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Abstract
We present a pathwise approach to continuous-time
finance based on causal functional calculus. Our frame-
work does not rely on any probabilistic concept. We
introduce a definition of continuous-time self-financing
portfolios, which does not rely on any integration con-
cept and show that the value of a self-financing portfolio
belongs to a class of nonanticipative functionals, which
are pathwise analogs of martingales. We show that
if the set of market scenarios is generic in the sense
of being stable under certain operations, such self-
financing strategies do not give rise to arbitrage. We
then consider the problem of hedging a path-dependent
payoff across a generic set of scenarios. Applying the
transition principle of Rufus Isaacs in differential games,
we obtain a pathwise dynamic programming principle
for the superhedging cost. We show that the super-
hedging cost is characterized as the solution of a path-
dependent equation. For the Asian option, we obtain an
explicit solution.

1 INTRODUCTION

Continuous-time finance theory (Merton, 1992) was developed using probabilistic concepts such
as the Ito integral, the martingale representation theorem, and the Markov property to charac-
terize and compute the value of contingent claims given a probabilistic model describing the
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evolution of asset prices. The uncertainty on the choice of this probabilistic model has attracted
much attention in the last two decades, with many attempts to develop a “robust” approach to
continuous-time finance (Avellaneda et al., 1995; Bartl et al., 2019; Biagini et al., 2017; Burzoni
et al., 2021), (Bick & Willinger, 1994; Lochowski et al., 2018; Nutz, 2015; Nutz & Soner, 2016;
Lyons, 1995) or to seek foundations not directly based on probabilistic modeling (Vovk, 2015;
Lochowski et al., 2018). In these approaches, probabilistic concepts are not completely absent: one
considers either a family of probabilistic models -representingmodel ambiguity- or an ’outer mea-
sure’ as in the game-theoretic formulation of Vovk (2015), Lochowski et al. (2018). In particular, the
gain of a strategy is defined as an integral whose definition relies at some level on Ito integration.
A possible approach for incorporating Knightian uncertainty in continuous-time finance,

which avoids recourse to probabilistic assumptions is one inspired by the pathwise Ito calculus
introduced by Föllmer (1981), which was used by Bick and Willinger (1994) and Lyons (1995) to
develop model-free approaches to option pricing, assuming continuous price paths with finite
quadratic variation. In an insightful expository (Föllmer and Schied, 2013, §5), Föllmer and Schied
sketched this nonprobabilistic, pathwise framework (see also Bick and Willinger (1994)). They
argue that, if price paths are continuous, then they need to have finite and nonzero quadratic
variation, otherwise this gives rise to arbitrage opportunities (free lunches). In particular, one
may exihibit a self-financing strategy whose value at 𝑇 along a price path 𝑥 is given by

(𝑥(𝑇) − 𝑥(0))2 − [𝑥](𝑇) = ∫
𝑇

0

2(𝑥(𝑡) − 𝑥(0))𝑑𝑥(𝑡), (1)

where Equation (1) would become non-negative for all continuous paths with zero quadratic vari-
ation (i.e., [𝑥] = 0) and strictly positive for all such paths meeting the condition 𝑥(𝑇) ≠ 𝑥(0).
In such a setting, it is then natural to use Föllmer ’s pathwise Ito calculus (Föllmer, 1981) or its
extension to path-dependent functionals, the causal functional calculus (Chiu & Cont, 2022 ).
However, if we are uncertain that price paths would evolve continuously, then paths of zero

quadratic variations would no longer give rise to such arbitrage opportunities. In this case, for
càdlàg paths, which admit at least one discontinuity, we have

[𝑥](𝑇) ≥ (Δ𝑥(𝑡))2 > 0, (2)

for some 𝑡 ≤ 𝑇 and it is now possible for Equation (1) to go negative. As we shall argue below,
when the continuity assumption is removed, the quadratic variation assumption is not neces-
sary to avoid arbitrage and we do not need to make a priori assumptions on the (𝑝-)variation of
price paths.
We present in this work a pathwise approach to continuous-time finance, based on causal func-

tional calculus (Chiu & Cont, 2022). Our framework does not rely on any probabilistic concept.
We first argue that the set of price trajectories should be stable under certain operations, which
leads us to the concept of generic set of price paths. All functionals of price paths are defined on
such generic sets, which constitute a canonical domain for causal functional calculus.
We then introduce a local definition of continuous-time self-financing portfolios which does

not rely on any integration concept and show that the value of a self-financing portfolio belongs
to a class of nonanticipative functionals, which are pathwise analogs ofmartingales.We show that
if the set of market scenarios is generic, such self-financing strategies do not give rise to arbitrage.
This absence of arbitrage holds on all generic domains that include, but are not limited to, paths
of 𝑝th-order variation for any 𝑝 ≥ 2. In contrast to related results established using the measure-
theoretic “game” approach of Vovk (2015) (see also Lochowski et al. (2018)), we are able to work
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CHIU and CONT 259

with the classical notion of arbitrage, rather than passing to an asymptotic relaxation that may
not necessarily be implementable by a self-financing trading strategy.
For nonlinear payoffs, we show that a perfect hedge does not exist in general. We adopt a pri-

mal approach to superhedging on bounded generic subset. In particular, we solve the model-free
superhedging problem over the above set of scenarios using a minimax approach, in the spirit of
Isaacs’s tenet of transition (Isaacs, 1951), and provide a verification theorem for the optimal cost-
to-go functional. As an example, we study the case of Asian options and obtain explicit solution.
Related superhedging problems have been studied using probabilistic approaches or so-called

robust approaches based on quasi-sure analysis using a family of probabilitymeasures (Bartl et al.,
2019; Lochowski et al., 2018; Nutz, 2015; Nutz & Soner, 2016). In contrast to these approaches,
our approach is purely pathwise and does not appeal to any probabilistic assumptions. Finally,
our hedging strategy comes as a by-product, whereas in the quasi-sure approach, it is not
straightforward to compute the optimal strategy (Nutz, 2015).

2 NOTATIONS

Denote 𝐷 to be the Skorokhod space of ℝ𝑚-valued positive càdlàg functions

𝑡 ⟼ 𝑥(𝑡) ∶= (𝑥1(𝑡), … , 𝑥𝑚(𝑡))
′ (3)

onℝ+ ∶= [0,∞) and for 𝑝 ∈ 2ℕ, we denote𝐷(ℝ+,ℝ
𝑚⊗𝑝) the Skorokgod space ofℝ𝑚⊗𝑝-valued

càdlàg functions onℝ+ ∶= [0,∞). Denote 𝐶, 𝕊, 𝐵𝑉, respectively, the subsets of continuous func-
tions, step functions, locally bounded variation functions in 𝐷. 𝑥(0−) ∶= 𝑥0 > 0 and Δ𝑥(𝑡) ∶=
𝑥(𝑡) − 𝑥(𝑡−). The path 𝑥 ∈ 𝐷 stopped at (𝑡, 𝑥(𝑡)) (respectively (𝑡, 𝑥(𝑡−)))

𝑠 ⟼ 𝑥(𝑠 ∧ 𝑡) (4)

shall be denoted by 𝑥𝑡 ∈ 𝐷 (respectively 𝑥𝑡− ∶= 𝑥𝑡 − Δ𝑥(𝑡)1I[𝑡,∞) ∈ 𝐷). We write (𝐷, 𝔡J1 ) when 𝐷
is equipped with a complete metric 𝔡J1 , which induces the Skorokhod (a.k.a. J1) topology.
Let 𝜋 ∶= (𝜋𝑛)𝑛≥1 be a fixed sequence of partitions 𝜋𝑛 = (𝑡𝑛

0
, … , 𝑡𝑛

𝑘𝑛
) of [0,∞) into intervals 0 =

𝑡𝑛
0
< … < 𝑡𝑛

𝑘𝑛
< ∞; 𝑡𝑛

𝑘𝑛
↑ ∞ with vanishing mesh |𝜋𝑛| ↓ 0 on compacts. By convention, max(∅ ∩

𝜋𝑛) ∶= 0,min(∅ ∩ 𝜋𝑛) ∶= 𝑡𝑛
𝑘𝑛
. Since 𝜋 is fixed, we will avoid superscripting 𝜋.

For any 𝑝 ∈ 2ℕ, we say that 𝑥 ∈ 𝐷 has finite 𝑝th-order variation [𝑥]𝑝 if∑
𝜋𝑛∋𝑡𝑖≤𝑡

(𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖))
⊗𝑝 (5)

converges to [𝑥]𝑝 in the Skorokhod J1 topology in𝐷(ℝ+,ℝ
𝑚⊗𝑝). In light of Chiu and Cont (2018),

we remark that in the special case 𝑝 = 2, this definition is equivalent to that of Föllmer (1981). We
refer to Cont and Perkowski (2019) for a discussion of 𝑝th-order variation for continuous paths.
We denote 𝑉𝑝 the set of càdlàg paths of finite 𝑝th-order variations,

𝑡′𝑛 ∶= max{𝑡𝑖 < 𝑡|𝑡𝑖 ∈ 𝜋𝑛}, (6)
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and the following piecewise constant approximations of 𝑥 by

𝑥𝑛 ∶=
∑
𝑡𝑖∈𝜋𝑛

𝑥(𝑡𝑖+1)1I[𝑡𝑖 ,𝑡𝑖+1). (7)

We let Ω ⊂ 𝐷 be generic (Definition 3.1) and define our domain as

Λ ∶= {(𝑡, 𝑥𝑡)|𝑡 ∈ ℝ+, 𝑥 ∈ Ω}. (8)

3 CAUSAL FUNCTIONAL CALCULUS

Causal functional calculus (Chiu & Cont, 2022) is a calculus for nonanticipative function-
als defined on sets of càdlàg paths satisfying certain stability properties. In this section, we
summarize some key definitions and results; we refer to Chiu and Cont (2022) for a detailed
exposition.

Definition 3.1 (Generic sets of paths). A nonempty subsetΩ ⊂ 𝐷 is called generic ifΩ satisfies the
following closure properties under operations: (we recall Equation (7) for the definition of 𝑥𝑛)

(i) For every 𝑥 ∈ Ω, 𝑇 > 0, ∃𝑁(𝑇) ∈ ℕ; 𝑥𝑛 ∈ Ω, ∀𝑛 ≥ 𝑁(𝑇).
(ii) For every 𝑥 ∈ Ω, 𝑡 ≥ 0, ∃ convex neighborhood Δ𝑥(𝑡) ∈  of 0;

𝑥𝑡− + 𝑒1I[𝑡,∞) ∈ Ω, ∀𝑒 ∈  . (9)

Example 3.2. Examples of generic subsets include 𝕊, 𝐵𝑉, 𝐷, and 𝑉𝑝 for 𝑝 ∈ 2ℕ. Generic subsets
are closed under finite intersections. All subsets of 𝐶 are not generic.

Definition 3.3 (Strictly causal functionals). Let 𝐹 ∶ Λ → ℝ and denote 𝐹−(𝑡, 𝑥𝑡) = 𝐹(𝑡, 𝑥𝑡−). 𝐹 is
called strictly causal if 𝐹 = 𝐹−.

We associate with the sequence of partitions 𝜋 a topology on the space Λ of càdlàg paths called
the 𝜋-topology, introduced in Chiu and Cont (2022).

Definition 3.4 (Continuous functionals). We denote by 𝐶(Λ) the set of maps 𝐹 ∶ Λ → ℝ which
satisfy

1.
(a) lim𝑠↑𝑡;𝑠≤𝑡 𝐹(𝑠, 𝑥𝑠−) = 𝐹(𝑡, 𝑥𝑡−),
(b) lim𝑠↑𝑡;𝑠<𝑡 𝐹(𝑠, 𝑥𝑠) = 𝐹(𝑡, 𝑥𝑡−),
(c) 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 ≤ 𝑡′𝑛 ⟹ 𝐹(𝑡𝑛, 𝑥

𝑛
𝑡𝑛−
)⟶ 𝐹(𝑡, 𝑥𝑡−),

(d) 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 < 𝑡′𝑛 ⟹ 𝐹(𝑡𝑛, 𝑥
𝑛
𝑡𝑛
)⟶ 𝐹(𝑡, 𝑥𝑡−),

2.
(a) lim𝑠↓𝑡;𝑠≥𝑡 𝐹(𝑠, 𝑥𝑠) = 𝐹(𝑡, 𝑥𝑡),
(b) lim𝑠↓𝑡;𝑠>𝑡 𝐹(𝑠, 𝑥𝑠−) = 𝐹(𝑡, 𝑥𝑡),
(c) 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 ≥ 𝑡′𝑛 ⟹ 𝐹(𝑡𝑛, 𝑥

𝑛
𝑡𝑛
)⟶ 𝐹(𝑡, 𝑥𝑡),

(d) 𝑡𝑛 ⟶ 𝑡; 𝑡𝑛 > 𝑡′𝑛 ⟹ 𝐹(𝑡𝑛, 𝑥
𝑛
𝑡𝑛−
)⟶ 𝐹(𝑡, 𝑥𝑡),
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for all (𝑡, 𝑥𝑡) ∈ Λ. A functional is called left (respectively right) continuous if it satisfies 1.(a)–(d)
(respectively 2.(a)–(d)).

By analogy with the concept of “regulated functions” we define:

Definition 3.5 (Regulated functionals). A functional 𝐹 ∶ Λ → ℝ is regulated if there exists 𝐹 ∈
𝐶(Λ) such that 𝐹− = 𝐹−. 𝐹 is then unique by Proposition 3.4.2(b).

Remark 3.6. Since𝐶(Λ) is an algebra, we remark the set of regulated functionals forms an algebra.

We now introduce functional derivatives, following Cont and Fournié (2010), Dupire (2019):

Definition 3.7 (Horizontal differentiability). 𝐹 ∶ Λ⟼ℝ is called differentiable in time if

𝐹(𝑡, 𝑥𝑡) ∶= lim
ℎ↓0

𝐹(𝑡 + ℎ, 𝑥𝑡) − 𝐹(𝑡, 𝑥𝑡)

ℎ
(10)

exists for all (𝑡, 𝑥𝑡) ∈ Λ.

Definition 3.8 (Vertical differentiability).𝐹 ∶ Λ⟼ℝ is called vertically differentiable if for every
(𝑡, 𝑥𝑡) ∈ Λ, the map

𝑒⟼ 𝐹
(
𝑡, 𝑥𝑡 + 𝑒1I[𝑡,∞)

)
(11)

is differentiable at 0. We define ∇𝑥𝐹(𝑡, 𝑥𝑡) ∶= (∇𝑥1𝐹(𝑡, 𝑥𝑡), … ,∇𝑥𝑚𝐹(𝑡, 𝑥𝑡))
′;

∇𝑥𝑖𝐹(𝑡, 𝑥𝑡) ∶= lim
𝜖→0

𝐹
(
𝑡, 𝑥𝑡 + 𝜖𝐞𝑖1I[𝑡,∞)

)
− 𝐹(𝑡, 𝑥𝑡)

𝜖
. (12)

Definition 3.9 (Differentiability). A functional is called differentiable if it is horizontally and
vertically differentiable.

Remark 3.10. All definitions above extend tomultidimensional functions onΛwhose components
satisfy the respective conditions.

Lemma 3.11. A function on Λ is strictly causal if and only if it is differentiable in space with
vanishing derivative.

Proof. We refer to Chiu and Cont (2022, §4). □

Definition 3.12 (Classes  and ). A continuous and differentiable functional 𝐹 is of class 
if 𝐹 is right continuous and locally bounded, ∇𝑥𝐹 is left continuous and strictly causal. If in
addition,𝐹 vanishes, then 𝐹 is of class.

Denote (Λ) the set of all functionals of class  and 0(Λ) the subset of (Λ) with
vanishing initial values.
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262 CHIU and CONT

Definition 3.13 (Pathwise integral). Let 𝜙 ∶ Λ⟼ℝ𝑚; 𝜙− be left continuous. For every 𝑥 ∈ Ω,
define

𝐈
(
𝑡, 𝑥𝑛𝑡

)
∶=

∑
𝜋𝑛∋𝑡𝑖≤𝑡

𝜙
(
𝑡𝑖, 𝑥

𝑛
𝑡𝑖−

)
⋅ (𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖)). (13)

If 𝐈(𝑡, 𝑥𝑡) ∶= lim𝑛 𝐈(𝑡, 𝑥
𝑛
𝑡 ) exists and 𝐈 is continuous, then 𝜙 is called integrable and 𝐈 ∶= ∫ .

0
𝜙𝑑𝑥 is

called the pathwise integral.

We remark that, ifΩ ⊂ 𝑄𝑉, then integrands of the type ∇𝑓◦𝑥, 𝑓 ∈ 𝐶2(ℝ𝑑) (Föllmer, 1981) and
their path-dependent analogs∇𝐹◦𝑥, 𝐹 ∈ ℂ1,2(ℝ𝑑) (Chiu&Cont, 2022) are integrable. The follow-
ing result (Chiu and Cont, 2022, §5) characterizes class(Λ) as the class of functionals admitting
a representation as pathwise integral.

Theorem 3.14 (Representation theorem). A functional 𝐹 ∶ Λ → ℝ is a pathwise integral if and
only if 𝐹 ∈0(Λ):

𝐹 ∈0(Λ) ⟺ ∃𝜙 ∶ Λ → ℝ𝑚, 𝜙− left-continuous; (14)

𝐹(𝑡, 𝑥𝑡) = ∫
𝑡

0

𝜙−𝑑𝑥, ∀(𝑡, 𝑥𝑡) ∈ Λ. (15)

4 MARKET SCENARIOS, SELF-FINANCING STRATEGIES, AND
ARBITRAGE

We consider a frictionless market with 𝑑 > 0 tradable assets, and one numeraire whose price is
identically 1. We denote 𝑥 to be the price paths of tradable assets and 𝑥 ∈ Ω, where Ω is generic
(Definition 3.1).
A trading strategy is a pair (𝜙, 𝜓) of regulated functionals 𝜙 ∶ Λ ↦ ℝ𝑑 and 𝜓 ∶ Λ ↦ ℝ. The

value 𝑉 of the portfolio is given by

𝑉(𝑡, 𝑥𝑡) ∶= 𝜙(𝑡, 𝑥𝑡) ⋅ 𝑥(𝑡) + 𝜓(𝑡, 𝑥𝑡). (16)

The number of shares in assets and the quantity in numeraire held immediately before the
portfolio revision at time 𝑡 will be denoted by 𝜙− and 𝜓−.
A key concept in continuous-time finance is the concept of self-financing strategy (Bick &Will-

inger, 1994, §2). This concept is usually defined in a probabilistic setting, by equating the changes
in the portfolio value 𝑉 with a gain process defined as a stochastic integral ∫ 𝜙dx. An arbitrage
strategy is then defined as a riskless self-financing strategy, which may lead to nonzero profit
in certain scenarios. The notion of arbitrage thus hinges upon the definition of self-financing
strategy. We aim to address the following fundamental questions:

∙ What is meant by a self-financing strategy?
∙ What is an arbitrage strategy?
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We propose a new approach to the notion of self-financing strategy based on local properties,
without involving any use of (pathwise or stochastic) integration notions.

Definition 4.1 (Self-financing strategy). A trading strategy or portfolio (𝜙, 𝜓) is called self-
financing if for every (𝑡, 𝑥) ∈ Λ,

(i) Δ𝜙(𝑡, 𝑥𝑡) ⋅ 𝑥(𝑡) + Δ𝜓(𝑡, 𝑥𝑡) = 0,
(ii) (𝜙(𝑡 + ℎ, 𝑥𝑡) − 𝜙(𝑡, 𝑥𝑡)) ⋅ 𝑥(𝑡) + 𝜓(𝑡 + ℎ, 𝑥𝑡) − 𝜓(𝑡, 𝑥𝑡) = 0 for all ℎ > 0.

Both conditions correspond to the property that the proceeds from any change in the asset
positions is reflected in the change in the cash position. However, the important point is that we
only require this in two situations:

(i) an instantaneous change in the asset positions, and
(ii) a change in the asset/cash position while asset prices remain constant.

As we will show, through piecewise constant approximation these two situations cover the case
of all continuous-time strategies under minimal regularity properties.

Remark 4.2. If (𝜙, 𝜓) is self-financing, then the value of the portfolio may also be expressed as

𝑉(𝑡, 𝑥𝑡) = 𝜙(𝑡, 𝑥𝑡−) ⋅ 𝑥(𝑡) + 𝜓(𝑡, 𝑥𝑡−). (17)

We remark here that interchanging (16) and (17) for the definition of a portfolio value would not
have any effect for self-financing portfolios.

Theorem 4.3 (Gain of a self-financing strategy as a pathwise integral). Let𝑉 be the portfolio value
associated with the trading strategy (𝜙, 𝜓). Then (𝜙, 𝜓) is self-financing if and only if 𝑉 ∈(Λ),
∇𝑥𝑉 = 𝜙−. In that case

𝑉(𝑡, 𝑥𝑡) = 𝑉(0, 𝑥0) + ∫
𝑡

0

𝜙(𝑠, 𝑥𝑠−)𝑑𝑥. (18)

Proof. If (𝜙, 𝜓) is self-financing, we may first use Equation (17) to deduce that ∇𝑥𝑉 = 𝜙−, which
is left continuous and strictly causal. From Equation (16) and the fact that 𝐶(Λ) is an algebra (i.e.,
Proposition 3.4), we see that 𝑉 is continuous. We then apply Equation (16) and Definition 4.1(ii)
to deduce that𝑉 is vanishing. Hence, 𝑉 ∈(Λ) and Equation (18) follows from Theorem 3.14.
On the other hand, if 𝑉 ∈(Λ), then 𝑉 is continuous. By the continuity of 𝑉, Equation (17)

and Proposition 3.4.2(b), we first obtain Equation (16), hence Definition 4.1(i). Since𝑉 vanishes,
by Chiu and Cont (2022, Lem.5.1), we obtain

𝑉(𝑡 + ℎ, 𝑥𝑡) − 𝑉(𝑡, 𝑥𝑡) = ∫
𝑡+ℎ

𝑡

𝑉(𝑠, 𝑥𝑡)𝑑𝑠 = 0. (19)

Resorting once again to Equation (16), we also obtain Definition 4.1.(ii), hence (𝜙, 𝜓) is
self-financing. □
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Proposition 4.4. Let 𝑉 ∈(Λ), then the following properties are equivalent:

(i) 𝑉 is the value of a self-financing trading strategy (𝜙, 𝜓).
(ii) ∇𝑥𝑉 is regulated.

Proof. (i) implies (ii) follows from Definition 4.1, Definition 3.5, and Theorem 4.3. Assume (ii)
holds, let 𝜙 be the continuous version of ∇𝑥𝑉 and put

𝜓(𝑡, 𝑥𝑡) ∶= 𝑉(𝑡, 𝑥𝑡) − 𝜙(𝑡, 𝑥𝑡) ⋅ 𝑥(𝑡), (20)

then 𝜓 is continuous (i.e., 𝐶(Λ) is an algebra) and 𝑉 is the portfolio value associated with the
trading strategy (𝜙, 𝜓). Taking Δ from Equation (20), we obtain

Δ𝑉 − ∇𝑥𝑉Δ𝑥 = 𝑥 ⋅ Δ𝜙 + Δ𝜓. (21)

By Theorem 3.14, we deduce the LHS of Equation (21) vanishes and obtain Equation (17), hence
∇𝑥𝑉 = 𝜙−, the proof is complete by Theorem 4.3. □

Remark 4.5. In view of Theorem 4.3, Proposition 4.4, and Equation (20), we may call a functional
𝑉 self-financing if 𝑉 ∈ with regulated ∇𝑥𝑉.

Definition 4.6 (Arbitrage). A self-financing strategy (𝜙, 𝜓)with value 𝑉 is called an arbitrage on
[0, 𝑇] if

∀𝑥 ∈ Ω, 𝑉(𝑇, 𝑥𝑇) − 𝑉(0, 𝑥0) ≥ 0 (22)

and there exists 𝑥 ∈ Ω such that 𝑉(𝑇, 𝑥𝑇) − 𝑉(0, 𝑥0) > 0.

Lemma 4.7. Let𝑀 ∈0(Λ). If there exists 𝑇 > 0;

𝑀(𝑇, 𝑥𝑇) ≥ 0 (23)

for all 𝑥 ∈ Ω, then for every 𝑥 ∈ Ω, the map

𝑡 ⟼𝑀(𝑡, 𝑥𝑡) (24)

is non-negative for 𝑡 ≤ 𝑇.

Proof. If𝑀 ∈0(Λ), then𝑀 vanishes, by Chiu and Cont (2022, Lem. 5.1), we obtain

𝑀(𝑡, 𝑥𝑡) = 𝑀(𝑡, 𝑥𝑡) + ∫
𝑇

𝑡

𝑀(𝑠, 𝑥𝑡)𝑑𝑠 = 𝑀(𝑇, 𝑥𝑡) ≥ 0 (25)

for all 𝑡 ≤ 𝑇, where the last inequality is due to 𝑥𝑡 ∈ Ω. □

Theorem 4.8 (Fair game property). Let𝑀 ∈0(Λ). If there exists 𝑇 > 0 such that

𝑀(𝑇, 𝑥𝑇) ≥ 0 (26)

for all 𝑥 ∈ Ω, then𝑀(𝑇, 𝑥𝑇) ≡ 0.
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Proof. Let 𝑇 > 0;𝑀(𝑇, 𝑥𝑇) ≥ 0 ∀ 𝑥 ∈ Ω. By Lemma 4.7, we first obtain

𝑀(𝑡, 𝑥𝑡) ≥ 0 (27)

for all 𝑡 ≤ 𝑇, 𝑥 ∈ Ω. Suppose there exists 𝜔 ∈ Ω;

𝑀(𝑇, 𝜔𝑇) > 0. (28)

By the continuity of𝑀 and Theorem 3.14, it follows

𝑀(𝑇, 𝜔𝑛
𝑇
) =

∑
𝜋𝑛∋𝑡𝑖≤𝑇

∇𝑥𝑀
(
𝑡𝑖, 𝜔

𝑛
𝑡𝑖−

)
(𝜔(𝑡𝑖+1) − 𝜔(𝑡𝑖)) > 0 (29)

for all 𝑛 sufficiently large. Define

𝑡∗𝑛 ∶= min
{
𝑡𝑖 ∈ 𝜋𝑛|𝑀 (

𝑡𝑖, 𝜔
𝑛
𝑡𝑖

)
> 0

}
, (30)

then 𝑡∗𝑛 ≤ 𝑇. By Equations (27) and (29), the left continuity of 𝑀 and the fact that 𝜔𝑛 ∈ Ω, we
obtain

𝑀
(
𝑡∗𝑛, 𝜔

𝑛
𝑡∗𝑛

)
> 𝑀

(
𝑡∗𝑛, 𝜔

𝑛
𝑡∗𝑛−

)
= 0, (31)

hence

𝑀
(
𝑡∗𝑛, 𝜔

𝑛
𝑡∗𝑛

)
= ∇𝑥𝑀

(
𝑡∗𝑛, 𝜔

𝑛
𝑡∗𝑛−

)
Δ𝜔

(
𝑡∗𝑛

)
> 0. (32)

Definition 3.1(ii) implies that there exists 𝜖 > 0;

𝜔∗ ∶= 𝜔𝑛
𝑡∗𝑛−

− 𝜖Δ𝜔
(
𝑡∗𝑛

)
1I[𝑡∗𝑛,∞) ∈ Ω, (33)

hence

𝑀
(
𝑡∗𝑛, 𝜔

∗
𝑡∗𝑛

)
= ∇𝑥𝑀

(
𝑡∗𝑛, 𝜔

𝑛
𝑡∗𝑛−

)(
− 𝜖Δ𝜔

(
𝑡∗𝑛

))
< 0, (34)

which is a contradiction to Equation (27). □

Using these results we can now show that if the set of market scenarios is a generic set of paths,
arbitrage in the sense of Definition 3.1 does not exist:

Corollary 4.9. Arbitrage does not exist in a generic market.

Proof. It is a direct consequence of Definition 4.6 and Theorem 4.3 and 4.8. □

Remark 4.10. As previously discussed, the set 𝕊 of piecewise-constant paths, the space
𝐷([0,∞),ℝ𝑚

+ ) of positive càdlàg paths or the space 𝑉𝑝 of càdlàg paths with finite pth-order varia-
tion for 𝑝 ∈ 2ℕ are examples of generic sets of paths, to which the above result applies. However,
unlike the results of Lochowski et al. (2018), Schied and Voloshchenko (2016), and Vovk (2015),
the proof of the above result does not involve any assumption on the variation index of the path.
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5 WHEN DOES A PAYOFF ADMIT A PERFECT HEDGE?

In this section, we define path-dependent payoff as functionals and prove that a payoff can be
perfectly hedged in a generic market if and only if it is linear. We give an explicit example of such
a payoff: the Asian option with zero strike.
For 𝑢, 𝑣 ∈ ℝ𝑙, we write 𝑢 > 𝑣 if 𝑢𝑖 > 𝑣𝑖 for all 𝑖. We call 𝑣 positive if 𝑣 > 0. Let Ω be a generic

set of paths. In order for the operation

𝑥𝑡− + 𝔢(𝑡, 𝑥𝑡−)1I[𝑡,∞) ∈ Ω (35)

to be closed, 𝔢(𝑡, 𝑥𝑡−)may not take arbitrary values, this motivates the following:

Definition 5.1 (Admissible perturbation). A regulated function 𝔢 ∶ Λ → ℝ𝑑 is called an
admissible perturbation if for every 𝑥 ∈ Ω, 𝑡 ≥ 0,

𝑥𝑡− + 𝔢(𝑡, 𝑥𝑡−)1I[𝑡,∞) ∈ Ω (36)

We denote  to be the set of all admissible perturbations on Λ.
Example 5.2. 𝔢 ∶= 0 is admissible. If Ω is either 𝕊, 𝑉𝑝, or 𝐷, then every ℝ𝑑-valued regulated
function 𝔢 satisfying

𝔢(𝑡, 𝑥𝑡−) > −𝑥(𝑡−), (37)

for all 𝑥 ∈ Ω, 𝑡 ≥ 0 is admissible.

Definition 5.3 (Nondegenerate). A subset Ω is called nondegenerate, if there exists 𝔢1, … , 𝔢𝑑 ∈ 
where

𝔢𝑖
𝑗
(𝑡, 𝑥𝑡−)

{≠ 0, if 𝑖 = 𝑗.

= 0, otherwise;
(38)

for every 𝑥 ∈ Ω, 𝑡 ≥ 0.

Remark 5.4. If Ω is either 𝕊, 𝑉𝑝, or 𝐷, then Ω is nondegenerate. In the sequel, we shall assume
that Ω is nondegenerate.

Definition 5.5 (Payoff). A payoff with maturity 𝑇 > 0 is a functional𝐻 ∶ Ω → ℝ such that

(i) 𝐻(𝑥) = 𝐻(𝑥𝑇) for all 𝑥 ∈ Ω.
(ii) For every 𝑥 ∈ Ω, 𝑡 ≥ 0 and the map

𝑒⟼ 𝐻(𝑥𝑡− + 𝑒1I[𝑡,∞)) (39)

is continuous on every convex neighborhood ⊂ ℝ𝑑 of 0 satisfying Equation (9).
(iii) The functional (𝑡, 𝑥𝑡)⟼ 𝐻(𝑥𝑡) is continuous on Λ and for every 𝔢 ∈  , the functional

(𝑡, 𝑥𝑡) ∈ Λ⟼𝐻(𝑥𝑡− + 𝔢(𝑡, 𝑥𝑡−)1I[𝑡,∞)), (40)

is regulated.
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CHIU and CONT 267

Example 5.6. Let 𝑑 = 1, 𝑇 > 0,𝐾 ≥ 0 and let𝑉 be the value of a self-financing portfolio. Then

(a) 𝐻(𝑥) ∶= (
1

𝑇
∫ 𝑇

0
𝑥(𝑡)𝑑𝑡 − 𝐾)+,

(b) 𝐻(𝑥) ∶= (sup𝑠≤𝑇 𝑥(𝑠) − 𝑥(𝑇))+,
(c) 𝐻(𝑥) ∶= (𝑉(𝑇, 𝑥𝑇) − 𝐾)

+,

satisfy Definition 5.5.

Proof. We first compute𝐻(𝑥𝑡− + 𝑒1I[𝑡,∞)) and obtain

(𝑎)

(
1

𝑇

(
∫

𝑡∧𝑇

0

𝑥𝑑𝑠 + (𝑇 − 𝑡)(𝑥(𝑡−) + 𝑒)1I[0,𝑇]

)
− 𝐾

)+

,

(𝑏)

(
sup
𝑠<𝑡

𝑥𝑇(𝑠) − 𝑥𝑇(𝑡−) − 𝑒1I[0,𝑇]
)+

,

(𝑐)
(
𝑉(𝑡, 𝑥(𝑡∧𝑇)−) + ∇𝑥𝑉(𝑡, 𝑥𝑡−)𝑒1I[0,𝑇] − 𝐾

)+
, (41)

which are all continuous in 𝑒 and we obtain Definition 5.5(ii). If we replace 𝑒 with Δ𝑥(𝑡) and
observe in (b) that (

sup
𝑠<𝑡

𝑥𝑇(𝑠) − 𝑥𝑇(𝑡)

)+

=

(
sup
𝑠≤𝑡 𝑥𝑇(𝑠) − 𝑥𝑇(𝑡)

)+

, (42)

we see that (𝑡, 𝑥𝑡) ↦ 𝐻(𝑥𝑡) is continuous. If we replace 𝑒 with 𝔢 ∈  , by the admissibility of 𝔢 and
Remark 3.6, we obtain Definition 5.5(iii). □

Definition 5.7 (Vertically affine functionals). A payoff𝐻 ∶ Ω → ℝ is called vertically affine if for
every 𝑥 ∈ Ω, 𝑡 ≥ 0 and convex neighborhood ⊂ ℝ𝑑 of 0 satisfying Equation (9), the map

𝑒⟼ 𝐻(𝑥𝑡− + 𝑒1I[𝑡,∞)) (43)

is affine on .

Remark 5.8. If 𝐾 = 0, the payoffs in Example 5.6(i) and (iii) are vertically affine.

Definition 5.9 (Perfect hedge). A payoff𝐻 ∶ Ω → ℝwithmaturity 𝑇 > 0 is said to admit a perfect
hedge on Ω if there exists a self-financing portfolio with value 𝑉 such that

∀𝑥 ∈ Ω, 𝑉(𝑇, 𝑥𝑇) = 𝐻(𝑥𝑇). (44)

Theorem 5.10. Every vertically affine payoff admits a perfect hedge onΩ.

Proof. If𝐻 is vertically affine, then 𝑒⟼ 𝐻(𝑥𝑡− + 𝑒1I[𝑡,∞)) is an affine map. SinceΩ is generic, it
follows there exists a convex neighborhood Δ𝑥(𝑡) ∈  ⊂ ℝ𝑑 of 0 satisfying Equation (9) and we
obtain a constant 𝑐 and a 𝜙 ∈ ℝ𝑑;

𝐻(𝑥𝑡− + 𝑒1I[𝑡,∞)) = 𝑐(𝑡, 𝑥𝑡−) + 𝜙(𝑡, 𝑥𝑡−) ⋅ 𝑒, (45)
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on , hence 𝑐(𝑡, 𝑥𝑡−) = 𝐻(𝑥𝑡−) and

𝐻(𝑥𝑡) − 𝐻(𝑥𝑡−) = 𝜙(𝑡, 𝑥𝑡−) ⋅ Δ𝑥(𝑡). (46)

Since it holds for every 𝑥 ∈ Ω and 𝑡 ≥ 0, it follows from Definition 5.5(iii) that

𝑉(𝑡, 𝑥𝑡) ∶= 𝐻(𝑥𝑡), (47)

is continuous on Λ, 𝑉 vanishes and by Equation (46) and Lemma 3.11, ∇𝑥𝑉(𝑡, 𝑥𝑡) = 𝜙(𝑡, 𝑥𝑡−),
which is strictly causal and 𝑉 is of class . It remains to show that 𝜙 is regulated. Since Ω is
nondegenerate, there exists everywhere nonvanishing 𝔢𝑖 ∈  , 𝑖 = 1, … , 𝑑;

𝐻(𝑥𝑡− + 𝔢
𝑖(𝑡, 𝑥𝑡−)1I[𝑡,∞)) − 𝐻(𝑥𝑡−) = 𝜙(𝑡, 𝑥𝑡−) ⋅ 𝔢

𝑖(𝑡, 𝑥𝑡−). (48)

Since (𝔢𝑖
𝑖
) ≠ 0, it follows fromDefinition 5.5(iii), Remark 3.6, and Equation (48) that 𝜙 is regulated.

By Proposition 4.4 and Remark 4.5, 𝑉 is self-financing and hence the claim follows. □

Corollary 5.11. A payoff admits a perfect hedge on a generic set of paths Ω if and only if it is
vertically affine.

Proof. The if part follows from Theorem 5.10. If 𝐻 admits a perfect hedge then there exists 𝑉 ∈

(Λ);𝐻(𝑥𝑇) = 𝑉(𝑇, 𝑥𝑇) on Ω. It follows that

𝐻(𝑡, 𝑥𝑡− + 𝑒1I[𝑡,∞)) = 𝑉(𝑡, 𝑥𝑡−) + ∇𝑥𝑉(𝑡, 𝑥𝑡−)𝑒. (49)

□

Example 5.12 (Asian option with 𝐾 = 0). The Asian option with strike 𝐾 = 0, that is, for
example, 5.6(i) is vertically affine and the perfect hedge is computed as

∇𝑥𝑉(𝑡, 𝑥𝑡) =
𝑇 − 𝑡

𝑇
,

𝑉(𝑡, 𝑥𝑡) =
1

𝑇

(
∫

𝑡∧𝑇

0

𝑥(𝑠)𝑑𝑠 + (𝑇 − 𝑡)𝑥(𝑡)

)
, (50)

𝑉(0, 𝑥0) = 𝑥(0).

We remark here that the perfect hedge is model independent.

6 HEDGING STRATEGY FOR NON-LINEAR PAYOFFS: ASIAN
OPTION

In the previous section, we have established that a perfect hedge may not exist for nonlinear
payoffs, thereby justifying the search for an alternative approach. A well-studied paradigm for
valuation in the absence of perfect replicating strategies is super-hedging across a set of market
scenarios (Avellaneda et al., 1995; Lyons, 1995).
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Here we deploy this idea in a model-free manner on a bounded generic set of paths. Let Ω be
generic. We define, for constants 0 ≤ 𝑎 < 𝑏 ,

Ω𝑏
𝑎 ∶= {𝑥 ∈ Ω|𝑎 < 𝑥(𝑡) < 𝑏}. (51)

Observe thatΩ𝑏
𝑎 is again generic, hence is itself free of arbitrage in the sense ofDefinition 4.6. Also,

the superhedging price obtained on this set is a proper arbitrage-free price from the standpoint of
Ω . We denote

Ω𝑏
𝑎(𝑥𝑡) ∶=

{
𝑧 ∈ Ω𝑏

𝑎|𝑧𝑡 = 𝑥𝑡

}
,  ∶= {∇𝑥𝑉|𝑉 is self-financing}. (52)

Definition 6.1 (Superhedging price and strategy). Let𝐻 be a payoff defined onΩwith maturity
𝑇 > 0 and 𝑉 be self-financing (Remark 4.5) that dominates𝐻 on Ω𝑏

𝑎, that is,

𝑉(𝑇, 𝑥𝑇) ≥ 𝐻(𝑥𝑇), (53)

for all 𝑥 ∈ Ω𝑏
𝑎. If for every other self-financing𝑊 that dominates 𝐻 on Ω𝑏

𝑎, we have

𝑊(0, 𝑥0) ≥ 𝑉(0, 𝑥0), (54)

then 𝑉(0, 𝑥0) is called the superhedging price of 𝐻 and ∇𝑥𝑉 is a superhedging strategy for the
payoff𝐻.

A superhedging strategy, if it exists, may not be unique. We first develop the notion of optimal
strategy (which, if it exists, will be unique), in the spirit of Isaacs’s tenet of transition in differ-
ential games (Isaacs, 1951, p3). Our approach here is to construct a (cost-to-go) functional 𝑈 ∈ 
(Definition 3.12) such that for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 and 𝑥 ∈ Ω𝑏

𝑎, the followings hold:

𝑈(𝑠, 𝑥𝑠) = min
𝜙∈ sup

𝑧∈Ω𝑏𝑎(𝑥𝑠)

{
𝑈(𝑡, 𝑧𝑡) − ∫

𝑡

𝑠

𝜙𝑑𝑧

}
, (55)

𝑈(𝑇, 𝑥𝑇) = 𝐻(𝑥𝑇).

Lemma 6.2. Let𝑈 ∈  be a functional that satisfies Equation (55). Then the map

ℎ⟼𝑈(𝑠 + ℎ, 𝑥𝑠) (56)

is decreasing on [0,∞).

Proof. We have

𝑈(𝑠, 𝑥𝑠) ≥ min
𝜙∈

{
𝑈(𝑡, 𝑧𝑡) − ∫

𝑡

𝑠

𝜙𝑑𝑧

}
(57)

for all 𝑧 ∈ Ω𝑏
𝑎(𝑥𝑠), this holds, in particular for all 𝑧 stopped at 𝑠. It follows

𝑈(𝑠, 𝑥𝑠) ≥ min
𝜙∈ 𝑈(𝑡, 𝑧𝑠) = 𝑈(𝑡, 𝑥𝑠). (58)

□
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Remark 6.3. (Hedging strategy)
Thus if 𝑈 satisfies Equation (55), then 𝑉(𝑇, 𝑥𝑇) ∶= 𝑈0 + ∫ 𝑇

0
∇𝑥𝑈𝑑𝑥 solves Equation (53),

meeting condition (54) and the solution is unique up to Ω𝑏
𝑎 due to

𝑈1(𝑡, 𝑥𝑡) = min
𝜙∈ sup

𝑧∈Ω𝑏𝑎(𝑥𝑡)

{
𝐻(𝑇, 𝑧𝑇) − ∫

𝑇

𝑡

𝜙𝑑𝑧

}
= 𝑈2(𝑡, 𝑥𝑡). (59)

In particular, 𝑈(𝑡0, 𝑥𝑡0) is the superhedging price to hedge starting at time 0 ≤ 𝑡0 < 𝑇. The
relationship with the value of the hedging portfolio 𝑉 (see also Remark 4.5) is

𝑉(𝑡, 𝑥𝑡) = 𝑈(𝑡0, 𝑥𝑡0) + ∫
𝑡

𝑡0

∇𝑥𝑈𝑑𝑥 = 𝑈(𝑡, 𝑥𝑡) − ∫
𝑡

𝑡0

𝑈𝑑𝑠, (60)

hence at maturity time 𝑇, the final portfolio value is

𝑉(𝑇, 𝑥𝑇) ∶= 𝐻(𝑇, 𝑥𝑇) − ∫
𝑇

𝑡0

𝑈𝑑𝑠 ≥ 𝐻(𝑇, 𝑥𝑇), (61)

where the last inequality is due to Lemma 6.2 and the final PnL is ∫ 𝑇

𝑡𝑜
−𝑈𝑑𝑠.

We now use the following Minimax Theorem to prove a verification theorem.

Theorem 6.4 (Minimax). If𝑀 ∈; then

min
𝜙∈ max

𝑧∈Ω𝑏𝑎(𝑥𝑠)

{
∫

𝑡

𝑠

(∇𝑥𝑀 − 𝜙)𝑑𝑧

}
= 0 = max

𝑧∈Ω𝑏𝑎(𝑥𝑠)
min
𝜙∈

{
∫

𝑡

𝑠

(∇𝑥𝑀 − 𝜙)𝑑𝑧

}
(62)

Proof. We first have

𝑐 ∶= inf
𝜙∈ sup

𝑧∈Ω𝑏𝑎(𝑥𝑠)

{
∫

𝑡

𝑠

(∇𝑥𝑀 − 𝜙)𝑑𝑧

}

≤ max
𝑧∈Ω𝑏𝑎(𝑥𝑠)

{
∫

𝑡

𝑠

(∇𝑥𝑀 − ∇𝑥𝑀)𝑑𝑧

}
= 0. (63)

If 𝑐 < 0, then there exists an 𝜖 > 0 such that

∫
𝑡

𝑠

(𝜙𝜖 − ∇𝑥𝑀)𝑑𝑧 ≥ −(𝑐 + 𝜖) > 0, (64)

which gives an arbitrage. It follows from Theorem 4.8 that 𝑐 = 0 and hence the infimum and
supremumare attained, respectively, by𝜙 ∶= ∇𝑥𝑀 and any 𝑧. The case ofmaximin follows similar
lines of proof. □

We obtain, as a corollary, yet another property functionals of class , reminiscent of the
martingale property.
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Corollary 6.5. Define for𝐻 ∶ Λ⟼ℝ

𝔼(𝐻(𝑡, 𝑥𝑡)|𝑥𝑠) ∶= ⎧⎪⎨⎪⎩
min
𝜙∈ sup

𝑧∈Ω𝑏𝑎(𝑥𝑠)

{
𝐻(𝑡, 𝑧𝑡) − ∫ 𝑡

𝑠
𝜙𝑑𝑧

}
, if RHS exists

∞, otherwise.
(65)

Then for every𝑀 ∈(Λ), we have

𝔼(𝑀(𝑡, 𝑥𝑡)|𝑥𝑠) = 𝑀(𝑠, 𝑥𝑠). (66)

Theorem 6.6 (Verification theorem). Let𝑈 ∈ (Λ), ∇𝑥𝑈 ∈ ;𝑈 satisfies

sup
𝑧∈Ω𝑏𝑎(𝑥𝑡)

∫
𝑇

𝑡

𝑈(𝑠, 𝑧𝑠)𝑑𝑠 = 0, (67)

𝑈(𝑇, 𝑥𝑇) = 𝐻(𝑥𝑇),

for all 𝑡 ≤ 𝑇 and 𝑥 ∈ Ω𝑏
𝑎. Then 𝜙 ∶= ∇𝑥𝑈 is a superhedging strategy for 𝐻 on Ω𝑏

𝑎 and achieves the
optimum in Equation (55).

Proof. We first obtain

𝑐 ∶ = inf
𝜙∈ sup

𝑧∈Ω𝑏𝑎(𝑥𝑠)

{
∫

𝑡

𝑠

𝑈(𝑟, 𝑧𝑟)𝑑𝑟 + ∫
𝑡

𝑠

(∇𝑥𝑈 − 𝜙)𝑑𝑧

}

≤ min
𝜙∈ max

𝑧∈Ω𝑏𝑎(𝑥𝑠)

{
∫

𝑡

𝑠

(∇𝑥𝑈 − 𝜙)𝑑𝑧

}
= 0, (68)

due to Lemma 6.2 and Theorem 6.4. It remains to show that 𝑐 ≥ 0.

𝑐 ≥ sup
𝑧∈Ω𝑏𝑎(𝑥𝑠)

inf
𝜙∈

{
∫

𝑡

𝑠

𝑈(𝑟, 𝑧𝑟)𝑑𝑟 + ∫
𝑡

𝑠

(∇𝑥𝑈 − 𝜙)𝑑𝑧

}

≥ sup
𝑧∈Ω𝑏𝑎(𝑥𝑠)

{
∫

𝑡

𝑠

𝑈(𝑟, 𝑧𝑟)𝑑𝑟
}

+ max
𝑧∈Ω𝑏𝑎(𝑥𝑠)

min
𝜙∈

{
∫

𝑡

𝑠

(∇𝑥𝑈 − 𝜙)𝑑𝑧

}
= 0, (69)

by Equation (67) and Theorem 6.4 (Minimax). The infimum is attained by 𝜙 ∶= ∇𝑥𝑈. □

Example 6.7 (Asian option). Let Ω be either 𝐵𝑉, 𝑉𝑝; 𝑝 ∈ 2ℕ or 𝐷. The optimal cost-to-go
functional is

𝑈(𝑡, 𝑥𝑡) = 𝐻+(𝑡, 𝑥𝑡)𝑝(𝑥(𝑡)) + 𝐻
−(𝑡, 𝑥𝑡)(1 − 𝑝(𝑥(𝑡)) (70)

where

𝐻+(𝑡, 𝑥𝑡) =

(
1

𝑇

(
∫

𝑡

0

𝑥(𝑠)𝑑𝑠 + 𝑏(𝑇 − 𝑡)

)
− 𝐾

)+

,
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𝐻−(𝑡, 𝑥𝑡) =

(
1

𝑇

(
∫

𝑡

0

𝑥(𝑠)𝑑𝑠 + 𝑎(𝑇 − 𝑡)

)
− 𝐾

)+

,

𝑝(𝑥(𝑡)) =
𝑥(𝑡) − 𝑎

𝑏 − 𝑎
, (71)

and the optimal strategy is

∇𝑥𝑈(𝑡, 𝑥𝑡) =
𝐻+(𝑡, 𝑥𝑡) − 𝐻

−(𝑡, 𝑥𝑡)

𝑏 − 𝑎
. (72)

Proof. We first see that 𝑈 is of class  with 𝑈(𝑇, 𝑥𝑇) = 𝐻(𝑥𝑇). For 𝑧 ∈ Ω𝑏
𝑎(𝑥𝑡), we have

𝑈(𝑠, 𝑧𝑠) = 𝐻+(𝑠, 𝑧𝑠)𝑝(𝑧) +𝐻−(𝑠, 𝑧𝑠)(1 − 𝑝(𝑧)), (73)

where

𝐻+(𝑠, 𝑧𝑠) =
𝑧(𝑠) − 𝑏

𝑇
1I{𝐻+>0},

𝐻−(𝑠, 𝑧𝑠) =
𝑧(𝑠) − 𝑎

𝑇
1I{𝐻−>0}. (74)

Since𝐻+ = 0 implies 𝐻− = 0 and that𝐻− > 0 implies 𝐻+ > 0, it follows

𝑈(𝑠, 𝑧𝑠) = (𝑧(𝑠) − 𝑏)(𝑧(𝑠) − 𝑎)

𝑇(𝑏 − 𝑎)
1I{𝐻+>0}1I{𝐻−=0} ≤ 0. (75)

For sufficiently small 𝜖 > 0, we construct a path 𝑧𝜖 ∈ Ω𝑏
𝑎(𝑥𝑡):

𝑧𝜖(𝑠) ∶=

{
𝑥(𝑡), 𝑠 ∈ [𝑡, 𝑡 + 𝜖)

𝑏 − 𝜖, [𝑡 + 𝜖,∞),
(76)

and observe that

0 ≥ ∫
𝑇

𝑡

𝑈(𝑠, 𝑧𝜖𝑠 )𝑑𝑠 ≥ −𝜖
(
1 −

𝜖

𝑏 − 𝑎

)
, (77)

hence 𝑠𝑢𝑝
𝑧∈Ω𝑏𝑎(𝑥𝑡)

∫ 𝑇

𝑡
𝑈(𝑠, 𝑧𝑠)𝑑𝑠 = 0 and we obtained Equation (67) in Theorem 6.6. □

Remark 6.8. Note that if 𝐾 = 0, we obtain the perfect hedge in Example 5.12 (50) as a special case.
If we set 𝑎 = 0 and let 𝑏 ↑ ∞, then Equation (70) converges to the superhedging price onΩ of the
Asian option

𝑈(𝑡, 𝑥𝑡) =

(
1

𝑇 ∫
𝑡

0

𝑥(𝑠)𝑑𝑠 − 𝐾

)+

+ 𝑥(𝑡)
𝑇 − 𝑡

𝑇
. (78)
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