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Abstract. Density functional and quantum Monte Carlo methods are used
to examine the behaviour of the many-electron localization length near band
insulator to metal transitions in various one- and two-dimensional model systems.
The many-electron localization length is infinite in metals and finite in insulators,
and is normally assumed to diverge as an insulator to metal transition is
approached from the insulating side. Our results show that this is not the case:
the band insulator to metal transition is normally first order and not associated
with a diverging length scale. We also identify examples where the localization
length diverges but the system is insulating on both sides of the divergence. The
usefulness of the localization length as an indicator of the approach of an insulator
to metal transition is therefore limited. A comparison of our quantumMonte Carlo
and density functional results allows us to draw some general conclusions about
the effect of correlation on localization.

PACS numbers: 71.23.An, 71.10.-w, 71.30.+h

1. Introduction

The question of whether the many-body wavefunction of a crystalline solid represents
a metal or an insulator is easily answered for the determinantal wavefunctions used
in one-electron band theory: if the density of one-electron states is finite at the Fermi
level, the system is a metal; if not, it is an insulator. An alternative approach notes
that one can apply a unitary transformation to the determinant of Bloch functions
of an insulator to obtain an equivalent determinant of exponentially localized [1] one-
electron Wannier functions. The exponential localization of the Wannier functions
implies a corresponding exponential localization of the one-electron density matrix
ρ(r, r′) as a function of r − r′, and it has been shown [2] that any system for which
the second moment of ρ(r, r′) is finite must be insulating.

In the one-electron theory of disordered systems, the energy eigenfunctions
may be localized and a finite density of states at the Fermi level need not imply
conducting behaviour, but the more general idea that insulating behaviour results
from wavefunction localization survives. In fact, more than forty years ago, Kohn
[3] argued that all metal to insulator transitions, even those in strongly correlated
interacting solids, are accompanied by a specific form of localization of the many-
electron wavefunction Ψ(r1, r2, . . . , rN ) in the configuration space of dN -dimensional
vectors of the form (r1, r2, . . . , rN ), where ri is the d-dimensional position vector of
electron i.
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During the past decade, Kohn’s approach has been substantially advanced by the
development of the Berry-phase theory of polarization and localization [4, 5, 6, 7],
which has allowed polarizations [8, 9], localization lengths [6, 7, 8], and dielectric
constants [10] to be calculated in extended systems for the first time. These
developments emerged from two tracks: studies of the properties and localization
of Wannier functions [11]; and studies of polarization and the response of extended
system to electric fields [4, 5, 12]. Both tracks led to similar conclusions about how
to calculate the many-body localization length that determines whether a material is
metallic or insulating.

These ideas were generalized and put on a firmer foundation by the work of
Souza, Wilkens, and Martin [7], who used a generating function approach to provide
expressions for polarizations and localization lengths in terms of the centre of mass
of the many-body wavefunction. Under certain assumptions about the form of the
many-body wavefunction, they also showed that their expressions agreed with those
proposed by Resta and Sorella [6], and provided a link between the localization
length and the conductivity as expressed by the Kubo formula, and thus between
the localization length and the energy gap. Finally, they introduced the concept
of a many-body Wannier function and linked it to Kohn’s earlier suggestion [3]
that “disconnectedness”, identified as localization of the many-body wavefunction
in configuration space, was an essential characteristic of the wavefunction of any
insulator.

To date, there have been few applications of these ideas in a many-body context,
mainly because it is difficult to carry out accurate many-body calculations for the
very large system sizes required. Among the exceptions are two quantum Monte Carlo
(QMC) studies, one of phase transitions in the one-dimensional ionic Hubbard model
[13], and one of the dielectric response of periodic systems [9]. In the latter, it was
observed that the inclusion of many-body correlation effects dramatically affected the
value of the polarizability and improved its convergence with system size by decreasing
the localization length, a conclusion supported by calculations in which self-interaction
corrections were included in calculations of Born effective charges [14].

Section 2 of this article shows how the standard formulae for polarization and
localization in many-body systems may be derived by considering the centre of mass
and spread of the many-body Wannier functions. The many-body version of the
modern theory of polarization is thus formulated in a manner analogous to King-
Smith and Vanderbilt’s original formulation [4, 5] of the non-interacting version. This
is followed in Sec. 3 by a discussion of the assumption of short-ranged correlation
required to evaluate these formulae in interacting many-electron systems. Section 4
looks at the evaluation of the localization length in systems of independent particles
and addresses the relatively slow convergence with system size. In Sec. 5, we examine
the behaviour of a series of simple models and describe the circumstances under which
the approach of an insulator to metal transition is accompanied by a divergence of
the localization length. Although finite and infinite values of the localization length
distinguish metals from insulators, our density-functional theory (DFT) and QMC
results show that the approach of an insulator to metal transition is rarely associated
with a diverging localization length. We also show that the symmetry properties of
the bands that cross at the transition strongly influence whether or not a divergence
is seen. Appendix A discusses the evaluation of the localization length of a Slater
determinant of orbitals expressed in a plane-wave basis, and Appendix B describes the
behaviour of the statistical error associated with a measurement of the localization
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length in a QMC simulation.

2. Localization Lengths and Many-Body Wannier Functions

2.1. Twisted boundary conditions

Because of the difficulty of dealing with wavefunctions of infinite numbers of variables,
many-electron simulation methods such as QMC are always applied to finite systems
and use periodic boundary conditions. We consider an N -electron simulation cell
(preferably many times larger than the unit cell of the underlying crystal) with sides
of length A1, . . ., Ad, where d is the spatial dimension. For simplicity, we assume that
the simulation-cell lattice vectors A1, . . ., Ad are orthogonal; the generalization to
non-orthogonal simulation cells is straightforward but complicates the notation.

The periodic boundary conditions are imposed by insisting that the many-electron
Hamiltonian be strictly periodic across the simulation cell. In other words, given any
lattice vector R = (n1A1, . . . , ndAd), where n1, . . ., nd are integers, we insist that

Ĥ(r1, . . . , ri +R, . . . , rN ) = Ĥ(r1, . . . , ri, . . . , rN ) . (1)

Real crystals do not possess this symmetry because the Coulomb interaction is not
periodic, so we replace the Coulomb interaction with the periodic Ewald interaction.
The finite size errors resulting from this replacement reduce as the simulation cell is
made larger and the properties of the artificially periodic system tend to those of a
real crystal.

Significantly, it is not necessary to insist that the N -electron wavefunction is
periodic over the same simulation cell as the Hamiltonian. One can choose to solve
the Schrödinger equation for Ψ within a larger “supercell” with sides Ãα = LαAα

(α = 1, 2, . . . , d), where the Lα are positive integers and the wavefunction satisfies
periodic boundary conditions across the supercell only. It is straightforward to show
[19] that the energy eigenfunctions obtained via this procedure satisfy a version of
Bloch’s theorem,

Ψk(r1, . . . , ri +R, . . . , rN ) = eik·RΨk(r1, . . . , ri, . . . , rN ) , (2)

and may be labelled by a Bloch wave vector k = (m1δk1, . . . ,mdδkd), where m1, . . .,

md are integers and δkα = 2π/Ãα. The phase factor eik·R is unchanged if the integer
mα is replaced by mα + Lα, implying that the Bloch wavevector k may be chosen to
lie in the first simulation-cell Brillouin zone. The total number Nk = L1L2 . . . Ld of
distinct Bloch wavevectors is then equal to the number of simulation cells in the
supercell. Many-particle Bloch wavefunctions such as Ψk are often said to obey
“twisted boundary conditions” and k is called the twist vector.

The antisymmetry of the many-fermion wavefunction ensures that the twist vector
k is the same for every electron and so Ψk can be divided into a simulation-cell periodic
part and a phase factor as

Ψk(r1, . . . , rN ) = eik.X Φk(r1, . . . , rN ) , (3)

where

X =

N∑

i=1

ri . (4)

In finite systems, X̂ =
∑N

i=1 r̂i is proportional to the operator for the electronic dipole
moment and we shall often call it the dipole operator from now on.
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As in one-electron band theory, the wavefunction Ψk is only determined up to an
arbitrary k-dependent phase. For simplicity, we restrict our consideration to gauges
in which Ψk is a differentiable function of k and Ψk+G = Ψk for all simulation-cell
reciprocal lattice vectors G. The most general gauge transformation preserving these
properties takes the form

Ψk → eiφ(k)Ψk , (5)

where φ(k) = k · R − β(k), R is any simulation-cell lattice vector, and β(k) is any
periodic differentiable function of k.

In one-electron theory, the use of Bloch’s theorem reduces the solution of the
Schrödinger equation for an infinite periodic crystal to the solution within a single
unit cell subject to twisted boundary conditions. By averaging over twists (integrating
over the Brillouin zone), the results for the infinite crystal are obtained exactly. The
many-body version of Bloch’s theorem described here is less powerful. Although the
Schrödinger equation is solved within the supercell, the wavefunctions Ψk(r1, . . . , rN )
depend on the coordinates of the N electrons in one simulation cell only: the
Hamiltonian is periodically repeated but the number of particles is not increased
correspondingly. Averaging over twists reduces the finite-size errors in most cases but
does not yield exact results for an infinite system.

The main reason for using twisted boundary conditions in many-electron theory
is that the sensitivity of the system to the choice of twist vector provides useful
information about its polarizability and conductivity. According to Ref. [20], the
change in electronic polarization in response to some adiabatic change of Hamiltonian
is equal to the change in the quantity

Pel =
iqe

(2π)3

∫
dk 〈Φk|∂kΦk〉 , (6)

where ∂k = (∂k1
, . . . , ∂kd

) = (∂/∂k1, . . . , ∂/∂kd) is the gradient operator in k space
and qe is the electronic charge. In Ref. [7], Souza, Wilkens and Martin showed using the
fluctuation-dissipation theorem that the squared localization length in the α direction,
defined by

〈r2α〉c =
−1

NVk

∫
dk
[
〈Φk|∂2kα

Φk〉 − 〈Φk|∂kα
Φk〉〈Φk|∂kα

Φk〉
]
, (7)

where Vk = (2π)3/V is the volume of the simulation-cell Brillouin zone, is proportional
to a frequency integral of the conductivity tensor. In particular, the system is
insulating if 〈r2α〉c is finite and metallic if 〈r2α〉c is infinite. The aim of the rest of
this section is to provide a physical interpretation of these results by showing how
Pel and 〈r2α〉c are related to the centres and quadratic spreads of the many-electron
Wannier functions. The many-electron theory of polarization and localization is thus
expressed in the same language as the one-electron theory developed by King-Smith
and Vanderbilt [4, 5].

2.2. Many-body Wannier functions

Assuming that the system is insulating for all choices of twist vector k, so that the
ground state Ψk at each k is unique and clearly separated in energy from the excited
states at that k, we can use the Bloch-like form of Eq. (3) to define a set of many-body
Wannier functions

WR =
1√
Nk

∑

k

e−ik.RΨk . (8)
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Both Ψk and WR are normalised over the d-dimensional supercell of volume NkV ,
with normalisation integrals carried out over the corresponding dN -dimensional
configuration space of volume (NkV )N . As explained by Souza, Wilkens and
Martin [7], WR(r1, r2, . . . , rN ) is localized in the d-dimensional space of values of
X = r1 + . . . + rN but not in the remaining dN − d dimensions of the configuration
space. If one starts at a configuration-space point (r1, . . . , rN ) near the peak of WR=0

and shifts each electron coordinate by a different lattice vector Ri, the final point will
be near the peak of WR, where R =

∑
i Ri.

As in the case of single-particle Wannier functions, gauge transformations of the
type discussed in Sec. 2.1 affect the position and spread of the many-electron Wannier
functions. Fortunately, it is well established that single-particle Wannier functions
have various gauge-invariant properties, including the minimum possible spread. As
we see below, many-body Wannier functions, localized in X, behave in the same way.

2.3. Wannier centres and polarization

One way to find the centre of a many-body Wannier function would be to calculate its
first moment 〈W0|X̂|W0〉. If the dipole operator X̂ is applied to a function obeying
periodic boundary conditions, however, the result is not periodic and does not lie in
the Hilbert space of the periodic system. As emphasised by Resta [23], this means

that X̂ is not an admissible operator in periodic systems. To circumvent this problem,
consider instead the operator

Q̂α =
sin(δkαX̂α)

δkα
=

sin(δkα · X̂)

δkα
(9)

where δkα = (0, . . . , δkα, . . . 0) is a vector of length δkα in the α direction. When
applied to a state such as W0, which we assume is sharply peaked near X=0, the
action of Q̂α is approximately that of X̂α. Unlike X̂α, however, Q̂α is periodic across
the supercell.

Using the definition of the Wannier function, Eq. (8), we find that

Q̂α |W0〉 =
1

δkα
√
Nk

(
eiδkα·X̂ − e−iδkα·X̂

2i

)
∑

k

|Ψk〉

=
−i

2δkα
√
Nk

(
eiδkα·X̂

∑

k

|Ψk−δkα
〉 − e−iδkα·X̂

∑

k

|Ψk+δkα
〉
)

=
i√
Nk

∑

k

eik·X̂
( |Φk+δkα

〉 − |Φk−δkα
〉

2δkα

)

=
i√
Nk

∑

k

eik·X̂∆kα
|Φk〉 , (10)

where ∆kα
is a discretized derivative with respect to kα and the replacement of∑

k |Ψk〉 by
∑

k |Ψk±δkα
〉 was possible because |Ψk〉 is a periodic function of k.

The expectation value of Q̂α in the many-body Wannier function centered on
R = 0 is given by

〈W0|Q̂α|W0〉 =
i

Nk

∑

k′

∑

k

〈
Φk′

∣∣∣e−ik′.X̂eik.X̂
∣∣∣∆kα

Φk

〉
. (11)

Both Φk′ and ∆kα
Φk have the periodicity of the simulation cell and may be represented

as dN -dimensional Fourier series involving simulation-cell reciprocal lattice vectors
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only. Since k and k′ lie in the simulation-cell Brillouin zone and hence cannot differ
by a non-zero simulation-cell reciprocal lattice vector, it follows that every matrix
element with k 6= k′ vanishes, leaving

〈W0|Q̂α|W0〉 =
i

Nk

∑

k

〈
Φk

∣∣∣∆kα
Φk

〉
. (12)

In the limit of very large supercells, and assuming a choice of gauge for which Φk is a
smooth function of k, this becomes

〈W0|Q̂α|W0〉 =
i

Vk

∫
dk
〈
Φk

∣∣∣∂kα
Φk

〉
, (13)

where Vk = (2π)3/V is the volume of the simulation-cell Brillouin zone. The one-
electron version of this result was originally derived by Blount [18]. The matrix
elements in Eq. (13) are evaluated by integration over the region of configuration space
corresponding to the supercell, with both W0 and Φk normalised to unity over that
region. Since Φk is periodic, however, the Φk matrix element may also be evaluated
by integration over the smaller region of configuration space corresponding to one
simulation cell, as long as Φk is normalised to unity over the smaller region instead.

Comparing Eq. (13) with Eq. (6), we see that (Pel)α = qe〈W0|Q̂α|W0〉/V . The
change in polarization in response to some adiabatic change of Hamiltonian may
therefore be obtained from the change in the first moment of the many-body Wannier
function W0, in analogy with the non-interacting case. A general periodic gauge
transformation of the type defined in Eq. (5) shifts the right-hand side of Eq. (13)
by the lattice vector R, corresponding to a shift in the polarization by some integer
multiple of the quantum of polarization [4, 5].

2.4. The spread functional and the localization length

A similar approach may be used to find the spread of the Wannier functions, from
which we can calculate the localization length. Proceeding as above, we obtain

Q̂αQ̂β |W0〉 = − 1√
Nk

∑

k

eik·X∆kα
∆kβ

|Φk〉 , (14)

and hence the large supercell limit of the tensor spread functional

Ωαβ = 〈W0| Q̂αQ̂β |W0〉 − 〈W0| Q̂α |W0〉 〈W0| Q̂β |W0〉 (15)

is

Ωαβ = −
(∫

dk

Vk

〈
Φk

∣∣∣∂kα
∂kβ

Φk

〉

−
∫
dk

Vk

∫
dk′

Vk

〈
Φk

∣∣∣∂kα
Φk

〉〈
Φk′

∣∣∣∂k′

β
Φk′

〉)
. (16)

Following Ref. [11], we split the spread functional into a gauge invariant part ΩI and

a gauge dependent part Ω̃, simply by choosing ΩI to include the terms in which the
phase eiφ(k) cancels:

Ω = ΩI + Ω̃ , (17)

where

(ΩI)αβ = −
∫
dk

Vk

(
〈Φk|∂kα

∂kβ
Φk〉 − 〈Φk|∂kα

Φk〉〈Φk|∂kβ
Φk〉

)
(18)
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and

Ω̃αβ =

∫
dk

Vk

∫
dk′

Vk
〈Φk|∂kα

Φk〉
(
〈Φk′ |∂k′

β
Φk′〉 − 〈Φk|∂kβ

Φk〉
)
. (19)

Thus we see that (ΩI)αα = N〈r2α〉c, where 〈r2α〉c is the squared localization length in
the α direction as defined in Eq. (7). Furthermore, by re-expressing the many-body
Bloch functions in terms of the Wannier functions, the gauge-dependent part of the
functional may be written as

Ω̃αβ =
∑

R 6=0

〈
WR|Q̂α|W0

〉〈
W0|Q̂β |WR

〉
. (20)

If the many-body Wannier functions of an insulator are taken as “disconnected”
Kohn’s functions, it must be possible to choose a gauge in which those localized
on different vectors R are non-overlapping in configuration space when the simulation
cell is large enough. The gauge-dependent part of the spread therefore tends to zero
with increasing simulation-cell size [7]. This allows us to limit our consideration to
the gauge-invariant part ΩI .

3. Evaluation of the Spread Functional

3.1. Discretization of the twist averaging

Before ΩI can be evaluated numerically, the integral over k must be discretized again.
We use the identity ∂2qα ln f = 1

f ∂
2
qαf − 1

f2 (∂qαf)
2 with f(q) = 〈Φk|Φk+q〉 to rewrite

(ΩI)αα as

(ΩI)αα = − 1

Vk

[∫
dk ∂2qα ln〈Φk|Φk+q〉

]

q=0

. (21)

The discretized equivalent of this expression for the finite supercell containing Nk =
L1 . . . Ld simulation cells is

(ΩI)αα = − 1

Vk

∑

k

Vk
Nk

1

δk2α

[
ln 〈Φk|Φk+δkα

〉

+ ln 〈Φk|Φk−δkα
〉 − 2 ln 〈Φk|Φk〉

]
, (22)

where ∂2qαf(q) has been approximated as (f(q+ δkα) + f(q− δkα)− 2f(q))/(δkα)
2.

The final term in Eq. (22) is zero if Φk is normalised to unity. The periodicity of the
summand over the simulation-cell Brillouin zone allows us to make the substitution
k → k+ δkα in the second term, which changes it from 〈Φk|Φk−δkα

〉 to 〈Φk+δkα
|Φk〉,

giving

(ΩI)αα = − 1

Nk

∑

k

1

δk2α
ln |〈Φk|Φk+δkα

〉|2 . (23)

3.2. Ansatz wavefunction for a larger system

If one can solve the many-electron Schrödinger equation for a fine enough grid of twists
and evaluate the overlaps of the wavefunctions at neighbouring twist vectors, Eq. (23)
can be used directly. In other situations, however, it would be more convenient to
be able to calculate the localization length from a single expectation value evaluated
over a larger system. In this section, we use a variation of the argument of Refs.
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[6, 7] to show how, by means of an ansatz about the form of the wavefunction for the
larger system, the localization length can be related to a single expectation value of
the “many-body phase operator” introduced by Resta [23].

In Sec. 2.1, we introduced a supercell containing Nk = L1L2 . . . Ld simulation
cells. The Schrödinger equation for the N electrons in one simulation cell,

Ĥ(r1, . . . , rN )Ψ(r1, . . . , rN ) = EΨ(r1, . . . , rN ) , (24)

was then solved subject to periodic boundary conditions within this larger region,
corresponding to twisted boundary conditions across the smaller simulation cell. The
resulting N -electron energy eigenfunctions were shown to satisfy a version of Bloch’s
theorem, so enabling us to define N -electron Wannier functions WR(r1, . . . , rN ),
which were identified as the “disconnected” functions introduced by Kohn [3] and are
believed to be exponentially localized in insulators. More precisely, WR(r1, . . . , rN )
is localized in that region of the dN -dimensional configuration space where the d-
dimensional vectorX = r1+. . .+rN is close toR. The exponential localization implies
that the Hamiltonian matrix elements between neighbouring Wannier functions are
exponentially small, and hence that the ground state energy of the simulation cell is
exponentially insensitive to the choice of twist vector k. This insensitivity to boundary
conditions is a defining characteristic of the insulating state.

The supercell introduced in Sec. 2.1 is mathematically convenient but should
not be viewed as a physical system; in particular, it contains the same number of
electrons, N , as the smaller simulation cell. Suppose, however, that we now introduce
a physical supercell system containing Nk simulation cells and Ñ = NkN electrons
subject to periodic boundary conditions. The wavefunction Ψ̃(r1, . . . , rÑ ) of this
physical supercell is unknown, but the availability of Nk N -electron Bloch functions
ΨR and the supposition that electron correlation in an insulator is a short ranged
effect suggests an appealing Hartree-Fock-like ansatz. Labelling the Nk simulation
cells using an integer index c = 1, . . . , Nk, we write, as in [6, 7],

Ψ̃(r1, . . . , rÑ ) = Â

Nk∏

k

Ψk(rN(c−1)+1, . . . rN(c−1)+N ) . (25)

where Â is the antisymmetrization operator. The ansatz assumes that the Ñ = NkN
electrons in the supercell correlate in groups of N at a time, so that Ψ̃ can be written
as an antisymmetrised product of Nk different N -electron wavefunctions. If the
Hamiltonian of the physical supercell were a sum of terms involving each group of N
electrons separately, as in a non-interacting system, Ψ̃ would be the exact ground state.
In an interacting system Ψ̃ is clearly inexact, but since each N -electron wavefunction
Ψk was originally an allowable periodic wavefunction for a smaller section of the solid,
we are effectively requiring that beyond some range L, the difference between the
interactions between genuinely distinguishable electrons and between periodic copies of
the same electron becomes negligible. As the number of electrons N in the simulation
cell and the cell volume V increase, the importance of correlations of longer range than
the size of the simulation cell should decrease and Ψ̃ should become more accurate.

As in [6, 7], we evaluate the expectation value

zN = 〈Ψ̃|e−iδkα·X̃|Ψ̃〉 (26)

of the “many-body phase operator” e−iδkα·X̃ in this ansatz wavefunction, where X̃ =
r1+. . .+rNkN . The overlap between two Slater determinants is the determinant of the
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matrix of overlaps between the “orbitals”, which here are N -electron wavefunctions
labelled by a Bloch wavevector k. This remains true even in this more complex many
body case because any term in the antisymmetrization in which the same electron
coordinate appears with different boundary conditions in the bra to those it has in
the ket will vanish upon integration. We can thus write the expectation value as:

〈
Ψ̃|e−iδkα·X̃|Ψ̃

〉
=

Nk∏

k

〈Φk|Φk+δkα
〉 . (27)

Comparing this result with Eq. (23), we see that

(ΩI)αα =
−1

Nk(δkα)2
ln
∣∣〈Ψ̃|e−iδkα·X̃|Ψ̃〉

∣∣2 , (28)

and hence that the localization length 〈r2α〉c = (ΩI)αα/N is given by

〈r2α〉c =
−1

Ñ(δkα)2
ln
∣∣〈Ψ̃

∣∣e−iδkα·X̃
∣∣Ψ̃
〉∣∣2 . (29)

This is Resta and Sorella’s [6] result for the square of the localization length, or
quadratic spread, in the α direction.

Equation (29) was originally obtained by supposing that the electron density
could be decomposed into a sum of localized components, Fourier transforming, and
applying the ansatz described above to produce a large enough system for convergence.
This melds well with the proposed identification [7] of many-body Wannier functions
with the “disconnected” parts of the many-body wavefunction hypothesised by Kohn
[3]. Since the disconnected parts are non-overlapping in the configuration space of the
electron coordinates, each can be considered as providing a separate contribution to
the electron density in real space.

4. Convergence of the Localization Length with System Size

Previous studies [11, 6, 2] of electron localization in one-electron theories have
noted the relatively slow and monotonically increasing convergence of the localization
length as a function of system size. Sgiarovello, Peressi and Resta [2] examined the
localization length 〈x2〉c in GaAs, and Marzari and Vanderbilt [11] the spread Ω of
the maximally localized Wannier functions. Both came to similar conclusions.

The slow convergence can be explained by reference to Eq. (29) and consideration
of the ansatz required to derive it. For the localization length to be well converged,
the k-point sampling must be dense enough to sample the variation of the Bloch
functions with k; the finite difference approximation used in Eq. (23) is then a good
approximation to the continuous k derivative in Eq. (21). Failure to converge with
respect to δkα will appear as a variation of the localization length with the number
of k points in the grid.

In one-electron theory, the convergence of Brillouin zone integrals may often be
improved by shifting the entire grid of k vectors by a small amount k̃ relative to Γ.
This corresponds to changing the strict periodic boundary conditions applied across
the supercell to boundary conditions incorporating a twist vector k̃, which must be
the same for all the orbitals. A supercell twist k̃ = δkα shifts every k vector to one of
its neighbours and is thus equivalent to a zero twist, implying that k̃ may be chosen
to lie within the supercell Brillouin zone. The variation of the localization length with
k̃ has not been investigated previously.
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Figure 1. Convergence of the localization length (measured in Hartree atomic
units) for a weakly bound but insulating array of quantum dots as a function of
the size M of the M ×M k-point grid. The lines join points calculated using the
same supercell twist vector k̃. When the energy gap is small, convergence with
supercell size Ma is very slow, especially for k̃ = 0. In this particular system, the
choice k̃ = π/(2Ma) yields the most rapid convergence.

To examine the convergence of the localization length, a two-dimensional array of
potential wells capable of exhibiting a wide range of bandstructures was studied. The
external potential consisted of a square array of Gaussian wells or “dots” of the form
V (r) = −Vd exp(−|r−rc|2/ρ2), where rc sets the center of the dot (in the center of the
unit cell), ρ defines the width of the Gaussian, and Vd the dot depth. Neighbouring
dots were separated by a distance a (the side of the unit cell, which is the same as
the simulation cell in this case). The one-electron properties were treated within the
framework of self-consistent density functional theory using the two-dimensional local
density approximation from Ref. [21], and the wavefunctions were expressed in a basis
of two-dimensional plane-waves limited by a cutoff energy Ecut, which was increased
to convergence. The Bloch functions were calculated on an equally spaced grid of
M ×M k points within the Brillouin zone.

Figure 1 shows the localization length obtained by calculating zN (see Eq. (26))
for a weakly bound array of dots, each containing six electrons and thus three filled
bands of doubly-occupied states, for a range of M ×M k-point grids offset by k̃ from
the Γ point. Here and in the rest of this paper, numerical results are expressed in
atomic units, with lengths measured in Bohr radii and energies in Hartrees. Details of
the method used to evaluate zN from the plane-wave representation of the orbitals are
given in Appendix A. The parameters chosen were ρ = 3 and a = 10, with Vd tuned to
a value only just yielding an insulating state with the first three bands fully occupied.
If Vd is reduced further, the energy of the third band at k = (πa , 0) becomes higher than
that of the fourth band at k = (0, 0) and the system becomes metallic. The smallest
energy gap is therefore indirect and the localization length might be expected to be
only weakly dependent on the position of the grid, especially given that the total DFT
energy is converged to five significant figures for M & 5. However, as seen in Fig. 1,
in this situation, chosen for its proximity to a transition, the convergence is slow and
a 20× 20 supercell is required to converge 〈x2〉c to 1%. A k-point grid centered on Γ
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is seen to yield relatively slow convergence, in agreement with previous studies that
have shown the same behaviour for total energies [19]. In this particular system, the

most rapid convergence is achieved when k̃ = π/(2Ma).

5. Behaviour over Metal Insulator Transitions

Previous work [6] has indicated that the localization length correctly describes the
various phases of a one-dimensional system of correlated electrons displaying a band
insulator to Mott insulator transition with a metallic phase at the transition: a
divergence is clearly observed in 〈x2〉c at sufficiently large system sizes. Given that
the localization of Wannier functions is closely related to the energy gap, and that
the localization length of a metal in band theory is always infinite, it might be
supposed that the localization length would in general diverge as a metal-insulator
transition is approached from the insulating side. As we shall show by a number of
examples, however, this is not the case: the presence or absence of a divergence in
one-electron theory depends on the nature of the bands that are crossing. The same
behaviour is observed in many-electron quantum Monte Carlo simulations using a
Slater-Jastrow trial function containing a Slater determinant of single-particle orbitals
from band theory. To examine the behaviour of the localization length in a range of
different situations, we study different arrangements of the two-dimensional quantum
dot system introduced in Section 4.

5.1. Single dots in a quasi-one-dimensional chain

In this arrangement, the two-dimensional periodic array of dots is made quasi-one-
dimensional by effectively isolating adjacent one-dimensional chains of dots. The
unit cell is widened in the y direction and a strong barrier potential is introduced
to separate adjacent unit cells in that direction. Every point on the k-space grid used
for the Brillouin zone integration has ky = 0, with equally spaced values of kx. The
simplicity of the one-dimensional bandstructure produced by this arrangement makes
it easy to distinguish the effect of the symmetry properties of the Bloch functions on
the behaviour of the localization tensor near the insulator-to-metal transition.

The lowest three eigenfunctions of an isolated dot that is not symmetric in the
x and y directions can be classified as s-like, px-like and py-like: the s-like functions
are nodeless, while the px- and py-like functions have nodes along the y- and x-axes,
respectively, and change sign under reflections in those axes. The s- and px-like orbitals
of a chain of dots oriented along the x axis mix to form hybrid bands, but the py-like
orbitals mix only with each other and form a completely separate band. By varying
the strengths of the confinement in the x- and y-directions independently, the py-like
band can be shifted relative to the s and px bands. Starting from an insulating system
with only the s and px bands occupied, this makes it possible to lower the energy of
the py band until a band insulator to metal transition occurs.

We model this arrangement with a unit cell of size a × b and an asymmetric
quartic potential of the form:

V (x, y) =
1

2
ω2
x

(
(x− a/2)2 − 2

a2
(x− a/2)4

)

+
1

2
ω2
y

(
(y − b/2)2 − 2

b2
(y − b/2)4

)
. (30)
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Figure 2. One-dimensional chain of 4-electron dots: (a) Energy bands E(kx)
just before band crossing. Topmost flat band is py-like, middle is px-like, lowest is
s-like. (b) Energy bands E(kx) shortly after transition. (c) Localization length
〈x2〉c and inverse direct energy gap 1/(2Eg) to lowest unoccupied state as ω is
reduced.

By setting ωy > ωx and b > a, we ensure there is an enormous barrier in the y
direction, increasing the energy of the py band and creating a gap between the py
band and the two s and px bands. Then, filling up the s and px bands, the Kohn-
Sham equations are solved self-consistently for gradually lower values of ωy until the
upper py band falls to meet the higher of the s and px bands at k = 0 and the energy
gap reduces to zero (see Fig.2(a)). Because, by symmetry, there can be no matrix
elements between states in the crossing bands, they cannot hybridize and the upper
band has no effect on the lower until the moment at which they cross, at which point
the lower band is no longer filled and the localization length becomes infinite. Beyond
the transition, the bands pass straight through each other, remaining degenerate at
the Fermi energy. Although at any k-point on the sampling grid the lowest three
eigenvalues are occupied, the uppermost filled ‘band’ is in fact two separate bands
overlapping; the matrix element 〈unkx

|un(kx+δkx)〉 of the periodic parts of the Bloch
functions of the highest occupied states at the k points either side of the crossing
point therefore vanishes, yielding an infinite 〈x2〉c. (See Appendix A for details of the
calculation of zN in non-interacting systems.) In this case, therefore, 〈x2〉c gives no
information about the onset of a metal-insulator transition from the insulating side.
Figure 2(c) shows the localization length in the x direction as the y confinement is
reduced. The value of 〈x2〉c falls slightly as the eigenfunctions spread out more along
y, but because the uppermost unoccupied band does not influence the band below,
there is no sign of the transition until it happens.

On the other hand, if instead we fill the three lowest bands and adjust ωx and ωy

until the top of the px band touches the next band up (which has the same reflection
symmetry as px), the states that become degenerate at the band crossing have the
same symmetry under reflection in the x-axis. When kx is exactly zero, the crossing
bands have different y-reflection symmetries and cannot mix, but they hybridize and
repel each other for other values of kx. Figures 3(a) and 3(b) show the lowest four
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Figure 3. One-dimensional chain of 6-electron dots: (a) Energy bands E(kx)
just before band crossing. (b) Energy bands E(kx) shortly after transition (c)
Localization length 〈x2〉c and inverse direct energy gap to lowest unoccupied state
1/(2Eg) as ω is reduced.

bands just as the bands touch and shortly after, as ωx is reduced. The system is never
truly metallic, although the gap becomes arbitrarily small at kx=0. Nevertheless,
the rapidly changing nature of the band with kx means that the overlap integrals
〈unkx

|un(kx+δkx)〉 become very small around kx=0, yielding a spike in the localization
length near the ‘transition’, as shown in Fig.3(c).

A simple one-dimensional tight-binding Hamiltonian that models this situation
can be constructed by considering only the highest occupied and lowest unoccupied
bands before and after the hybridization. The final eigenstates ψik(x) = eikxuik(x)
for i = 1, 2 are constructed from a linear combination of basis functions χik(x) which
are not eigenstates of the Hamiltonian themselves but have a Bloch-like form with
orthogonal periodic parts φik:

χik(x) = φik(x)e
ikx (31)

When expressed in the basis of the these functions the Hamiltonian matrix for small
values of k, must, to produce the system described above, take the form (for an
appropriate choice of external potential):

Ĥ =

(
∆+ αk2 Γk2

Γk2 −∆− βk2

)
, (32)

where α and β describe the curvature of the uncoupled Bloch bands and Γ the matrix
element between them. Diagonalising this Hamiltonian gives the eigenvalues

ǫ± =
(α− β)

2
k2 ±

√(
(α+ β)

2
k2 +∆

)2

+ Γ2k4 (33)

This shows that when ∆ > 0, the two bands are separated by a direct band gap of 2∆
at k=0. As the value of ∆ reduces, the band gap also reduces. The two bands touch
briefly when ∆=0, after which, as ∆ becomes negative, they hybridize and repel in
the manner shown in Fig. 3(b).
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Diagonalising the Hamiltonian also yields the eigenvectors

c±(k) =
1√

1 + |p±(k)|2
[
p±(k), 1

]
, (34)

where

p±(k) =

(
α+ β

2Γ
+

∆

Γk2

)
±

√(
α+ β

2Γ
+

∆

Γk2

)2

+ 1 . (35)

The elements of the eigenvectors are the components of the periodic parts u±k of the
Bloch eigenstates ψ±

k along the basis functions φ1k(x) and φ2k(x):

u±k (x) = c±1 (k)φ1k(x) + c±2 (k)φ2k(x) . (36)

Here we make the approximation that the dominant contribution to the localization
length comes from the variation of the eigenvectors with k rather than the basis
functions themselves. This is equivalent to neglecting the ∂φik

∂k terms in ∂uik

∂k . This
will inevitably become a valid approximation as ∆ → 0 as the orbitals φik are largely
independent of ∆ whereas the functions p±(k) vary very rapidly with it around k = 0.

Only the lower state is occupied, so substituting the expression for the periodic
part u−k (x) of the occupied eigenfunction ψ−

k (x) into Eq. (18) yields, after some
algebra,

〈x2〉c =
a

2π

∫ π/a

−π/a

1

(1 + (p−(k))2)2

(
∂p−(k)

∂k

)2

dk . (37)

For fixed values of α, β and Γ, the scaling behaviour with the gap parameter ∆ may be
extracted by changing variables to u = ∆/k2. Noting that the integral is symmetric
about k = 0, we obtain

〈x2〉c =
2a

π
√
∆

∫ ∞

∆a2/π2

u3/2
(

∂p−(u)
∂u

)2

(1 + (p−(u))2)2
du . (38)

Hence, for small enough values of the gap parameter ∆, since the integrand does not
diverge as u→ 0, the quadratic spread 〈x2〉c ∝ ∆−1/2. This is roughly consistent with
the behaviour seen in Fig.3. However, because of finite size effects and convergence
issues, it is proves difficult to obtain enough data close enough to the point where
the gap closes to determine if this relationship holds accurately. Additionally, there
will be a constant term present due to the variation of the φik terms with k that will
obscure this scaling behaviour until it is negligeable compared to the relevant effect.

5.2. Single dots in a two-dimensional array

This arrangement restores the two-dimensional symmetry and returns to potentials of
the type described in Sec. 4, with a square lattice of unit cells each containing a single
dot. In this situation, with the potential and the lattice symmetric in x and y, the px
and py bands are degenerate along ΓM . By filling the first three bands and gradually
reducing the strength of the confining potential, we can still drive the system through
a transition to a metallic state, but this now occurs when the indirect gap above the p
bands closes, as can be seen from Fig. 4(a). Because the highest occupied and lowest
unoccupied states are well separated in reciprocal space, the occupied states do not
change nature or become strongly dependent on k as the gap closes, and the matrix
elements between the periodic parts of the eigenfunctions at neighbouring k vectors
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behave smoothly. The localization length increases as the bands are brought together
because the confining potential is being reduced, but it does not diverge on approach
to the transition. This emphasises again the importance of the approaching bands
being able to ‘see’ each other if anything is to be observed in 〈x2〉c.

The Kohn-Sham orbitals determined from this DFT simulation were combined
with an optimized 1- and 2-electron Jastrow factor to evaluate energies and localization
lengths within the many-electron variational quantum Monte Carlo (VMC) method,
using the CASINO program [27]. The variance minimization procedure used to
optimize the Jastrow factor resulted in close agreement between the DFT and VMC
energies. As a consistency check, we confirmed that localization lengths calculated
using VMC trial functions consisting of a Slater determinant of Kohn-Sham orbitals
only, with no Jastrow factor, agreed with those obtained using the DFT-based method
of Appendix A to within the statistical error of the Monte Carlo simulation. A
discussion of the errors associated with the quantum Monte Carlo measurement of
zN can be found in Appendix B.

Figure 4 shows the localization length of this indirect-gap system calculated using
both DFT and VMC. As expected, decreasing the confinement by moving from right
to left across the figure results in a gradual increase in the localization length, followed
by a discontinous jump to an infinite value when the indirect gap closes and some of
the bands become partially filled. As discussed in Appendix B, it is difficult to evaluate
very small values of zN (and hence very large localization lengths) using VMC because
the statistical errors begin to overwhelm the result. It is clear, however, that the VMC
localization length is shorter than the DFT localization length and appears to track
it. To the extent that it is possible to judge, it appears that the DFT and VMC
localization lengths jump discontinuously to infinity at the same point, presumably
because the VMC Slater determinant is constructed using the occupied set of DFT
orbitals, which changes discontinuously when the DFT gap closes. If the orbitals in the
VMC determinant had been chosen to minimize the VMC energy, the VMC transition
would presumably have occurred at a smaller value of ω.

The difference between the localization lengths obtained in DFT and VMC has a
simple interpretation in terms of the size of the correlation hole produced by including
a Jastrow factor. In systems with open boundary conditions, Resta [24] showed that
the localization length could be related (in a considerably simpler manner than is
possible when periodic boundary conditions are used) to the form of the exchange-
correlation hole nxc(r, r

′):

〈r2α〉 =
−1

2N

∫
dr

∫
dr′(rα − r′α)

2n(r)nxc(r, r
′) . (39)

In DFT, where the wavefunction is a single Slater determinant, the exchange-
correlation hole has to be replaced by the exchange hole (calculated using the DFT
orbitals):

〈r2α〉x =
−1

2N

∫
dr

∫
dr′(rα − r′α)

2n(r)nx(r, r
′) . (40)

Assuming, as is normally the case, that the one-electron density n(r) is almost the
same in the correlated calculation as in the uncorrelated calculation, this gives

〈r2α〉x − 〈r2α〉 ≈
1

2N

∫
drn(r)

∫
dr′′ (r′′α)

2 nc(r, r+ r′′) . (41)

The correlation hole nc(r, r + r′′) is negative when |r′′| is small but integrates to
zero, implying that it must be mostly positive when |r′′| is large. The (r′′α)

2 factor in
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Figure 4. (a) Energy bands E(k) along the high symmetry lines (inset: Brillouin
zone of two-dimensional square lattice). Dotted lines denote the Fermi level. (b)
Localization length 〈x2〉c in DFT and QMC as the dot confinement ω is varied
(left scale). Inverse DFT direct and indirect energy gaps (right scale). Below
0.305 Ha/Bohr the system is metallic so 〈x2〉c becomes abruptly infinite. No
divergence is seen while approaching the transition from the region of stronger
confinement.

Eq. (41) lends weight to the large |r′′| region of the integral, and so one would expect
〈r2α〉x − 〈r2α〉 to be positive in most cases. In other words, the VMC calculation of the
localization length, which includes some of the effects of correlation via the Jastrow
factor, ought to yield a smaller result than the exchange-only DFT calculation. Indeed,
as seen from the difference between the DFT and VMC results for 〈x2〉c in Fig. 4(b),
the left-hand side of Eq. (41) in this system has a value of around 0.7, implying that
the root-mean-square radius of the correlation hole is 0.8 to 0.9 Bohr.
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Figure 5. (a) The structure of the graphene-like model, showing the lattice
vectors a1, a2 of the primitive cell (top), the lattice vectors a′

1
, a′

2
of the larger

rectangular cell used for simplicity (bottom), and the sites A and B on which
the potential can be varied. (b) The Brillouin zone of the graphene-like model
showing the reciprocal lattice vectors b1, b2 and the high symmetry k-points K,
M and Γ. (c) The external potential of the graphene-like model for a = 10,
Vd = 3, ρ = 5, and ∆ = 0. The dotted line encloses one rectangular unit cell.

5.3. Graphene structure in a hexagonal lattice

The hexagonal lattice model of a graphene sheet provides a realistic example in which
a direct gap can be tuned down to zero. Real graphene consists of an equilateral
triangular (hexagonal) two-dimensional lattice with a basis of two carbon atoms,
labelled A and B in Fig. 5(a), and four valence electrons per atom. Three electrons per
atom form strong bonds with their nearest neighbours, leaving the electronic properties
dominated by the one electron per atom in the π bonds. These form a bonding π band
and and anti-bonding π∗ band. A tight-binding analysis involving just these bands,
as described in [25, 26], demonstrates the main features of the bandstructure: the
two electrons per primitive cell fill the π band, which touches the π∗ band at the
corners of the hexagonal Brillouin zone, labelled K in Fig. 5(b). Graphene is thus a
semiconductor with a zero gap, and has interesting transport properties caused by the
zero density of states at the Fermi level. Since the π band is fully occupied, its Wannier
functions might be expected to be localized; on the other hand, since the band gap is
zero, the upper bound on the localization length provided by the conductivity formula
of Souza, Wilkens and Martin (Eq. (52) of [7]) is infinite.

If the potential is modified so that the energies of the two sites in the primitive cell
are no longer equivalent, a gap opens up at the Fermi energy and grows in proportion
to the difference of the on-site energies. We model this by placing Gaussian dots of
the form

VA(r) = −Vd exp(−|r− rA|2/ρ2) (42)

VB(r) = −(1 + ∆)Vd exp(−|r− rB |2/ρ2) (43)

on the B sites. Figure 5 shows the form of this potential when ∆ = 0.
At finite ∆ there is an energy gap, caused by the attraction of the electrons to the

lower-energy B sites. As ∆ → 0, the energy gap reduces to zero and the localization
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Figure 6. Localization length 〈x2〉c as ∆ is reduced to 0, at which point there is a
transition to a semimetallic state. Available system sizes up to the Nk = 36× 36
system shown here are insufficient to resolve whether the localization length is
truly diverging as the semimetallic state is approached. Even for ∆ = 0 a finite
value of 〈x2〉c is observed at all practical system sizes.

length increases, as shown in Fig. 6. The value of zN at ∆ = 0 remains non-zero (and
hence the localization length remains finite) for all practical system sizes. It is unclear
whether the touching of the valence and conduction bands at a single point in k space
is sufficient to force zN to tend to zero as the system size tends to infinity.

6. Conclusions

This paper began by offering a variation on previous presentations of the theory of
localization lengths in periodic systems, highlighting the connection to many-body
Wannier functions. By considering the decomposition of the many-body wavefunction
of an insulator into localized clusters of correlated Wannier functions that do not
overlap in configuration space, it also provided a new justification of the standard
single-point formulae used in the modern theory of polarization.

Our calculations of localization lengths in model quasi-one-dimensional periodic
and two-dimensional periodic systems revealed several new effects. In particular, they
showed how the symmetry properties of the bands that cross at an insulator-to-metal
transition determine whether or not the localization length diverges smoothly or jumps
suddenly to infinity. Our results for a range of direct-gap and indirect-gap insulator-
metal transitions in one and two dimensions show that the localization length does
not diverge unless the gap that is closing is direct and the two bands have the same
symmetry at the crossing point. Since bands of the same symmetry do not in general
cross, this suggests that it will be difficult to observe diverging localization lengths
associated with insulator-to-metal transitions in real systems.

We have shown using variational Monte Carlo simulations that localization
lengths in correlated systems behave in broadly the same way as in one-electron
methods. Despite the many-particle nature of the operator that yields zN , the
localization length in VMC is largely a one-electron property, reflecting the nature
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of the one-electron orbitals used to construct the determinantal part of the Slater-
Jastrow trial function. In strongly correlated solids, where the simple Slater-Jastrow
form may be inadequate, more interesting behaviour may be observed. Finally, we
explained how the difference between the localization length calculated in DFT and
that calculated using a fully correlated method provides an approximate measure of
the range of the correlation hole.

Appendix A. Evaluation of zN in a Plane-Wave Basis

Localization lengths are calculated from the one-electron Bloch functions using the
method described in [2]. In this approach, the many-body wavefunction Ψ̃ in
Eq. (29) is a Slater determinant of single-particle orbitals, and the expectation value〈
Ψ̃
∣∣e−iδkα·X̃

∣∣Ψ̃
〉
is expressed as

〈
Ψ̃|Φ̃

〉
, where Φ̃ is a Slater determinant of the orbitals

ψnk(rj) of Ψ̃, each multiplied by e−iδkα·rj . The overlap of two Slater determinants is
a determinant of the overlaps of the individual orbitals, and as shown in [2], the only
terms 〈ψnk|eiδkα·r|ψn′k′〉 of this determinant which survive the integration over the
whole system are those for which k′ = k+ δkα +G, where G is a primitive reciprocal
lattice vector (which may be zero). This makes the matrix very sparse indeed. The
determinant can be factorized as

〈
Ψ̃
∣∣e−iδkα·X̃

∣∣Ψ̃
〉
=
∏

k

detS(k) , (A.1)

where Snn′(k) is a matrix of overlaps between the periodic parts of the Bloch functions
at points k and k+ δkα +G. If both k and k+ δkα lie within the Brillouin zone (so
that G = 0), then

Snn′(k) = 〈unk| un′k+δkα
〉 . (A.2)

If k lies inside the Brillouin zone but k+ δkα lies outside, then

Snn′(k) = 〈ψnk| e−iδkα·r |ψn′k+δkα−G〉
= 〈unk| e−iG·r |un′k+δkα−G〉 , (A.3)

where G is chosen such that k+ δkα −G lies inside the Brillouin zone (because that
was the state included in the original Slater determinant). In a plane-wave basis,
the matrix elements can be evaluated directly from the plane-wave coefficients using
Parseval’s relation, as:

Snn′(k) =
∑

G′

c∗nk(G
′)cn′k+δkα−G(G′ +G) , (A.4)

where G is the reciprocal lattice vector that brings k+δkα back into the first Brillouin
zone if required. This expression allows very efficient calculation of zN and thus the
localization lengths.

Appendix B. Statistical Errors on Localization Lengths within QMC

The form of Eq. (29) is well suited to evaluating the localization length within the
framework of quantum Monte Carlo [22] and has been applied previously [9, 13]. As
with the evaluation of any quantity with Monte Carlo methods, there is an associated
statistical error and some examination of its behaviour is required, especially in cases
where the localization length is large. In the simplest QMC technique, variational
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Monte Carlo, expectation values are evaluated by using the Metropolis algorithm
to sample “configurations” C = (r1, r2, . . . , rN ) of electron positions distributed
according to the probability distribution defined by the trial wavefunction. The
expectation value of the many-body phase operator in Eq. (29) is evaluated by taking
the sum of the electron coordinates X(C) = r1 + r2 + . . . + rN for each sampled
configuration C, calculating the quantity

zN (C) = e−iδkα·X(C) , (B.1)

and averaging over a sufficient number M of statistically independent configurations
to obtain:

zN =
1

M

M∑

m=1

zN (Cm) . (B.2)

As M tends to infinity, the sample mean zN tends to zN and the localization length
can be obtained from the formula

〈r2α〉c = − 1

N

Ã2
α

(2π)2
ln |zN |2 ≈ − 1

N

Ã2
α

(2π)2
ln |zN |2 . (B.3)

The complication is that zN (Cm) is a complex number whose modulus is always unity
but whose mean zN is very small if the localization length is large. To ensure the result
is not swamped by the statistical error σ|zN | in |zN |, the number of configurations M
must be large enough that σ|zN | ≪ |zN |.

The error in the localization length can be estimated as follows. Given a
complex random variable such as zN = xN + i yN , where xN and yN are statistically
independent real random variables with population mean values xN and yN , σxN

≪
xN , and σyN

≪ yN , it is easy to show that

σln(|zN |2) = σln(x2

N
+y2

N
) ≈

√
4x2Nσ

2
xN

+ 4y2Nσ
2
yN

x2N + y2N
. (B.4)

Assuming that the M individual readings xN (C) and yN (C) used to calculate the
sample mean values xN and yN are uncorrelated, σ2

xN
= σ2

xN
/M and σ2

yN
= σ2

yN
/M ,

so

σln(|zN |2) ≈

√
4x2Nσ

2
xN

+ 4y2Nσ
2
yN√

M(x2N + y2N )
, (B.5)

where σxN
and σyN

are the errors in a single reading xN (C) or yN (C). (For metallic
systems with a small number of electrons in the conduction band or holes in the
valence band, the values of zN (C) from configuration to configuration are very strongly
correlated and it takes many more than M VMC steps to accumulate M uncorrelated
VMC samples. This occurs because the values of zN (C) depend strongly on the
current positions of the “extra” or “missing” electrons in the cell.) The error in a
single reading of zN can be estimated by assuming its mean is in fact zero and that its
possible values are distributed uniformly around the unit circle in the complex plane,
so that

σ2
xN

= σ2
yN

=
1

2π

∫ 2π

0

cos2 θ dθ =
1

2
. (B.6)
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Finally, combining Eqs. (B.5) and (B.6) with Eq. (B.3), we obtain

σ〈r2α〉c =
Ã2

α

√
2

(2π)2N |zN |
√
M

. (B.7)

Since 〈r2α〉c = −κln |zN |2, where κ is a constant, |zN | approaches zero like e−〈r2α〉c/2κ as
〈r2α〉c tends to infinity, as we might expect at an appropriate type of insulator-to-metal
transition. It then requires exponentially longer runs to achieve a given error bar on
〈r2α〉c.
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