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SUMMARY
During pandemics, individuals exhibit differences in risk and clinical outcomes. Here, we developed single-
cell high-throughput human in vitro susceptibility testing (scHi-HOST), a method for rapidly identifying ge-
netic variants that confer resistance and susceptibility. We applied this method to influenza A virus (IAV),
the cause of four pandemics since the start of the 20th century. scHi-HOST leverages single-cell RNA
sequencing (scRNA-seq) to simultaneously assign genetic identity to cells in mixed infections of cell lines
of European, African, and Asian origin, reveal associated genetic variants for viral burden, and identify
expression quantitative trait loci. Integration of scHi-HOSTwith human challenge and experimental validation
demonstrated that a missense variant in endoplasmic reticulum aminopeptidase 1 (ERAP1; rs27895)
increased IAV burden in cells and human volunteers. rs27895 exhibits population differentiation, likely
contributing to greater permissivity of cells from African populations to IAV. scHi-HOST is a broadly appli-
cable method and resource for decoding infectious-disease genetics.
INTRODUCTION

Infectious diseases have been a leading cause of mortality

throughout human history. These past exposures to pathogens

have conferred strong selective pressures on the human

genome, driving adaptation as resistance alleles become more

common. In pursuit of genetic differences that impact resistance

and susceptibility, approaches using human populations have

focused on the identification of common or rare variants. For

influenza A virus (IAV), small, underpowered genome-wide asso-

ciation studies (GWASs) using a common variant approach have

failed to identify any genome-wide significant loci.1–3 Coupling

small candidate association studies with functional evidence

has revealed associations of common variants in IFITM3with se-

vere influenza.4,5 On the other end of the frequency spectrum,
Ce
This is an open access article und
rare variants predisposed to severe influenza have been identi-

fied in IRF76 and TLR3.7 Complementary in vitro approaches

for identifying human genetic variation can control for differences

in exposure, pathogen genetic diversity, co-morbidities, and ac-

cess tomedical care. Such approaches could be used to broadly

probe human genetic diversity for resistance and susceptibility

to emerging pathogens and would be a powerful tool, especially

as outbreaks develop in single geographic locations.

Previously, we developed a cellular GWAS platform, high-

throughput human in vitro susceptibility testing (Hi-HOST), in

which lymphoblastoid cell lines (LCLs; Epstein-Barr virus (EBV)

immortalized B cells) from hundreds of genotyped individuals

are exposed to identical doses of a pathogen and assessed for

cellular host-pathogen traits including entry,8,9 replication,10

cell death,11–13 and cytokine response.10,14,15 This approach
ll Genomics 2, 100207, November 9, 2022 ª 2022 The Author(s). 1
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Figure 1. scHi-HOST is a rapid platform for cellular host-pathogen genome-wide association

(A) Flowchart of scHi-HOST with influenza A virus.

(B) UMAP plot demonstrates assignment of individual cells to one of 48 genotyped LCLs for uninfected and influenza A virus (IAV)-infected scHi-HOST samples.

Color coded by shades for each population.

(C) The number of individual cells measured for each LCL in the scRNA-seq analysis. Color coding is the same as (B).

(D) Volcano plot of pseudo-bulk analysis of uninfected versus infected LCLs revealed upregulation of interferons (IFNs) and ISGs. Pseudo-bulk analysis was

performed by aggregating all cells of the same LCL identity (total of 48 pseudo-bulk samples) and performing differential expression in DESeq2.24 Genes are color

coded by functional class: orange, Browne IFN responsive genes (GSEA C2 geneset); blue, all 21 human IFN genes; black, all other genes. Dotted red horizontal

line indicates p = 0.05. Dotted red vertical lines indicate fold change >1.5 or <0.5 relative to uninfected.

(E) Pseudo-bulk analysis shows uninfected transcriptomes and infected transcriptomes segregate along PC5.

(F) GSEA shows upregulation of ISGs and other viral response gene sets. Plotted gene sets are top 20 absolute normalized enrichment score, all FWER p < 0.05.

(G) UMAP plots of IFNL1 in uninfected and IAV-infected LCLs.

(H) UMAP plots of OASL in uninfected and IAV-infected LCLs.

(I) UMAP plot demonstrates highly variable IAV burden across individual cells and a cluster of highly infected cells. UMAP plots were generated by combining

uninfected and IAV samples for normalization and plotting each condition separately with Seurat.24 Viral reads were detected in 23,346 out of 23,684 cells

(median = 7.9 reads, with a range of 0.4–33,960; summing to a total count of 6.4 million normalized viral reads). In contrast, uninfected cells had a total of 19.6

normalized viral reads, with reads detected in only 23 out of 20,129 cells. These likely represent index-hopped artifacts and not true contaminants.

(J) Mean viral reads across 48 LCLs. Phenotype was generated by normalizing by total read depth per cell (human and viral reads) and aggregating all cells of the

same LCL identity. Color coding is the same as (B).

(legend continued on next page)
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revealed human genetic differences associated with cellular

traits that are also associated with infectious disease risk8,16,17

and outcomes.11,18 However, Hi-HOST and similar studies are

labor and time intensive and can be skewed due to batch effects

in measuring hundreds of individual cellular infections over a

period of months or even years. Additionally, incorporation of

new technology for simultaneous identification of expression

quantitative trait loci (eQTLs) combined with GWASs of path-

ogen measurements could help fill the mechanistic gap from ge-

netic variant to cellular infection phenotype.

Here, we present a rapid, high-throughput approach called

single-cell Hi-HOST (scHi-HOST) that uses single-cell RNA

sequencing (scRNA-seq) for simultaneous identification of al-

leles associated with both gene expression changes and genetic

resistance to IAV. This method leverages the genetic diversity of

dozens of individuals from multiple populations in a single infec-

tion and reveals both phenotypic differences in IAV susceptibility

among populations and a common missense variant in ERAP1

(rs27895) associated with IAV burden in LCLs and a human flu

challenge study. Coupling scHi-HOST with human challenge

studies is a broadly generalizable approach for understanding

human genetic susceptibility to infectious disease using a small

number of individuals in a rapid time frame.

RESULTS

A single-cell approach for discovering genetic
resistance to infection
We developed scHi-HOST to integrate the identification of com-

mon human genetic variants that impact gene expression and

cellular infection traits into a single assay. scHi-HOST uses

scRNA-seq for simultaneous genotypic assignment of thou-

sands of individual cells and dense phenotyping of host and vi-

rus. The scHi-HOST pipeline has 4 steps: (1) infection and

scRNA-seq data generation, (2) assignment of individual cells

to genotyped individuals, (3) GWAS of pathogen-based burden

phenotypes, and (4) eQTL identification of host gene expression

(Figure 1A). In one experiment, an equal number of LCLs from 48

individuals across 3 populations (Luhya in Webuye, Kenya

[LWK], British in England and Scotland [GBR), and Southern

Han Chinese [CHS] from the 1000 Genomes Project19) were

mixed and infected for 24 h with a laboratory adapted human

H1N1 IAV strain (A/Puerto Rico/8/34, PR8). This experiment is

referred to as scHH-LGC, based on the populations included.

Consistent with previous reports of B cells being direct targets

for IAV entry,20–22 LCLs were highly infectable by IAV. A

scRNA-seq library was prepared using 10x Genomics technol-

ogy,23 targeting a recovery of �10,000 droplets/well and per-

forming next-generation sequencing at�100,000 reads/droplet.

Mixed LCLs were frozen into aliquots that can be thawed and

screened for future pathogens or other stimuli in <1 week.

Following next-generation sequencing, SNPs in the oligo-dT-

primed cDNA reads facilitated the unequivocal assignment of
(K) Negative correlation of baseline IFNA2 and viral burden. IFNA2was chosen as i

other expressed IFNa genes (Figure S1C). Correlation coefficient and p value fro

(L) Positive correlation of induced IFNA2 and viral burden. Positive correlation bet

other IFNa genes (Figure S1D). Correlation coefficient and p value from Spearma
nearly all individual cells to one of the 48 genotyped LCLs using

Demuxlet25 (Figures 1B; median number of individual cells for

each LCL = 501, Figure 1C). We achieved a singlet rate of 73%

with 99.9% of singlets assigned to a single genotype with

>99% confidence.

LCLs displayed a transcriptional response similar to other IAV-

infected cell types.26,27 Differentially expressed genes (DEGs)

were dominated by upregulation of interferon (IFN) and IFN-stim-

ulated genes (ISGs) (Figure 1D; Table S1). Principal-component

analysis (PCA) showed convincing separation of uninfected and

IAV-infected LCLs along PC5, accounting for 4.3% of the varia-

tion (Figure 1E). Gene set enrichment analysis (GSEA)28

confirmed upregulation of ISGs along with multiple other gene

sets for viral infection including multiple respiratory virus

response gene sets, IFN-induced antiviral modules, and the in-

flammatory response (Figure 1F, all family-wise error rate

[FWER] p < 0.05; Table S2).

We found that induction of IFN is widely variable and only de-

tected in a minority of cells (Figure 1G). In contrast, ISGs,

including OASL, while variably expressed, are more broadly

induced throughout the infected culture (Figure 1H). Thus, while

the antiviral response is robust, it is driven by a small number of

cells that highly induce IFN to then induce ISGs more broadly.

To determine if this transcriptional heterogeneity can be ex-

plained by cell-to-cell differences in viral burden, we mapped

and quantified viral transcripts, given that poly-adenylated IAV

RNA was captured with the LCL transcriptome. A uniform mani-

fold approximation and projection (UMAP) plot revealed that

most cells have low, but detectable, levels of viral reads, but

there is a cluster of high-burden cells with a distinct host tran-

scriptional response (Figure 1I). This high level of heterogeneity

is consistent with previous work using scRNA-seq in IAV-in-

fected A549 lung epithelial cells.29 We observed the most highly

burdened cells in the culture expressed the highest levels of IFNs

and ISGs in response to virus. Aggregating the IAV reads for

each of the 48 LCLs revealed large differences, with the mean

influenza reads varying �20-fold across different LCLs

(Figure 1J). It was noted that viral burden did not correlate with

the copy number of Epstein-Barr virus (EBV) (Figure S1A), used

by the 1000 Genomes Project in immortalizing the LCLs, or

with the number of each LCL recovered in the scHi-HOST exper-

iment (Figure S1B). Thus, there is wide variation in viral burden

across cells at the single-cell level and in aggregate across

LCLs, and these differences correlate with differences in the

expression of important antiviral genes.

Comparison of gene expression in uninfected and infected

LCLs versus viral burden revealed that high IFNa expression at

baseline in the uninfected state is correlatedwith low viral burden

in infected cells at 24 h (Figures 1K and S1C). In contrast, after

infection, high induction of IFNa is correlated with high viral

burden (Figures 1L and S1D). Thus, high baseline IFNa levels

prior to infection appear to be protective; however, during infec-

tion, high levels of IAV replication lead to the highest levels of
t has the highest baseline expression, though similar results were observedwith

m Spearman’s correlation.

ween induction of gene expression and viral burden was similarly observed for

n’s correlation
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IFNa induction in individual cells. This is consistent with a previ-

ous study using scRNA-seq of IAV-infected cells to link basal

expression to susceptibility to infection.30

In summary, in a single infection, we deconvoluted cells from

48 different individuals and observed highly variable flu burden

and transcriptional phenotypes. These methods revealed that

baseline IFN levels contribute to resistance against influenza

infection. We next turned to identifying human genetic differ-

ences that regulate cellular response to infection.

Common human genetic differences impact
transcriptional response to IAV in cells
We identified human SNPs associated with variation in gene

expression in uninfected and infected cells using RASQUAL,31

with pseudo-bulk gene expression aggregated for each LCL.

RASQUAL tests for the association of SNPs versus gene-

expression level by measuring both linear regression among ge-

notypes and allele-specific expression in heterozygous individ-

uals. Observed�log(p values) deviated strongly from theoretical

and empirical null distributions (using RASQUAL’s permutation

function; see STAR Methods), indicating many true positives un-

der both conditions (Figure 2A). We compared the results of

RASQUAL analysis on scHH-LGC with a second scHi-HOST

experiment of 48 additional LCLs from Esan from Nigera (ESN),

Iberian from Spain (IBS), and Kinh from Vietnam (KHV) (referred

to as scHH-EIK) and observed a strong correlation between

the two datasets (Figure 2B). An analysis of design consider-

ations for scHi-HOST is provided in the STAR Methods

(Figure S2).

The scHH-LGC and scHH-EIK datasets were combined to

provide the greatest power. Themost significant eQTLswere de-

tected in both uninfected and IAV-infected conditions (Fig-

ure 2C). A 2-step approach was used to identify eGenes (unique
Figure 2. Common human genetic differences regulate transcriptiona

(A) QQ plot of observed, permutated, and expected �log(p values) for eQTLs d

neutral expectation for both uninfected and IAV-infected LCLs.

(B) Correlation of eQTLs identified by scHH-LGC and scHH-EIK. �log p values fo

the same SNP-gene pairs in scHH-EIK. Correlation coefficient and p values are

(C) Miami plot of cis-eQTLs for uninfected and IAV-infected cells identified in the

rected p values.

(D) scHi-HOST eGenes from uninfected and IAV-infected LCLs were highly enriche

Fisher exact test was used to calculate the significance of enrichment of scHi-H

(E) Comparison of effect sizes from scHi-HOST eQTLs against GTEx eQTLs from

eQTLs (from 1,090 out of 2,265 eGenes) and 7.6% of IAV-infected eQTLs (from 1,2

scHi-HOST eQTLs generated by RASQUAL (y axis) are expressed as the ratio of ex

of GTEx eQTLs (x axis) are expressed as normalized effect size, defined as the slop

and contour lines depict the density of points. Scatterplot of eQTL effect sizes

suggest a high correlation of 0.58 or 0.56 from Pearson correlation, respectively

(F andG) rs11080327, themost strongly associated cis-eQTL outside of theMHC r

associated with expression of SLFN5 based on linear regression of genotypic med

an ISG, the expression of the gene is higher in IAV-infected LCLs, and the assoc

(H) IAV-induced differentially expressed genes (DEGs; p < 0.05, fold change > 1.5

and IAV infected were identified using a pseudo-bulk approach as described in

overlap between DEGs and eGenes and to calculate p values. Strong enrichmen

(I) Heatmap of expression of the 56 DEGs (p < 0.05; absolute fold change [FC] > 1

population.

(J and K) Genotypic median plots (J) and allelic imbalance plots (K) for the assoc

FDR = 1.0 for uninfected). NRIR is induced 4.95-fold with IAV infection and is an

(L) Enrichment analysis of ISGs in eGenes from uninfected and IAV-infected LCLs

consistent with LCLs having baseline IFN production in the uninfected state (*p <
genes associated with eQTLs) utilizing Benjamini-Hochberg

correction for both the SNPs tested in each window and for

the number of genes tested. For uninfected and IAV-infected

LCLs at a 2-step false discovery rate (FDR) <0.05, we detected

2,265 and 3,326 eGenes, respectively (Table S3). Many of the

eQTL associations replicated in the GTEx dataset.32 We

observed 3.17-fold enrichment (p = 1.263 10�117) for uninfected

eGenes in GTEx LCLs (GTEx FDR < 0.01) and 2.65-fold enrich-

ment (p = 6.02 3 10�140) for IAV eGenes, representing 33.01%

of the eGenes from the infected sample (Figure 2D). Further,

enrichment was observed across multiple tissues in GTEx,

including whole blood, spleen, and lung (Figure 2D; all

p < 1.9 3 10�40). We also observed high correlation of effect

size between scHi-HOST eQTLs and GTEx eQTLs (Figure 2E;

p < 2.16 3 10�16). Thus, as others have noted,33 LCLs serve

as a valid system for identification of eQTLs that are relevant in

many tissues, and we have determined that eQTLs identified in

LCLs with scHi-HOST are reproducible across other LCL data-

sets, related primary tissues, and even other tissues.

The most significant association outside of the human leuko-

cyte antigen (HLA) region in both uninfected and infected LCLs

was the association of rs11080327 with SLFN5 (Figures 2F and

2G; uninfected 2-step FDR = 5.3 3 10�140, IAV 2-step FDR =

1.3 3 10�249). Notably, the expression of this gene increased

with IAV infection (1.80-fold; adjusted p = 0.004) (consistent

with SLFN5 being an ISG34), and the effect size of the SNP (allelic

fold change35) was greater in the infected LCLs (Figure 2G; unin-

fected allelic fold change [aFC] = 2.6; IAV-infected aFC = 3.6; p =

0.0001).

We observed an enrichment of IAV-induced genes (see Fig-

ure 1D) in the IAV eGenes (1.4-fold enrichment; p = 6.8 3 10�3)

but not in the uninfected eGenes (1.19-fold enrichment; p =

0.18), indicating that context-specific eQTLs can be uncovered
l response during cellular influenza infection

emonstrates deviation of observed p values generated using RASQUAL from

r all SNP-gene pairs with p <0.05 in scHH-LGC were plotted against �log p for

from Pearson correlation.

combined scHH-LGC + scHH-EIK dataset in 1-MB windows using FDR-cor-

d in GTEx v.8. scHi-HOST eGenes were defined using a 2-step FDR <0.05, and

OST eGenes against GTEx eGenes (FDR < 0.01).

EBV lymphocytes. For scHi-HOST eQTLs at FDR <0.05, 9.5% of uninfected

66 out of 3,326 eGenes) are significant eQTLs in GTEx LCLs. The effect sizes of

pression of the alternative allele/(alternative + reference allele). The effect sizes

e of the linear regression line with the alternative allele as the effect allele. Color

from scHi-HOST uninfected or IAV-infected against GTEx EBV lymphocytes

.

egion (uninfected 2-step FDR= 5.33 10�140, IAV 2-step FDR= 1.33 10�249), is

ians (F) and allelic imbalance for uninfected and infected LCLs (G). As SLFN5 is

iation in that context is stronger.

) are significantly enriched in IAV-infected eGenes. DEGs between uninfected

the STAR Methods. Fisher’s exact tests were used to test the significance of

t is observed only with IAV infection (*p = 6.8 3 10�3).

.5) that are also eGenes. Numerous ISGs are labeled. LCLs are color coded by

iation of rs10495545 with NRIR (2-step FDR = 0.0003 for IAV infected, 2-step

IAV-specific eQTL.

. Strong enrichment is observed under both conditions by Fisher’s exact test,

0.001)
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by the scHi-HOST approach (Figure 2H). In total, we detected 56

DEGs that were also eGenes, many of whichwere also ISGs (Fig-

ure 2I). For example, we discovered an eQTL (rs10495545) for

the long noncoding (lncRNA) negative regulator of IFN response

(NRIR),36 also known as AC017076.5, and lncRNA-CMPK2). This

lncRNA is induced 4.95-fold during IAV infection in LCLs and is

an eQTL only in the IAV-infected state (Figures 2J and 2K; p =

0.0003 for IAV infected, p = 1.0 for uninfected). ISGs are enriched

in both uninfected and IAV-infected scHi-HOST datasets (Fig-

ure 2L), consistent with LCLs having baseline expression of

ISGs that is induced further during IAV infection.

Integration of scHi-HOST and functional annotation
reveals a nonsynonymous SNP in ERAP1 that increases
IAV susceptibility
While scHi-HOST is a powerful method for eQTL identification in

response to pathogens, it also serves as a method for rapid as-

sociation testing of functional subsets of SNPs. We tested for

genome-wide association using the linear mixed-model method

implemented in EMMAX,37 using a kinship matrix to control for

relatedness and sex as a covariate. Given the modest size of

our combined scHi-HOST dataset (n = 96), even associations

that surpass genome-wide significance (traditionally

p < 5 3 10�8) must be evaluated carefully for corroborating evi-

dence. For the phenotype of mean IAV burden, a single SNP

(rs1923314; p = 1.8 3 10�8) surpassed genome-wide signifi-

cance (Figures S3A and S3B; full summary statistics available

at the Duke Research Data Repository, https://doi.org/10.

7924/r4g163n0s.). However, this SNP is in a gene desert and is
Figure 3. A nonsynonymous variant in ERAP1 regulates IAV burden in
(A) Stratified QQ plot for association with mean IAV reads restricted to RASQUA

associated with expression of TNFSF12 that has a lower p value than expected

(B) Stratified QQ plot for association with mean IAV reads restricted to nonsynon

ERAP1 that has a p value lower than expected by chance.

(C) Genotype median plot for mean IAV reads as a function of rs27895 genotype

(D) RNAi against TNFSF12 in either NA19399 (TT for rs12103519) or NA19328 (

knockdown ±4% [SEM] for NA19328 and mean 73% knockdown ±6% [SEM] for

24 h in either LCL. Replicates from 3 separate experiments were normalized to c

(E) RNAi against ERAP1 in either NA19020 (TT for rs27895) or NA19399 (CC for rs

±14% [SEM] for NA19020 and mean 70% knockdown ±8% [SEM] for NA19399) d

from 4 separate experiments were normalized to correct for between-experim

knockdown was detected. p values are from unpaired t tests.

(F) Specific ERAP1 inhibitor, ERAP1-IN-1 (CAS: 865273-97-8, MedChemExpres

cells at 24 h in A549s. Replicates from 3 separate experiments were normalized to

ANOVA with Dunnett’s multiple comparisons test using DMSO (vehicle) control.

(G) Interaction between ERAP1 residue 346 and an ERAP1 peptide inhibitor. Rib

10-mer peptide inhibitor (purple) (PDB: 6RQX). The carbon atoms of ERAP1 resid

purple-colored spheres, respectively.

(H) Wild-type ERAP1 G346 and F6 of the 10-mer peptide inhibitor have multiple

(I) However, steric clash between the ERAP1 side chain and the 10-mer peptide

green) using in silico mutagenesis.

(J) Rare rotamers of ERAP1 G346D do not clash with a peptide in which F6 is re

(K) Even the addition of only a b carbon at position 6 of the 10-mer peptide inhib

(L) Overexpression of alternative alleles of ERAP1 in A549 cells demonstrates that

at 24 h. 8 biological replicates from 3 separate experiments were normalized to

ANOVA with Tukey’s multiple comparisons test. Overexpression of alternative al

(M) Model of how rs27895 affects ERAP1’s transcript and protein and the resulting

genome reference strand and guanine on the transcribed strand. This reference a

viral burden in cells. The alternate allele of rs27895 encodes thymine on the genom

encodes aspartate at position 346 of ERAP1 and is associated with increased vi
not a cis-eQTL, making functional follow up challenging. There-

fore, we examined statistical evidence of association for SNPs

that have functional consequences: cis-eQTLs as identified

above and nonsynonymous SNPs based on annotation.

Examination of stratified quantile-quantile (QQ) plots,38

restricted to eQTLs (2-step FDR < 0.05 in uninfected or IAV in-

fected; minor-allele frequency [MAF] > 0.1), demonstrated

deviation from neutral expectation (Figure 3A). rs12103519,

associated with expression of tumor necrosis factor superfamily

member 12 (TNFSF12; uninfected RASQUAL 2-step

FDR = 0.001, IAV RASQUAL 2-step FDR = 0.02) had the stron-

gest association with mean IAV reads (p = 1.33 10�5). Similarly,

stratification of nonsynonymous variants also demonstrated de-

viation from neutral expectation (Figure 3B), with a missense

SNP (rs27895; G346D) in ER aminopeptidase 1 (ERAP1) having

the lowest p value (p = 2.9 3 10�5; Figures 3C and S3C). We

tested both TNFSF12 and ERAP1 for a role in regulating IAV

infection by reducing expression with small interfering RNA

(siRNA) and assessing infection using an IAV mNeon reporter

strain.39 While knockdown of TNFSF12 had no effect (Figure 3D),

ERAP1 siRNA in LCLs led to a consistent decrease in IAV infec-

tion, suggesting a proviral role (Figure 3E; p = 0.01 in NA19020,

p = 0.01 in NA19399). We used the same mNeon reporter to test

whether the association of rs27895 with mean viral reads could

be recapitulated using the percentage of mNeon+ cells. Across

individual infections of 48 LCLs (the same LCLs as scHH-LGC),

we observed a significant association of rs27895 with the per-

centage ofmNeon+ cells having the same direction of effect (Fig-

ure S3D; p = 0.04).
cells
L 2-step FDR eQTLs (FDR < 0.05; MAF > 0.1). Plotting eQTLs reveals an SNP

by chance.

ymous SNPs. Plotting nonsynonymous variants (MAF >0.1) reveals an SNP in

. P value from EMMAX and corrected for genomic inflation factor.

CC for rs12103519) demonstrates reducing TNFSF12 expression (mean 87%

NA19399) does not significantly affect the percentage of IAV-infected cells at

orrect for between-experiment variation. p values are from unpaired t tests.

27895) demonstrate that reducing ERAP1 expression (mean 80% knockdown

ecreases the percentage of IAV-infected cells at 24 h in both LCLs. Replicates

ent variation. One experiment involving NA19020 was excluded because no

s) demonstrates dose-dependent reduction in the percentage of IAV-infected

correct for between-experiment variation. p values are from ordinary one-way

bon diagram of the crystal structure of ERAP1 (light gray, cartoon) bound to a

ue 346 and the sixth position of the peptide are shown as orange-, yellow- and

favorable side chain-backbone van der Waals contacts.

inhibitor occurs when G346 is mutated to an aspartate (carbon atoms colored

place by a glycine but provide no favorable contacts.

itor, i.e., an alanine residue, clashes with ERAP1 (G346D).

the T allele of rs27895 (aspartate) increases the percentage of IAV-infected cells

correct for between-experiment variation. p values are from ordinary one-way

leles of ERAP1 was confirmed by western blot.

effect on viral burden. The reference allele of rs27895 encodes cytosine on the

llele encodes glycine at position 346 of ERAP1 and is associated with reduced

e reference strand and adenine on the transcribed strand. This alternate allele

ral burden in cells
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ERAP1 encodes an aminopeptidase, with the canonical func-

tion of trimming N-terminal residues from peptides for major his-

tocompatibility complex (MHC) class I presentation.40–42 The

derived T allele of rs27895 is associated with higher mean IAV

reads and encodes a G346D amino acid change. Notably, both

ERAP1 and the related ERAP2 have been reported to undergo

IAV-mediated changes in expression, but the functional conse-

quences of ERAP1 induction43 and ERAP2 alternative isoform

usage44 on IAV infection are unknown. Importantly, rs27895 is

not in linkage disequilibrium (LD) with the ERAP2 SNP associ-

ated with ERAP2 isoform usage (rs224837444): R2 = 0.003 in Eu-

ropean (EUR) populations and R2 = 0.06 in African (AFR) popula-

tions from 1000 Genomes. To confirm that ERAP1 is proviral, we

treated the A549 lung epithelial cell line with an ERAP1 inhibitor

(4-methoxy-3-(N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)

sulfamoyl)benzoic acid45) and observed a dose-dependent

reduction in the percentage of IAV-infected cells (Figure 3F).

Notably, this ERAP1 inhibitor is highly selective for ERAP1,

with a half-maximal inhibitory concentration (IC50) of 5.3 mM

for ERAP1 versus >200 mM for ERAP2.45

While G346D is predicted by SIFT46 to be ‘‘tolerated’’ and by

PolyPhen47 to be ‘‘benign,’’ this glycine residue lies within the

substrate-binding pocket and, in the presence of a peptidomimic

inhibitor, interacts with the first phenylalanine (F6) side chain of

this ligand48 (Figures 3G and 3H). Moreover, residue 346 is prox-

imal to the ERAP1 active site, which is composed of a catalytic

zinc that is coordinated by residues H353, H357, and E376, the

proton acceptor residue E354, and ‘‘sink’’ residue Tyr438.48–50

On the basis of our in silico mutational analysis of the structure

of the ERAP1-inhibitor peptide complex,48 this SNP encoding a

glycine to aspartate substitution would clearly disrupt the sub-

strate-binding pocket of ERAP1 (Figure 3I). Indeed, the carbox-

ylate side chain of an aspartate at ERAP1 residue 346 would

result in steric clash with the side chain of any substrate other

than those that have a glycine at position 6, including alanine, un-

less a different route to the active site is taken (Figures 3J and 3K).

Consequently, therewould be a significant impact on catalysis or

substrate recognition or both.

Therefore, we tested the effects of overexpression of alterna-

tive alleles of ERAP1 in A549 lung epithelial cells. Overexpression

specifically of the derived T allele (aspartate; associated with

higher IAV burden in scHi-HOST) caused moderately higher IAV

burden (p = 0.006; 14% relative increase compared to vector),

while overexpression of the ancestral C allele (glycine) had no ef-

fect (p = 0.7) (Figure 3L). These data confirm the proviral role indi-

cated by the RNAi and inhibitor results and further demonstrates

the functional effect of the G346D mutation (Figure 3M).

Human IAV challenge supports the importance of
rs27895
To determine whether rs27895 was also relevant in humans in-

fected with IAV, we turned to a human IAV challenge study. In

the Prometheus study,51 volunteers aged 18–55 years were

enrolled if their baseline antibody titers to the CA09 (influenza

A/California/04/09 (H1N1)) strain by hemagglutination inhibition

assay were %1:10, they were healthy with no co-morbidities or

risk factors for severe influenza, and they had no evidence of

recent respiratory infection or significant smoking history. Thir-
8 Cell Genomics 2, 100207, November 9, 2022
ty-eight volunteers were inoculated intranasally with CA09 IAV

and underwent daily assessment and sampling by nasal lavage

during the subsequent 10-day quarantine period (Figure 4A;

Table S4). Both viral burden and symptoms increased over

time among individuals with one copy of the T allele relative to in-

dividuals who were homozygous for the C allele. This was

confirmed with association testing using EMMAX, controlling

for sex, dose, and relatedness of individuals: the T allele of

rs27895 was associated with higher IAV burden at day 4 (p =

0.01; Figure 4B; Table S4) and more severe symptoms from

days 3 to 7, with the most significant association at day 6 (p =

6 3 10�5; Figure 4C; Table S4). These results demonstrate that

the association of the rs27895 T allele with higher IAV burden

in scHi-HOST is also observed in nasal lavage following experi-

mental human IAV infection, where the T allele correlates with

higher viral burden and more severe clinical disease.

We also examinedwhether the lead eQTL variant (rs12103519;

Figure S4A), which was associated with expression of TNFSF12

(Figures S4B and S4C) in scHi-HOST, showed an association in

the Prometheus dataset. We observed no significant association

with viral burden in human challenge (Figure S4D). Though we

observed a modest association with symptoms on days 2 and

3, the effect was inconsistent with measurements at other time

points, and the direction of the effect was opposite of what

waspredictedbased on the scHi-HOSTassociation (Figure S4E).

Thus, we currently have little evidence from RNAi or human chal-

lenge to corroborate the association of rs12103519 with IAV

burden in scHi-HOST, and further studies are needed to clarify

the role of this and other eQTLs in IAV infection.

Evidence that rs27895 contributes to population
differentiation of IAV resistance
IAV has been responsible for at least four pandemics since the

start of the 20th century. Extending further back in history reveals

convincing evidence of IAV pandemics since at least the 16th

century.52 Thus, IAV has had repeated impacts on human popu-

lations, consistent with pathogens serving as strong agents of

natural selection.53–55

The age and geographic pattern of rs27895 support a model

where this SNPwas present prior to the out-of-Africa expansion,

spread throughout the world, but the resistant, ancestral C allele

was selected for by IAV or other pathogens, particularly in East

Asian populations. First, rs27895 has an ancient origin based

on the Genealogical Estimation of Variant Age approach and

resource56 (Figure S5A). These data indicate that the SNP is

more than 500,000 years old, well before the earliest dispersals

of Homo sapiens out of Africa around 210,000 years ago57 and

consistent with selection at this locus acting on standing varia-

tion. Second, the derived T allele of rs27895 is the minor allele

throughout the world (MAF = 10% in 1000 Genomes) and is

most common in AFR populations (up to 27% in Mende in Sierra

Leonne) (Figure 5A; map generated from Marcus and Novem-

bre58). In contrast, the ancestral C allele, associated with IAV

resistance, is most common in Asia and has become nearly fixed

in East Asian populations (out of 1,008 rs27895 alleles, only one

is T in Chinese Dai in Xishuangbanna, China [CDX]; Han Chinese

in Beijing, China [CHB]; Southern Han Chinese [CHS]; Japanese

in Tokyo, Japan [JPT]; and Kinh in Ho Chi Minh City, Vietnam



Figure 4. A nonsynonymous variant in ERAP1

regulates IAV burden and symptomology in

human challenge

(A) Flow chart of Prometheus study.

(B) rs27895 T allele is associated with IAV burden at

day 4 of the Prometheus study. Viral burden was

measured by nasal lavage by qPCR using pan IAVM

gene primers (see STAR Methods). p values from

EMMAX at each time point for rs27895 are listed

below the plot. Mean and SD are plotted with lines

connecting means.

(C) rs27895 T allele is associated with greater

symptomology at days 3–7. Jackson symptomology

score was assessed daily. p values from EMMAX at

each time point for rs27895 are listed below the plot.

Mean and SD are plotted with lines connecting

means
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[KHV] 1000 Genomes populations). This is confirmed in gno-

mAD,59 where only 15 T alleles were detected out of 19,952

East Asian alleles. Notably, for the 10 known IAV pandemics prior

to the 2009 swine flu pandemic, all were likely to have originated

in Asia.60 We speculate that prior to the extensive human migra-

tions that facilitate spread during pandemics, IAV outbreaks in

Asian populations may have acted as a naturally selective force

to increase the frequency of resistance alleles such as the

rs27895C allele.

If the rs27895C allele was selected via pressures from IAV, one

would predict greater IAV resistance in regions where the C allele

is prevalent. Indeed, we find that LCLs from populations with

higher rates of the C allele are overall protected from IAV

in vitro. A combined dataset of scHH-LGC and scHH-EIK

demonstrated lower mean viral reads in LCLs from EUR popula-

tions (GBR + IBS; 91% C allele) and East Asian populations

(CHS + KHV; 98% C allele) compared with AFR populations

(LWK + ESN; 75% C allele) (Figure 5B), though the differences

within a continental group were much larger than differences be-

tween continental groups (Figure 5C, top, continent effect 5.7%

of total variance). Linear regression of the effect of rs27895 and

the continental group on IAV burden demonstrated that the

amount of variation explained by the continental group is

reduced if rs27895 is incorporated into the model (Figure 5C,

bottom, rs27895 effect 20.3% total variance, continental effect
Ce
2.4% of residual variance). Specifically,

removing the effect of rs27895 reduces

IAV burden in the AFR continental group

(mean from 0.31 to 0.05), consistent with

the higher frequency of the susceptible

derived allele in Africa. Additionally,

removing the effect of rs27895 increased

residual burden in the EUR continental

group (mean from �0.26 to �0.21) and

the East Asian continental group (mean

from �0.05 to 0.16), consistent with the

low frequency of the susceptible derived

allele in Europe and the even lower fre-

quency in East Asia (Figure 5D, compare

with Figure 5B). The continental differences
were also observed when the 48 scHH-LGC LCLs were infected

and assayed individually with mNeon IAV (Figure S5B), though

statistical significance was not reached in this smaller dataset.

Ultimately, this observation awaits replication in an independent

dataset.

DISCUSSION

Here, we have developed a rapid scRNA-seq method to identify

genetic susceptibility to cellular infection. Once an infection

assay has been optimized for a particular pathogen, scHi-

HOST can be carried out and analyzed within a few weeks. In

the case of IAV, LCLs are highly infectable, consistent with B

cells being direct targets for IAV entry,20–22 proliferating in

response to IAV,61–63 and eventually undergoing cell death,22,64

likely contributing to lymphopenia during severe infection.65

Additionally, IAV infection induces global transcriptional

changes in B cells, many mediated by IFN.66,67 As new IAV

threats emerge from animal reservoirs, testing these new reas-

sorted strains with scHi-HOST could serve as an early warning

of pandemic potential as well as common genetic resistance to

these strains in human populations.

scHi-HOST can be increased in scale for greater power. Our

proof of concept using 96 LCLs allowed for hundreds of individ-

ual cells to be assayed for each LCL but required narrowing the
ll Genomics 2, 100207, November 9, 2022 9



Figure 5. Evidence that population differenti-

ation of rs27895 contributes to genetic resis-

tance to IAV in European and East Asian pop-

ulations

(A) Geographic distribution of rs27895 is consistent

with positive selection of the ancestral C allele in

East Asian and European populations.

(B) Combined analysis of scHH-LGC and scHH-EIK

shows LCLs derived from two European and two

East Asian populations are resistant to IAV

compared with LCLs from two African populations.

p value from ordinary one-way ANOVA with Tukey’s

multiple comparisons test. This trend was also

observed using the non-parametric Kruskal-Wallis

test but did not reach statistical significance (p =

0.1).

(C) Linear modeling of the effects of rs27895 and

continent onmean IAV burden in LCLs suggests that

rs27895 contributes to the population differentiation

of this phenotype. (Top) Percentage explained for

continent alone wasmodeled by lm(mean viral reads

� continent) in R. (Bottom) Percentage explained for

bivariate analysis was modeled by R function

lm(mean viral reads � rs27895 + continent), with

continent being modeled on the residual of mean

viral reads after regressing out the effect of rs27895.

(D) Residual phenotypic variation after removing the

effect of rs27895 confirms decrease in total conti-

nental effect consistent with known allele frequency

differences between populations. p value from or-

dinary one-way ANOVA with Tukey’s multiple com-

parisons test
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genetic search space to nonsynonymous variants with high

MAFs to reveal the SNP in ERAP1 that was validated experimen-

tally and in human challenge volunteers. Notably, the genome-

wide significant hit identified by scHi-HOST (rs1923314) does

show an association with the COVID19hg A1 phenotype (very

severe respiratory confirmed COVID versus not hospitalized

COVID; p = 0.0004; COVID-19 HGI data freeze 468) with direc-

tionality consistent with scHi-HOST (A allele associated with se-

vere COVID and greater mean IAV burden), but further work is

necessary to validate the relevance of this SNP to viral infection.

As scRNA-seq throughput and cost continue to improve, we

anticipate increasing the cells in a single scHi-HOST experiment

by an order of magnitude or more, likely revealing high-confi-

dence genome-wide significant hits for further validation exper-

imentally and in human challenge datasets.

scHi-HOST allows for identification of SNPs whose effects on

gene expression help dictate the outcome of cellular host-path-

ogen interactions. Most eQTLs and even response eQTLs did

not contribute to control of IAV burden in LCLs. This is a similar

challenge to immunologists who confront the fact that ISGs

comprise perhaps 10% of the genome but that, individually,

most have little effect against an individual infection.69,70

Regardless, our finding that high expression of IFNs and ISGs

across LCLs prior to infection is correlated with lower IAV burden

confirms the importance of these genes in aggregate and war-

rants additional experimental dissection. However, our identifi-

cation and experimental validation of a nonsynonymous variant

in ERAP1 as a major regulator of IAV in cells and humans under-

scores that despite noncoding variants receiving much attention
10 Cell Genomics 2, 100207, November 9, 2022
as accounting for most of the identified GWAS risk alleles of

common diseases,71 coding variation should not be ignored

when trying to understand human genetic susceptibility to infec-

tious diseases.

How ERAP1 serves as a proviral factor in IAV infection is un-

known. The canonical function of ERAP1 is to trim peptides to

a preferred 9-residue length for MHC class I loading. MHC class

I is then trafficked from the endoplasmic reticulum (ER) to the cell

surface for surveillance by T cell receptors on cytotoxic T cells.72

This has been reported to be an IAV-regulated process: infection

with H1N1 activates p53 to increase ERAP1 expression, result-

ing in increased MHC class I presentation.43 Our data indicate

that ERAP1’s role may be complex, with our association and

functional data demonstrating a proviral role for ERAP1, depen-

dent on the rs27895G346D polymorphism. Several other ERAP1

missense variants have been associated with inflammatory dis-

eases, including rs30187 (K528R) with ankylosing spondylitis

(AS; p = 4 3 10�45;73) and rs27044 (Q730E) with psoriasis (p =

8 3 10�21;74). These SNPs do not show an association with

mean IAV burden in scHi-HOST (p = 0.73 and p = 0.57).

Conversely, rs27895 is not associated with AS (p = 0.83 from

downloaded summary statistics from EBI-GWAS catalog73) or

psoriasis (p = 0.40 from downloaded summary statistics from

EBI-GWAS catalog75). This specificity highlights that different

ERAP1 variants have different roles in diseases that may be

due to changes in the MHC class I antigen repertoire. How

changing the composition of the MHC class I antigen repertoire

(or the peptide composition within the ER lumen) could impact

IAV infection is unclear. However, we speculate that as far as
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IAV infection of single cells is concerned, changes in the pepti-

dome could be less important than their indirect effects on the

amount of sialic acid (the ligand for IAV hemagglutinin [HA] pro-

tein) at the cell surface: as the amount of MHC class I found on

the plasma membrane is regulated by the level of expression

of ERAP1,43 and as MHC class I accounts for up to 26% of the

a2,6-sialic acid at the cell surface,76 rs27895 may be indirectly

dictating the amount of sialic acid available to bind IAV to facili-

tate entry.

Alternatively to affectingMHC class I presentation, ERAP1 has

functions beyond MHC class I peptide trimming that may

contribute to its role in IAV infection. This includes regulation

of immune cell activation and cytokine production through

secreted ERAP1.77,78 However, scHi-HOST is a pooled infection

assay and thus would not be expected to identify genetic

differences that impact secreted factors acting through non-

cell-autonomous effects. ERAP1 also regulates ectodomain

shedding of cell-surface receptors.79,80 Thus, while our work

demonstrates the importance of rs27895 on IAV infection in

both cells and humans, future studies will decipher how

ERAP1 D346 specifically exerts its proviral function.

While the geographic distribution of rs27895 considering the

history of IAV pandemic origins and our association and func-

tional data suggests that variation in ERAP1 may have helped

humans adapt to IAV infection, human evolution of complex

cellular phenotypes of infection are undoubtedly polygenic.

Our data with LCLs showing IAV resistance in broadly EUR

and East Asian populations contrast with recent data using

monocytes and peripheral blood mononuclear cells (PBMCs)

that shows resistance in AFR populations.30,81 What may be crit-

ical is the timing of measurement, with these studies using an

early 6-h time point compared with our 24-h timepoint. Indeed,

Randolph et al. show that greater EUR ancestry is associated

with higher IFN levels and higher IAV burden at 6 h, but that by

24 h, PBMCs with a higher IFN response had substantially lower

IAV burden.81 This is reminiscent of our finding that IFNa levels

prior to infection are correlated with lower burden by 24 h (see

Figure 1K). Differences in cell type may also play a role, as Ran-

dolph et al. demonstrate many cell-type-specific ancestry ef-

fects on IAV-induced transcriptional changes, though they also

note that the ancestry effect on the IFN response is broadly

conserved across all PBMC types.

Ultimately, we hope for broad adoption of scHi-HOST as a

generalizable tool for rapid assessment of genetic susceptibility

and resistance to pathogens that are important for human health

or that pose an emerging threat. In addition to surveillance of

emerging IAV strains, scHi-HOST can readily be applied to other

pathogens with polyadenylated transcripts for identifying eQTLs

in response to pathogen, population differences in resistance

and susceptibility, and the genetic differences underlying this

variation. Such genetic differences could reveal targets for

drug development or FDA-approved drugs for repurposing as

important prophylactics or therapeutics for future pandemics.

Limitations of the study
The conclusions of our study are generally limited by the use of

LCLs in scHi-HOST; some susceptibility alleles identified in

LCLs may be cell-type specific and not predictive of risk in hu-
mans. Further, because LCLs are pooled in scHi-HOST, non-

cell-autonomous effects may be obscured due to paracrine

signaling between cells of different genotypes. Our allele-spe-

cific eQTL analysis is limited by the 30 transcript bias inherent

in 10x Genomics scRNA-seq. Beyond our cellular screening

platform, our human challenge findings are limited mainly by

sample size and sampling bias. Specifically, the Prometheus

study only included 38 individuals, with 0 individuals homozy-

gous for the rs27895 risk allele.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Lymphoblastoid cell lines
1000 Genomes LCLs from LWK (Luhya inWebuye, Kenya), ESN (Esan in Nigeria), GBR (British in England and Scotland), IBS (Iberian

in Spain), CHS (Han Chinese South), and KHV (Kinh in Ho Chi Minh City, Vietnam) populations were purchased from the Coriell Insti-

tute. LCLs were selected to achieve equal numbers of male and female in each population. LCLs were maintained at 37�C in a 5%

CO2 atmosphere and were grown in RPMI 1640 media (Invitrogen) supplemented with 10% fetal bovine serum (FBS), 2 mM gluta-

mine, 100 U/mL penicillin-G, and 100 mg/mL streptomycin.

A549 cell lines
A549 cells (ATCC) were grown in DMEM +10% FBS +1% Pen-Strep. ERAP1 overexpression A549 cell lines were grown in

DMEM +5% FBS +1% Pen-Strep + 1% Puromycin.

Human challenge volunteers
The Prometheus human infection challenge study of healthy adult volunteers with Influenza A/California/04/09 (H1N1-2009) was previ-

ously described.51 This studywas performed at Imperial College London (London, UK) in accordancewith the protocol, the Consensus

ethical principlesderived from international guidelines including theDeclarationofHelsinki andCouncil for InternationalOrganizations of

Medical Sciences (CIOMS) International Ethical Guidelines, applicable ICH Good Clinical Practice guidelines, and applicable laws and
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regulations. IAV challenge study was reviewed and approved by the Institutional Review Board at Duke University and the UK Health

ResearchAuthority London-FulhamResearchEthicsCommittee (ref. 17/LO/0965).Written informedconsentwas obtained fromall par-

ticipants, who provided informed consent for all study procedures including genetics, before screening and enrollment. Each volunteer

was pre-screened for serum antibodies against the CA09 strain by hemagglutination inhibition, followed by screening of risk factors for

severe disease and at-risk close contacts. Individuals were enrolled if H1 antibody titers against the inoculating influenza strain were%

1:10. Exclusion criteria included current pregnancy, chronic lung disease, smoking, bronchodilator or steroid use (last 12 months),

allergic symptoms ormedication for allergic symptoms (last 6 months), acute respiratory infection (last 6 weeks), or immunodeficiency.

All participants were screened for further exclusion due to drug use, pregnancy, and allergic reactions that would preclude vaccine use.

Screening tests included a panel of routine blood tests, tests for immune deficiency and blood-borne virus serology.

METHOD DETAILS

Viruses
The PR8 (A/Puerto Rico/8/1934) mNeon-HA virus was generated and validated as previously described.39 Both the wild-type and

PR8 mNeon-HA viruses were amplified via injection of the respective virus into 10-day-old embryonated hen eggs (Charles River)

for three days at 37�C. After incubation, allantoic fluid containing the virus was harvested, briefly spun down to remove debris,

and frozen at �80�C. Viruses were then titered, as previously described, via standard plaque assay on Madin-Darby canine kidney

cells (MDCKs). For the human challenge study, a live wild-type GMP-certified influenza A/California/04/2009 (H1N1) was a gift from

Altimmune and produced using standard methods certified by the company.

Viral infection of pooled lymphoblastoid cells
48 LCLs were pooled in equal numbers and added to a 24-well plate in PBSwith 0.35%BSA, 2mMglutamine, 100 U/mL penicillin-G,

and 100 mg/mL streptomycin. Cells were infected with A/Puerto Rico/8/1934 at MOI 50 or left as uninfected controls. At 3 h post

infection, each well was spiked with 600 mL of RPMI 1640 media (Invitrogen) supplemented with 10% fetal bovine serum (FBS),

2 mM glutamine, 100 U/mL penicillin-G, and 100 mg/mL streptomycin. At 24 h post infection, cells from each sample were collected,

spun down, and resuspended in PBS with 0.04%BSA for single-cell cDNA library preparation. LCLs from LWK, GBR, and CHS were

used in scHi-HOST-LGC. LCLs from ESN, IBS, and KHV were used in scHi-HOST-EIK.

Single-cell RNA-seq cDNA library preparation
Cell samples were counted and checked for viability on a Guava EasyCyte HT system by 7-AAD staining before they were diluted to 1

million cells/mL with an intended capture of 10,000 cells/well. Each individual well was used to generate individually barcoded cDNA

libraries using the 10x Chromium Single Cell 30 platform version 3.1 (Pleasanton, CA) following the manufacturer’s protocol. The

Chromium Controller partitions the cells into nanoliter-scale gel beads in emulsion (GEMS) within which cell-specific barcoding

and oligo-dT-primed reverse-transcription occurs. For scHH-LGC, 37,013 uninfected droplets were captured across 2 Chromium

wells and 32,606 IAV-exposed droplets were captured across 3 wells. For scHH-EIK, 13,675 uninfected droplets were captured

in 1 Chromium well and 11,264 IAV-exposed droplets were captured in 1 Chromium well.

Sequencing of single-cell cDNA library
cDNA samples from scHi-HOST-LGC were dual-indexed and sequenced on one Illumina NovaSeq S4 flow cell with target depth

100,000 reads per barcoded droplet. Reads were sequenced with read 1 length of 28 base pairs (bp) and read 2 length of

150 bp. cDNA samples from scHi-HOST-EIK were single-indexed and sequenced on an Illumina HiSeq system with a target depth

of 50,000 reads per barcoded droplet. Reads were sequenced with read 1 length of 150 bp and read 2 length of 150 bp. This resulted

in amean depth per cell of 58,881 reads in the uninfected scHH-LGC sample and 120,712 in the IAV-exposed scHH-LGC sample. For

scHH-EIK, this resulted in a mean depth per cell of 37,815 reads in the uninfected sample and 59,803 in the IAV-exposed sample.

Single-cell RNA-seq alignment
Raw sequencing results were processed using the 10XGenomics CellRanger 4.0with default parameters unless otherwise indicated.

Reads from each sample were mapped to GRCh37. Reads from infected samples were also mapped to the A/Puerto Rico/8/1934

genome. For scHi-HOST-EIK, since the library was single-indexed, we used 10X Genomics Index-hopping-filter to remove index-

hopped reads (https://github.com/10XGenomics/index_hopping_filter) before mapping to either human or viral genome.

Assignment of reads to each of 48 LCLs
To assign each barcoded read to an LCL identity, we used Demuxlet.25 Demuxlet takes a bam file with barcoded sample reads and a

VCF containing all genotypes (obtained from the 1000Genomes Project, phase 3 release) to computationally determine the LCL con-

tained in each GEM reaction. Here, the bam files were taken from CellRanger output, and the VCF genotype file is the same for eQTL

detection and GWAS. With barcodes assigned to each of 48 LCLs, we used Subset-Bam (10X Genomics) to subset reads from each

sample alignment bam into 48 LCL-specific bam alignment files. From these LCL-specific alignment bams, we used HTSeq-Count88

to produce counts files for differential expression, eQTL discovery, and other transcriptomic analyses.
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Single cell RNA-seq analysis using seurat
With the filtered and annotated expression matrix outputs of the CellRanger 4.0 pipeline, we used Seurat V483 to perform single-cell

analysis of PR8-infected and uninfected LCLs. Seurat data was annotated with LCL identity and normalized viral reads per droplet for

analysis. Analysis on feature counts data was performed using standard log-normalization. Droplets with >20%mitochondrial reads

were excluded from analysis. UMAP plots of scHiHOST-LGC uninfected and IAV samples were generated by scaling and centering

features in the dataset, then reducing to 15 dimensions (as informed by Seurat:ElbowPlot). K-param nearest neighbors were calcu-

lated using Seurat:FindNeighbors with 15 dimensions. These data were projected onto 2 dimensions using Seurat:RunUMAP.

Differential gene expression using HTSeq-Count and Deseq2
After subsetting sample alignments to LCL-specific alignments to generate pseudo-bulk alignments per LCL, feature counting was

performed using HTSeq-Count88 with Gencode v19 feature coordinates. All differential expression testing was performed in R using

the DESeq282 package. Normalization of the raw counts matrix was achieved using DESeq2’s default ‘‘Median of Ratios’’ method.

Briefly, DESeq2 computes a pseudo-reference sample using the geometric mean for each gene. It then calculates a ratio of each

sample to the computed pseudo-reference for each gene. The normalization factor (‘‘size factor’’ in DESeq2) for each sample is

computed by taking the median of the ratios of each gene to the pseudo-reference for each sample. Finally dividing the raw counts

by the size factor yields normalized counts for further analysis in DESeq2. PCA of uninfected and infected cells was performed using

variance-stabilizing transformation (vst) of the counts matrix and principal components were calculated on the 40,000 most variably

expressed features.

Allele specific expression analysis using RASQUAL
We used RASQUAL v1.131 to identify allele-specific eQTLs (aseQTLs). RASQUAL uses a probability decomposition approach to es-

timate aseQTLs by jointly modeling both total allele-specific count and total fragment count. RASQUAL requires two main input files,

a genotype file (vcf format) including the phased genotypes and reads counts for reference allele and alternative allele for each variant

for each sample, and a gene expression file including read counts of all genes.

We downloaded phased genotype data (vcf format in GRCh37) from the 1000 Genomes Project Phase 3 (available at http://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/), and filtered using bcftools v1.15 with parameters of ‘‘-q 0.01:minor -m 2 -M 2’’ to keep only bial-

lelic SNPs and those with minor allele frequency more than 0.01. LCL-specific pseudo-bulk transcriptome alignments were obtained

from Demuxlet and Subset-Bam as above. Given phased genotypes and individual sample alignment, we then quantified allele-spe-

cific read counts overlapping with biallelic variants using the ASEReadCounter function from GATK v3.8. The following parameters

were used: ‘‘-U ALLOW_N_CIGAR_READS -minDepth 1 –allow_potentially_misencoded_quality_scores –minMappingQuality 10

–minBaseQuality 10’’.

For gene expression input files, featureCounts87 was used to count reads per gene for each individual against GRCh37 reference

genome with default parameters. We kept genes with >5 reads in >5 LCLs. Gene counts were then corrected using RASQUAL’s GC-

correction to remove potential sample-specific GC bias. We included sex, the top 2 genotypic PCs, and transcriptome library size as

covariates calculated using Plink v1.9.89 For each gene, SNPs within a 1 megabase window from each gene’s start and end position

were included in our analysis. The final command and parameters were ‘‘tabix filtered.genotype.vcf.gz Chromosome:regionStart-

regionEnd | rasqual -y expression_Y.bin -k size_factor.K.bin -n NumberSampleSize -l NumberCisSNPs -m NumberFeatureSNPs

-s exon_startposition -e exon_endposition -t -f GeneName’’.

Increasing the number of genotypic PCs to 5 or 10 resulted in similar results to those using the top 2 genotypic PCs. The eQTLs

from incorporating the top 5 PCs captured �93% of eQTLs from using the top 2 PCs, while incorporating the top 10 PCs captured

�87%of eQTLs observed using the top 2 PCs (Figure S2D). Comparisons of eQTL effect sizes show high consistency, with minimum

correlation of R > 0.97 (p < 2.23 10�16 for all R values in Figure S2E). For the 3 eQTLs specifically mentioned in the manuscript, the p

values are only modestly different (Figure S2F). We did note rare instances where genes, particularly in the HLA region, demonstrated

a bimodal distribution of expression, which likely resulted in false positive associations. We also observed instances of low p values

being driven by allelic imbalance of a small number of heterozygous individuals, which changed direction with incorporation of addi-

tional genotypic PCs. Therefore, we strongly encourage users of scHi-HOST datasets to plot and carefully examine genotypic me-

dian and allelic imbalance plots in evaluating whether specific eQTLs are worth further characterization. However, overall, the eQTL

mapping is largely consistent whether 2, 5, or 10 genotypic PCs are included.

RASQUAL’s permutation function, ‘‘–random-permutation’’, was used to randomly shuffle the sample labels of each feature/gene,

such that gene expression counts were assigned to random individuals. After the permutations, association is calculated between

genotypes and gene expression using the RASQUAL model to generate the empirical null distribution. This permutated distribution

showed minimal deviation from the theoretical null.

The nominal p values of all variants within each gene were corrected using the Benjamini-Hochberg method, and significant

aseQTLs for each gene was defined using a 5% false discovery rate (FDR).

Visualization of ASE using phASER-POP
We used phASER-POP to aid in the plotting of allele-specific expression data. PhASER-POP implements phASER90 to calculate

gene-level haplotypic expression per individual then combines that data across individuals to calculate the allelic fold change35
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across the population. The tool outputs allelic fold changes for heterozygous individuals, allowing for effect size and direction of cis-

regulatory variants to be plotted. We used our LCL-specific alignment files described above aligned to HG19with minimum coverage

of 4 allelic reads per individual per feature to calculate allelic fold changes.

Viral burden phenotyping
With human and viral reads assigned to each droplet, we calculated viral burden for each droplet as a function of the total readsmap-

ped to that droplet to control for differences in read depth between droplets, resulting in normalized counts of viral reads per droplet.

To get burden per LCL phenotypes, we used Demuxlet assignments of droplets to LCLs to create a distribution of viral burden for

each LCL. We used the mean of each distribution as the phenotype for GWAS.

GWAS of viral burden
GWAS analysis on viral burden as calculated abovewas performed using a linearmixedmodel implemented in EMMAX37 with default

parameters, a kinship matrix to control for relatedness, and sex as a covariate. The input genotypes for each LCLwere obtained from

the 1000 Genomes Project described as above. EMMAX controls for population stratification and cryptic genetic relatedness by

incorporating a kinship matrix. The ‘‘emmax-kin’’ function was used to calculate the pairwise genetic relationships among individuals

with Balding-Nichols algorithm. We also incorporated sex to control potential sex influence on phenotypes. In this analysis, we only

carried out analysis for SNPs with minor allele frequency >10%. Furthermore, we excluded all SNPs from analysis significantly

deviating from Hardy-Weinberg equilibrium (p < 10�4) in any of the 6 populations to remove variants that may have been affected

by genotyping error. After filtering for minor allele frequency and Hardy-Weinberg equilibrium we were left with 5.2 million SNPs

for GWAS. p-values reported are corrected for genomic inflation factor (l = 1.05).

Design considerations for scHi-HOST
In designing scHi-HOST experiments, there are two components to consider: eQTLs detection and genome-wide association for viral

burden. We analyzed parameters along both components.

1) eQTL detection: The combined scHH-LGC + scHH-EIK dataset consisted of sc-RNAseq from 96 pooled LCLs, with reads of

single cells from the same LCL merged to conduct pseudo-bulk RNAseq and eQTL analysis. To evaluate the correlation of read

depth and probability of detecting an eQTL, we split the 19,647 tested genes into 15 bins based on gene expression counts, and

defined the probability of detecting eQTLs as the fraction of genes in each bin associated with at least 1 eQTL (FDR <0.05). As

demonstrated for IAV-infected LCLs, the probability of detecting eQTLs increased steadily with increasing read depth, but reached

a plateau at expression of �10,000 reads (Figure S2A). This read depth corresponds to a probability of detecting an eQTL in

�50% of genes.

Next, we investigated the effect of varying depth on probability of eQTL detection. We estimate themedian read depth per gene for

our combined scHi-HOST dataset is 169 normalized reads, hereafter referred to as 1x. At this 1x read depth, the probability of de-

tecting an eQTL for a typical gene in the dataset is 27%. By reducing read depth to 0.1x, the probability is nearly cut in half (15%).

However, increasing the read depth from 1x to 10x had amuch smaller effect, from 27% to 31%. This suggests increasing read depth

results in diminishing returns in the probability of detecting an eQTL when read depth exceeds a few hundred reads and must be

weighed against the increased sequencing costs.

The level of read depth/gene can be varied by altering the number of reads per droplet or the number of droplets for each LCL.

Varying the reads per droplet affects the saturation curve, where additional reads beyond 50% saturation reveal more duplicates

or non-unique transcripts than unique transcripts. Based on our achieved sequencing depth of 120,712 reads per droplet, we esti-

mate a sequencing saturation of 43% for the scHH-LGC IAV sample (Figure S2B). Using this read depth per droplet and a target of

10,000 droplets per 10X Chromium well, we obtained a median of 501 droplets per LCL using 3 wells (see Figure 1C). For the scHH-

LGC IAV-infected sample, this resulted in a pseudo-bulk mean read-depth/LCL of 40,187,085.

2) GWAS of viral burden: For scHi-HOST GWAS of viral burden, the key considerations are obtaining high precision in phenotype

measurement and including a sufficient number of individuals for adequate power. To determine the number of droplets of each LCL

to recover in order to accurately reflect the mean viral reads phenotype, we sampled different levels of cell recovery from 1 to 1,000

droplets with replacement from the distribution of mean viral reads for our most abundant LCL (n = 639 droplets, NA19399). We per-

formed this sampling 5,000 times to calculate the SD of the resultingmean viral reads phenotype for each quantity of recovered single

cells (Figure S2C). Our results suggest that a good estimate of the true phenotype can be obtained by recovering�200 cells for each

LCL. We see diminishing returns in the estimate of the phenotype beyond 200 droplets.

The number of individuals affects the power of the GWAS component of scHi-HOST, as it would any GWAS. Researchers

can determine the number of LCLs to use in their screens using a GWAS power calculator for quantitative traits.91,92 In our

case, with 96 LCLs and testing either 5.2 million SNPs genome-wide or 15,866 nonsynonymous SNPs (mAF >0.1, HWE

p > 1 x 10�4), we achieved power of 0.008 and 0.1, respectively, to detect an association with an effect size 0.1 (using

GWAPower by91). Our ERAP1 SNP (rs27895, nonsynonymous) has an effect size of 0.18, and our power to detect an SNP

of this effect was 0.14 and 0.51, respectively. Thus, scHi-HOST of 96 LCLs could only detect associations of massive effect
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size considering genome-wide SNPs but was adequately powered to detect large-effect nonsynonymous variants associated

with IAV burden.

Enrichment analysis of eGenes
The enrichment of scHi-HOST eGenes in GTEx and enrichment of ISGs in scHi-HOST eGenes were tested using Fisher’s exact test.

Significance of enrichment was calculated using the following equation:

p =

�
n2

k

��
NTotal � n2

n1 � k

�
�
NTotal

n1

�

where NTotal is the total number of genes, the n1 and n2 are the number of eGenes associated with scHi-HOST andGTEx, and k is the

number of eGenes shared between scHi-HOST and GTEx.

Viral infection of human volunteers
The Prometheus human infection challenge study of healthy adult volunteers with Influenza A/California/04/09 (H1N1-2009) was pre-

viously described.51 Subjects were inoculated intranasally with live GMP-certified influenza A/California/04/2009 (Altimmune) at a

mean dose of 106 within 6 weeks of screening. Post-inoculation, subjects were confined to an isolation facility for eight days with

daily collection of clinical and physiologic findings, modified Jackson symptomology scores,93 nasal lavage, and blood samples.

Symptom scores were recorded up to day 10 post-inoculation and follow-up interviews and physical examinations were conducted

at day 14 and 28.

qPCR of nasal lavage fluid
qPCRwas performed on nasal lavage samples as previously described.94 Briefly, total RNAwas isolated using theQIAamp Viral RNA

kit (Qiagen) according to themanufacturer’s instructions. Reverse transcription of 13 mL of total isolated RNAwas achieved using the

High Capacity RNA-to-cDNA kit (Applied Biosystems) according to the manufacturer’s instructions. Quantitative RT-PCR reactions

for viral load were achieved using pan-IAV M gene primers and probes (forward: GACCRATCCTGTCACCTCTGAC, reverse:

AGGGCATTYTGGACAAAKCGTCTA, probe: TGCAGTCCTCGCTCACTGGGCACG) with the TaqMan Universal Master Mix II

(Applied Biosystems) and 7500 Fast Real-Time PCR System (Applied Biosystems). Absolute quantification was calculated using a

plasmid DNA standard curve.

Prometheus low-pass whole genome sequencing and imputation
Whole genome sequencing was performed on Prometheus human challenge study subjects. Total genomic DNAwas extracted from

buffy coat using the QIAGEN DNeasy blood kit following manufacturer’s instructions (average genomic DNA concertation from 38

volunteers was 95.58 ng/mL). Whole genome sequencing was carried out by BGI using BGI DNBSEQ low-pass genome sequencing

to 4x coverage. Short reads were aligned to human genome GRCh37 and imputed through the Gencove ImputeSeq pipeline using

the 1000 Genome Project Phase 3 reference panel.95 Imputed variants were filtered using bcftools v1.15,96 including minor allele fre-

quency >0.05, genotype missingness <0.2, sample missing calls <0.2. In the subsequent analysis, only autosomal biallelic variants

were included. EMMAX was used to run GWAS on qPCR of IAV load and symptom scores, with details described above.

LCL RNAi experiments
LCLs (2 x 105 cells) were treated for three days in 500 mL of Accell media (Dharmacon) with either non-targeting Accell siRNA #1 or an

Accell SmartPool directed against human ERAP1 or TNFSF12 (1 mM total siRNA; Dharmacon) in a 24-well TC-treated plate. After

3-day incubation with siRNA, cells were plated at 30,000 per well in 50mL PBS with 0.35% BSA, 2 mM glutamine, 100 U/mL

penicillin-G, and 100mg/mL streptomycin in 96-well plates. Infections were conducted at MOI 50 with PR8-mNeon-HA for 3 h before

wells were spikedwith 75mL RPMI (10%FBS +1%Pen-Strep). Cells were assayed for PercentmNeon + cells using aGuava Easycyte

flow cytometer at 24 h post-infection. RNA was collected from 2 x 105 pelleted cells using the RNeasy mini kit (Qiagen). qPCR using

primers specific for ERAP1 or TNFSF12 were used to validate knockdown relative to 18S rRNA.

ERAP1 inhibitor in A549 experiments
A549 cells were plated at 25,000 cells per well in 50 mL growthmedia (DMEM+10%FBS +1%Pen-Strep) in 96 well plates. 1 day after

plating, media was removed and replaced with 50 mL PBS with 0.35% BSA, 2 mM glutamine, 100 U/mL penicillin-G, and 100 mg/mL

streptomycin and 1, 5, or 10 mMERAP1-IN-1 (CAS: 865,273-97-8, MedChemExpress), or equal volume DMSO (vehicle). After 30-min

incubation, cells were infected at MOI 1 with PR8-mNeon-HA for 1 h before infectious media was removed and replaced with post-

infection media (Opti-mem + 0.01% FBS +1%Pen-Strep + 0.35%BSA). 1-day post-infection, cells were trypsinized and assayed for

percent mNeon + cells using a Guava Easycyte flow cytometer.
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Overexpression in A549
For lentivirus production, HEK-293T cells were transfected with 1 mg pLEX-ERAP1, 0.4 mg pMD2.G and 1 mg pCMVD8.74. Lentiviral

supernatant media was collected after 72 h. Next, A549 cells in a 24-well plate were transducedwith 1mL lentivirus and selected with

1 mg/mL puromycin after 48 h. After 3 days selection, surviving cells were expanded.

Cell lines were plated at 25,000 cells per well in 50 mL selection media (DMEM +5% FBS +1% Pen-Strep + 1% Puromycin) in

96-well plates. 1 day after plating, media was removed and replaced with 50 mL PBS with 0.35% BSA, 2 mM glutamine, 100 U/

mL penicillin-G, and 100 mg/mL streptomycin and infected at MOI 0.1 with PR8-mNeon-HA for 1h before infectious media was

removed and replacedwith selectionmedia. 1 day post-infection, cells were trypsinized and assayed for percentmNeon + cells using

a Guava Easycyte flow cytometer.

In silico mutagenesis of ERAP1 and 10-mer peptide
In silicomutational analysis of ERAP1 bound to the 10-mer peptide (PDB: 6RQX) was performed using the Pymol mutagenesis func-

tion (The PyMol Molecular Graphics System, Version 1.8.6.0 Schrodinger, LLC).

QUANTIFICATION AND STATISTICAL ANALYSIS

The quantitative and statistical analyses are described in the relevant sections of the Method details or in the figure legends.
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