification of fatigue crack propagation model parameters.  It 
was shown that for crack propagation model identification, the use of optimality criteria based on total 
least squares (as opposed to the usual ordinary least squares) to avoid evaluating the evolution curves 
outside asymptotic limits is a necessity for usual optimizers. The use of such an optimality criterion results 
in very robust automatic identification of crack propagation model parameters by all the investigated al-
gorithms. Alternatively, the global optimization algorithm CUHYSO, that we introduced in the present 
work can robustly handle both the ordinary least square and the total least square optimality criteria. 

 

                       
Figure 18: Experimental data and computed crack growth curves for IM7-8552.  The graph represents the data 
points and the identified parameters of the total Least Squares approach (tLS) and of the ordinary Least Squares 
approach (oLS). The model parameters relate to Eqn. 12. 
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Furthermore, a software package that implements a library, a graphical user interface and the synthetic 
identification tests presented in this paper, was described. The software uses C++ and multi-threading to 
provide with high performance parameter identification and is available as open-source [38]. 

By performing parameter identification in a range of materials that exhibit vastly different fatigue crack 
growth characteristics and also very high variability, we demonstrated that the proposed approach can 
be used in a fully automated manner, dramatically reducing the need for extensive user experience in 
identifying such curves. The latter characteristic paves the road for a common engineering tool shared 
among researchers, scientists and practitioners that provides objective rather than subjective means to 
represent fatigue crack growth models. 

In the future we plan to implement several new features to the software. These include the addition of 
other crack propagation models as well as a multi-parameter identification method like the one presented 
in [11]. An important goal is the provision of crack propagation model evaluators for a variety of software 
applications and languages, including Python, C, MATLAB, Excel and others. 

By removing the requirement for continuous manual adjustments in model identification, the developed 
method and software allows the user to investigate other advanced concepts. One such concept is that 
of uncertainty quantification, that in the presence of highly non-linear problems, presents various open 
challenges [50].  Another concept is the investigation of crack-propagation models that are based on grey 
and black box approaches, including various machine learning and data-driven methods.    
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