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Simple two-center tight-binding models have often been used in electronic-structure calcula-
tions, although uncertainty about the foundations of thé tight-binding method has severely limited
progress. This uncertainty has been much reduced following the recent successes of the non-self-
consistent Harris scheme but several irtiportant questions still remain. In particular, the accuracy
of the (almost ubiquitous) two-center approximation is still in doubt. It has often been argued that
although this is a poor approximation when applied crudely, it can be justified within the more
sophisticated context of chemical-pseudopotential theory. The argument looks sensible, but clear
quantitative tests only became possible with the advent of the Harris scheme. This paper reports a
careful series of tests of the accuracy of the two-center approximation for germanium, and shows that
neither the crude version nor the more sophisticated chemical-pseudopotential version is accurate
enough to be useful. The remarkable success of two-center tight binding in predicting the structures
and surface reconstructions of semiconductors is, therefore, still mysterious.

L INTRODUCTION

If electronic structure theory is ever to be of more
than marginal interest to materials scientists, it will be
necessary to develop reliable and trustworthy methods
to calculate the forces between the atoms in very com-
plicated solids. We can already calculate the physical
properties of the majority of perfect crystals, but this
is only a beginning and materials scientists are wait-
ing for the day when it will be possible to use quantum
mechanics to calculate all the forces between the atoms
around a moving dislocation. That day may come quite
soon for solids made up of atoms with reasonably weak
pseudopotentials,’ but for other materials, among them
the transition metals, the prospects are not so good. The
usual approach is to resort to classical interatomic pair
potentials, but although these often give qualitatively
useful results they are unlikely to be quantitatively accu-
rate in most solids.

What is required is an armory of methods to fill the
gap between full self-consistent density functional the-
ory (DFT) and pair potentials, and several such methods
are already being developed. Among these are a number
of schemes for generating classical many-atom potentials
with forms suggested by quantum mechanics.3"1% This
approach has already demonstrated its worth, and al-
though it may fail in some systems — the classical po-
tentials required may be so complicated that they are
unusable — there have already been many useful appli-
cations. o

At the other end of the scale, the recent successes
of non-self-consistent density functional (DF) calcula-
tions based on the Harris functionall™1® have suggested
that it is often possible to simplify DF methods con-
siderably without losing much accuracy. A number of
methods'”1® have been developed which are reasonably
accurate and fully quantum mechanical (hence they still
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require the solution of a matrix eigenvalue problem), but
which are a good deal easier than self-consistent DF cal-
culations. Their successes may point the way to even
simpler schemes, and perhaps at long last allow the de-
velopment of reliable tight-binding (TB) models. This
paper discusses some of the remaining problems which
must be overcome before such a goal can be realized.

The semiempirical TB method?%2! has been one of
the most widely used electronic-structure methods in
solids and has been particularly valuable in complicated
systems for which more sophisticated calculations are
difficult. Although usually applied to transition met-
als, TB models have also been used to predict sur-
face reconstructions?? and grain boundary structures23
in semiconductors, and have been shown capable?* of re-
producing the whole “phase diagram” (the energy ver-
sus volume curves for all plausible low energy crystal
structures) of silicon. TB calculations are comparatively
straightforward and yield a simple and appealing picture
of bonding in terms of orbital occupations and bond or-
ders. In addition, they often work better for “difficult”
solids such as transition metals than for “easy” solids
such as Al. These advantages are partially offset by the
fact that TB models are often inaccurate and sometimes
untrustworthy, but the method has an important place
in the electronic-structure calculator’s armory.

This work follows on from an earlier paper!? in which
we showed how the Harris functional may be used to de-
rive simplified but accurate electronic-structure methods
which look very like semiempirical TB models. The ideas

“in that paper underpin the. electronic-structure meth-
ods developed by Gibson and Haydock,'® and (indepen-
dently) by Sankey!” and by Harris and Hohl.1® These
have no adjustable parameters and have been very suc-
cessful, but differ from most semiempirical methods in
two important ways: first, they use a basis set of non-
orthogonal (atomiclike) orbitals and so the calculations

14 216 © 1993 The American Physical Society



48 ACCURACY OF THE CHEMICAL-PSEUDQPOTENTIAL METHOD ...

involve an overlap matrix as well as a Hamiltonian ma-
trix; and second, the Hamiltonian matrix elements do
not have a simple two-center form. Instead, they involve
complicated three-center integrals which depend on the
relative positions of three different atoms.

Since semiempirical TB is often very successful, it is
tempting to ask whether it is really necessary to include
three-center terms and an overlap matrix? The question
is an old one, and the general consensus?® is that (at
least for tetrahedral semiconductors) neither the overlap
matrix nor the three-center terms can be ignored. So
why was Goodwin’s** two-center orthogonal TB model
for Si so successful? The usual answer is that the ma-
trix which looks like the Hamiltonian in his model is ac-
tually a parametrization of the D matrix of chemical-
pseudopotential (CP) theory.?572820 If this is correct,
then it should be possible to derive simple two-center D
matrix TB models from first principles and so obtain an
electronic-structure method with all the virtues of semi-
empirical TB but without its drawbacks. The scheme
would have no fitting parameters, would be trustwor-
thy when the Harris functional is trustworthy (which is
surprisingly often), and all the approximations would be
clear and quantifiable.

Following the development of the Harris functional, it
is now possible to isolate the main approximation (the
assumption that the three-center contributions to the D
maitrix are negligible) inherent in the CP approach and
see how well it stands up to quantitative scrutiny. This is
the aim of this paper, and the result is that the approx-
imation is not accurate enough to be useful in tetrahe-
dral semiconductors: if anything, it is worse than simply
ignoring all the three-center contributions to the ordi-
nary Hamiltonian matrix. This does not imply that the
method fails for all materials — and indeed the work of
Bullett2° has shown that it often works well for the d
bands of transition metals and in other materials com-
monly thought of as being in the TB (narrow band) limit
— but the arguments cannot be extended to the nearly-
free-electron solids usually treated with plane waves. The
conventional justification for using two-center TB.in such
materials is no good, and the more sophisticated D ma-
trix version is no better than the simple Hamiltonian
matrix version.

This paper contains seven sections altogether. After
this introduction comes a background section which de-
scribes semiempirical TB and the Harris functional and
clarifies the relationship between the two. This discus-
sion contains little that is new and may be skipped by
readers already familiar with the material; however, it is
necessary to define the framework and notation on which
the rest of the work is based and should help to make
the paper more comprehensible to readers who are not
experts in the field. Section III describes the results of
some plane wave and pseudopotential calculations which
were done to test the accuracies of both the Harris func-
tional and the local Ge pseudopotential used throughout
this work. Section IV investigates the crude (Hamilto-
nian matrix) two-center approximation for a number of
different basis sets, and finds, not surprisingly, that it is
not very accurate. Section V explains the CP approach
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and discusses how it may be used to justify two-center
TB. Section VI gives the results of using the two-center
D matrix approximation for Ge, and some conclusions
are drawn in Sec. VII. o ‘

II. BACKGROUND
A. Semiempirical tight-binding models

Semiempirical TB (Refs. 29 and 20) predates DFT by
several years and was one of the first widely used meth-
ods for calculating solid state band structures and inter-
atomic forces. Tt is assumed that the total energy may
be written in the form

E=;€s+%ZZU(lRa‘RﬁD, (1)

a BFa

where N is the total number of electrons in the system,
R, is the position of an atom, and U is a pair potential
representing the repulsive interactions between the ionic
cores. The eigenvalues ¢; are supposed to be the solutions
of a non-self-consistent independent electron Schrédinger
equation but this is never solved directly. Instead, one
imagines solving it variationally using a basis set of lo-
calized atomiclike orbitals. The matrix elements of the
corresponding Hamiltonian (H) and overlap (S) matrices
are treated as free parameters and are adjusted to repro-
duce the results of experiments or other calculations. For
simplicity, the S matrix is often taken to be the identity
(the basis functions are assumed to be orthonormal Wan-
nier functions) and the H matrix elements are taken to be
zero beyond nearest or next nearest neighbor distances.

These few approximations are enough to allow calcu-
lation of the eigenvalues and hence the band structure,
but if interatomic forces are required, then one also has
to know how the matrix elements and pair potentials
depend on the atomic positions. Most models assume
that the pair potential and all matrix elements linking
the atoms at R, and Rg depend only on the distance
between those two atoms and are independent of the po-
sitions of other atoms in the vicinity (this is the two-
center approximation). The distance dependence is usu-
ally taken to be a simple power law or an exponential
with one or two adjustable parameters to be determined
empirically. Furthermore, the possible environment de-
pendence of the intra-atomic matrix elements is often
ignored (neglect of crystal field terms). These approxi-
mations are not easy to justify, but are necessary to keep
the number of adjustable parameters down and have been
very successful in practice.

Any attempt to derive nonempirical parameter-free
TB models will have to reconsider the validity of all
the above assumptions and approximations, and must
therefore start from some more fundamental theory. The
obvious starting point is DF'T within the local density
approximation,3*3! and the Harris functional'?:'2 turns
out to provide the clues needed.
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B. The Harris functional

In the original development of DFT, Hohenberg and
Kohn® and Kohn and Sham® showed that the total
ground state energy of a set of interacting electrons mov-
ing in an external potential, Vet (usually the Coulomb
potential due to the nuclei or inert atomic cores), is the
minimum value of a functional, E[n], of the electron
number density, n(r). To evaluate this functional at a
given density, nout, one first has to find the effective one-
electron potential, Vi,, which generates noy;. This means
that n,,+ must be the density obtained by solving a set of
Schrodinger-like independent electron equations known
as the Kohn-Sham equations (Hartree atomic units are
used unless otherwise indicated):

(—%Vz + Vin(r)) Pi(r) = eathi(r),

N
now(r) = Y ¥} (r)dhi(r) . (2)

=1

For simplicity, one usually reverses the problem and
works by choosing Vi, and then calculating nou from
Eq. (2). Once nous has been found, the total energy func-
tional can be evaluated using

N
E[nout] = ZE; _"/‘[V}n(r)

+1 // Tout r)no‘;"t(r )d3 ds’f', + Exc[n'OUt] 3
|r — r'|
3

where Ey.[n] is the exchange-correlation functional which
is not known exactly (all the complicated aspects of the
many-body problem are hidden in it) but for which sim-
ple local den51ty approximations (LDA’s) work well in
most solids.®

It can be shown that Efn] attains its minimum value
when Vi, and 7oy satisfy a “self-consistency” condition
of the form Vm = VKs[nout] where

— Vext (r)]nout (r)d37'

Vics ([n],7) = Ve () + [ - d-"'+uxc([n1 (9

is a density-dependent effective potential known as the
Kohn-Sham potential and pyc([n],r) is the first func-
tional derivative of Ex.[n]. Ground state properties may
therefore be calculated by an iterative procedure in which
the input potential is adjusted until self-consistency is at-
tained.

Since the Hohenberg-Kohn energy functional is mini-
mized at the ground state demnsity ng, a variational prin-
ciple applies: if n,, is a trial ground state density,
then Efngy] is greater than or equal to Ejng] and the
error is second order in 7g. — m9. A good approx-
imate ground state density therefore leads to an even
better approximate ground state energy and this can be
very helpful in non-self-consistent calculations. Unfortu-
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nately, the expression for E[ngy:| involves Hartree and
exchange-correlation terms evaluated at n., and con-
structing these potentials is not easy when using basis
functions resembling atomic orbitals or Wannier func-
tions. With the small basis sets considered here, solving
the matrix eigenvalue problem is not necessarily much
harder than constructing the potentials (although this
depends on the size of the system) and so one might as
well iterate to self-consistency.

If this was the end of the story, then non-self-consistent
DFT would be of limited use in this work. However, it
was realized initially by Harris!! and later independently
by Foulkes and Haydock!? that a further simplification
can be made. A sensible way of choosing the input poten-
tial is to make a guess, nj,, at the ground state density,
and then to set Vi, = Vkg[niy]. If this is done and the
terms in Eq. (3) which depend explicitly on ngy; are ex-
panded in the small quantity 7oyt — 74n, then it can be
shown that the alternative energy functional (now usu-
ally known as the Harris functional),

N
H[nin]z;:Z:;Ei // m(r_l:ll )d3 a3+
+E’,‘°[nin] - /#xc([nin],r)nin(r)dsr , (5)

differs from E[ngyu:] only by terms which are of second
(or higher) order in ni, — nout. The Harris functional is
therefore also stationary about the ground state density
and so there is no reason to expect that it should be less
accurate than the Hohenberg-Kohn functional when used
in non-self-consistent calculations. Its main advantage is
that the output density does not appear explicitly.

Perhaps surprisingly, it turns out that the Harris func-
tional approximation to the ground state energy is usu-
ally better than the variational estimate obtained us-
ing the Hohenberg-Kohn functional with the same in-
put potential, and the accuracy obtainable is often
remarkable.!?12 Using simple input densities constructed
by superposing neutral atoms, lattice parameters, elas-
tic moduli, phonon spectra, and “phase diagrams” have
been calculated for a wide variety of solids with errors
not much larger than those due to the LDA.13716 There
have been occasional failings (at surfaces, for example,
when it can be hard to guess sensible trial input densi-
ties) but superposing neutral atomic densities works well
enough for many purposes.

C. Tight-binding models and the Harris functional

The Harris functional energy is the sum of three con-
tributions: the eigenvalue sum, the “double-counting”
energy [the other terms in Eq. (5)], and the Coulomb
replusion energy of the nuclei (which has not been con-
sidered until now). Both the one-electron Hamiltonian
and the double-counting energy are particularly simple if
the input density takes the form

Sonale) e

Tin(r) =
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where n, is a spherical atomlike electron density on the
atom at R and contains exactly Z, electrons (Z, is the
nuclear charge). The work cited in Sec. II B shows that
choosing the input density this way works well in many
cases.

The sum of the double-counting and Coulomb repul-
sion energies may then be written in the form

ZU + 5 Z Z Uop([Ra —Rgl) +Unp , (7)

@« B(#a)

where U, is a constant intra-atomic contribution and U,gp
is a pair potential which vanishes rapidly as |R, — Rg|
tends to infinity. U, and U,s can be evaluated from
monomer and dimer calculations, respectively, and stored
for later use in the solid. U,y is a nonpairwise contribu-
tion containing only exchange-correlation terms and is
more difficult to precalculate and store, although it may
be important in some cases.3® In the LDA it arises be-
cause the exchange-correlation potential at r is a nonlin-
ear function of the electron density there.

The Harris functional prescription for the form of the
independent particle Hamiltonian is equally simple: it is
just the usual Kohn-Sham Hamiltonian evaluated at the
input density and may be written in the form

B=F+3 VatW | - ®

where T is the kinetic energy operator, V. is the
Kohn-Sham potential (including Hartree and exchange-
correlation terms) for an isolated atom at R, and W
arises from the nonlinearity of the exchange-correlation
terms,

W’(r) = [xc ( [Z na] ,1') bt Zﬂxc([nal,r) . (9)

Most of the fundamental questions about TB have now
been answered: the absence of self-consistency has been
explained, the replulsive pair potential has been identi-
fied, and the form of the independent electron Hamil-
tonian is known. The remaining questions concern the
choice of basis set and the evaluation of the H and § ma-
trix elements. The work of Sankey,'” Gibson, Haydock,
and LaFemina,'® and Harris and Hohl'® suggests that a
basis of atomic (or atomiclike) orbitals, ¢a:, is often ad-
equate (o labels the atom and i specifies the particular
basis function on that atom). The S matrix elements,
Saipi = (PuilPpi), are then environment independent
(intra-atomic elements being constants and interatomic

elements depending only on the distance between the .

two atoms involved), although the H matrix elements,
Hyipi = (Pai|H|dg;), are not. Ignoring W for the time

being, the intra-atomic H matrix elements involve one-- -

center terms, {(dui|T + Va|das), and two-center crystal
field terms which depend on the positions of neighbor-
ing atoms, (Pa:|Vs|da;). The interatomic matrix ele-
ments include two-center terms, {¢a:i|T" + Vo + Va|dg;),
and three-center terms, (¢m-|‘7'7|¢gj). All overlap, crys-
tal field, and one- and two-center H matrix elements can
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be obtained from monomer and dimer calculations, tabu-
lated as functions of the interatomic distance, and looked
up whenever needed. The three-center terms require a se-
ries of trimer calculations and the tabulation of a number
of more complicated two-dimensional functions.?

The TB scheme described in this section is essentially
the one used in Refs. 17, 18, and 19, and differs in sev-
eral important respects from the simple semiempirical
TB models described earlier. The main differences are
that semiempirical schemes usually assume an orthogo-
nal basis set and ignore all three-center and crystal field
terms. While including crystal field terms and an overlap
matrix complicates the method only slightly, including
the three-center integrals is more unpleasant.

III. TESTS OF THE HARRIS FUNCTIONAL
FOR GERMANIUM

This paper will concentrate on Ge, both because it is
a tetrahedral semiconductor for which one might expect
semiempirical TB to work quite well, and because the Ge
ionic cores can be well represented using local pseudopo-
tentials (making it possible to avoid a number of uninter-
esting technical issues). The local pseudopotential used
here is of the Starkloff-Joannopoulos3* form,

1—e
(H—A(_—_)) ! (10)
with Z, =4, A = 18a3!, and r. = 1.0ao.

Tests of the accuracy of the pseudopotential and the
Harris functional were carried out using a conventional
plane wave based total energy program. All calculations
used 10 special k points in the irreducible wedge of the
Brillouin zone and the Ceperley-Alder3%:3¢ form of the
LDA. Kinetic energy cutoffs up to 12.5 Hartrees were in-
vestigated and the calculations were well converged. The
total energy in the diamond structure was calculated at
a range of different lattice parameters and a Murnaghan
equation of state3” was fitted to the results. The equi-
librium lattice parameter and bulk modulus were 5.53 A
and 780 kbar, respectively, agreeing quite well with the
experimental values®® of 5.65 A and 770 kbar.

As well as these self-consistent calculations, other cal-
culations were done to compare the accuracies of the
Hohenberg-Kohn and Harris functionals when used non-
self-consistently. The input density chosen was a super-
position of pseudoatomic valence densities, the Kohn-
Sham equations were solved once only, and the corre-
sponding Hohenberg-Kohn and Harris energies, E[rnoy]
and Eg[nin) [see Egs. (3) and (5), respectively], were
evaluated. The self-consistent and non-self-consistent re-
sults are compared in Table I. As expected, the non-
self-consistent Hohenberg-Kohn energy is a little higher
than the self-consistent energy, but both the energy and
the bulk modulus are very close to the self-consistent
values. The Harris functional total energy is lower than
the self-consistent value (showing that the Harris func-
tional is certainly not minimized at self-consistency in
the LDA) and the bulk modulus is about 5% higher.
The Hohenberg-Kohn functional performs slightly bet-

Zy
Vpd(") =
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TABLE 1. The (pseudopotential) total energy, lattice pa-
rameter, and bulk modulus of Ge in the diamond structure.
The results of self-consistent (SC) and non-self-consistent
(NSC) calculations using the Hohenberg-Kohn (HK) and Har-
ris (H) functionals are shown.

Energy (Hartrees) a (&) B (kbar)
sC -7.891 5.53 780
NSC-HK -7.889 5.55 770
NSC-H -7.897 5.50 820

ter than the Harris functional in this example, but both
are accurate enough to be useful. The non-self-consistent
band structure, shown in Fig. 1, is almost indistiguish-
able from the self-consistent band structure (not shown).
This close similarity is surprising since the stationary and
variational principles discussed earlier refer to total en-
ergies and do not apply to eigenvalues alone.

These calculations have shown that both the local
pseudopotential and the Harris functional with super-
posed atomic input densities work well for germanium in
the diamond structure. Any large errors in the TB calcu-
lations which follow must therefore be attributable to the
limited basis set used or to the two-center approximation.

IV. THE SIMPLE TWO-CENTER
APPROXIMATION

In Ref. 12, it was found that using the Harris functional
and a basis set of pseudoatomic s and p orbitals gave
a reasonable quantitative description of the Ge dimer,
which was improved by adding a simple analytic d or-
bital to the basis set. If Ge acts like C and Si, then
the work of Sankey!” suggests that similar basis sets will
also be adequate in the solid. Assuming this to be the
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FIG. 1. Non-self-consistent Ge band structure. The input
potential was constructed by superposing free atomic electron
densities. )
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case, a TB model of the type discussed in Sec. IIC was
constructed. Since the main aim of this work was to as-
sess the accuracy of the simple two-center approximation,
all three-center contributions to the matrix elements and

_ the double-counting energy were neglected. All one- and
“two-center terms (including the two-center parts of the

matrix elements of W — see Sec. IIC) were obtained
from monomer and dimer calculations.
The first basis set tried consisted of the single atomic 4s

--and three atomic 4p orbitals on each atom (1s and 2p or-

bitals of the pseudoatom). Calculations for Ge dimers!2

(when there are no three-center terms to worry about)
gave an interatomic spacing of 4.9a¢ and a vibrational
stretch frequency of 240 cm™1, to be compared to the ac-
curate DF results®® of 4.75a0 and 240 cm ™. In the solid,
however, this basis set yields matrix elements which ex-
tend to unreasonable distances. Even when all matrix
elements between atoms less than 9.53 A apart are in-
cluded (each atom then interacts with 158 neighbors—to
be compared to the 4 nearest neighbors included in most
semiempirical calculations), the band structure obtained
bears little if any relation to the accurate Harris func-
tional band structure. Adding d orbitals to the basis set
reduces the dimer interatomic spacing to 4.73a¢ but does
not improve the band structure noticeably.

What is the cause of the large band-structure errors?
Some of the difficulties could be due to the two-center ap-
proximation but experiment shows that there is a more
immediate problem: increasing the cutoff a little makes a
big difference to the results. Similar observations of sen-
sitive dependence on the inclusion of matrix elements to
very distant neighbors have been made by Sankey'” but
the phenomenon is surprising nevertheless. The reason
for the sensitivity, it turns out, is that the overlap ma-
trix is very nearly singular. This means that it is possible
to construct states |x) = boi|dai) (repeated suffixes are
to be summed) which have large expansion coefficients,
bai, but almost zero norm. One consequence of this near
linear dependence of the basis functions is that the eigen-

. values can become very sensitive to small changes in the

H matrix, exactly as observed.

It would be interesting to investigate whether this lin-
ear dependence problem is restricted to tetrahedral semi-
conductors or whether it always arises when trying to
use atomic orbital basis sets in nearly-free-electron solids
(more naturally described using plane waves). In prin-
ciple, of course, the entire set of (bound and unbound)
atomic orbitals on just one atom makes up a complete
basis for the whole solid, and so it is plausible to suppose
that using a number of atomic orbitals on each site often
leads to near linear dependence. This could explain why
such methods have never really taken off in solid state
calculations, and suggests that it may be worth work-
ing out how to generate localized basis sets which, like
plane waves, can be increased to span the entire Hilbert
space, but which never become overcomplete. Then one
would have a really well founded numerical method in
which the number of basis functions could be systemat-
ically increased until convergence was obtained without
encountering difficult linear dependence problems.

Some of these problems could probably be overcome by
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using the method of singular value decomposition,* but
it is much simpler to follow the lead of Sankey'” and use
shorter ranged basis functions instead. Here these were
constructed by solving the (pseudo)atomic Schrodinger
equation for the atom enclosed in a spherical box defined
by adding the potential

a

Vbox(’l”)' = ——*———1 n eb(rm ) . -

S - (a1)
to the atomic Hamiltonian. The values of a and b were
fixed at 5 Hartrees and 10ag . respectively, but a va-
riety of different box radii, r,,, were tried. The Harris
functional does not require any special relationship be-
tween the form of the basis functions and the form of
the input density, and tests showed that it made little
difference whether input densities were obtained by su-
perposing boxed or unboxed atoms. Boxed densities were
used in most of this work.

The largest box radius investigated was r,, = 6ag.
The presence of the box increased the pseudoatomic
s and p valence eigenvalues from the free atom val-
ues of —0.42 Hartrees and —0.15 Hartrees to —0.39
Hartrees and —0.12 Hartrees, respectively, but neither
the atomic eigenfunctions nor the calculated dimer in-
teratomic spacing and vibrational frequency were much
altered. Sankey’s experience was that basis functions de-
fined using such large box radii are quite adequate in the
solid, but the band structure obtained here was nothing
like the accurate Harris functional band structure. Since
these calculations were properly converged as a function
of the real space cutoff, the only conclusion is that the er-
rors must be due to the two-center approximation, albeit
magnified because the overlap matrix still has a few small
eigenvalues. Equally large errors were seen in the total
energy (calculated with the same 10 special k point set
as was used in the plane wave calculations), which was
found to decrease monotonically with the lattice parame-
ter right down to 4.76 A (the smallest value investigated).

As the box radius is decreased, the band structure
changes smoothly until at r,, = 4ao it is as shown in
Fig. 2. This is much closer to the correct band structure
of Fig. 1, but the severe truncation of the basis functions
spoils the energetics. The atomic s and p valence eigen-
values are now —0.26 Hartrees and 0.05 Hartrees and the
dimer equilibrium spacing is 4.2a9. The calculated lat-
tice parameter of the solid is 5.22 A and the calculated
bulk modulus is 1670 kbar. The pressure derivative of
the bulk modulus (obtained from the self-consistent DF
calculations) was 5.1, which implies B ~ 1410 kbar when
the lattice parameter is 5.22 A, and so the error in the
bulk modulus is at least consistent with the error in the
lattice parameter. Adding the lowest d eigenfunctions of
the boxed atom to the basis set improves the band struc-
ture a little, but the lattice parameter and bulk modulus
do not change much. Adding additional excited s func-
tions to the basis also makes little difference.

In summary, this section has demonstrated that the
simple two-center approximation is not adequate in Ge.
Atomic orbitals are not suitable as basis functions be-
cause they are too long ranged and close to being linearly
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FIG. 2. Non-self-consistent Harris functional tight-binding
Ge band structure ignoring three-center contributions to the
Hamiltonian matrix. A basis set of boxed s and p (pseudo)
atomic orbitals was used with the box size, rm, equal to 4ac.

dependent, and these two factors combine to make the re-
sults sensitive to small H matrix elements between very
distant neighbors. The problem can be cured by truncat-
ing the basis functions and Sankey!” has shown that this
yields a workable method as long as all the three-center
terms are included. Unfortunately, the degree of trunca-
tion required to make the three-center terms unimportant
is such that the basis set is no longer adequate.

V. TWO-CENTER TIGHT-BINDING
AND CHEMICAL PSEUDOPOTENTIALS

Since it seems that the simple two-center approx-
imation is inadequate in Ge, it is now necessary to
consider the more sophisticated version based on CP
theory.25728%20 This was originally developed as a solu-
tion to the problem of constructing a “perfect” basis set
of localized functions exactly spanning a band of eigen-
states in the solid. Wannier functions*! are an example
of such a basis set and are convenient because they are
orthonormal, but they are not as localized as one would
like and are difficult to construct. The main achievement
of CP theory was to show that much more localized basis
functions can be constructed if the orthonormality con-
straint is relaxed. These basis functions are the solutions
of a self-consistent differential equation, the CP equa-
tion, which depends only on the local environment and
can be solved without calculating all the eigenstates of
the crystal first. B

Consider the non-self-consistent Harris functional
Hamiltonian of Eq. (8). The characteristic property
defining a set of basis functions, {|¢1),...,|¢r)}, exactly
spanning some particular group of M eigenfunctions, is
that the set must be closed under the operation of H,

ﬂ|¢a) = Dgaldp) (12)
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where the summation convention applies for repeated suf-
fixes. The point is that if Eq. (12) is satisfied, then any
linear combination of the basis functions which diago-
nalizes the finite matrix D is an exact eigenfunction of
H. By taking matrix elements of Eq. (12) it can be seen
that Dos = S5 H,ps and hence D is simply related to
the familiar H a.nd S matrices. The eigenvalues, usually
calculated by solving det(H —&8) = 0, may also be found
from det(D —eI) = 0. H and S are Hermitian matrices,
of course, but D need not be Hermitian unless H and S
commute.

At first sight, Eq. (12) does not appear very helpful.
Everything becomes much clearer, however, if it is rewrit-
ten in the form

ﬁkéa) - Z Gpaldp) = E(a)l¢a) ’ (13)
B

where (%) is a constant still to be specified and Gpa =
Dpo — e®§p,. The second term on the left hand side
of Eq. (13) can be regarded as the result of the action
of an operator on |¢,). This operator has the property
that no matter which state it acts on the outcome is
entirely within the space of basis functions, and so it can
be written in the form PG, where P is the projector on
to the basis. Equation (13} then becomes

(& - PG) Iga) = e@ea) (14)

and the significance of the name “chemical pseudopoten-
tials” becomes clear. Equation (14) looks very like the
general defining equation for ordinary pseudopotentials
given by Austin, Heine, and Sham,*? except that here
the projection operator involves the orbitals to be calcu-
lated instead of the core states.

The operator G is arbitrary and any choice for which
Eq. (14) is soluble will generate a set of basis functions
exactly spanning a group of eigenfunctions. The trick,
of course, is Yo choose (7 to make the basis functions as
localized as possible. Several suggestions have been put
forward but Anderson’s2? is probably the s1mplest He
chooses

G=> "3 I¢a)dslVaPa , (15)

o B#a)

where P, is the projection operator on to the orbital lba).
Equation (14) then becomes

T+Vat+ W+ 3 (1-168)8]) Vs | [6a)
B(#a)

=ega) , (16)

which is known as the CP equation.

Near R, the pseudo-Hamiltonian is almost the same
as the full Hamiltonian but on surrounding atoms the
potentials have been reduced by the removal of the pro-
jections along |¢g) and the remaining weak “chemical
pseudopotentials” do not have much effect. The solutions
are therefore localized and look more or less like atomic
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orbitals. In Ge, where s and p (and to some extent d)
orbitals are all important in the same energy range, sub-
tracting the projection along just a single orbital on each
site is not sufficient, but it is easy enough to generalize
the theory to include several orbitals on each atom when
required.

Once the basis functions have been found, the elements
of the D matrix are given by

Doc =€(a) =(¢a| T+Va +W

+ 2 (1—I¢ﬁ)(¢ﬁl)‘73] [$a)s (17)

Bl
o« = ($6lV5l0a) - (18)

. Although CP theory provides an elegant solution to
the problem of finding a perfect set of localized basis
functions, its main use so far?® has been to justify the
use of atomic orbitals as basis functions. If the cancel-
lation of the potentials on neighboring atoms is really as
effective as Anderson’s%® calculations suggest, then the
CP basis functions should look much like atomic orbitals
(W is a weak potential, remember). Assuming this to be
the case and substituting atomic orbitals into Eqs. (17)
and (18), one sees that the D matrix has an almost per-
fect two-center form. CP theory suggests that making a
two-center approximation to the D matrix may be sen-
sible even though it has already been demonstrated that
making a two-center approximation to H is not accurate.

But how good is this approximation? In conventional
TB calculations, the basis functions are chosen at the be-
ginning and their degree of similarity to the CP functions
is hard to establish. All one can do is trust in the varia-
tional principle and there is a good deal of evidence?0-17:18
that this acts effectively enough in many cases. CP the-
ory suggests that ignoring three-center terms in the D
matrix may not spoil the variational accuracy as much
as ignoring the three-center terms in the H matrix, but
this is not obvious. An alternative approach to D matrix
TB, discussed below, sheds some more light the matter.
It leads to a slightly different two-center D matrix from
the one obtained by substituting atomic orbitals into Egs.
(17) and (18), but the two approaches give similar results
in practice.

First it is necessary to define the “variational” D ma-
trix. Suppose that the fixed TB basis functions are de-
noted by |¢ai). Then the D matrix defined by the equa-
tion

PH|¢ai) = Y Dpjaildss) (19)
B3

(where P is the projector onto the fixed basis) satisfies
H = SD. The D matrix secular equation, det(D —el) =
0, is therefore equivalent to the familiar variational secu-
lar equation, det(H —&S) = 0, and the D matrix has real
and variationally accurate eigenvalues. Equation (19) is
clearly the best definition of the D matrix for fixed basis
set calculations.
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In order to see how to make a two-center approxima-
tion to this D matrix, define the atomic and dimer Hamil-
tonians, H, = T + V,, and Hop =T+, + Vs 4+ Wag
(where Waﬂ (r) = pxe([na + nglr) — bxe([na],T) —
Exc([ng),r) is the dimer contribution to the nonspherical

part of the exchange-correlation potential). Now write
the left hand side of Eq. (19) in the form :
PH]¢0::> = PaH I¢a:) + E o:/SHaﬂ PaHa)lﬁbaz
B(#a)
+A|Pai), (20)
= Dgj,ildps) + Dldas), (21)
Bi

where P, is the projector onto the space spanned by all
basis functions on atom «, and Pag is the projector onto
the space spanned by all basis functions on atoms & and
B. The first term on the right hand side of Eq. (20) is
the one-center contribution, the second term is the sum of
the two-center contributions, and A contains everything
involving three or more centers. The approximate two-
center D matrix, D, therefore contains only one- and
two-center matrix elements and makes only three-center
€rrors.

Equations (20) and (21) define a two-center D matrix
and show how all the matrix elements are to be evalu-
ated from monomer and dimer calculations. The hope
is that this should be better than making a two-center
approximation to the H matrix, but how much better?
One way to check is to examine the matrix elements of A.
General expressions for these can be written down, but it
is more instructive to consider the special case when the
basis functions are atomic orbitals and to approximate
by ignoring W. All intra-atomic matrix elements of A
are then zero, and the inter-atomic matrix elements take
the form

<¢ﬂjl Z (1- pa'y)v:/l(ﬁai) . (22)

v#a,B

Aﬁjyai =

These are all three-center terms as expected, with the
potential on site v weakened by the action of the pro-
jection operator (1 — P,,). The more basis functions
on sites a and -, the more effective this projection will
be, and the smaller the three-center error will be in any
given matrix element. Ignoring three-center terms in the
D matrix is therefore equivalent to ignoring three-center
matrix elements of weakened chemical pseudopotentials,
and should indeed be better than making a two-center ap-
proximation to the H matrix (which ignores three-center
matrix elements of the full atomic potentials).

VI. THE TWO-CENTER APPROXIMATION
FOR THE D MATRIX

The arguments for two-center D matrix TB seem fairly
convincing but how well does it do in practice? The large
body of work by Bullett2® shows that in many materials
(transition metals in particular) it works very well, but
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unfortunately this does not seem to be the case for Ge.
The following calculations employ the same basis sets and
k points as were used in testing the simple two-center
approximation in Sec. IV, and so all differences between
the two sets of results can be attributed to the different
forms of the two-center approximation.

Calculations using the 4s and 4p atomic orbital ba-
sis were not as sensitive to distant neighbor interactions
as the H and S matrix calculations and the results were
well converged with a real space cutoff of 7.4 A. However,
the calculated band structure was still nothing like the
accurate Harris functional band structure. Truncating
the basis functions using r,,, = 4ag gives the band struc-
ture shown in Fig. 3, which is much worse than the cor-
responding H S matrix band structure. The calculated
lattice parameter was 5.44 A and the bulk modulus was
1440 kbar, to be compared to the accurate Harris func-
tional values of 5.50 A and 820 kbar, respectively. The
band structure obtained when the five 4d orbitals were
added to the 4s and 4p orbital basis set with r,,, = 4ag
was worse, if anything, than the band structure shown
in Fig. 3. The D matrix band structures look so wrong
that it is reasonable to ask whether there is an error in
the calculations. This is possible, of course, but the pro-
grams were well tested and Bullett** has obtained similar
results using an unrelated set of programs.

So where does the problem lie? The arguments in favor
of two-center D matrix TB rely on the assumption that
the three-center matrix elements of the CP are smaller
than those of the bare potential. This seems sensible, but
consider the simple case when there is only one basis func-
tion per atom and compare the magnitude of (¢3|V [Po)
with the magnitude of the corresponding matrix element
of the Anderson CP,

(¢ﬂl(1 - I¢7>(¢‘Yl)ff‘¥|¢a>

N A
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FIG. 3. Non-self-consistent Harris functional tight-binding
Ge band structure ignoring three-center contributions to the
D matrix. A basis set of boxed s and p (pseudo) atomic
orbitals was used with the box size, rr;, equal to 4ay.
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Since the atomic orbitals are longer ranged than the
atomic potentials, the second term on the right hand side
decays to zero more slowly than the first as the distance
between atoms B and ~ increases. For large values of
|Rg—R,|, therefore, the second term may be much larger
than the first. The three-center matrix element of the CP
is then “overscreened” and may end up larger than the
matrix element of the original potential (although of op-
posite sign), so ruining the accuracy of the two-center D
matrix approximation. Neither the simple two-center H
matrix approximation nor the more sophisticated two-
center D matrix approximation works well for Ge, and
neither explains the usefulness of two-center orthogonal
semiempirical TB in tetrahedral semiconductors.

VII. CONCLUSIONS

The recent successes of the Harris functional used with
very simple input densities constructed by superposing
spherical atoms have led to the development of a number
of parameter-free TB methods. These have been very
successful, but would be much more appealing if a way
could be found to avoid the evaluation of the many com-
plicated three-center integrals. If this could be accom-
plished, then the parameter-free TB schemes would be-
come almost as simple as semiempirical TB and many
interesting applications would open up. The obvious ap-
proach is just to ignore all the three-center contributions
to the H matrix, but this turns out to be a poor approx-
imation for Ge. The three-center terms are not small
enough to be neglected and the errors are magnified be-
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cause of the near linear dependence of the basis set of
atomiclike orbitals. The errors can be reduced by reduc-
ing the range of the basis functions, but the three-center
terms remain important even when the orbitals are so
short ranged that they no longer make a good basis set
and so not much can be gained this way. The long ac-
cepted argument that CP theory is the answer, and that
making a two-center approximation to the D matrix is
accurate even though the two-center H matrix approxi-
mation is not, has been shown to be wrong in Ge. The
three-center contributions to the D matrix are at least
as important as the three-center contributions to the H
matrix and cannot be neglected.

It seems, therefore, that the use of two-center TB for
tetrahedral semiconductors (and presumably for all solids
except those clearly in the conventional narrow band TB
limit) is still on shaky foundations and that the promise
of the D maitrix approach is not fulfilled. Bullett’s work
has shown that this method works well when the bands
are narrow, but the simple two-center I matrix approx-
imation should also be good in such cases. When both
methods are inaccurate, as in Ge, it seems that the D
matrix approach is the poorer of the two and its possible
applications are therefore very limited.

~The question about why Goodwin’s** simple two-
center orthogonal TB model for Si worked so well re-
mains. Is it just a sensible physically motivated fitting
scheme, or do his parameters have precise physical mean-
ings and values which could have been calculated using
DFT? This work has shown that the conventional an-
swers to these questions are inadequate and so some new
ideas are required.
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