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The Charney-Phillips grid, used in many numerical models of the

atmosphere, involves vertically staggering the nodes of the den-

sity variable with the nodes of the entropy-type variable. When

moisture is included in such a model, it is either co-located with

density so that moisture can be transported conservatively and

consistently with dry mass, or with the entropy-type variable

so that the coupling between moisture and temperature can be

represented well. Both properties are desirable, yet at first it

appears difficult to obtain both simultaneously.

Here we present a framework to resolve this problem, by co-

locating the moisture mixing ratio with potential temperature

but formulating its transport as that of a density on a vertically-

shifted mesh. Within this framework, particular choices of the

operators involved provide the desired conservation and consis-

tency properties of the moisture transport. The framework is

described in the context of a finite element approach. We also

present an explicit Runge-Kutta time stepping scheme that is

appropriate for use within this framework. This approach is then

illustrated through numerical tests, which demonstrate that it

does indeed have the desired conservation and consistency prop-

erties.

Keywords — moisture, transport, mass conservation, finite ele-

ment method
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1 | INTRODUCTION

1.1 | The Trilemma

For numerical models of the dry atmosphere, there are two common choices for the vertical placement of the density/pressure

variable and the buoyancy/entropy variable. Here these prognostic variables are taken to be the dry density ρd and the (dry)

potential temperature1 θ. The first choice of vertical placement is the Lorenz grid, in which ρd and θ are co-located (Lorenz,

1960). This can be exploited to facilitate the global and local conservation of entropy and energy, by writing the transport of θ as

∂ρd θ

∂t
+ + · (ρd θv) = 0. (1)

On the other hand, the Charney-Phillips grid staggers ρd and θ vertically, by co-locating θ withw , the vertical component of

the velocity (Charney and Phillips, 1953). A number of studies, such as Fox-Rabinovitz (1994) and Thuburn and Woollings

(2005) have shown that the Charney-Phillips grid gives better discrete representation of gravity waves than the Lorenz grid.

However, with the Charney-Phillips grid it is not easy to locally conserve entropy, creating a dilemma. This was the motivation

for Thuburn (2022), who presented a conservative transport scheme for entropy in the Charney-Phillips grid without losing good

wave dispersion.

When moisture is added to a Charney-Phillips grid, the dilemma becomes a trilemma. Here species X of moisture is represented

through the mixing ratio mX , given by

mX := ρX /ρd , (2)

where ρX is the mass density of species X . Many models choose to co-locate mX with ρd , again to attain conservation of

moisture, which is considered an important aspect of climate and numerical weather prediction models (Bush et al., 2020).

However, as argued by Konor and Arakawa (2000), co-locating mX with θ gives better representation of the coupling between

moisture and temperature, through the calculation of the saturation vapour pressure, the latent heat that is released or absorbed as

water changes phase, and the representation of inversions of temperature. It is this that has motivated the Met Office to co-locate

mX and θ with a Charney-Phillips staggering in its Unified Model (Wood et al., 2014; Walters et al., 2017), but at the cost of

losing local conservation of moist mass. It seems that any choice of staggering excludes at least one desirable property.

Although any moist Charney-Phillips staggering will have this trilemma, this work is particularly motivated to find a so-

lution for the Met Office’s new dynamical core, GungHo (Melvin et al., 2019). The current ENDGame dynamical core (Wood

et al., 2014), uses a latitude-longitude grid which suffers from a scalability bottleneck associated with the poles (Lawrence et al.,

2018). To avoid the scalability bottleneck, GungHo uses a cubed-sphere mesh, which is quasi-uniform across the globe. This is

combined with a mixed finite element discretisation, in which the prognostic variables are chosen from a suitable family of finite

element spaces. It was shown by Cotter and Shipton (2012) and Cotter and Thuburn (2014) that such a model can replicate the

desirable properties described by Staniforth and Thuburn (2012) that are provided by ENDGame’s Arakawa C-grid staggering on

an orthogonal latitude-longitude mesh.

The lowest-order finite elements used by GungHo on a mesh of hexahedral cells can be thought of as the finite element

1The potential temperature is defined by θ := T (p0/p)Rd /cp , whereT is the temperature, p is the air pressure, p0 = 1 × 105 Pa is a reference pressure, Rd is the gas
constant of dry air and cp is the specific heat capacity of dry air at constant pressure.
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analogy of the variable staggerings used by ENDGame. The density ρd can be described by its value in the centre of cells, while

the wind v can be described through its value in the centre of the cells’ facets, thus staggering it from ρd in each direction. It was

shown by Melvin et al. (2018) that the properties of the Charney-Phillips grid could be retained in this set-up by co-locating θ

with the vertical component of v. Throughout this work, the finite element function spaces used by ρd , v and θ are denoted by

Öρ , Öv and Öθ respectively. Although the language of finite elements is used in the remainder of this work, the formulation of

Sections 2 to 5 could also be applied to finite difference or finite volume discretisations, in which case Öρ , Öv and Öθ correspond

to the appropriate representations of ρ, v and θ in those discretisations.

In the context of GungHo, the natural choices of space for the moisture mixing ratio would be Öθ or Öρ . To replicate the

arrangement used by ENDGame, this work takes mX ∈ Öθ , which was also the choice made by Bendall et al. (2020) in a similar

finite element discretisation of the moist atmosphere. The trilemma challenge that this paper addresses is then how to achieve

conservation of total water content in a manner consistent with that for dry density held in Öρ .

1.2 | Moisture Transport

In the absence of sources and sinks of the moisture species, the density ρX evolves according to the conservative form of the

transport equation:

∂ρX
∂t

+ + · (ρX v) = 0. (3)

Integrating (3) over the volume of the domain Ω shows that in the absence of inflow and outflow, the mass of this moisture

species is conserved. As the dry density also obeys the conservative transport equation, the mixing ratio obeys the advective form

of the transport equation:

∂mX
∂t

+ (v · +) mX = 0. (4)

We are seeking a transport scheme that is locally conservative, discretising some form of (3). At the same time the transport

of ρX must also be consistent with the transport of ρd . Here, as in Lauritzen et al. (2011), consistency is defined to be that a

spatially constant mX field always remains constant for all transporting winds. A corollary of this is that if ρX is initially equal

to ρd , the two fields will evolve in the same way.

Other works, notably Section 8.7 of Lauritzen et al. (2011), Lauritzen et al. (2014) and Zängl et al. (2015), describe the

use of the dry flux to obtain consistent and conservative transport of tracers on the Lorenz mesh (this method is also sometimes

called “free-stream preserving”). As shown by Thuburn (2022), a transport scheme can achieve these properties on a Charney-

Phillips staggering by introducing a vertically-shifted mesh, to which the dry fluxes are mapped. The key is that when the dry

fluxes are mapped to the vertically-shifted mesh, the dry mass budget should be preserved, analogously to the method used by

Ringler et al. (2010) to obtain consistent evolution of potential vorticity, mass and velocity. This work builds upon the approach

of Thuburn (2022) by presenting a general framework for the consistent and conservative transport of moisture to resolve the

trilemma.

The remainder of the paper is laid out as follows. Section 2 describes a vertically-shifted mesh similar to that used by

Thuburn (2022) to facilitate conservative transport of variables co-located with θ. The general framework for consistent and

conservative transport using this shifted mesh is then presented in Section 3, which places some requirements on the operators
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for mapping variables to the shifted mesh and also on the scheme used for computing the moisture fluxes. Specific operators

satisfying these requirements are presented in Section 4, and a flux scheme using Runge-Kutta time stepping is presented in

Section 5. The framework is then demonstrated through some idealised tests in Section 6, before a summary in Section 7.

2 | A VERTICALLY-SHIFTED MESH FOR CONSERVATIVE TRANSPORT

To achieve local conservation of mass of the moisture species, the conservative form of transport equation (3) is discretised,

while still using the mixing ratio mX as the prognostic variable for the physical parametrisations. Key to this is the discrete

mapping between ρX and mX , involving ρd via (2). As discussed in the previous section, mX is co-located with θ for accurate

representation of latent heating and phase changes.

Where should ρX be located within the Charney-Phillips setup? Many conservative transport schemes for ρd rely on computing

mass fluxes for a control volume surrounding each ρd node. In a finite element context, these nodes are known as degrees of

freedom (DoFs). In the Charney-Phillips grid, this control volume is naturally bounded in the vertical by the w -levels which

are co-located with θ, and the mass fluxes are computed at these points and are therefore staggered relative to ρd . In a finite

element model this is analogous to a discrete relationship between Öv and Öρ , such that for all v ∈ Öv , the divergence + ·v ∈ Öρ .

This property is assumed throughout. In contrast, the DoFs of Öθ are co-located with the DoFs of Öv that represent the vertical

component of the velocity. This means that in the standard Charney-Phillips staggering, illustrated in Figure 1, Öθ has one more

DoF per column than Öρ . This presents a difficulty in choosing the space of ρX . If ρX were to be computed in Öρ , there would

not be a one-to-one relationship between mX and ρX and information would be lost at each transport step. Additionally, there is

not such a neat relationship between + · v and Öθ as there is between + · v and Öρ , making design of a conservative transport

scheme in Öθ more challenging.

Instead, we follow Thuburn (2022) in introducing a second vertical mesh, whose levels are vertically-shifted relative to

the primary mesh. The shifted meshw -levels are located between thew -levels on the primary mesh. The heights of the top and

bottom w -levels of the shifted mesh still match those of the primary mesh, meaning that the layers at the top and bottom of the

model are of smaller depths. This same shifted mesh can be used in a lowest-order finite element model like that of GungHo,

where θ is represented by a continuous, piecewise linear function in the vertical. This is equivalent to a finite difference or finite

volume method, with DoFs lying in the centres of the top and bottom faces of a cell. In this work, quantities on the shifted mesh

are denoted with a tilde ·̃.

The levels of the two meshes can then be summarised as follows. Let ρd have N DoFs in a column on the primary mesh, and θ

have N + 1 DoFs. In a lowest-order finite element model, the facets at the top/bottom of cells coincide with thew -DoFs, which

have vertical coordinates
{
ηw
k

}
for k ∈ [1,N + 1]. The vertical coordinates of the cells’ tops/bottoms on the shifted mesh are{

η̃ w
k

}
for k ∈ [1,N + 2], which are related to those of the primary mesh by

η̃ w1 = ηw1 , η̃ wN+2 = η
w
N+1, η̃ wk = (1 − Ak )ηwk−1 + Ak η

w
k for k ∈ [2,N + 1], (5)

where the Ak ∈ (0, 1) describe the displacement of the levels between the two meshes. For the lowest-order finite element

model, a density on the shifted mesh takes a constant value in each of the cells, but the corresponding finite volume model has

ρ-levels on the shifted mesh with vertical coordinates of
{
η̃
ρ
k

}
. There is flexibility in how

{
η̃
ρ
k

}
can be chosen, though the

equivalent values to the Ö̃ρ DoF locations in the lowest-order finite element model used in Section 6 are η̃ ρ
k
= 1

2

(
η̃ w
k
+ η̃ w

k+1

)
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for k ∈ [1,N + 1]. These staggerings are illustrated in Figure 1. It can be seen here that Ö̃ρ has the same number of degrees of

freedom as Öθ , although these two spaces are not the same.

F I G U R E 1 An illustration of the vertically-shifted mesh and the Charney-Phillips staggering. In the Charney-Phillips
staggering, the dry density ρd is staggered vertically relative to the potential temperature θ. The top/bottom facets of cells for a
lowest-order finite element model are shown by solid black lines, with the midpoints shown by grey dashed lines. The moisture
mixing ratio mX and vertical velocityw are co-located with θ, while the horizontal velocity u is on the same level as ρd . The
dry mass flux Fd is co-located with the velocity (the horizontal part with u and the vertical part withw ) on the primary mesh,
while the horizontal and vertical parts of the fluxes F̃d and F̃X are respectively represented by ũ and w̃ on the shifted mesh. The
vertical coordinates of the interfaces between cells are given by ηw . The vertically-shifted mesh has one more layer than the
primary mesh, with the levels shifted relative to those of the primary mesh (although the top and bottom of the two meshes are
co-located). In the conservative transport formulation of Section 2, the moisture density ρX is described on the vertically-shifted
mesh and is transported by a shifted velocity.

Having introduced this mesh, the moist density ρ̃X is computed in Ö̃ρ from ρd ∈ Öρ and mx ∈ Öθ through an operator

P : Öθ , Öρ → Ö̃ρ . The transporting velocity or mass flux can also be expressed in the space Ö̃v on the shifted mesh, through an

operator S : Öv → Ö̃v .

The basic premise for computing moisture conservatively is to compute ρ̃X at the start of the transport step from the re-

spective values of ρd and mX , then to transport ρ̃X conservatively, before evaluating mX ∈ Öθ by inverting P with respect to

mX , using the value of ρd at the end of the transport step. This operator is called P−1 : Ö̃ρ , Öρ → Öθ . Using superscript n to

denote values before a transport step, and n + 1 to denote values after the transport step, this is summarised as

ρ̃ nX = P
[
mnX , ρ

n
d

]
, (6a)

mn+1X = P−1
[
ρ̃ n+1X , ρn+1d

]
. (6b)

There are two requirements about P:

Requirement 1 The operator P : Öθ , Öρ → Ö̃ρ is linear in both its arguments, so that for any constants α , β ,A,B , for any

m
(1)
X
,m
(2)
X
∈ Öθ and any ρ (1)

d
, ρ
(2)
d
∈ Öρ ,

P
[
αm
(1)
X

+ βm (2)
X
,Aρ

(1)
d

+ Bρ (2)
d

]
= αAP

[
m
(1)
X
, ρ
(1)
d

]
+αBP

[
m
(1)
X
, ρ
(2)
d

]
+βAP

[
m
(2)
X
, ρ
(1)
d

]
+βBP

[
m
(2)
X
, ρ
(2)
d

]
. (7)
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Requirement 2 The operators P : Öθ , Öρ → Ö̃ρ and P−1 : Ö̃ρ , Öρ → Öθ are inverses when their second arguments use the

same dry density ρd , such that for all mX ∈ Öθ , for all positive, non-zero ρd ∈ Öρ and all ρ̃X ∈ Ö̃ρ :

P−1 [P [mX , ρd ] , ρd ] = mX , (8a)

P
[
P−1 [ρ̃X , ρd ] , ρd

]
= ρ̃X . (8b)

Requirement 2 ensures that the operators P and P−1 are reversible so that in the absence of transportmX is unchanged. Likewise,

if there are no changes to mX and ρd in between transport steps then ρ̃X at the start of a transport step is equal to its value at the

end of the previous step. The reversibility of P for a specific ρd is possible because Ö̃ρ and Öθ have the same number of DoFs.

Finally, in this approach the mass that is conserved is defined using ρ̃X :∫
Ω
P [mX , ρd ] dV . (9)

3 | A CONSISTENT AND CONSERVATIVE TRANSPORT FRAMEWORK

The previous section describes the transformation of a mixing ratio mX to a density ρ̃X on a vertically-shifted mesh, so that

moisture can be transported conservatively. This section presents a framework to also transport moisture consistently with dry air,

by ensuring that a constant mixing ratio is preserved.

Defining the dry mass flux as Fd := ρdv and the moisture flux as FX := ρX v, the continuous transport equations for

ρd and ρX can be written as

∂ρd
∂t

+ + · Fd = 0,
∂ρX
∂t

+ + · FX = 0. (10)

Using (2), the moisture flux can also be expressed as FX = mXFd , so the transport equation for ρX becomes

∂ρX
∂t

+ + · (mXFd ) = 0. (11)

The crucial ingredient for transporting ρX consistently with ρd is to transport ρX via (11) and to use the same flux Fd in the

transport of both densities. This is the approach discussed by Lauritzen et al. (2011, 2014); Zängl et al. (2015) and Thuburn (2022).

To discretise (10), we consider conservative, explicit, two-time step transport schemes for ρd ∈ Öρ and ρ̃X ∈ Ö̃ρ that can be

generally expressed via the discrete divergences of time-averaged fluxes Fd ∈ Öv and F̃X ∈ Ö̃v as

ρn+1d = ρnd − ∆tD [Fd ] , ρ̃ n+1X = ρ̃ nX − ∆t D̃
[
F̃X

]
, (12)

where D : Öv → Öρ and D̃ : Ö̃v → Ö̃ρ are the discrete divergence operators on the primary and shifted meshes respectively and

as in Section 2 the superscript n denotes a field at the n-th time level. The fluxes Fd and F̃X are computed from flux operators

Fd : Öρ , Öv → Öv and F̃X : Öθ , Ö̃v → Ö̃v so that

Fd = Fd [ρd ,v] , F̃X = F̃X
[
mX , F̃d

]
. (13)
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As in Thuburn (2022) this requires Fd to be evaluated on the shifted mesh, which is denoted by F̃d ∈ Ö̃v . This shifted mass flux

is obtained through the operator S : Öv → Ö̃v , so that

F̃d = S [Fd ] . (14)

To be as general as possible here, we avoid specifying any details about the discrete divergence operators, or of the spatial or

temporal discretisations involved in Fd and F̃X . Although Fd and F̃X could use the same temporal and spatial discretisations

(albeit on different meshes) they do not necessarily have to do so.

Now consider a mixing ratio that is spatially constant, so that mnX = C . The transport of moisture is consistent if mn+1X = C ,

irrespective of the transporting wind v and the dry density ρd . Since mn+1X = P−1
[
ρ̃ n+1X , ρn+1

d

]
, this requires the process of

representing ρd on the shifted mesh to commute with transporting it. This is illustrated by the commutativity diagram in Figure 2.

ρ̃ n
X ρ̃ n+1

X

ρnd ρn+1
d

−∆tD̃[F̃X ]

−∆tD[Fd]

P[C, · ] P[C, · ]

F I G U R E 2 A diagram representing the commutativity that is required by the framework presented for a transport scheme to
be consistent. In the case that the mixing ratio is a constant C , transport should commute with the transformation of a density in
Öρ to a density in Ö̃ρ by the operator P. The algorithmic implementation of the transport of ρ̃X is described by the left and upper
arrows, which must (in combination) be equivalent to the lower and right arrows to provide consistency.

For this consistency to be achieved, in addition to Requirements 1 and 2 there are two further requirements about the operators

involved in the framework:

Requirement 3 For all Fd ∈ Öv

D̃ [S [Fd ] ] = P [1,D [Fd ] ] . (15)

Requirement 4 For any constant C ∈ Öθ and for all F̃d ∈ Ö̃v ,

F̃X
[
C , F̃d

]
= C F̃d . (16)

F̃d D̃
[
F̃d

]

Fd D [Fd]

D̃

S

D
P[1, · ]

F I G U R E 3 A representation of the required commutativity for the operators P and S, that respectively map fluxes and their
divergences to the shifted mesh in the presence of a constant mixing ratio of value 1. This is described in Requirement 3.
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F I G U R E 4 A schematic illustrating the different variables, function spaces and operators involved in the consistent and
conservative transport framework presented in Section 3. Each row of the figure corresponds to a particular function space, with
fields on the row matching their function space. Each arrow represents the action of an operator, beginning at the fields that are
the arguments of that operator and ending at the field that is the result of the operator.

Requirement 3 is represented by the commutativity diagram in Figure 3. That these requirements lead to a consistent and

conservative transport scheme can be shown by substituting (12) into (6b), giving

mn+1X = P−1
[
ρ̃ n+1X , ρn+1d

]
, (17a)

= P−1
[
ρ̃ nX − ∆t D̃

[
F̃X

]
, ρnd − ∆tD [Fd ]

]
. (17b)

Using (6a) and (13) gives

mn+1X = P−1
[
P

[
mnX , ρ

n
d

]
− ∆t D̃

[
F̃X

[
mX , F̃d

] ]
, ρnd − ∆tD [Fd ]

]
. (17c)

Inserting mnX = C , this becomes

mn+1X = P−1
[
P

[
C , ρnd

]
− ∆t D̃

[
F̃X

[
C , F̃d

] ]
, ρnd − ∆tD [Fd ]

]
. (17d)

Then using the four requirements about the scheme and (14),

mn+1X = P−1
[
P

[
C , ρnd

]
− ∆tC D̃

[
F̃d

]
, ρnd − ∆tD [Fd ]

]
, (17e)

= P−1
[
P

[
C , ρnd

]
− ∆tC D̃ [S [Fd ] ] , ρnd − ∆tD [Fd ]

]
, (17f)

= P−1
[
P

[
C , ρnd − ∆tD [Fd ]

]
, ρnd − ∆tD [Fd ]

]
, (17g)

= C , (17h)

and the transport of mX is both consistent and conservative.

To summarise, in this framework, conservation is achieved by converting mX ∈ Öθ to ρ̃X ∈ Ö̃ρ , which is then transported. The

density ρ̃X lies on a vertically-shifted mesh to facilitate both the flux form transport scheme and the one-to-one relationship

between mX and ρ̃X . The consistency of the scheme comes from using Fd to evaluate the moisture mass flux. The transported

mixing ratio is then calculated from the transported values of ρd and ρ̃X . The action of the different operators used in this

framework is summarised by the schematic in Figure 4.
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4 | CONSISTENT MAPPING OPERATORS

This section presents specific choices for the operators that map fields from the primary mesh to the shifted mesh, satisfying

Requirements 1, 2 and 3 from Sections 2 and 3. A flux operator satisfying Requirement 4 will be considered in Section 5.

Firstly, consider an operator P [mx , ρd ] of the form

P [mX , ρd ] = M [mX ] × Q [ρd ] , (18)

so that the value returned by P is the product of the values returned by two operatorsM : Öθ → Ö̃ρ and Q : Öρ → Ö̃ρ , each of

which directly maps a variable to Ö̃ρ . The multiplication is pointwise at each DoF of Ö̃ρ . If M and Q are linear in their own

arguments then P is linear in both arguments, satisfying Requirement 1.

For M[mX ], we simply identify the values of mX at the DoFs of Ö̃ρ . In the top and bottom half-layers this involves

linear interpolation to the Ö̃ρ DoFs, while in the interior of the domain this is the identity operator so that the k -th value in a

column is given by

m̃
(k )
X

= m (k )
X
, for k ∈ [2,N ], (19)

using the vertical coordinates of the levels from (5). Note thatM[C ] = C for a constant field C . As Öθ and Ö̃ρ have the same

number of DoFs, this choice ofM can easily be inverted to give the operatorM−1 : Ö̃ρ → Öθ . For the top and bottom values of

a column,M−1 extrapolates instead of interpolates. Furthermore, by using the identity operator on the interior of the domain the

generation of new maxima or minima in mX is avoided, which is generally an important property of schemes for transporting

moisture.

Taking P of the form (18), the operator P−1 that satisfies Requirement 2 is given by

P−1 [ρ̃X , ρd ] = M−1 [ρ̃X /Q [ρd ] ] . (20)

From the definition ofM it follows that if mX is a constant C ,M[C ] = C , and so

P [C , ρd ] = C Q [ρd ] . (21)

Then equation (15) of Requirement 3 reduces to

D̃ [S [Fd ] ] = Q [D [Fd ] ] , (22)

and thus Q and S must be chosen together to ensure the consistency of the scheme.

4.1 | A specific choice for the operators

To find a form of the operators Q and S satisfying (22), it will be helpful to establish some more notation. Consider first

an element in the primary mesh, such that the k -th element in the i -th column is indicated by ek
i

. This element has lateral
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surfaces which are denoted by sk
i ,l

. Unless the element is on the exterior boundary of the domain, this surface will connect to a

neighbouring element, ek
i ,l

. Each column also contains N + 1 horizontal surfaces (associated with vertical fluxes), which form

the top and bottom faces of each cell. These surfaces are denoted by sk
i ,b

and sk
i ,t

, with sk
i ,t
= sk+1

i ,b
. All these entities are denoted

with a tilde on the shifted mesh.

Before describing operators Q and S, it is convenient to now express the action of D. If, for a flux F ∈ Öv , D [F ] = ∆ρ ∈ Öρ ,

then let ∆ρk
i

be the value of ∆ρ in ek
i

. The outward flux normal to sk
i ,l

is F k
i ,l

, and similarly F k
i ,t

and F k
i ,b

are the outward fluxes

through the top and bottom surfaces, with F k
i ,t
= −F k+1

i ,b
. Then the action of D can be expressed as

∫
ek
i

∆ρki dV =
∑
l

∫
sk
i ,l

F ki ,l dA +
∫
sk
i ,b

F ki ,b dA +
∫
sk
i ,t

F ki ,t dA, (23a)

=
∑
l

∫
sk
i ,l

F ki ,l dA +
∫
sk
i ,b

F ki ,b dA −
∫
sk+1
i ,b

F k+1i ,b dA (23b)

which is a discrete form of the divergence theorem. Note that F is taken here to have the same units as ρv.

We look for operators Q and S that are linear in their arguments (and so independent of F ):∫
ẽ k
i

ρ̃ ki dṼ = αki

∫
ek
i

ρki dV + γki

∫
ek−1
i

ρk−1i dV , (24a)∫
s̃ k
i ,l

F̃ ki ,l dÃ = β
k
i ,l

∫
sk
i ,l

F ki ,l dA + δ
k
i ,l

∫
sk−1
i ,l

F k−1i ,l dA, (24b)∫
s̃ k
i ,b

F̃ ki ,b dÃ = µ
k
i .b

∫
sk
i ,b

F ki ,b dA + ν
k
i ,b

∫
sk−1
i ,b

F k−1i ,b dA, (24c)

where the αk
i

, γk
i

, β k
i ,l

, δk
i ,l

, µk
i .b

and νk
i ,b

are all coefficients to be found, with (24a) representing Q, and (24b) and (24c) together

representing S. To justify this, consider Figure 1. Each element on the shifted mesh overlaps with two from the primary mesh.

Each lateral face on the shifted mesh overlaps with two from the primary mesh, and each ‘horizontal’ face (with a vertical flux)

lies between two horizontal faces on the primary mesh. The bottom layer of the shifted mesh only overlaps with a single layer

of the primary mesh, so that γ1
i
= 0, δ1

i ,l
= 0 and ν1

i ,b
= 0. The same reasoning applies in the top layer of the shifted mesh, so

that αN+1
i

= 0, βN+1
i ,l

= 0 and µN+2
i ,b

= 0. In (24c), to simplify the notation we are taking F N+1
i ,b

= −F N
i ,t

and F̃ N+2
i ,b

= −F̃ N+1
i ,t

.

Combining these aspects, the matrices representing these operators are of bidiagonal form within each column. It is stressed that

these may not be the only forms of Q and S that will satisfy (22).

Assuming Q and S of the form (24), D of the form (23b) and substituting these into (22) gives

αki

[∑
l

∫
sk
i ,l

F ki ,l dA +
∫
sk
i ,b

F ki ,b dA −
∫
sk+1
i ,b

F k+1i ,b dA
]
+ γki

[∑
l

∫
sk−1
i ,l

F k−1i ,l dA +
∫
sk−1
i ,b

F k−1i ,b dA −
∫
sk
i ,b

F ki ,b dA
]
=

∑
l

[
β ki ,l

∫
sk
i ,l

F ki ,l dA + δ
k
i ,l

∫
sk−1
i ,l

F k−1i ,l dA
]
+

[
µki .b − ν

k+1
i ,b

] ∫
sk
i ,b

F ki ,b dA + ν
k
i ,b

∫
sk−1
i ,b

F k−1i ,b dA − µk+1i .b

∫
sk+1
i ,b

F k+1i ,b dA.
(25)
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This can be rearranged to

∑
l

[
αki − β

k
i ,l

] ∫
sk
i ,l

F ki ,l dA +
∑
l

[
γki − δ

k
i ,l

] ∫
sk−1
i ,l

F k−1i ,l dA

+
[
αki − γ

k
i − µ

k
i .b + ν

k+1
i ,b

] ∫
sk
i ,b

F ki ,b dA +
[
γki − ν

k
i ,b

] ∫
sk−1
i ,b

F k−1i ,b dA +
[
µk+1i .b − α

k
i

] ∫
sk+1
i ,b

F k+1i ,b dA = 0.
(26)

Since this must be true for any F , it is obtained that

αki = β
k
i ,l , γki = δ

k
i ,l , αki = µ

k+1
i .b , γki = ν

k
i ,b , [i , k , l . (27)

Further, mass must be preserved as density is mapped from Öρ to Ö̃ρ . This implies that

N∑
k=1

∫
ek
i

ρki dV =
N+1∑
k=1

∫
ẽ k
i

ρ̃k dṼ , (28a)

=
N+1∑
k=1

[
αki

∫
ek
i

ρki dV + γki

∫
ek−1
i

ρk−1i dV
]
, (28b)

and using that γ1
i
= 0 and αN+1

i
= 0, the two integrals can be incorporated into the same sum, so this becomes

N∑
k=1

∫
ek
i

ρki dV =
N∑
k=1

(
αki + γ

k+1
i

) ∫
ek
i

ρki dV . (28c)

This will then be satisfied if

γki = 1 − α
k−1
i , (29)

which also ensures that the first term on the second line of (26) also vanishes. The forms of the operators are then:∫
ẽ k
i

ρ̃ ki dṼ = αki

∫
ek
i

ρki dV +
(
1 − αk−1i

) ∫
ek−1
i

ρk−1i dV , (30a)∫
s̃ k
i ,l

F̃ ki ,l dÃ = α
k
i

∫
sk
i ,l

F ki ,l dA +
(
1 − αk−1i

) ∫
sk−1
i ,l

F k−1i ,l dA, (30b)∫
s̃ k
i ,b

F̃ ki ,b dÃ = α
k−1
i

∫
sk
i ,b

F ki ,b dA +
(
1 − αk−1i

) ∫
sk−1
i ,b

F k−1i ,b dA. (30c)

The presence of αk−1
i

before the second integral of (30c) indicates that vertical fluxes are obtained on the shifted mesh from

interpolation, in contrast to the method used to map the density and the horizontal fluxes.

How can the αk
i

coefficients be obtained? It appears logical that they should relate to features of the mesh. However since the

same constant is used to map each lateral flux of a given cell, the constant cannot depend on the areas of the lateral surfaces.

Similarly, a surface typically joins two elements together, which may in general not have the same volume, so the αk
i

cannot

relate to the volumes of elements. Since
∫
F dA is continuous between cells, it must be true that β k

i ,l
is equal to a corresponding

value for the neighbouring column. As β k
i ,l
= αk

i
, this means that αk

i
must be independent of the column i . This leaves only that
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the coefficients can depend on k , and since the vertical coordinate is common between neighbouring cells then if the vertical

coordinates of the mesh levels are given by (5), a plausible choice is to take αk
i
= Ak+1 for all columns i and k ∈ [1,N ]. For the

bottom layer, α0
i
= 1, so that the vertical fluxes through the bottom surfaces of both meshes agree. In the experiments of Section

6, Ak = 1/2 for all k , giving αk
i
= 1/2 for all i and k ∈ [1,N ].

5 | A CONSISTENT RUNGE-KUTTA SCHEME

With the choices made in Section 4, all requirements except Requirement 4 have been met. In contrast to the other requirements,

this depends on the flux operator FX , requiring that if the mixing ratio is a constant field everywhere, then FX should return a

moisture flux FX which is simply the dry flux Fd scaled by that constant. In this section, a Method of Lines scheme is introduced

using explicit Runge-Kutta time stepping that obeys this requirement.

5.1 | Standard Runge-Kutta schemes

First, consider a general N -stage explicit Runge-Kutta scheme for discretising the advective form of the transport equation for

a mixing ratio mX ∈ Öθ by a velocity v ∈ Öv . Let the weights of the Runge-Kutta scheme be aj ,k , and the j -th stage of the

scheme denoted by m (j )
X

. The operator A : Öθ , Öv → Öθ discretises (v · +)mX , and it is required, for numerical consistency,

that A[C ,v] = 0 for any constant field C and any v ∈ Öv . Following for instance Shu and Osher (1988), for an explicit

Runge-Kutta scheme the value of mX at the (n + 1)-th time step, mn+1X , can be written as

m
(0)
X

= mnX , (31a)

m
(j )
X

= mnX − ∆t
j−1∑
k=0

aj ,kA
[
m
(k )
X
,v

]
, j ∈ [1,N ] (31b)

mn+1X = m (N )
X
. (31c)

To describe a comparable scheme for the conservative form of the transport equation for some density ρ ∈ Öρ , we introduce the

operator G : Öρ , Öv → Öv which acts as the operator for a single step in the Runge-Kutta scheme.2 The operator G performs a

flux reconstruction, creating a discrete form of ρv, and is assumed to satisfy G[C ,v] = Cv for any constant field C and any

v ∈ Öv . Then the Runge-Kutta scheme for the conservative form of the transport equation is

ρ (0) = ρn , (32a)

ρ (j ) = ρn − ∆t
j−1∑
k=0

aj ,k D
[
G

[
ρ (k ) ,v

] ]
, j ∈ [1,N ] (32b)

ρn+1 = ρ (N ) . (32c)

2This is in contrast to the operator F, which describes the flux reconstruction for the whole time step.



BENDALL ET AL. 13

5.2 | Steps of the moisture transport scheme

A Runge-Kutta scheme discretising (11) but with a flux operator satisfying Requirement 4 can be made by combining (31) and

(32). In this scheme, the solution is built up by using the advective form of the transport equation of mX ∈ Öθ for the first

(N − 1) stages of the scheme, using the conservative form for ρ̃X ∈ Ṽρ only for the final stage. This is analogous to the flux form

semi-Lagrangian schemes of Leonard et al. (1996) and Lin and Rood (1996), where to ensure a scheme preserves a constant,

the advective form is used in all stages except the final one. Take G̃ : Ö̃ρ , Ö̃v → Ö̃v as a flux operator on the shifted mesh. The

overall scheme then consists of the following steps:

1. Transport ρd ∈ Öρ , retaining the start and end of time step values ρn
d

and ρn+1
d

, as well as the dry flux Fd used.

2. Transport the mixing ratio for (N − 1) stages in advective form:

m
(0)
X

= mnX , (33a)

m
(j )
X

= mnX − ∆t
j−1∑
k=0

aj ,kA
[
m
(k )
X
,v

]
. (33b)

This is used to build up the mixing ratio m (F )
X

used to compute the moisture flux F̃X :

m̃
(F )
X

= M
[
N−1∑
k=0

aN ,km
(k )
X

]
, (34)

which is evaluated in Ö̃ρ byM as described in Section 4.

3. Obtain the moisture density ρ̃X , and dry flux F̃d on the shifted mesh from

ρ̃ nX = P
[
mnX , ρ

n
d

]
, F̃d = S [Fd ] . (35)

4. Calculate the transported moisture density by performing a single application of G̃:

ρ̃ n+1X = ρ̃ nX − ∆t D̃
[
G̃

[
m̃
(F )
X
, F̃d

] ]
. (36)

5. The mixing ratio at the end of the time step is then given by

mn+1X = P−1
[
ρ̃ n+1X , ρ n+1d

]
. (37)

In this scheme, F̃X
[
mX , F̃d

]
≡ G̃

[
m̃
(F )
X
, F̃d

]
. If mnX is a constant C , then m (j )

X
= C for j ∈ [0,N − 1] since A[C ,v] = 0.

Then m̃ (F )
X

= C , as for any consistent Runge-Kutta scheme
∑N−1
k=0 aN ,k = 1 andM[C ] = C . Finally, this choice of F̃X satisfies

Requirement 4 because G̃ [C , F̃d ] = C F̃d .

6 | NUMERICAL RESULTS

This section demonstrates the consistent moisture transport framework of Section 3 through test cases in two-dimensional vertical

slice domains, with coordinates (x , z ) . The shifted mesh is defined using (5), taking Ai = 1
2 for all the levels. For the consistent
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transport of moisture, the operators of Section 4 and Method of Lines scheme of Section 5 are used. The Runge-Kutta weights

are those of the three stage Strong Stability-Preserving scheme (SSPRK3); see Cockburn and Shu (2001) for more details. The

advective operator A and the flux operator G use a third-order upwind finite volume reconstruction. More information on this

reconstruction can be found in Melvin et al. (2019). The dry density ρd is transported using the standard SSPRK3 scheme of (32).

The new transport scheme is compared with an advective form transport scheme for the moisture mixing ratio. This comparison

scheme uses the standard SSPRK3 method (31) with the same advective operator A as is used for the new scheme.

6.1 | Idealised Transport Tests

F I G U R E 5 The ρd field used in the convergence configuration of the transport test case in Section 6.1. (Left) the initial
condition, and (right) a computed state at t = τ , both shown with a contour spacing of 0.1 kg m−3, which varies linearly in the
vertical direction. (Centre) a computed state of ρd at t = τ/2, shown with a contour spacing of 0.25 kg m−3. As the flow is
divergent, the initially smooth field is deformed, before returning to close to its original state.

To demonstrate the convergence and consistency of the framework, a mixing ratio field and a dry density field are transported

subject to a prescribed deformational, divergent flow in a vertical slice of length Lx and height Hz , with x ∈ (−Lx /2, Lx /2)
and z ∈ (0,Hz ) . Inspired by the deformational, divergent flow of Nair and Lauritzen (2010) and Lauritzen et al. (2012), the

transporting velocity v = (u,w ) is

u = U − WπLx
Hz

cos
( πt
τ

)
cos

(
2πx ′

Lx

)
cos

(
πz

Hz

)
, (38a)

w = 2πW cos
( πt
τ

)
sin

(
2πx ′

Lx

)
sin

(
πz

Hz

)
, (38b)

where Lx = 2 km, Hz = 2 km and τ = 2000 s is the length of the simulation. The domain is periodic in the x -direction and the

flow includes the contribution of uniform flow of speed U = Lx /τ in the x -direction, so taking x ′ = x − Lx /2 −Ut the true

solution at time τ is equal to the initial condition. The other speed isW , which can be varied relative to U to adjust the amount

of deformation, but for the results presented hereW = U/10. The flow is illustrated by the arrows in Figure 6.
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F I G U R E 6 The mX field used in the convergence configuration of the transport test case in Section 6.1. (Left) the initial
condition, and (right) the computed solution at t = τ , showing two Gaussian hills. (Centre) a computed state at t = τ/2, as the
hills have been deformed by the flow. Contours are spaced by 5 × 10−3 kg kg−1 and the contour at 0.02 kg kg−1 has been
omitted. The superimposed arrows indicate the magnitude and direction of the transporting velocity field.

F I G U R E 7 The convergence and consistency properties of the new framework of Section 3. (Left) a convergence plot
showing the change as a function of resolution of the L2 error norm between the initial and final mixing ratio fields for the
convergence configuration. The legend displays the gradients of lines of best fit through the points, approximating the order of
accuracy. The consistent scheme shows a similar order of accuracy to an advective transport scheme. (Right) a time series of the
L2 norms of the ρd and mX field from the consistency configuration. These have been normalised by subtracting and then
dividing by the initial values. The legend displays the range (maximum minus minimum) for the whole time series of each line,
showing that the mixing ratio field remains constant up to machine precision even while the ρd field is highly deformed.

This flow is used in two configurations, to separately show the convergence and consistency properties of the moisture transport.
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F I G U R E 8 The ρd field used in the consistency configuration of the transport test case in Section 6.1. (Left) the initial
condition and (right) the computed solution at t = τ , which is two Gaussian hills. (Centre) a computed state at t = τ/2, showing
that the hills and the background state are deformed by the flow. The contours are spaced by 0.2 kg m−3.

To describe the initial conditions, first define the distance from a point (xc , zc ) as

`2 (x , z ; xc , zc ) = [min ( |x − xc |, Lx − |x − xc |) ]2 + (z − zc )2 . (39)

Then a Gaussian hill of width `c centred at (xc , zc ) is given by:

f (x , z ; xc , zc ) = f0 exp
(
−`2 (x , z ; xc , zc )/`2c

)
. (40)

For the convergence configuration, the initial conditions use two Gaussian hills for mX and a smooth ρd varying uniformly with

height:

ρd (x , z ) = ρb + z (ρt − ρb )/Hz , (41a)

mX (x , z ) = m0 + f (x , z ; x1, z1) + f (x , z ; x2, z2), (41b)

with (x1, z1) = (Lx /8,Hz /2) , (x2, z2) = (−Lx /8,Hz /2) , `c = 2Lx /25, f0 = 0.05 kg kg−1, m0 = 0.02 kg kg−1, ρb = 1.0 kg

m−3 and ρt = 0.5 kg m−3. These initial states are displayed in Figures 5 and 6, alongside numerical computations of the fields at

t = τ/2.

To demonstrate the convergence of the scheme, the L2 error norm between the initial mX field and its computed value at

t = τ was measured for a range of resolutions. The horizontal and vertical grid spacings ∆x and ∆z were varied together, with

uniform ∆x = ∆z for all simulations. The values used for ∆x and ∆z were those corresponding to subdividing the domain into

120, 140, 160, 180 and 200 cells in each direction. The time step ∆t = 2 s was kept constant for all simulations. The convergence

is displayed in the left-hand part of Figure 7, demonstrating that the consistent transport has the same order of accuracy as the

advective transport scheme. However as shown in the left-hand part of Figure 9, the consistent framework conserves mass to

machine precision throughout the simulation while the advective transport does not.
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The consistency configuration of the test case shows that the framework preserves a constant mixing ratio, even in the presence

of a divergent, deformational flow. Now the dry density field is initially two Gaussian hills, so that the fields at t = 0 are:

ρd (x , z ) = ρb + f (x , z ; x1, z1) + f (x , z ; x2, z2), (42a)

mX (x , z ) = m0, (42b)

with (x1, z1) = (Lx /8,Hz /2) , (x2, z2) = (−Lx /8,Hz /2) , `c = 2Lx /25 and m0 = 0.02 kg kg−1 as before, but now with

f0 = 0.5 kg m−3 and ρb = 0.5 kg m−3. The initial ρd field and a computed state at t = τ/2 are shown in Figure 8. In the

consistency configuration, there was just a single simulation using the flow (38), taking ∆x = ∆z = 20 m and ∆t = 2 s. The

right-hand side of Figure 7 plots the L2 norms of ρd and mX as a function of time, which allows these two fields to be compared.

Even though ρd is deformed by the flow, the mixing ratio field remains constant.

6.2 | Moist Rising Bubble

F I G U R E 9 The conservation of moisture mass using the new framework presented in Section 3, compared with a transport
scheme using a standard advective form for the mixing ratio fields. (Left) time series of the mass M of the moisture species from
the highest resolution simulation of the convergence configuration of Section 6.1, with ∆x = ∆z = 10 m. (Right) time series of
the total mass of moisture from the rising bubble test of Section 6.2. Both plots show that the mass of moisture is conserved much
better by the consistent, conservative scheme than the advective transport scheme. The legends display the ranges (maximum
minus minimum) of the time series. The masses have been normalised by subtracting and then dividing by the initial value.

The next test is to use the consistent and conservative moisture transport in the context of a non-hydrostatic dynamical core.

This is the GungHo model of Melvin et al. (2019), which uses a semi-implicit time stepping structure with an outer loop that

involves a step to solve for the transport terms of the prognostic variables, and an inner loop to solve a linearised problem for the

implicit wave-like terms. This section presents results from a moist rising bubble test, based on the benchmark case of Bryan and

Fritsch (2002). This test uses two moisture species: the water vapour and cloud liquid (whose mixing ratios are represented by

mv and mc ) which can convert between one another via condensation and evaporation. The test describes a saturated atmosphere

in a vertical slice that is initially in hydrostatic balance, with a prescribed mixing ratio of total moisture (mt ) and a profile that is
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F I G U R E 1 0 The diagnostic θe fields at t = 800 s from the moist rising bubble test of Section 6.2. (Left) the final field from
a simulation using the advective form of the transport equation for the moisture species. (Right) the final field from a simulation
using the consistent transport framework for the moisture species. Contours are spaced every 1 K, and the 320 K contour has
been omitted. The two fields are visually similar.

neutrally stable when the effects of latent heating are included. A perturbation is added to this state, triggering a rising thermal.

There is no Coriolis force or precipitation.

The setup is broadly the same as that of Bryan and Fritsch (2002): the domain is of length Lx = 20 km and height Hz = 10 km,

and the balanced background state is defined by a pressure p = 105 Pa at the surface, along with the wet equivalent potential

temperature which is θe = 320 K everywhere. One difference is that the total moisture mixing ratio mt varies with height. This

is to avoid fortuitous conservation: when mt is a constant field then lack of conservation in the transport of each of the two

moisture species can exactly compensate for one another, resulting in a total moisture mass that is conserved. The total moisture

profile is then given by

mt = m0 − z∆m/Hz , (43)

with m0 = 0.0175 kg kg−1 and ∆m = 5 × 10−3 kg kg−1. The water vapour mixing ratio is set to its saturation value (with the

remainder of the moisture being cloud liquid). However, the GungHo dynamical core has some thermodynamic simplifications

compared with that in Bryan and Fritsch (2002). It uses a latent heat Lv that is constant with respect to temperatureT , while the

heat capacities cv and cp don’t include contributions from the moist component of the air. With these assumptions, a different

definition of the wet equivalent potential temperature is more appropriate to define the initial conditions:

θe = θ exp
[
Lvmv
cpT

]
. (44)

The same perturbation of Bryan and Fritsch (2002) is then applied, but to this definition of θe . To find the initial values of the

prognostic variables from these requirements, the routine of Bendall et al. (2020) is used. Condensation and evaporation are

applied through a saturation adjustment step at the end of each dynamical core time step; the details of this routine are described
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by Bendall (2019) although here it is used with constant Lv .

This test is also used to compare the dynamical core using an advective form of the moisture transport with the new con-

sistent and conservative approach. For these simulations, the grid spacing was ∆x = ∆z = 100 m and ∆t = 2 s. The inner loop

at the heart of the dynamical core changes ρd but not mX , and so if ρ̃X is recomputed at the end of the inner loop the original

mass of moisture will generally not be conserved. However the dynamical core will be numerically conservative over the whole

time step when the solver for the implicit terms has converged (and when using a conservative transport scheme). Therefore to

demonstrate the conservation with this test, the dynamical core was run with 16 × 1 outer and inner iterations, rather than the

usual 2 × 2 that is used in GungHo. Time series of the evolution of the total mass of moisture for these cases are shown in Figure

9, showing that the new framework preserves the mass of moisture when the simple advective form does not. The diagnosed θe
fields at t = 800 s are shown in Figure 10, with the fields for both transport schemes appearing visually similar.

7 | SUMMARY

The trilemma of the moist Charney-Phillips grid is that any choice of variable staggering appears to eliminate a desirable property

of the whole discretisation. To address this, we have presented a framework to transport moisture conservatively and consistently

with dry density, while still co-locating the mixing ratio with the potential temperature. This framework uses a vertically-shifted

mesh on which the moisture is expressed as a moisture density, which is transported using the same mass flux that was used to

transport the dry density . The consistency between the transport of the dry and moist densities relies on a few simple properties

of the operators that are involved in the scheme.

The results in Section 6 demonstrate that the framework presented in this paper does indeed provide the desired proper-

ties, without compromising on the benefits of co-locating moisture with θ. This was done in the context of a lowest-order finite

element model, but can also be straightforwardly applied to a finite difference or finite volume discretisation. In further work we

intend to address how this framework can be applied to a finite element discretisation of higher polynomial order in the vertical

direction. The challenge here is that the Ö̃ρ space on the shifted mesh would not necessarily have the same number of DoFs as Öθ
when the finite elements have a higher polynomial order. This problem could be bypassed if the dynamical core used a higher

resolution grid of lowest-order polynomials for its transport stage. An alternative approach would be to use a finite element-based

transport scheme, formulating (3) in weak form and solving for the mixing ratio. Further work will also aim to show the benefits

of solving the trilemma in the context of a full numerical weather prediction and climate model.
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A | SUBSTEPPED TRANSPORT

One common approach to increasing the stability of explicit transport schemes is to take substeps. Here the scheme of Section 5

is adapted for a substepped Runge-Kutta scheme. The same dry flux Fd is used for all substeps, rather than coupling the tracer

transport to the dry density transport substep-by-substep.

Let M be the number of substeps, and mn+`/M
X

be the mixing ratio after the `-th substep. In general, a scheme for an

operator A linear in its mixing ratio argument, with M substeps and N Runge-Kutta stages can be written as one large scheme:

mn+1X = mnX +

M (N+1)∑
k=1

pk (−∆t )kAk
[
mnX ,v

]
, (45)

where pk are unknown constants that can be derived from the Runge-Kutta weights and the number of substeps. To write the

consistent transport scheme with substepping, we look for a solution of the form

ρ̃ n+1X = ρ̃ nX +

M (N+1)∑
k=1

pk (−∆t )k D̃
[
G̃

[
Ak−1

[
mnX ,v

]
, F̃d

] ]
(46a)

≡ ρ̃ nX − ∆t D̃
[
G̃

[
m
(F )
X
, F̃d

] ]
(46b)
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where it is assumed that the pk are the same as in (45) and A0 is the identity operator. The goal is to find m (F )
X

where

− ∆t m (F )
X

=

M (N+1)∑
k=1

pk (−∆t )kAk−1
[
mnX ,v.

]
(47)

To find the values of the pk coefficients, return to (45) and observe that

mn+1X = mn+(M−1)/M
X

− ∆t
M
A


N−1∑
j=0

aN ,jm
n+1,(j ) ,v

 (48a)

= mnX −
∆t

M

M∑
`=1

A

N−1∑
j=0

aN ,jm
n+`/M ,(j ) ,v

 , (48b)

= mnX −
∆t

M
A


M∑
`=1

N−1∑
j=0

aN ,jm
n+`/M ,(j )
X

,v

 , (48c)

≡ mnX +

M (N+1)∑
k=1

pk (−∆t )kAk
[
mnX ,v

]
. (48d)

So from (47) the result is that

m
(F )
X

=
1

M

M∑
`=1

N−1∑
j=0

aN ,jm
n+`/M ,(j )
X

. (49)
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