A bound for the orders of centralizers of irreducible subgroups of algebraic groups

Martin W. Liebeck*

Communicated by Timothy C. Burness

Abstract. We prove that if *G* is a connected semisimple algebraic group of rank *r*, and *H* is a subgroup of *G* that is contained in no proper parabolic subgroup, then we have $|C_G(H)| < c^r |Z(G)|$, where *c* is an absolute constant (*c* = 16 if all simple factors of *G* are classical, and $c \le 197$ in general).

1 Introduction

Let *G* be a connected semisimple algebraic group of rank *r* over an algebraically closed field *K*. A subgroup *H* of *G* is *G*-*irreducible* if it is contained in no proper parabolic subgroup of *G*. Such a subgroup *H* has finite centralizer in *G* by [4, Lemma 2.1]. In this note, we give a bound for the order of the centralizer $C_G(H)$. In the case where *H* is connected, this and much more was done in [5].

Theorem 1. Let G be a connected semisimple algebraic group of rank r over an algebraically closed field K, and let H be a G-irreducible subgroup. Then there is a constant $c \leq 197$ such that

$$|C_G(H)| < c^r |Z(G)|.$$

For the case where all the simple factors of G are classical, the proof shows that the constant c can be improved to 16 (see Lemmas 2.3 and 2.4). Example (1) below shows that c must be at least 4. It is possible that the theorem holds with c = 4, but we have not attempted to achieve this degree of precision.

Theorem 1 has been used in a number-theoretic application in [1].

Examples. (1) Let $G = SO_n(K)$ with $char(K) \neq 2$, and let v_1, \ldots, v_n be an orthonormal basis of the underlying orthogonal space. Then G has an elementary abelian subgroup $H \cong 2^{n-1}$ consisting of elements that send each $v_i \mapsto \pm v_i$. It is easy to see that H is G-irreducible, and $|C_G(H)| = |H| = 2^{n-1}$. When n is odd, this is equal to 4^r , where r is the rank of G.

(2) Let $G = \text{Sp}_{2r}(K)$ with $\text{char}(K) \neq 2$. Then G has an irreducible subgroup $H = \text{Sp}_2(K)^r$, and $|C_G(H)| = |Z(H)| = 2^r$.

(3) Let *s* be a prime and $H = s^{1+2a}$ an extraspecial group. There is an irreducible embedding of *H* in SL_n(*K*), where $n = s^a$ and char(*K*) $\neq s$. Hence we have $\bar{H} = s^{2a} < G = \text{PGL}_n(K)$ and $|C_G(\bar{H})| = |\bar{H}| = s^{2a} = n^2$. Our proof of Theorem 1 shows that n^2 is actually the correct bound for *G* simple of type A_{n-1} (see Lemma 2.3).

(4) Here are some examples for G simple of exceptional type (see for example [2, Theorem 3]):

$$G = E_8 : H = 2^5$$
 with $C_G(H) = 2^{5+10}$,
 $G = E_6 : H = 3^3$ with $C_G(H) = 3^{3+3}$,
 $G = G_2 : H = 2^3$ with $C_G(H) = H$.

So, for example, there is an irreducible subgroup $H = (2^5)^l < G = E_8^l$ such that $|C_G(H)| = 2^{15l} = c^{\text{rk}(G)}$, where $c = 2^{15/8}$.

2 **Proof of the theorem**

We prove Theorem 1 in a series of lemmas.

Lemma 2.1. Suppose the conclusion of Theorem 1 holds in the case where G is simple of adjoint type. Then the conclusion holds in general.

Proof. Let $G = G_1 \cdots G_k$, a commuting product of simple algebraic groups G_i . Let $\overline{G} = G/Z(G) = \overline{G}_1 \times \cdots \times \overline{G}_k$, the direct product of adjoint groups \overline{G}_i , and let $\pi: G \mapsto \overline{G}$ be the natural map. Let H < G be G-irreducible and $\overline{H} = \pi(H)$. Then π maps $C_G(H) \mapsto C_{\overline{G}}(\overline{H})$, so $|C_G(H)| \le |C_{\overline{G}}(\overline{H})||Z(G)|$. Moreover, we have $C_{\overline{G}}(\overline{H}) = \prod C_{\overline{G}_i}(\overline{H}_i)$, where \overline{H}_i is the projection of \overline{H} in \overline{G}_i . By hypothesis, $|C_{\overline{G}_i}(\overline{H}_i)| < c^{r_i}$, where $r_i = \operatorname{rank}(G_i)$, and so

$$|C_{\bar{G}}(\bar{H})| \le \prod_{1}^{k} c^{r_i} = c^r,$$

and the lemma follows.

In view of the previous lemma, we assume from now on that G is simple of adjoint type. Let H < G be G-irreducible, and let $F = C_G(H)$.

Lemma 2.2. The group F consists of semisimple elements.

Proof. Suppose false, and let $f \in F$ be an element with non-identity unipotent part u. Then $H \leq C_G(u)$, which is contained in a parabolic subgroup, contradicting the irreducibility of H.

Lemma 2.3. Suppose $G = PGL_n(K)$. Then $|C_G(H)| \le n^2$.

Proof. Let $\hat{G} = SL_n(K) = SL(V)$, and let \hat{H} , \hat{F} and \hat{C} be the preimages in \hat{G} of H, F and $C_G(F)$, respectively. Also let $Z = Z(\hat{G})$. Note that $C_{\hat{G}}(\hat{H}) = Z$ since \hat{H} acts irreducibly on V.

Observe first that $[\hat{H}, \hat{F}, \hat{F}] = [\hat{F}, \hat{H}, \hat{F}] = 1$, and therefore $[\hat{F}, \hat{F}, \hat{H}] = 1$. Hence $\hat{F}' \leq C_{\hat{G}}(\hat{H}) = Z$, and so F is abelian. Let $1 \neq f \in F$, and let \hat{f} be a preimage of f. Then $C_{\hat{G}}(\hat{f}) = \prod \operatorname{GL}_{m_i}(K) \cap \hat{G}$, where $\sum m_i = n$. As $C_G(f)$ is irreducible, its preimage in \hat{G} must permute the factors transitively, and it follows that $C_G(f) = (\operatorname{GL}_m(K)^r \cdot r \cap \hat{G})/Z$ for some r dividing n, and f has order dividing r. Hence F is abelian of exponent dividing n.

For $c \in \hat{C}$, there is a map $\chi_c \in \text{Hom}(\hat{F}, Z)$ given by $\chi_c(f) = [c, f]$ for all $f \in \hat{F}$. The map $\pi: \hat{C} \mapsto \text{Hom}(\hat{F}, Z)$ sending $c \mapsto \chi_c$ is a homomorphism.

Assume now that \hat{F} is abelian. For $\chi \in \text{Hom}(\hat{F}, Z)$, define

$$V_{\chi} = \{ v \in V : vf = \chi(f)v \text{ for all } f \in F \}.$$

Then $V \downarrow \hat{F} = \bigoplus_{1}^{t} V_{\chi_i}$, where $V_{\chi_i} \neq 0$ for all *i*. For $c \in \hat{C}$, we have $V_{\chi_i} c = V_{\chi_i \chi_c}$, and as \hat{C} is irreducible, this action of \hat{C} permutes the set $\{V_{\chi_i} : 1 \leq i \leq t\}$ transitively. Replacing each $f \in \hat{F}$ by a scalar multiple, we may take χ_1 to be trivial (i.e. $\chi_1(f) = 1$ for all $f \in \hat{F}$). It follows that |F| is at most the order of the transitive group $\pi(\hat{C})$. Being transitive and abelian, this group has order *t*, and hence $|F| \leq t \leq n$, giving the conclusion in this case.

Now assume that \hat{F} is non-abelian. Let $V \downarrow \hat{F} = \bigoplus_{i=1}^{t} W_i$, where W_i are the homogeneous components. As above, $\{W_1, \ldots, W_t\}$ is permuted transitively by $\pi(\hat{C})$. The action of \hat{F} on the homogeneous component W_1 has order at most $(\dim W_1)^2 |Z|$ by [3, Theorem 2.31], and hence

$$|F| \le t (\dim W_1)^2 |\pi(\hat{C})| = t^2 (\dim W_1)^2 = n^2.$$

This completes the proof.

Lemma 2.4. Suppose $G = \text{PGSp}_n(K)$ or $\text{PGO}_n(K)$. Then $|C_G(H)| \le 4^{2r}$, where r = rank(G).

Proof. Let $\hat{G} = \text{Sp}_n(K)$ or $\text{SO}_n(K)$, $Z = Z(\hat{G})$, and $V = K^n$. Let \hat{F} be the preimage in \hat{G} of $F = C_G(H)$.

If F contains an element f of odd prime order, then $C_G(f)$ is connected and has a central torus, hence cannot be irreducible. It follows that F is a 2-group.

Next we show that \hat{F} has exponent dividing 4. Suppose then that \hat{F} contains an element f of order 8, with image $\bar{f} \in F$. Let $\omega \in K$ be a primitive 8-th root of unity, and let E_{ω^j} be the ω^j -eigenspace of f on V for $0 \le j \le 7$. We can assume that $E_{\omega} \ne 0$, and hence also $E_{\omega^{-1}} \ne 0$.

Let $\bar{g} \in C_G(\bar{f})$, with preimage $g \in \hat{G}$. Then $f^g = \pm f$. If $f^g = f$, then g stabilizes every eigenspace E_{ω^j} ; for $j \neq 0, 4$, these are all totally singular. And if $f^g = -f$, then g swaps E_{ω} and $E_{-\omega}$, hence stabilizes $E_{\omega} + E_{-\omega}$, which is also totally singular. We conclude that $C_G(\bar{f})$ stabilizes a totally singular subspace of V, hence is a reducible subgroup of G, a contradiction.

Hence \hat{F} has exponent dividing 4, as claimed. Since \hat{F} is contained in the normalizer of a maximal torus by [7, II, 5.16], we have

$$|\hat{F}| \le 4^r |W(G)|_2, \tag{2.1}$$

where W(G) is the Weyl group and r is the rank of G. Since $|W(G)| = 2^{r-\delta}r!$ with $\delta \in \{0, 1\}$, it follows that $|W(G)|_2 \leq 4^r$. Hence $|\hat{F}| \leq 4^{2r}$, as required. \Box

Lemma 2.5. Suppose G is of exceptional type, of rank r. Then $|C_G(H)| \le c^r$, where c is as in the table below.

G	G_2	F_4	E_6	E_7	E_8
С	8.5	30.7	10	17.3	197

Proof. First assume that $G \neq E_8$. We claim that the non-identity elements of prime-power order in *F* can only have the following possible orders:

G	G_2	F_4	<i>E</i> ₆	E_7
Poss. $o(f)$	2, 3	2, 3, 4	2, 3	2, 3, 4

Table 1

To see this, let $1 \neq f \in F$ have prime-power order. If $C_G(f)$ is connected, then as it is irreducible, it is semisimple. Then the order o(f) is equal to a coefficient of the expression for the highest root in terms of simple roots (see for example [6, (4.5)]), which gives the conclusion in these cases. This deals with $G = G_2$, or F_4 , as these are simply connected; hence all their semisimple element centralizers are connected by [7, II, 3.9]. Now consider $G = E_7$ with $C = C_G(f)$ disconnected. Then $|C/C^0| = 2$ by [7, II, 4.4]. In the simply connected cover \hat{G} , a preimage \hat{f} of f satisfies $\hat{f}^g = z\hat{f}$ for some $g \in \hat{G}$, where $Z(\hat{G}) = \langle z \rangle$ of order 2, and hence f is a 2-element. Let $C^0 = DT$, where D is a semisimple group and T a central torus, and write f = dt with $d \in Z(D)$, $t \in T$. Let $g \in C \setminus C^0$. Then $C_T(g)^0 = 1$ as C is irreducible in G, and hence g acts on T as an involution. It follows that $t^g = t^{-1}$, and hence $t^2 = d^g d^{-1} \in Z(D)$. If t^2 has order greater than 2, then it must have order 4 and be contained in a factor A_3 , A_3A_3 or A_7 of D. In the first case, $d^g d^{-1}$ has order 1 or 2 (being a product of two elements of the same order in $Z(A_3)$), a contradiction. In the second case, $t \in C_G(A_3A_3) = A_1$, so $t^2 \in Z(A_1)$ again has order at most 2. Finally, if $D = A_7$, then T = 1 and $f = d \in Z(D)$, which has order 4. This establishes the claim for $G = E_7$, and the argument for $G = E_6$ is similar.

From the previous paragraph, we can list the possible centralizers of the elements of F of orders specified in the following table; the table also gives the traces of their actions on the adjoint module L(G):

G	G_2	F_4	E_6	E_7
o(f)	2,3	3	2	3
$C_G(f)$	A_1A_1, A_2	A_2A_2	A_1A_5	A_2A_5
$\operatorname{tr}_{L(G)}(f)$	-2, 5	-2	-2	-2

From Table 1, we see that F is a $\{2, 3\}$ -group, hence is solvable, and so there exist Sylow 2- and 3-subgroups P_2 , P_3 of F such that $F = P_2 P_3$. We can bound the orders of P_2 and P_3 as in the previous proof. Since P_2 has exponent dividing 4 and is contained in the normalizer of a maximal torus, we have

$$|P_2| \le 4^r |W(G)|_2, \tag{2.2}$$

where W(G) is the Weyl group of G. Similarly,

$$|P_3| \leq 3^r |W(G)|_3$$

We can use the trace values given above to reduce these bounds for some cases. For example, consider $P_3 < E_7$. If $|P_3| = 3^a$, then since the trace of every non-identity element of P_3 is -2, we have

dim
$$C_{L(E_7)}(P_3) = \frac{1}{3^a} (133 - 2(3^a - 1)).$$

The right-hand side can only be a non-negative integer if $a \leq 3$, and hence we

have	$ P_3 \le 3^2$	³ . Similar calculatio	ons give the follow	ving bou	nds for other c	ases:
	a	6				

G	G_2	F_4	E_6	<i>E</i> ₇
Bound	$ P_2 \le 2^3, P_3 \le 3^2$	$ P_3 \le 3^3$	$ P_2 \le 2^4$	$ P_3 \le 3^3$

The bounds in the conclusion now follow from these together with (2.2): for example, consider $G = E_7$. Here we have

$$|F| = |P_2||P_3| \le 4^7 \cdot |W(E_7)|_2 \cdot 3^3,$$

and this is less than c^7 for c = 17.3.

Now consider $G = E_8$. For $1 \neq f \in F$, $C_G(f)$ is irreducible and connected, so as above, f has order equal to a coefficient of the highest root, hence to 2, 3, 4, 5 or 6. Moreover, any element of order 5 in f has centralizer A_4A_4 and trace -2 on L(G).

Observe that F is a $\{2, 3, 5\}$ -group. Suppose first that F is solvable so that $F = P_2 P_3 P_5$, where each P_i is a Sylow *i*-subgroup. If $|P_5| = 5^a$, then

dim
$$C_{L(E_8)}(P_5) = \frac{1}{5^a} (248 - 4(5^a - 1)),$$

which forces $a \leq 3$. Hence, as above,

 $|F| = |P_2||P_3||P_5| \le 4^8 \cdot |W(E_8)|_2 \cdot 3^8 \cdot |W(E_8)|_3 \cdot 5^3 < 147^8,$

giving the conclusion.

Now suppose that F is non-solvable. Any non-abelian composition factor of F is a simple $\{2, 3, 5\}$ -group, and inspection of the simple groups shows that the only possibilities are A_5 , A_6 and $U_4(2)$. However, $U_4(2)$ is excluded, as it has an element of order 12 which is not in the list of possible orders of elements of F. Let R be the solvable radical of F (i.e. the largest solvable normal subgroup). Then F/R has socle $F_1 \times \cdots \times F_t$, a direct product of non-abelian simple groups F_i , each isomorphic to A_5 or A_6 . If $t \ge 2$, then F/R has an element of order 15, which is not possible. Therefore, t = 1 and F/R has socle A_5 or A_6 . Then F has a solvable subgroup J of index 5 or 10. As above, we have $|J| < 147^8$, and hence

$$|F| \le 147^8 \cdot 10 < 197^8.$$

This completes the proof of the lemma.

The proof of Theorem 1 is now complete.

Bibliography

- [1] J. Booher, S. Cotner and S. Tang, Lifting *G*-valued Galois representations when $\ell \neq p$, preprint (2022), https://arxiv.org/abs/2211.03768.
- [2] A. M. Cohen, M. W. Liebeck, J. Saxl and G. M. Seitz, The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, *Proc. Lond. Math. Soc. (3)* 64 (1992), no. 1, 21–48.
- [3] I. M. Isaacs, *Character Theory of Finite Groups*, Pure Appl. Math. 69, Academic Press, New York, 1976.
- [4] M. W. Liebeck and D. M. Testerman, Irreducible subgroups of algebraic groups, Q. J. Math. 55 (2004), no. 1, 47–55.
- [5] M. W. Liebeck and A. R. Thomas, Finite subgroups of simple algebraic groups with irreducible centralizers, *J. Group Theory* **20** (2017), no. 5, 841–870.
- [6] R. V. Moody and J. Patera, Characters of elements of finite order in Lie groups, SIAM J. Algebraic Discrete Methods 5 (1984), no. 3, 359–383.
- [7] T. A. Springer and R. Steinberg, Conjugacy classes, in: Seminar on Algebraic Groups and Related Finite Group, Lecture Notes in Math. 131, Springer, Berlin (1970), 167– 266.

Received July 4, 2022; revised October 19, 2022

Author information

Corresponding author: Martin W. Liebeck, Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom. E-mail: m.liebeck@imperial.ac.uk