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Abstract—This work demonstrates the hybrid integration
of a complementary metal-oxide-semiconductor (CMOS) radio
frequency integrated circuit (RFIC) into a host 3-D printed
metal-pipe rectangular waveguide (MPRWG). On-chip Vivaldi
antennas are used for TE,-to-thin-film microstrip (TFMS) mode
conversion. Our packaging solution has a combined measured
insertion loss of only 1 dB/transition at 126 GHz. This unique
packaging and interconnect solution opens up new opportunities
for implementing low-cost subterahertz (THz) multichip modules.

Index Terms—3-D printing, additive manufacturing, com-
plementary metal-oxide-semiconductor (CMOS), interconnects,
millimeter wave, mode conversion, packaging, radio fre-
quency integrated circuit (RFIC), rectangular waveguide, Vivaldi
antenna, WR-6.

I. INTRODUCTION

DDITIVE manufacturing using polymer-based 3-D print-
ing has demonstrated its potential for microwave-to-
terahertz (THz) applications as an emerging technology. For
example, in 2015, we reported the first 3-D printed metal-pipe
rectangular waveguide (MPRWG) thru line and filter compo-
nents at X-band (8—12 GHz) and W-band (75-110 GHz) [1].
Since then, many other low-cost, high-performance passive
components have been demonstrated with polymer-based 3-D
printed MPRWGs. However, to date, there are very few
examples of hybrid integration of active devices or integrated
circuits (ICs) with 3-D printed host waveguides.
MPRWGs are commonly used in very high-performance,
front-end microwave and millimeter-wave subsystems. While
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discrete semiconductor devices (e.g., Gunn diode sources,
Schottky junction detectors, and p-i-n diode switches) are
routinely embedded within host MPRWGs, the packaging of
ICs is more problematic. For example, at microwave frequen-
cies, the cross-sectional dimensions of the MPRWG can be
much greater than the size of the IC, thus requiring additional
off-chip transition design solutions. At (sub-)millimeter-wave
frequencies, the converse can be true, resulting in no obvious
packaging solutions. More importantly, wire-based chip inter-
connects work best up to ca. 30 GHz with bond wires and ca.
100 GHz with flip-chip bonding, due to the unwanted effects
of the associated parasitics.

Existing wireless-based solutions at upper millimeter-wave
frequencies (i.e., above ca. 100 GHz) employ electromag-
netic (EM) coupling via on-chip resonators or impedance-
matched field probes, which inherently have a relatively
narrow bandwidth and are not compatible with commer-
cial foundry silicon-based radio frequency ICs (RFICs) and
GaAs-based monolithic microwave ICs (MMICs).

The concept of RF EM-field coupling between a host
MPRWG and its packaged IC was first introduced in 1998 for
implementing THz multichip modules (T-MCMs) [2]. Otter
and Lucyszyn [3] demonstrated the first T-MCM, incorporating
3-D printed MPRWGs with integrated high-resistivity silicon
(HRS) implants and optoelectronic modulating laser diodes
at 500 GHz.

Lozar et al. [4] demonstrated electric (E)-field probe
coupling between a machined MPRWG and GaAs-based
MMIC thru line (grounded-coplanar waveguide) at D-band
(110-170 GHz). Skaik et al. [5] also demonstrated E-field
probe coupling into a GaAs MMIC at both V-band
(50-75 GHz) and D-band with 3-D printed MPRWGs; unfor-
tunately, no waveguide-to-chip interface characterization was
undertaken. With all these approaches, split-block designs
were adopted [3], [4], [5].

In this letter, we demonstrate novel EM-field coupling,
using two on-chip Vivaldi antennas, between a 3-D printed
host MPRWG and its packaged D-band RFIC thru line
[on-chip thin-film microstrip (TFMS)] fabricated using the
GlobalFoundries' 45-nm RF HRS-on-insulator (GF 45RFSOI
with Option 18) complementary metal-oxide—semiconductor
(CMOS) technology platform. As in our previous work [3],
an H-plane split-block design is adopted, and a masked
stereolithography apparatus (MSLA) 3-D printer is used [6] to
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Fig. 1.  GlobalFoundries 45-nm CMOS RFIC. (a) SEM and (b) optical
microphotograph showing 20-um-wide 50-Q TFMS line.
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Fig. 2. On-chip Vivaldi antenna design. (a) Ground (bottom metal layer, our
M1) and (b) with TFEMS line (top metal layer, our M5).

manufacture a standard WR-6 waveguide before being copper
electroplated.

II. WAVEGUIDE-TO-CHIP INTERFACE DESIGN

We recently introduced an active D-band 65-nm CMOS
RFIC single-stage amplifier that exhibits a measured gain of
5.1 dB using standard on-wafer probing techniques (i.e., with
unpackaged chips) [7]. For chip packaging employing a 3-D
printed host MPRWG, a proof of principle for TEo-to-TFMS
mode conversion is demonstrated, using on-chip TFMS and
two back-to-back Vivaldi antennas [8]. A scanning elec-
tron microscopy (SEM) image showing the cross-sectional
view of the front-side passive layer structure is shown in
Fig. 1(a). The optical microphotograph of the plane view for
the 322 x 876 x 1630 um test chip is shown in Fig. 1(b).

Each on-chip Vivaldi antenna employs a fin-line transi-
tion, as envisaged for the T-MCM [2], not demonstrated
until now. The design for this on-chip solution is shown
in Fig. 2.

With our Vivaldi antenna, A(xi, y;) and B(x,, y;) are the
two endpoints associated with the generic exponential taper
curve expressed by

y=Cie* 4+ C, (1)

where the exponential factor & = 6 [obtained after parameter
tuning in High-Frequency Structure Simulator (HFSS), for
optimal impedance matching within the available limitations
of chip real estate], while C; and C, are obtained from
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For our D-band demonstrator, the host MPRWG is based

on the WR-6 standard, as illustrated in Fig. 3, having internal

cross-sectional dimensions a x b of 1651 x 826 wm. The

H-plane split-block waveguide design [6] is chosen for chip
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Fig. 3. Internal illustrations of packaged RFIC for 126-GHz operation show-

ing chip side views with HRS dielectric substrate (blue) and top metallization
layers (yellow). (a) End and (b) plan.

Back Short

@ ) ©

Fig. 4. Simulated E-field distributions within the waveguide at 126 GHz.
(a) Plan view without RFIC, (b) plan view with RFIC, and (c) side view
showing TEo-to-TFMS-to-TE ;o mode conversions.

packaging. The RFIC is internally mounted in the E-plane
of the waveguide with its Vivaldi taper located at the center.
A back short provides mechanical support and blocks backside
leakage of radiation.

All simulations are undertaken with commercial 3-D full-
wave EM simulation software, using Ansys HFSS. The
simulated E-field distributions at 126 GHz are shown in
Fig. 4. Fig. 4(a) and (b) shows the E-field distributions
without and with RFIC mounted within the waveguide, respec-
tively. Fig. 4(c) shows the E-field distribution on top of
the RFIC. From Fig. 4(a), it can be seen that most of the
incident energy is reflected at the back short. Conversely,
from Fig. 4(b) and (c), the waveguide’s incident TE;y mode
is coupled into the on-chip TFMS line by the Vivaldi antenna,
with most of the incident energy being transmitted thru the
waveguide.

Two-dimensional periodic arrays of dummy filler cells are
found with CMOS RFICs [9]; these can be seen in Fig. 1 on
all upper metal layers (our M2-MS5). With regard to the metal-
plated waveguide walls, it has been determined that the aver-
age radius of hemispherical protrusions is 3.7 um, having an
average separation distance of 17 pum, giving an RMS profile
roughness of R; = 1.41 um. To avoid EM computation over-
loading, equivalent dummy-free layer substitution is adopted
(using foundry design rules) and with zero surface roughness.

IIT1. FABRICATION

The MSLA 3-D printer used in this work is the Phrozen
Sonic Mini 4K, with a quoted 35-um pixel resolution in
the x—y build plane and employing a 20-um layer thickness.
In theory, an E-plane split will have less loss attributed to
radiation leakage with a machined waveguide. However, with
3-D printing for D-band applications, we have previously
demonstrated low leakage that works with the H-plane solu-
tion, due to the easier removal of resin residue within the wider
trough and easing of alignment tolerances in assembly [6]. All
pixel-based 3-D printers, which include MSLA, suffer from
quantization problems due to the introduction of registration
errors. As a result, for this work, we employed our multistep
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Fig. 5. Microphotograph of the integrated RFIC assembled into the lower
part of the rectangular waveguide packaging (plan view).
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Fig. 6. D-band test setup for the packaged RFIC.
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Fig. 7. Measured S-parameter responses with RFIC.

quantization predistortion methodology to correct for registra-
tion errors [6].

The 3-D printed parts are first electroless plated with a thin
layer of nickel. This is followed by electroplating a 50-pum
layer of copper, ensuring that the corners are sufficiently
plated [6].

For assembly, MG Chemical 8331 slow cure silver conduc-
tive epoxy adhesive is applied between the RFIC and back
short, as shown in Fig. 5.

IV. MEASUREMENTS AND RESULTS

Measurements were made at the U.K.‘s National Physical
Laboratory, using the Keysight Technologies PNA-X N5247B
vector network analyzer and VDI WR-6.5 frequency extension
heads. The packaged RFIC test setup is shown in Fig. 6.

Our equivalent simulation model is based on a single value
for the effective dielectric constant of 5.2 that represents all
the layers (including the equivalent dummy-free layer) for the
CMOS RFIC. The simulated and measured results are shown
in Fig. 7. With the packaged RFIC, the minimum measured
insertion loss is ~4 dB at 126 GHz. The measured return loss
is better than 10 dB at all frequencies across our 5% fractional
bandwidth from 123 to 129 GHz.

Seo et al. [9] investigated “dummy modeling” for 65-nm
CMOS RFICs having different area fill ratios; the most signifi-
cant effect is to increase the distributed capacitance associated
with dummy-prefilled on-chip TEMS lines.

In addition, Seo et al. [9] measured an on-chip TFMS
line loss of 2 dB/mm at 140 GHz for their 65-nm CMOS

TABLE I
COMPARISON WITH OTHER WORKS
Band Frequency Pick-up WG-to-Tx Transition ~ Year Ref.
Range Solution Line Loss
(GHz) Transition (dB)
w 67-110 CMOS RFIC MPRWG 0.35 2015 [10]
Patch to MS
W 72-95 PCB MPRWG 0.8 2017 [11]
Transformer to MS
\ 88.5-103 PCB MPRWG 0.5 2012 [12]
Patch to MS
D 110-170 MMIC MPRWG N.A. 2017 [13]
E-probe to stripline
D 120-130 GaAs MMIC MPRWG N.A. 2022 [5]
E-probe to MS
D 123-129 CMOS RFIC MPRWG 1 2022 This
Vivaldi to TFMS work
D 124-161 GaAs MMIC MPRWG 0.8 2021 [14]
Patch to MS
G 140-220 Silicon RFIC N.A. 1 2020 [15]
E-probe
Y 340-380 InP MMIC MPRWG 1 2009 [16]
Dipole to CPW

PCB: printed circuit board; WG: waveguide; Tx: transmission;
MS: microstrip; CPW: coplanar waveguide; N.A.: not available.

RFICs. As a result, for our 1.04-mm on-chip TFMS lines, it is
reasonable to expect an associated loss of 2 dB. Therefore, the
combined losses associated with two waveguide feeds (mainly
attributed to their surface roughness) and two MPRWG-to-chip
interfaces are approximately 2 dB (i.e., ~1 dB/transition) at
126 GHz.

An exhaustive literature review has been undertaken of
W-, D-, G-, and Y-band waveguide-to-chip interconnects, and
the results are now shown in Table I. As seen in Table I, there
are very few examples of actual waveguide-to-chip interfaces
(Aljarosha et al. [11] and Tong and Stelzer [12] use PCBs
at W-band, instead of a chip, but these are included for
completeness).

V. CONCLUSION

In this letter, a new upper millimeter-wave packaging solu-
tion for commercial CMOS RFICs has been demonstrated
experimentally. Here, EM coupling into and out of a chip
replaces conventional wire-based solutions. Our first pro-
totype demonstrator exhibits a combined insertion loss of
only 1 dB/transition at 126 GHz. This opens up sub-THz
applications for an individually packaged silicon-based RFIC
or GaAs-based MMIC, as well as being able to implement
complete multichip modules.

We have demonstrated that on-chip Vivaldi antennas work
well at D-band with HRS used in the commercial GF 45RFSOI
process. In contrast, EM simulations confirm that these anten-
nas are inefficient with standard commercial low-resistivity
silicon processes, which are generally limited to microwave
frequencies of operation.

Our unique hybrid integration approach combines low-
cost commercial CMOS RFIC technology with a novel
ultralow-cost 3-D printed packaging and interconnect solution
for next-generation high-performance, broadband applications
operating at millimeter-wave frequencies, including 6G mobile
communications base stations, standoff detection imaging sys-
tems, and phased-array radars.
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