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A bound for the orders of centralizers
of irreducible subgroups of algebraic groups
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Abstract. We prove that if G is a connected semisimple algebraic group of rank r, and
H 1is a subgroup of G that is contained in no proper parabolic subgroup, then we have
|Cq(H)| < c"|Z(G)|, where ¢ is an absolute constant (¢ = 16 if all simple factors of G
are classical, and ¢ < 197 in general).

1 Introduction

Let G be a connected semisimple algebraic group of rank r over an algebraically
closed field K. A subgroup H of G is G-irreducible if it is contained in no proper
parabolic subgroup of G. Such a subgroup H has finite centralizer in G by [4,
Lemma 2.1]. In this note, we give a bound for the order of the centralizer Cg (H ).
In the case where H is connected, this and much more was done in [5].

Theorem 1. Let G be a connected semisimple algebraic group of rank r over an
algebraically closed field K, and let H be a G-irreducible subgroup. Then there
is a constant ¢ < 197 such that

|Ce(H)| < c"|Z(G)].

For the case where all the simple factors of G are classical, the proof shows
that the constant ¢ can be improved to 16 (see Lemmas 2.3 and 2.4). Example (1)
below shows that ¢ must be at least 4. It is possible that the theorem holds with
¢ = 4, but we have not attempted to achieve this degree of precision.

Theorem 1 has been used in a number-theoretic application in [1].

Examples. (1) Let G = SO, (K) with char(K) # 2, and let vy, ..., v, be an or-
thonormal basis of the underlying orthogonal space. Then G has an elementary
abelian subgroup H = 2"~! consisting of elements that send each v; > +v;. It
is easy to see that H is G-irreducible, and |Cg(H)| = |H| = 2"~'. When n is
odd, this is equal to 4", where r is the rank of G.
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(2) Let G = Sp,, (K) with char(K) # 2. Then G has an irreducible subgroup
H = Spy(K)' and |Cg (H)| = |Z(H)| = 2".

(3) Let s be a prime and H = s'12¢ an extraspecial group. There is an irre-
ducible embedding of H in SL, (K), where n = 5% and char(K) # s. Hence we
have H = s2? < G = PGL,(K) and |Cg(H)| = |H| = s2¢ = n?. Our proof of
Theorem 1 shows that n? is actually the correct bound for G simple of type A,—1
(see Lemma 2.3).

(4) Here are some examples for G simple of exceptional type (see for example
[2, Theorem 3]):

G=FEg:H =2 withCg(H) =210,

G =FE¢: H=3> with Cg(H) =313,

G=G,:H=2 withCg(H)=H
So, for example, there is an irreducible subgroup H = (25)1 <G = Eé such that
|Cg(H)| = 25! = ¢™O) where ¢ = 215/8,
2 Proof of the theorem

We prove Theorem 1 in a series of lemmas.

Lemma 2.1. Suppose the conclusion of Theorem 1 holds in the case where G is
simple of adjoint type. Then the conclusion holds in general.

Proof. LetG = G- Gy, a commutlng product of simple algebraic groups G;.
Let G = G/Z(G) = Gy x - x Gy, the direct product of adjoint groups G;, and
let 7: G — G be the natural map. Let H < G be G-irreducible and H =n(H).
Then 7w maps Cg (H) Cé(H), so [Ce(H)| < |Cg(H)||Z(G)| Moreover, we
have C¢ (H) = [ Cé, (H;), where H; is the projection of H in G;. By hypothe-
sis, |Cg; (H;)| < ¢"i, where r; = rank(G;), and so

k
ICe(H)| <[] =c".
1

and the lemma follows. O

In view of the previous lemma, we assume from now on that G is simple of
adjoint type. Let H < G be G-irreducible, and let F = Cg(H).

Lemma 2.2. The group F consists of semisimple elements.
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Proof. Suppose false, and let f € F be an element with non-identity unipotent
part u. Then H < Cg(u), which is contained in a parabolic subgroup, contradict-
ing the irreducibility of H. |

Lemma 2.3. Suppose G = PGL,,(K). Then |Cg(H)| < n?.

Proof. Let G = SL, (K) = SL(V), and let H, F and C be the preimages in G of
H, F and Cg(F), respectively. Also let Z = Z(é). Note that C¢g (I:I) = Z since
H acts irreducibly on V.

Observe first that [I:I, ﬁ, ﬁ] = [ﬁ,ﬁ,ﬁ] = 1, and therefore [ﬁ,ﬁ,I:I] =1.
Hence F' < Cg(H) = Z,and so F is abelian. Let 1 # f € F, and let fbeapre—
image of /. Then C&(f) = [IGLm, (K) N G, where Y- m; = n. As Cg(f) is
irreducible, its preimage in G must permute the factors transitively, and it follows
that Cg(f) = (GL,(K)".r N G)/Z for some r dividing n, and f has order di-
viding r. Hence F is abelian of exponent dividing 7.

For ¢ € C, there is a map y. € Hom(F, Z) given by y.(f) = [c, f] for all
f € F.The map 7: C +— Hom(F, Z) sending ¢ — y. is a homomorphism.

Assume now that F is abelian. For X € Hom(F Z), define

VX:{veVzvf:)((f)vforallfeﬁ}.

ThenV | F =@ Vy,,where Vy, #0foralli. Forc € C, wehave Vy,c = Vy, 4.,
and as C is irreducible, this action of C permutes the set {V, : 1 <i <t} tran-
sitively. Replacing each f € F by a scalar multiple, we may take y; to be trivial
(ie. y1(f) = lforall f € F). It follows that | F'| is at most the order of the tran-
sitive group n(é ). Being transitive and abelian, this group has order ¢, and hence
|F| <t < n, giving the conclusion in this case.

Now assume that F' is non-abelian. Let V J F = ®z1 W;, where W; are the
homogeneous components. As above, {W1, ..., W;} is permuted transitively by
n(é ). The action of F on the homogeneous component W; has order at most
(dim W1)?|Z| by [3, Theorem 2.31], and hence

|F| < t(dim Wp)?|w(C)] = £ (dim W1)? =
This completes the proof. |

Lemma 2.4. Suppose G = PGSp,,(K) or PGO,, (K). Then |Cg (H)| < 427, where
r = rank(G).

Proof. Let G = Sp,(K) or SO,(K), Z = Z(G), and V = K". Let F be the
preimage in G of F = Cg(H).
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If F contains an element f of odd prime order, then Cg (/') is connected and
has a central torus, hence cannot be irreducible. It follows that F' is a 2-group.

Next we show that £ has exponent dividing 4. Suppose then that F contains an
element f of order 8, with image f € F. Let w € K be a primitive 8-th root of
unity, and let E,,/ be the v/ -eigenspace of f on V for0 < j < 7. We can assume
that E, # 0, and hence also E,—1 # 0.

Let g € Cg(f), with preimage g € G. Then f€ =+ f. If f& = f, then g
stabilizes every eigenspace E,J; for j # 0,4, these are all totally singular. And
if f& =—f,then g swaps E, and E_,, hence stabilizes E,, + E_,, which is
also totally singular. We conclude that Cg ( f ) stabilizes a totally singular subspace
of V, hence is a reducible subgroup of G, a contradiction.

Hence F has exponent dividing 4, as claimed. Since F is contained in the nor-
malizer of a maximal torus by [7, II, 5.16], we have

|F| < 4"|W(G)l2, 2.1

where W(G) is the Weyl group and r is the rank of G. Since |W(G)| = 2" 7!
with § € {0, 1}, it follows that |W(G)|, < 4. Hence | F| < 4%", asrequired. O

Lemma 2.5. Suppose G is of exceptional type, of rank r. Then |Cg(H)| < c",
where c is as in the table below.

G Gy, Fu Es E7 Eg

c 85 307 10 173 197

Proof. First assume that G # Eg. We claim that the non-identity elements of
prime-power order in F' can only have the following possible orders:

G Gy Fu Es E7

Poss.o(f) 2,3 2,3,4 2,3 2,3,4

Table 1

To see this, let 1 # f € F have prime-power order. If Cg ( f) is connected, then
as it is irreducible, it is semisimple. Then the order o( ) is equal to a coefficient
of the expression for the highest root in terms of simple roots (see for example [6,
(4.5)]), which gives the conclusion in these cases. This deals with G = G,, or Fu,
as these are simply connected; hence all their semisimple element centralizers are
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connected by [7, 11, 3.9]. Now consider G = E7 with C = Cg(f) disconnected.
Then |C/C 0)=2 by [7, 11, 4.4]. In the simply connected cover G,a preimage
f of f satisfies fg = zf for some g € G, where Z(G) = (z) of order 2, and
hence f is a 2-element. Let C® = DT, where D is a semisimple group and T
a central torus, and write f = dt withd € Z(D),t € T.Let g € C \ C°. Then
C7(g)° =1 as C is irreducible in G, and hence g acts on T as an involution.
It follows that 18 = ¢~!, and hence t?> = d8d~! € Z(D). If t? has order greater
than 2, then it must have order 4 and be contained in a factor A3, A3 A3 or A7 of D.
In the first case, d8d ! has order 1 or 2 (being a product of two elements of the
same order in Z(A3)), a contradiction. In the second case, t € Cg(A3A3) = A,
so t2 € Z(Ay) again has order at most 2. Finally, if D = A7, then T = 1 and
f =d € Z(D), which has order 4. This establishes the claim for G = E7, and
the argument for G = FEj is similar.

From the previous paragraph, we can list the possible centralizers of the el-
ements of F of orders specified in the following table; the table also gives the
traces of their actions on the adjoint module L(G):

G Gy Fy Ee E7
o(f) 2.3 3 2 3
Ca(f) A1A1, A2 A2A> A1As  AzAs
trr () (f) -2,5 -2 -2 -2

From Table 1, we see that F is a {2, 3}-group, hence is solvable, and so there
exist Sylow 2- and 3-subgroups P5, P3 of F such that F = P, P3. We can bound
the orders of P, and P as in the previous proof. Since P5 has exponent dividing 4
and is contained in the normalizer of a maximal torus, we have

|P2| = 4 |W(G)]2, (2.2)
where W(G) is the Weyl group of G. Similarly,

| P3| < 37[W(G)ls.
We can use the trace values given above to reduce these bounds for some cases.

For example, consider P3 < E7. If | P3| = 3%, then since the trace of every non-
identity element of P3 is —2, we have

1
dim Cp,(g,)(P3) = (133 —2(3%-1)).
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The right-hand side can only be a non-negative integer if a < 3, and hence we
have | P3| < 33. Similar calculations give the following bounds for other cases:

G Gz Fy Ee E7

Bound |P,| <23,|P3| <32 |P3|<3® |Py|<2* |P3| <33

The bounds in the conclusion now follow from these together with (2.2): for
example, consider G = E7. Here we have

|F| = |P2|| P3| <47 - |[W(E7)|2- 3>,

and this is less than ¢’ for ¢ = 17.3.

Now consider G = Eg. For 1 # f € F, Cg(f) is irreducible and connected,
so as above, f has order equal to a coefficient of the highest root, hence to 2, 3,4, 5
or 6. Moreover, any element of order 5 in f has centralizer A4 A4 and trace —2
on L(G).

Observe that F is a {2,3,5}-group. Suppose first that F is solvable so that
F = P, P3 P5, where each P; is a Sylow i-subgroup. If | P5| = 5%, then

. 1
dim CL(Eg)(P5) = 5—a(248 — 4(5“ — ])),
which forces a < 3. Hence, as above,
|F| = | Py|| P3| Ps| < 4% |[W(Eg)|»- 3% [W(Eg)|3- 5% < 1478,

giving the conclusion.

Now suppose that F is non-solvable. Any non-abelian composition factor of F
is a simple {2, 3, 5}-group, and inspection of the simple groups shows that the
only possibilities are A5, Ag and U4(2). However, U4(2) is excluded, as it has an
element of order 12 which is not in the list of possible orders of elements of F. Let
R be the solvable radical of F' (i.e. the largest solvable normal subgroup). Then
F/R has socle Fy x --- x Fy, a direct product of non-abelian simple groups F;,
each isomorphic to As or Ag. If t > 2, then F/R has an element of order 15,
which is not possible. Therefore, # = 1 and F/R has socle A5 or Ag. Then F has
a solvable subgroup J of index 5 or 10. As above, we have |J| < 1478, and hence

|F| <1478 .10 < 1978,
This completes the proof of the lemma. |

The proof of Theorem 1 is now complete.
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