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A bound for the orders of centralizers
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Martin W. Liebeck*

Communicated by Timothy C. Burness

Abstract. We prove that if G is a connected semisimple algebraic group of rank r , and
H is a subgroup of G that is contained in no proper parabolic subgroup, then we have
jCG.H/j < c

r jZ.G/j, where c is an absolute constant (c D 16 if all simple factors of G
are classical, and c � 197 in general).

1 Introduction

Let G be a connected semisimple algebraic group of rank r over an algebraically
closed fieldK. A subgroup H of G is G-irreducible if it is contained in no proper
parabolic subgroup of G. Such a subgroup H has finite centralizer in G by [4,
Lemma 2.1]. In this note, we give a bound for the order of the centralizer CG.H/.
In the case where H is connected, this and much more was done in [5].

Theorem 1. Let G be a connected semisimple algebraic group of rank r over an
algebraically closed field K, and let H be a G-irreducible subgroup. Then there
is a constant c � 197 such that

jCG.H/j < c
r
jZ.G/j:

For the case where all the simple factors of G are classical, the proof shows
that the constant c can be improved to 16 (see Lemmas 2.3 and 2.4). Example (1)
below shows that c must be at least 4. It is possible that the theorem holds with
c D 4 , but we have not attempted to achieve this degree of precision.

Theorem 1 has been used in a number-theoretic application in [1].

Examples. (1) Let G D SOn.K/ with char.K/ ¤ 2, and let v1; : : : ; vn be an or-
thonormal basis of the underlying orthogonal space. Then G has an elementary
abelian subgroup H Š 2n�1 consisting of elements that send each vi 7! ˙vi . It
is easy to see that H is G-irreducible, and jCG.H/j D jH j D 2n�1. When n is
odd, this is equal to 4r , where r is the rank of G.
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(2) Let G D Sp2r.K/ with char.K/ ¤ 2. Then G has an irreducible subgroup
H D Sp2.K/

r , and jCG.H/j D jZ.H/j D 2r .
(3) Let s be a prime and H D s1C2a an extraspecial group. There is an irre-

ducible embedding of H in SLn.K/, where n D sa and char.K/ ¤ s. Hence we
have NH D s2a < G D PGLn.K/ and jCG. NH/j D j NH j D s2a D n2. Our proof of
Theorem 1 shows that n2 is actually the correct bound for G simple of type An�1
(see Lemma 2.3).

(4) Here are some examples for G simple of exceptional type (see for example
[2, Theorem 3]):

G D E8 W H D 2
5 with CG.H/ D 25C10;

G D E6 W H D 3
3 with CG.H/ D 33C3;

G D G2 W H D 2
3 with CG.H/ D H:

So, for example, there is an irreducible subgroup H D .25/l < G D El8 such that
jCG.H/j D 2

15l D crk.G/, where c D 215=8.

2 Proof of the theorem

We prove Theorem 1 in a series of lemmas.

Lemma 2.1. Suppose the conclusion of Theorem 1 holds in the case where G is
simple of adjoint type. Then the conclusion holds in general.

Proof. Let G D G1 � � �Gk , a commuting product of simple algebraic groups Gi .
Let NG D G=Z.G/ D NG1 � � � � � NGk , the direct product of adjoint groups NGi , and
let � WG 7! NG be the natural map. Let H < G be G-irreducible and NH D �.H/.
Then � maps CG.H/ 7! C NG. NH/, so jCG.H/j � jC NG. NH/jjZ.G/j. Moreover, we
have C NG. NH/ D

Q
C NGi

. NHi /, where NHi is the projection of NH in NGi . By hypothe-
sis, jC NGi

. NHi /j < c
ri , where ri D rank.Gi /, and so

jC NG. NH/j �

kY
1

cri D cr ;

and the lemma follows.

In view of the previous lemma, we assume from now on that G is simple of
adjoint type. Let H < G be G-irreducible, and let F D CG.H/.

Lemma 2.2. The group F consists of semisimple elements.
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Proof. Suppose false, and let f 2 F be an element with non-identity unipotent
part u. Then H � CG.u/, which is contained in a parabolic subgroup, contradict-
ing the irreducibility of H .

Lemma 2.3. Suppose G D PGLn.K/. Then jCG.H/j � n2.

Proof. Let OG D SLn.K/ D SL.V /, and let OH , OF and OC be the preimages in OG of
H , F and CG.F /, respectively. Also letZ D Z. OG/. Note that C OG. OH/ D Z since
OH acts irreducibly on V .

Observe first that Œ OH; OF ; OF � D Œ OF ; OH; OF � D 1, and therefore Œ OF ; OF ; OH� D 1.
Hence OF 0 � C OG. OH/DZ, and so F is abelian. Let 1¤ f 2 F , and let Of be a pre-
image of f . Then C OG. Of / D

Q
GLmi

.K/ \ OG, where
P
mi D n. As CG.f / is

irreducible, its preimage in OG must permute the factors transitively, and it follows
that CG.f / D .GLm.K/r :r \ OG/=Z for some r dividing n, and f has order di-
viding r . Hence F is abelian of exponent dividing n.

For c 2 OC , there is a map �c 2 Hom. OF ;Z/ given by �c.f / D Œc; f � for all
f 2 OF . The map � W OC 7! Hom. OF ;Z/ sending c 7! �c is a homomorphism.

Assume now that OF is abelian. For � 2 Hom. OF ;Z/, define

V� D ¹v 2 V W vf D �.f /v for all f 2 OF º:

Then V # OF D
Lt
1 V�i

, where V�i
¤ 0 for all i . For c 2 OC , we have V�i

cD V�i�c
,

and as OC is irreducible, this action of OC permutes the set ¹V�i
W 1 � i � tº tran-

sitively. Replacing each f 2 OF by a scalar multiple, we may take �1 to be trivial
(i.e. �1.f / D 1 for all f 2 OF ). It follows that jF j is at most the order of the tran-
sitive group �. OC/. Being transitive and abelian, this group has order t , and hence
jF j � t � n, giving the conclusion in this case.

Now assume that OF is non-abelian. Let V # OF D
Lt
1Wi , where Wi are the

homogeneous components. As above, ¹W1; : : : ; Wtº is permuted transitively by
�. OC/. The action of OF on the homogeneous component W1 has order at most
.dimW1/

2jZj by [3, Theorem 2.31], and hence

jF j � t .dimW1/
2
j�. OC/j D t2.dimW1/

2
D n2:

This completes the proof.

Lemma 2.4. SupposeG D PGSpn.K/ or PGOn.K/. Then jCG.H/j � 42r , where
r D rank.G/.

Proof. Let OG D Spn.K/ or SOn.K/, Z D Z. OG/, and V D Kn. Let OF be the
preimage in OG of F D CG.H/.



798 M. W. Liebeck

If F contains an element f of odd prime order, then CG.f / is connected and
has a central torus, hence cannot be irreducible. It follows that F is a 2-group.

Next we show that OF has exponent dividing 4. Suppose then that OF contains an
element f of order 8, with image Nf 2 F . Let ! 2 K be a primitive 8-th root of
unity, and letE!j be the !j -eigenspace of f on V for 0 � j � 7. We can assume
that E! ¤ 0, and hence also E!�1 ¤ 0.

Let Ng 2 CG. Nf /, with preimage g 2 OG. Then f g D ˙f . If f g D f , then g
stabilizes every eigenspace E!j ; for j ¤ 0; 4, these are all totally singular. And
if f g D �f , then g swaps E! and E�! , hence stabilizes E! CE�! , which is
also totally singular. We conclude thatCG. Nf / stabilizes a totally singular subspace
of V , hence is a reducible subgroup of G, a contradiction.

Hence OF has exponent dividing 4, as claimed. Since OF is contained in the nor-
malizer of a maximal torus by [7, II, 5.16], we have

j OF j � 4r jW.G/j2; (2.1)

where W.G/ is the Weyl group and r is the rank of G. Since jW.G/j D 2r�ırŠ
with ı 2 ¹0; 1º, it follows that jW.G/j2 � 4r . Hence j OF j � 42r , as required.

Lemma 2.5. Suppose G is of exceptional type, of rank r . Then jCG.H/j � cr ,
where c is as in the table below.

G G2 F4 E6 E7 E8

c 8:5 30:7 10 17:3 197

Proof. First assume that G ¤ E8. We claim that the non-identity elements of
prime-power order in F can only have the following possible orders:

G G2 F4 E6 E7

Poss. o.f / 2, 3 2, 3, 4 2, 3 2, 3, 4

Table 1

To see this, let 1 ¤ f 2 F have prime-power order. IfCG.f / is connected, then
as it is irreducible, it is semisimple. Then the order o.f / is equal to a coefficient
of the expression for the highest root in terms of simple roots (see for example [6,
(4.5)]), which gives the conclusion in these cases. This deals with G D G2; or F4,
as these are simply connected; hence all their semisimple element centralizers are
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connected by [7, II, 3.9]. Now consider G D E7 with C D CG.f / disconnected.
Then jC=C 0j D 2 by [7, II, 4.4]. In the simply connected cover OG, a preimage
Of of f satisfies Of g D z Of for some g 2 OG, where Z. OG/ D hzi of order 2, and

hence f is a 2-element. Let C 0 D DT , where D is a semisimple group and T
a central torus, and write f D dt with d 2 Z.D/, t 2 T . Let g 2 C n C 0. Then
CT .g/

0 D 1 as C is irreducible in G, and hence g acts on T as an involution.
It follows that tg D t�1, and hence t2 D dgd�1 2 Z.D/. If t2 has order greater
than 2, then it must have order 4 and be contained in a factorA3,A3A3 orA7 ofD.
In the first case, dgd�1 has order 1 or 2 (being a product of two elements of the
same order in Z.A3/), a contradiction. In the second case, t 2 CG.A3A3/ D A1,
so t2 2 Z.A1/ again has order at most 2. Finally, if D D A7, then T D 1 and
f D d 2 Z.D/, which has order 4. This establishes the claim for G D E7, and
the argument for G D E6 is similar.

From the previous paragraph, we can list the possible centralizers of the el-
ements of F of orders specified in the following table; the table also gives the
traces of their actions on the adjoint module L.G/:

G G2 F4 E6 E7

o.f / 2; 3 3 2 3

CG.f / A1A1; A2 A2A2 A1A5 A2A5

trL.G/.f / �2; 5 �2 �2 �2

From Table 1, we see that F is a ¹2; 3º-group, hence is solvable, and so there
exist Sylow 2- and 3-subgroups P2; P3 of F such that F D P2P3. We can bound
the orders of P2 and P3 as in the previous proof. Since P2 has exponent dividing 4
and is contained in the normalizer of a maximal torus, we have

jP2j � 4
r
jW.G/j2; (2.2)

where W.G/ is the Weyl group of G. Similarly,

jP3j � 3
r
jW.G/j3:

We can use the trace values given above to reduce these bounds for some cases.
For example, consider P3 < E7. If jP3j D 3a, then since the trace of every non-
identity element of P3 is �2, we have

dimCL.E7/.P3/ D
1

3a

�
133 � 2.3a � 1/

�
:
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The right-hand side can only be a non-negative integer if a � 3, and hence we
have jP3j � 33. Similar calculations give the following bounds for other cases:

G G2 F4 E6 E7

Bound jP2j � 2
3, jP3j � 32 jP3j � 3

3 jP2j � 2
4 jP3j � 3

3

The bounds in the conclusion now follow from these together with (2.2): for
example, consider G D E7. Here we have

jF j D jP2jjP3j � 4
7
� jW.E7/j2 � 3

3;

and this is less than c7 for c D 17:3.
Now consider G D E8. For 1 ¤ f 2 F , CG.f / is irreducible and connected,

so as above, f has order equal to a coefficient of the highest root, hence to 2; 3; 4; 5
or 6. Moreover, any element of order 5 in f has centralizer A4A4 and trace �2
on L.G/.

Observe that F is a ¹2; 3; 5º-group. Suppose first that F is solvable so that
F D P2P3P5, where each Pi is a Sylow i -subgroup. If jP5j D 5a, then

dimCL.E8/.P5/ D
1

5a

�
248 � 4.5a � 1/

�
;

which forces a � 3. Hence, as above,

jF j D jP2jjP3jjP5j � 4
8
� jW.E8/j2 � 3

8
� jW.E8/j3 � 5

3 < 1478;

giving the conclusion.
Now suppose that F is non-solvable. Any non-abelian composition factor of F

is a simple ¹2; 3; 5º-group, and inspection of the simple groups shows that the
only possibilities are A5, A6 and U4.2/. However, U4.2/ is excluded, as it has an
element of order 12 which is not in the list of possible orders of elements of F . Let
R be the solvable radical of F (i.e. the largest solvable normal subgroup). Then
F=R has socle F1 � � � � � Ft , a direct product of non-abelian simple groups Fi ,
each isomorphic to A5 or A6. If t � 2, then F=R has an element of order 15,
which is not possible. Therefore, t D 1 and F=R has socle A5 or A6. Then F has
a solvable subgroup J of index 5 or 10. As above, we have jJ j < 1478, and hence

jF j � 1478 � 10 < 1978:

This completes the proof of the lemma.

The proof of Theorem 1 is now complete.
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