
Collaborate to Compete: An Empirical Matching Game

under Incomplete Information in Rank-Order

Tournaments

Tat Chan, Yijun Chen and Chunhua Wu∗

October 2022

Abstract

This paper studies the collaboration of talents in rank-order tournaments. We use
a structural matching model with unobserved transfers among participants to capture
the differentiated incentives of participants that spur collaboration, with a specific fo-
cus on incorporating incomplete information and competition in the matching game.
We estimate our model using data from a leading data science competition platform
and recover the heterogeneous preferences and abilities of participants that determine
whether and with whom they form teams. Overall, teamwork enhances performance
and competition fosters collaboration, whereas incomplete information about potential
coworkers’ ability hinders collaboration. Using the estimation results, we conduct coun-
terfactuals to investigate how the information on potential collaborators’ ability and
competitive pressure affect collaboration and performance outcome. Our results sug-
gest that the platform could further improve collaboration and yield better outcomes by
providing more informative signals of ability and further concentrating the allocation
of rewards to top performers.
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1 Introduction

Collaboration enhances the performance of individuals and organizations in various contexts
(e.g., Hollis, 2001; Ductor, 2015; Un et al., 2010). Competition often fosters collaboration.
For example, more than 200 COVID-19 vaccine candidates were in development in 2020.
In the race to become the first to succeed, at least one-third of the projects were partner-
ships (Druedahl et al., 2021). Since collaborations require cooperation and/or specialization
of complicated tasks, their success relies on the ability of all parties. A lack of informa-
tion about potential partners would lead to greater uncertainty in outcomes and thus deter
collaboration.

This paper empirically studies how information availability and competitive pressure af-
fect collaborations and their outcomes, focusing on a unique setting: crowdsourcing data
science competitions on Kaggle.com. Kaggle is a leading platform connecting firms sponsor-
ing competitions with participants (i.e., data scientists) who compete to develop the best
solutions and win rewards. The rewards are both monetary (cash prizes to top teams offered
by sponsoring firms) and non-monetary (Kaggle points rewarded by the platform) and are
based on performance rankings–a format equivalent to rank-order tournaments. A compe-
tition typically attracts hundreds or even thousands of participants, who are encouraged
to collaborate as teams. There are multiple reasons for individuals to form teams. First,
collaboration can bring many benefits, including the economy of scale, complementarity of
knowledge and skills, and division of labor, all of which help tackle complicated tasks and
improve overall performance. Competitive pressure is another reason. Because payoffs from
the top ranks are much larger than those of other ranks in the competition, the collaboration
of other participants may force an individual also to collaborate. However, as repeated inter-
actions across competitions are not common, individuals have to rely on incomplete public
information, such as Kaggle tiers1, to infer the real ability of potential teammates when form-
ing teams. This can lead to inefficiencies due to adverse selection and moral hazard (e.g.,
Holmstrom, 1982; von Siemens and Kosfeld, 2014), which lower participants’ incentives to
form teams. As we show in this paper, collaborations greatly improve the overall outcomes
of Kaggle competitions; thus understanding how information and competition affect collab-
orations will build knowledge of how a better platform design can motivate collaborations
and improve team performances.

To achieve that goal, we develop a structural one-sided matching model to quantify
participants’ underlying motives for collaboration. The model has several unique features

1Source: https://www.kaggle.com/progression. The Kaggle tiers are part of the progression system that
is based on participants’ past performances. See Section 3 for more details.
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that capture the empirical setting. First, participants compete against each other in the
market. A successful collaboration will improve their ranking and thus the monetary and
non-monetary rewards while at the same time reducing the payoffs of other teams. Sec-
ond, the matching game accommodates a large number of participants with heterogeneous
abilities, which are partially reflected by incomplete public information. Third, our model
allows potential collaborators to negotiate how rewards and costs are shared. Teams will be
formed only if all the parties agree on the sharing rule. These features allow us to capture
participants’ decisions to collaborate in the competition under incomplete information. We
focus on the market equilibrium, which is characterized by each participant’s optimal choice
regarding whether to collaborate and with whom, under two constraints. The first is that
each individual makes rational inferences on the true ability of potential teammates based
on their public information and collaboration decisions. The second constraint requires that
the sharing of rewards and costs agreed upon by collaborators clears the market.

Estimation results show that a participant’s tier status reasonably reflects her actual
ability. However, there is considerable variation in abilities across participants who belong
to the same tier, indicating that the public information is a noisy signal. We find that
both monetary and non-monetary rewards, including Kaggle points and other benefits from
forming teams, are highly valued by participants. We also find that participants, in general,
perform much better by forming teams. However, for high-ability participants, the gains from
collaborating with lower-ability teammates are negative, implying the risk of collaboration
due to incomplete information. Finally, we recover the market-clearing reward-sharing rules
between participants under market equilibrium. Results show that participants at a lower
tier are willing to pay a positive (monetary and non-monetary) transfer to teammates at a
higher tier. This explains why a significant proportion of participants from high tiers are
still willing to form teams with participants from lower tiers in the data.

Based on the recovered model primitives, we conduct two counterfactuals to investigate
how to improve platform design to facilitate collaborations and enhance team performances.
In the first counterfactual, we show that uncertainty about the ability of potential teammates
is an important factor that hinders collaboration among high-ability participants. Increasing
the informativeness of the tier status could reduce the uncertainty and lead to more collab-
orations among high-ability participants. It will boost the performance of the best teams,
but at the cost of the performance of an average participant who may find it more difficult
to team up with high-ability teammates. In the second counterfactual, we manipulate the
competitive pressure by changing how the platform allocates its Kaggle points to teams at
different performance rankings. We find that increasing the competitive pressure from a flat
scheme of points allocation to a steep scheme that concentrates the points’ allocation to
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top teams will incentivize all participants to collaborate. Consequently, more teams will be
formed and both the best and average team performance will be improved, and this creates
benefits for the sponsoring business and the participants.

The contribution of this paper is two-fold. From the methodology perspective, we de-
velop an empirical matching model that explicitly accounts for incomplete information and
competition—two factors not addressed in the extant empirical matching literature (e.g.,
Choo and Siow, 2006; Fox, 2008; Sørensen, 2007). Our model also allows for unobserved
sharing rules between agents, a factor not accounted for in the previous empirical literature
of coalition games. Our utility-based model framework is suitable for estimating large match-
ing games with incomplete information and/or externality, such as matching in online dating
platforms and team formation in multiplayer games. For substantive contributions, this pa-
per provides insights on how collaborations affect individual performance and competition
outcomes, and how information and competition affect team formation and performance.
The results contribute valuable insights on efficient platform designs in the environments
under which collaborations are prevalent.

The rest of the paper is organized as follows. We discuss related literature in Section 2,
then describe the empirical context and provide summary statistics in Section 3. Section 4
develops the matching model. Detailed model specification, identification and the estimation
are presented in Section 5, followed by estimation results in Section 6. Counterfactual
analyses are shown in Section 7. Finally, we discuss the limitations and outline future
research directions in the conclusion section.

2 Related Literature

Our study is closely related to the large stream of literature on matching. Theoretical
works on matching games have been developed for decades. The “Gale-Shapley” algorithm
has been applied to solve problems for college admissions (Gale and Shapley, 1962), dating
markets (Becker, 1973), and business and plant locations (Bayus, 2013). While most of the
works assume complete information in the matching game, a few recent papers explore the
properties of the matching game when agents have incomplete information. Liu et al. (2014),
for example, study a matching game with one-sided incomplete information and show that
the set of stable outcomes is nonempty and is a superset for the set of complete-information
stable outcomes.

Empirical works on matching are rather recent. Fox (2008) proposes using the maximum
score estimator to estimate the matching game. In a later paper (Fox, 2010), he discusses the
identification conditions for using observed matching outcomes for model estimation. The
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maximum score estimator has been applied in several studies in different industries (e.g., Fox
and Bajari, 2013; Yang et al., 2009; Wu, 2015; Ni and Srinivasan, 2015). A few recent papers
study the vertical relationship between insurance networks and hospitals using the matching
model. Ho and Lee (2017), for example, use a Nash-in-Nash framework as the equilibrium
concept in the matching game. A similar modeling approach is adopted in Ghili (2022). Our
matching model assumes that there is a sharing rule (under which each party is making the
optimal choice in matching and the market is cleared) between collaborators depending on
their attributes. This approach was first developed in Becker (1973) and later adopted in the
empirical work of Choo and Siow (2006) that studies the marriage market. These two papers,
as well as other empirical studies mentioned above, do not consider the issue of incomplete
information. In this sense, our paper is close to Chan et al. (2015), who use a matching model
to study how individuals, fully aware of the costs associated with being infected, engage in
risky sex behaviors. Agents in their model have uncertainty regarding the health status of
their partners. Chan et al. (2015) also make the market-clearing assumption so that they can
estimate the model using the maximum likelihood estimator with equilibrium constraints.
Our model diverges from theirs by incorporating competition among collaborations, under
which the payoff of one collaboration is affected by the performance of the others.2

Collaborations are typically modeled as a coalition game (for example, see Farrell and
Scotchmer, 1988; Pycia, 2012). An agent’s payoff is usually assumed to be determined by
the coalition she belongs to. In a more complex setting, the payoff can be determined by
other coalitions, and the agent thus will react to other agents’ coalition decisions under the
competitive pressure (Yi, 1997; Wilson et al., 2010). Our study fits into the framework
of a coalition game when externality exists. We contribute to this stream of literature by
relaxing the perfect information assumption and allowing for an unobserved sharing rule for
the coalition formation. Our study incorporates externality by directly modeling the payoff
of a coalition as a function of other coalitions.

The empirical context of our paper is aligned with the growing literature on crowdsourc-
ing. Given the emergence of crowdsourcing platforms in the past decade, researchers have
explored various phenomena in crowdsourcing. Burtch et al. (2013), for example, study the
content contribution of users of a digital journal and test several economic theories using
substitution models and reinforcement models. Bayus (2013) studies individual ideators’

2A few other empirical studies consider either incomplete information or competition. Ackerberg and
Botticini (2002), for example, relax the perfect information assumption and estimate contract determinants
by explicitly embedding endogenous selection in the matching process. Wilson et al. (2010) extend the
matching literature by incorporating externalities from network effects in faculty members’ office choice.
Uetake and Watanabe (2017) study firm entry decisions in the banking industry, allowing for potential
spillovers. The modeling approaches in these papers differ from ours.
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contribution in Dell’s IdeaStorm community over time, and finds that past success has a
negative effect on the current contribution. Huang et al. (2014) study the learning process of
participants on the same Dell platform and show that individuals learn quickly about their
ability to generate high-potential ideas but are relatively slow to learn the cost of imple-
mentation. The above research on crowdsourcing has treated collaborations on platforms as
exogeneously given. We contribute to the literature by studying how participants in Kaggle
competitions collaborate and how collaboration affects the outcomes.

Finally, the way that Kaggle awards participants Kaggle points and monetary prizes
makes the competitions equivalent to rank-order tournaments (Lazear and Rosen, 1981).
This stream of literature studies how ranking-based rewards can motivate hard work and
improve performance. For example, Eriksson (1999) uses compensations for executives to test
the tournament theory. Kini and Williams (2012) find that higher tournament incentives will
motivate risk-taking behaviors for senior managers in order to increase the chance of being
promoted. Lazear (1989) shows that while tournaments motivate worker effort, excessive
competition for rewards may reduce collaborations. Our study differs from these works by
investigating how different competitive pressure driven by the structure of rewards (Kaggle
points) affects the collaboration and performance outcomes.

3 Background and Data

In this section, we discuss the empirical context, describe the data, and explore some data
patterns that are related to our empirical matching model.

3.1 Empirical Setting

Our empirical setting is Kaggle.com, a leading global crowdsourcing platform for predictive
modeling and analytics competitions. Founded in 2010, Kaggle bridges the connection be-
tween the demand for and supply of data science talent. On the demand side, firms provide
data for the business problems they seek to solve or opportunities they want to explore. On
the supply side, data scientists, researchers, and students who have the talent and tools to
solve the problems crave for the opportunity to prove their ability and earn rewards. Kaggle
connects the two sides by holding sponsored crowdsourcing competitions in which partici-
pants compete to provide the best solutions and win awards offered by sponsoring businesses.
By the end of 2017, Kaggle had hosted 248 competitions, attracted more than 60,000 partici-
pants, and awarded over 9 million US dollars. These competitions have resulted in significant
scientific advancements including furthering the state of the art in HIV research, improv-
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ing predictive technologies and algorithms, and uplifting operational efficiency in business
applications.3

The sponsoring business specifies the winning rules and monetary prizes for most compe-
titions. Depending on the business background, type of analytics required, and the winning
prize, each competition attracts a distinct set of participants. They can compete solo or
form teams. It is common for thousands of participants to register in the same competition,
making it very difficult to win the prize. To incentivize participation, Kaggle awards “Kag-
gle points” to each participant based on her final ranking in the competition. The typical
policy is to allocate most points to a few best performers; then, the awarded points decline
quickly as a convex function with lower ranks. This creates additional competitive pressure
for participants to be placed high in competitions when the Kaggle points are valuable. We
capture the competitive nature in our structural matching model.

Kaggle uses a tier progression system to classify individuals. The tier system is based
on participants’ past performances on the platform. Participants who are new to the plat-
form, thus with no previous performances, are recognized as Novices. After gaining points
in one competition, participants progress to the Contributor tier. To further progress to the
Expert tier, participants need to consistently achieve good performances (e.g., top 40% of
all the teams) across competitions. Finally, the highest tier on Kaggle, Master, requires one
to consistently place at the very top (e.g., top 10% of all the teams) across competitions.4

In addition to Kaggle tiers, Kaggle has a leaderboard that ranks participants based on ac-
cumulated points across competitions. Note that the amount of earned points decays over
time; thus to rank high on the Kaggle leaderboard, participants need to continuously par-
ticipate and place high in competitions. As Kaggle has gradually established its reputation
in the data science community, showing the top-tier status and a high ranking on Kaggle’s
leaderboard is a useful way to strengthen the resume of data scientists. In an interview with
Wired Magazine, Gilberto Titericz, a top Kaggle player, shared that job opportunities that
flow from a good Kaggle ranking are generally more bankable than money prizes.5

Collaborations can be critical for participants to achieve good performance and win re-
wards. To ensure high-quality solutions for sponsoring businesses, Kaggle designs rules
that do not simply allow, but encourage participants to collaborate. Indeed, the formal
unit of participation is a “team,” such that a participant competing solo is just a “single-

3Source: https://techcrunch.com/2017/06/22/the-kaggle-data-science-community-is-competing-to-
improve-airport-security-with-ai and https://www.kaggle.com/c/passenger-screening-algorithm-challenge.

4See https://www.kaggle.com/progression for a more detailed description on the point allocation and tier
progression system. Some terminologies has changed in 2016. We use the ones before the change in this
paper.

5Source: https://www.wired.com/story/solve-these-tough-data-problems-and-watch-job-offers-roll-in.
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member team.” Collaborations on Kaggle are formed in a decentralized way, in which par-
ticipants decide whether and with whom to form teams, usually through an invitation-and-
acceptance/rejection procedure. Mutual agreements among team members are needed, but
once the team is formed, a participant is not allowed to separate from the team throughout
the competition.

Despite the potential benefits of collaboration, many factors may deter team formation.
The first is the lack of information about other participants’ actual ability. Kaggle tries
to solve this problem by making each participant’s tier-status information public on the
website. This information, nevertheless, is an imperfect measure. For example, the abilities
of Novices are not well distinguished, and individuals who participated in more competitions
are more likely to belong to a higher tier. 6 Furthermore, how the monetary and non-
monetary rewards are shared among team members may also affect collaborations. The
monetary prize—if a team wins—has to be split between members with rules negotiated in
advance. Kaggle points will also be allocated based on the number of participants in a team
(more details are below). Finally, free-riding and moral hazard can create inefficiencies and
conflicts among team members. Therefore, the expected payoff for a participant in a team
may not be higher than that from competing solo.

To encourage collaboration, Kaggle changed its point-allocation policy in 2016. Before
the change, team members received points according to what their team won divided by the
team size. The new policy divides the points of the team by the square root of the team
size.7 Kaggle also reduced the points a team can win at each rank. Single-member teams,
therefore, can earn fewer points under the new policy. This could increase the incentive for
participants to form teams.

3.2 Data and Summary Statistics

We use the Meta Kaggle data provided by Kaggle.com8 for the empirical application. The
dataset includes information on competition rules, participants, teams, and the final scores,
ranking, and monetary rewards for each team. We observe 315 competitions that cover a
period of 7 years, from 2010 to 2016. We exclude competitions that did not award Kaggle
points, which are educational or designed for participants to familiarize themselves with the

6It’s possible that some teams are formed based on previous interactions that reveal better information
than Kaggle tiers, such as students from the same university or players who have collaborated on Kaggle
before. Overall, the percentage of such teams is small: our manual check shows that less than 3% of teams
use names revealing the university name, and less than 3% of teams have the same team members in multiple
competitions in our sample.

7Source: https://blog.kaggle.com/2015/05/13/improved-kaggle-rankings.
8Source: https://www.kaggle.com/kaggle/meta-kaggle.
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platform. We also exclude competitions that have less than 100 participants. These are
mostly competitions in the very early years of Kaggle. Since the value of Kaggle points
was not yet well recognized by the data scientist community, the incentives for participants
could be different from the competitions in a later stage when Kaggle points are highly
valued. A competition lasts several months, during which a team makes an average 23
submissions. Only the best submissions are evaluated for ranking and reward. We exclude
teams with less than 5 submissions since their incentives to participate could be different
from teams that actively make submissions. For example, the participants may only want to
taste what Kaggle’s competitions are about. After excluding the two types of competitions
and participants with too few submissions, we retain 102 competitions and 32,362 unique
participants in the model estimation. In the sample, 87% are single-member teams. For
teams with multiple members, 63% have two members. The dimensionality of team options
will become much higher and the matching problem too complex if we model team formation
with more than two members. For the simplicity of analysis, we assume that, for teams
with more than two members, the formation is driven by multiple, separate one-on-one
matching between the member with the highest cumulative Kaggle points and each of the
other members. The rationale for this assumption is that the presence of the member with
the highest tier status is the most important determinant for the team performance. For
instance, the performance of teams whose highest tier is Master has first-order statistical
dominance over teams whose highest tier is below the Master level.

Table 1 presents summary statistics on quartiles of monetary rewards and number of par-
ticipants across competitions. The monetary rewards vary dramatically across competitions:
the average prize of the first quartile is only $380, but it increases to $67,621 in the fourth
quartile. In general, higher monetary rewards attract more participants. Competitions in
the first quartile of monetary rewards on average attract 226 participants, while those in the
fourth quartile attract 1,374 participants.

Table 1: Monetary Rewards and Participants Across Competitions

Rewards Quartile Rewards (USD) Participants

min mean max min mean max

Q1 250 2319 5000 107 380 1840
Q2 6000 9054 10000 108 545 3848
Q3 13000 20345 25000 194 896 2362
Q4 30000 88500 500000 196 1721 5696

Table 2 shows Kaggle points of the four tiers. We report the average points a participant
wins from each competition she joined. Novices have not participated in any competition and
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thus have 0 points. As a participant’s tier moves up, the average Kaggle points received in
each competition also increase. The last column of the table shows that 60% of participants
are Novices, whereas Masters are an elite group, as only 10% of participants belong to this
tier.

Table 2: Summary Statistics of Participant Tiers and Kaggle Points

Tier Mean Points per Competition No. of Participants

Novice 0 34929 (60.0%)
Contributor 845 10924 (18.7%)
Expert 1702 6679 (11.5%)
Master 4371 5721 (9.8%)

Note: Participants may join multiple competitions, so the total number of par-
ticipants in this table is larger than 31,246(unique participants across com-
petitions); Percentages of each tier are shown in parentheses.

Table 3 reports how participants with different tiers choose to form teams. Two clear
patterns arise. First, Novices and Masters are more likely to form teams, likely due to differ-
ent reasons. Novices form teams in order to learn and improve their ability by collaborating
with others. Masters, on the other hand, are well-recognized in the community for their
high abilities. Since they can help to increase the team performance, Masters are highly
sought after for collaborations. Second, there is a pattern of sorting: participants tend to
match with other participants from the same tier. This is especially true for both Novice
and Master tiers. The proportion of teams formed with Novices is large across tiers because
Novices are the majority in most competitions.

Table 3: Summary Statistics of Participant Team Choices

Tier/Choice Single
Team

Novice Contributor Expert Master

Novice 54% 39.7% 3.2% 1.4% 1.6%
Contributor 78.0% 10.8% 8.3% 1.9% 0.9%
Expert 75.6% 7.5% 3.0% 9.8% 4.1%
Master 53.2% 8.7% 1.4% 4.1% 32.5%

Note: Rows represent participant tier and columns represent participants’ choices. Numbers represent
percentage of choices for each option.

We now look at how collaboration impacts performance. In almost all the competitions,
performance is measured by the predictive accuracy on hold-out samples, but the criteria
used for calculating the accuracy differ from competition to competition.9 Since the measure

9Some of the most commonly used evaluation algorithms are Root Mean Squared Errors (RMSE), Root
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is unique for each competition, we create a standardized score from the original performance
measure. We first calculate the mean and standard deviation of the original performance
measure (i.e., accuracy metric) for all single-member teams in the data, including those teams
with less than 5 submissions. We then deduct the original performance of each team by the
calculated mean and further divide it by the calculated standard deviation. The idea of the
standardization is that the mean and standard deviation of single-member teams capture
the benchmark difficulty and variation in performance using the original measure. After the
standardization, the scores of all teams can be compared across competitions.

We report the average and the standard deviation of the standardized scores across
different types of teams in Table 4. Several interesting patterns arise. First, conditional on a
participant’s tier, the performance when forming a team is in general better than when one
competes solo. Since the performance provides value for sponsoring businesses, this result
suggests that Kaggle should encourage more collaborations, a direction it has long pursued.
Still, a large percentage of participants compete solo, as shown in Table 3. One major reason
that we capture in the model is that, since participants have to split the monetary prize and
Kaggle points and face potential team conflicts, the expected payoff of a team player could
be lower than if she competes solo. Second, teaming with a higher-tier participant improves
performance—the average performance is the highest when working with a Master. Finally,
standard deviations in parentheses reveal a large variation in the performance of each team
type. Use single-member Novice teams as an example: the top quartile score higher than
1.03, while the bottom quartile score lower than 0.26. This implies that the ability of
participants who belong to the same tier is highly heterogeneous. Therefore, it is important
to capture the uncertainty about a potential teammate’s true ability in the matching model,
which we will present in the next section.

4 Model

In this section we develop a structural matching model, explicitly incorporating incomplete
information and competition, to study the matching outcomes when the market is at equi-
librium.

We model a participant’s team formation decision as a one-sided matching game in a
market with a large number of individuals. In Figure 1, we illustrate the empirical process
with a flow chart. The first box on the left represents a participant entering a competition
with her tier (Novice, Contributor, Expert, or Master) that is public information, and her

Mean Squared Errors (RMSE), Root Mean Squared Logarithmic Error (RMSLE), Area Under Receiver
Operating Characteristic Curve (AUC), and Log Loss.
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Table 4: Summary Statistics on Team Type and Performance Outcomes

Tier/Choice Single
Team

Novice Contributor Expert Master

Novice 0.64 0.77 0.76 0.95 1.32
(0.79) (2.7) (0.74) (0.87) (0.89)

Contributor 0.61 0.83 0.95 1.07
(0.61) (0.75) (1.07) (0.76)

Expert 0.82 1.13 1.19
(0.62) (0.89) (0.81)

Master 1.03 1.43
(0.83) (0.90)

Note: Each row represents a participant’s tier and each column represents the participant’s team choice.
Each number represents the mean score for a team type, and the standard deviation is in parentheses.
The statistics are computed for teams with at least 5 submissions in the competition.

true ability (low, medium, or high) that is private information. The following boxes show the
processes modeled in this study. The second box from the left indicates that participants will
first negotiate with potential teammates on the share of the monetary reward (if any) and
the “transfer” of workload from one to another. Next, teams will compete on developing the
best solutions (the third box) and will be ranked based on their submissions (the fourth box).
Consequently, the monetary and points rewards will be allocated to each team according to
the performance ranks (the fifth box) and each participant will obtain her payoff determined
by the team rewards, the negotiated shares, and the amount of workload (the sixth box).
The arrow from the payoff stage to the team-formation stage indicates that a participant’s
decision of whether and with whom to form a team is based on her expected payoff from
forming a team with each potential teammate in the market. The expected payoff depends
on the expected team performance, which is a function of not only the participant’s but
also the potential teammate’s true ability. However, since the participant only observes the
potential teammate’s tier, she will form a belief on the teammate’s true ability based on the
tier information, as well as the teammate’s decision of forming a team with her under the
negotiated terms. We assume that the participant and the potential teammate will form
rational beliefs regarding the true ability of each other. We prove in Section 4.4 that the
market equilibrium exists in our model.

Below, we formalize the model in four steps. First, we specify the expected payoff function
that determines an agent’s team-formation decision. We then outline the team-performance
function and the monetary and point rewards allocations. We further derive the belief-
updating process and the market-clearing conditions. Finally, we prove the existence of the
market equilibrium.
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Figure 1: Competition Process and Model Structure

4.1 Model Setup and the Payoff Function

We assume that the matching outcomes, including teams that are formed and the perfor-
mance (i.e., the standardized score) of each team, come from the market equilibrium. To
make the model tractable, we make a few additional assumptions. First, the negotiated
terms between two parties cannot be broken once the team is formed. Potential issues from
forming teams, including moral hazard and personal conflicts that can affect the team per-
formance, are captured in a reduced-form way in the model. Second, the pool of participants
is treated as exogenous in the model. This helps us abstract away from the complicated par-
ticipation problem. To partially address the endogeneity of participation, our model allows
the distribution of abilities of participants to be different depending on the monetary reward
of competitions. Third, we treat each competition as a static game, so that we can focus on
the determinants of team formation within a competition and ignore the strategic dynamic
interactions between participants. Fourth, we focus on the team size of two and model only
the one-to-one matching decision among participants. In our data, 63% of multi-member
teams have a size of two. For teams with more than two members, we model the one-to-one
matching decision between the individual with the highest Kaggle tier and each of the other
members. Finally, we treat the monetary and non-monetary rewards pre-specified in the
competition as exogenous.

For each competition, we denote the set of participants as N , and the number of partic-
ipants as N . Also denote the set of teams formed asM, and the number of teams as M . A
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team 〈i, j〉 ∈ M indicates that the focal participant i forms team with a target participant
j. As a special case, 〈i,∅〉 denotes that participant i competes solo instead of teaming with
another individual.

Each participant is represented by two attributes: Ai is the true ability of the participant
which is private information, and Ri a noisy signal (i.e., tier status on Kaggle) about her
ability that is public information. We assume Ai and Ri are discrete variables, and use A and
R to represent the number of possible types for Ai and Ri, respectively. We further use A and
R to represent the collection of abilities and signals of all participants in the competition. The
informativeness of the signal Ri is represented by the conditional probability Pr (Ai = a|Ri)

for all types of abilities. For a 6= a′, if Pr (Ai = a|Ri) is close to Pr (Ai = a′|Ri), Ri is not
informative to identify the true ability. However, if Pr (Ai = a|Ri) is close to one while the
probabilities for other abilities are close to zero, Ri is very informative. The conditional
probability is assumed to be common knowledge.

The performance of team 〈i, j〉, denoted as Y〈i,j〉(Ai,Aj), is determined by the abili-
ties Ai and Aj. Team performance is independent from the ordering of i and j, i.e.,
Y〈i,j〉(Ai,Aj) = Y〈j,i〉(Aj,Ai), and it does not depend on the abilities of other teams. However,
the rank of Y〈i,j〉 will depend on the performance of all teams. This captures the compet-
itive environment, as a better performance of one team can drive down the ranking and
thus the payoffs for other teams. We use YM to denote the collection of performances of all
teams underM, and Z〈i,j〉(YM) to represent the ranking of team 〈i, j〉. For the sponsoring
business, the performance of the best team, i.e., max (YM), brings the most value as the
algorithm can be applied to best solve its business problem. Participants, on the other hand,
care about the ranking since it determines the amount of the monetary reward, denoted by
Money(Z〈i,j〉(YM)), and the number of points, denoted by Point(Z〈i,j〉(YM)), that the team
can earn from the competition (details are in Section 4.2).

Kaggle decides how the Kaggle points awarded to a team should be split between its
members, and members negotiate by themselves how to share the monetary reward and
the team work. Since the abilities Ai and Aj are unobserved by the other team member,
the sharing rule will be determined based on the public information Ri and Rj. When the
market is at equilibrium, the sharing rule will also be determined by R, the distribution
of signals of all participants in the competition (more details are in Section 4.3). Because
of this, we use γM (Ri,Rj,R) to represent i’s share of the monetary reward. For team
〈i, j〉, the share of each member is non-negative and the sum of shares is equal to one,
i.e., γM (Ri,Rj,R) + γM (Rj,Ri,R) = 1. If competing solo, all the monetary reward will
belong to the participant, i.e., γM (Ri,∅,R) = 1, where “∅” indicates that i does not have
a teammate. For the share of team work, we use τ (Ri,Rj,R) to denote the “transfer” of
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workload from i to j. A larger workload may represent j taking more work tasks or handling
work tasks that are less fun or have lower learning value. As a participant’s agreement
to handle more of the workload implies that the other participant will have less work, we
impose the restriction that τ (Ri,Rj,R) + τ (Rj,Ri,R) = 0. This assumption is similar to
the model in Becker (1973), in which the transfer of the man and the woman in a marriage
sums up to zero. We normalize the transfer between teammates within the same tier to zero,
i.e. τ (Ri,Rj,R) = 0 if Ri = Rj. Under the normalization, τ (Ri,Rj,R) > 0 suggests that
j takes more workload, relative to both sharing the work equally. There is no transfer in a
single-member team, so τ (Ri,∅,R) = 0.

Finally, there are additional benefits from team works, including the economy of scale
and specialization in job tasks, and as such the workload of each member can be reduced.
There are also additional costs, such as moral hazard and potential personal conflicts, when
working as a team. Note that these are the benefits and costs on top of how teamwork can
impact the performance in the competition, which is captured in Y〈i,j〉(Ai,Aj). We cannot
separately identify these additional benefits and costs from the data; therefore, our model
only incorporates the net benefit from the above factors. To allow for heterogeneity of the
net benefit across teams, we vary it as determined by the tiers of team members, i.e., the
net benefit is represented by a function α (Ri,Rj).

Combining the above components, we assume that when the focal participant i is con-
sidering the collaboration with the target participant j, she will form an expectation of her
payoff relative to all of the other team options. When making the decision, her informa-
tion set is (Ai,Ri,Rj,R), which also represents the state variables in the expected payoff
function. The expected payoff is the following:

U (Ai,Ri,Rj ,R) =θMi · γM (Ri ,Rj ,R) · E
[
Money

(
Z〈i ,j〉 (YM)

)
|Ai ,Ri ,Rj ,R

]
+

θPi · γP · E
[
Point

(
Z〈i ,j 〉 (YM)

)
|Ai ,Ri ,Rj ,R

]
+ τ (Ri ,Rj ,R) + α (Ri ,Rj ) + εi ,Rj .

(1)

In the above equation, parameters θMi and θPi represent the participant’s marginal utility
for the monetary and non-monetary reward, respectively. γP captures how Kaggle allocates
team points to each participant. As discussed in Section 3, under the original policy γP =

1/2, where 2 is the team size; after the policy change, the new γP = 1/
√

2. Finally, the
random component εi,Rj captures other unobserved factors that will affect the participant
decision of whether and with whom she will form a team. We assume that it is the same
if two target participants j and j′ share the same public signal. That is, εi,Rj = εi,Rj′ if
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Rj = Rj′ .10

Under the normalization assumptions for working solo, the expected payoff function of
forming a single-member team is

U (Ai ,Ri ,∅,R) =θMi · E
[
Money

(
Z〈i ,j 〉 (YM)

)
|Ai ,Ri ,∅,R

]
+

θPi · E
[
Point

(
Z〈i ,∅〉 (YM)

)
|Ai ,Ri ,∅,R

]
+ εi ,∅.

(2)

The participant will form a team with another participant who belongs to tier Rj if her
expected payoff is larger or equal to the expected payoff from forming teams with participants
of other tiers (including solo team). Assuming that εi,Rj follows the Type-I extreme value
distribution with scale parameter µ and given a sharing rule γM and a transfer rule τ , the
probability that participant i’s optimal choice is to team up with participant j with signal
Rj (including single-member team with j = ∅ and Rj = ∅) can be calculated as:

Pr(〈i, j〉|Ai,Ri,Rj,R) =
exp(V (Ai,Ri,Rj,R)/µ)∑

r ′∈(R∪∅) exp(V (Ai ,Ri , r ′,R/µ)
, (3)

where V (Ai,Ri,Rj,R) on the right side is the expected payoff in equation (1)—or equa-
tion (2) if Rj = ∅—without the random component εi,Rj .

Similarly, the probability that participant j’s optimal choice is to team up with partici-
pant i with signal Ri is:

Pr(〈j, i〉|Aj,Rj,Ri,R) =
exp(V (Aj,Rj,Ri,R)/µ)∑

r ′∈(R∪∅) exp(V (Aj ,Rj , r ′,R/µ)
. (4)

The two optimal choice probabilities in equations (3) and (4) imply that the matching
〈i, j〉 (or equivalently 〈j, i〉) is optimal for both i and j. Note that, γM and τ in equation (1)
are unobserved by researchers. To evaluate the choice probabilities, we will have to back out
them from the model.

In the case of perfect information, i.e. participants’ true abilities are common knowledge,
the two equations (3) and (4) of optimal choice probabilities could be replaced by:

Pr(〈i, j〉|Ai,Aj,A) =
exp(V (Ai,Aj,A)/µ)∑

a ′∈(A∪∅) exp(V (Ai , a ′,A/µ)
, (5)

10This is based on the assumption that, other than the public signal Rj , the focal participant cannot
observe other attributes of the target participant. Therefore, she is indifferent in teaming with j or j′ if
Rj = Rj′ . Relaxing this assumption makes the matching problem more complicated without direct bearing
on our main results. The same assumption is made by Becker (1973), Choo and Siow (2006), and Chan et al.
(2015).
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and
Pr(〈j, i〉|Aj,Ai,A) =

exp(V (Aj,Ai,A)/µ)∑
a ′∈(A∪∅) exp(V (Aj , a ′,A/µ)

, (6)

where the true abilities Ai and Aj replace the signals Ri and Rj, and the distribution of
abilities A replaces the distribution of signals R on both sides. In our application, since
participant i only knows Rj in equation (3) and not Aj in equation (5), she will make an
inference on Aj based on the public signals, as well as j’s decision to form a team with
her under the negotiated terms. Details on how she makes the inference are discussed in
Section 4.3.

4.2 Performance and Rewards

The ranking of team 〈i, j〉 depends on the performances of all teams, which are the stan-
dardized scores discussed in the previous section, of all teams. With abilities Ai = a and
Aj = a′, the performance function is specified as

Y〈i ,j 〉 (a, a ′) = λaa ′ + ξij , (7)

where λaa′ represents the predicted performance of a team with ability a and a′ is a model
parameter to be estimated. By definition λaa′ = λa′a.11 Let λa′ represents the predicted
performance when j works alone. If λaa′ > λa′ , it means that the performance of working
with i is higher than that of no collaboration. It can be due to multiple reasons. One is that
i has higher ability than j (i.e. a > a′), and j is relying on i to handle challenging tasks.
In this case, i’s performance does not necessarily improve and could even possibly decrease
(i.e., λaa′ < λa) because i not only takes the heavy workload but also makes extra effort in
communication with j. Another scenario is that complementarity from team work exists,
which may come from each team member specializing on the task that she is good at, or
simply dealing with less parts of the work can lead to better performance. Complementarity,
if it exists, means that the joint performance is greater than the solo performance of either
i or j, i.e. λaa′ > max{λa,λa′}.

Finally, the stochastic term ξij in equation (7) captures other unobserved factors that
affect the final performance, and it is assumed to be normally distributed as N

(
0,σ2

ξ

)
.

Participants know the distribution but not the exact value of ξij when making the team
formation decisions.

The collection of performances of all teams under team structureM is YM. The expected
11The benefits and costs of collaborations cannot be separately identified in our data, and as such λaa′

captures the net benefit in a reduced-form way.
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monetary and non-monetary rewards of team 〈i, j〉, as equation (1) shows, depend on the
rank of Y〈i,j〉 in YM, i.e., Z〈i,j〉(YM). Let Pr (Aj = a|〈i, j〉,Rj,Ri,R) be the probability that
the true ability of the target participant j is a, conditional on i and j teaming up, the target
participant’s signal Rj, the focal participant’s signal Ri, and the collection of signals of all
participants in the competition R. This conditional probability also represents the updated
belief of participant i regarding j’s ability conditional on j agreeing to team up with i, which
differs from the prior belief of j’s ability, denoted by Pr (Aj = a|Rj), that depends only on
Rj. We will specify such conditional probability or the updated belief in the next sub-section.

Assume that the top P teams in the competition will receive monetary prizes, denoted
by Prizep for the pth place. The expected monetary reward for the focal participant can be
specified as:

E
[
Money

(
Z〈i ,j 〉 (YM)

)
|Ai ,Ri ,Rj ,R

]
=

P∑
p=1

[
Prizep × Pr

(
Z〈i,j〉 (YM) = p

)]
=

P∑
p=1

[
Prizep ×

∑
a∈A

Pr (Aj = a|〈i, j〉,Rj ,Ri ,R)× Pr
(
Z〈i ,j〉 (YM|Ai , a,M) = p

)]
.

(8)

In the above equation, the probability that the rank of team 〈i, j〉 is at the pth place is
denoted on the right side in the first line. This probability is the sum of the conditional
probability that Aj is equal to a specific level a multiplied by the probability that, given Ai
and a as the true abilities of the two team members and team structureM, the rank of the
team is at the pth place. This is expressed mathematically in the second line of the equation.

Similarly, we specify the expected non-monetary reward (i.e., Kaggle points) for team
〈i, j〉 as:

E
[
Point

(
Z〈i ,j 〉 (YM)

)
|Ai ,Ri ,Rj ,R

]
=

M∑
p=1

[
Pointp × Pr

(
Z〈i ,j 〉 (YM) = p

)]
=

M∑
p=1

[
Pointp ×

∑
a∈A

Pr (Aj = a|〈i, j〉,Rj ,Ri ,R)× Pr
(
Z〈i ,j 〉 (YM|Ai , a,M) = p

)]
.

(9)

Note that the first summation on the right side of the equation is up to M , the total number
of teams. This is because under Kaggle’s policy, every team will receive a certain number of
points.

The challenge of evaluating the expected monetary and non-monetary rewards is to com-
pute the probability of the order, Pr

(
Z〈i,j〉 (YM|Ai, a,M) = p

)
in equations (8) and (9). The

computation is complicated because it involves a rank order distribution. We use the asymp-
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totic normality of the order statistic distribution to approximate the distribution of the per-
formance of the pth-place team. The asymptotic distribution mimics the actual probability
very well when the number of participants is large in the competition. Utilizing this distri-
bution function, we then use numerical method to compute Pr

(
Z〈i,j〉 (YM|Ai, a,M) = p

)
.

Details are in Appendix A.12

4.3 Updated Beliefs and the Market-Clearing Condition

Given signal Rj for participant j’s ability, participant i’s prior belief regarding j’s ability
is Pr (Aj = a|Rj). Suppose j agrees to collaborate with i and let her take γM share of the
monetary reward and transfer τ . We assume that i will update her belief with this new
information, using the Bayes rule as follows:

Pr
(
Aj = a|〈j, i〉,Rj,Ri,R; 1− γM ,−τ

)
=

Pr(〈j, i〉|Aj,Rj,Ri; 1− γM ,−τ)× Pr (Aj = a|Rj)∑
a′∈A Pr(〈j, i〉|a′,Rj,Ri; 1− γM ,−τ)× Pr (Aj = a′|Rj)

,

(10)
where Pr(〈j, i〉|Aj,Rj,Ri; 1 − γM ,−τ) is j’s choice probability given that her true ability
is Aj, which is defined in equation (4). Note that, since γM and τ are what i takes from
the team, j will receive 1 − γM share of the monetary reward and −τ as transfer. Also,
equation (10) implies rational expectation in the updated belief because it is based on j’s
optimal choice. Similarly, j will update her belief on i as follows:

Pr
(
Ai = a|〈i, j〉,Ri ,Rj ,R; γM , τ

)
=

Pr(〈i, j〉|Ai,Ri,Rj; γ
M , τ)× Pr (Ai = a|Ri)∑

a ′∈A Pr(〈i, j〉|a′,Ri,Rj; γM , τ)× Pr (Ai = a ′|Ri)
,

(11)
where Pr(〈i, j〉|Ai,Ri,Rj; γ

M , τ) is also i’s optimal choice probability given that her true
ability is Ai. Combining the updated beliefs for both i and j in equations (10) and (11),
we capture the following equilibrium effect: i’s updated belief on j is based on j’s optimal
choice, while j’s updated belief on i is also based on i’s optimal choice; so both i and j’s
beliefs are consistent with each individual’s optimal choice in the equilibrium.

When the market is at equilibrium, the number of participants with signal r ∈ R who
wants to match with participants with signal r′ ∈ R is equal to the other way around.
Thus, γM and τ have to satisfy this market-clearing condition. However, researchers ob-

12In other empirical settings the payoffs for individual or firm collaborations may depend on the perfor-
mance instead of the ranking. This will make the computation of the payoffs much easier without relying on
order statistics as in rank-order tournaments. For example, when firms compete for market share, the payoff
can be approximated by a multinomial logit market share function which is a function of the performances
of the focal collaboration and other collaborations. In such case the payoff can be evaluated in an analytical
way.
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serve neither γM nor τ ; as such, the two cannot be separately identified without additional
data. We normalize γM to be 1/2, and focus on solving for the market-clearing τ . This
normalization does not affect the results because it can be derived from re-parameterization:
assuming that the true sharing rule is γ̃M 6= 1/2 and the true transfer is τ̃ , one can simply
set γM = 1/2, and re-specify τ as τ̃ plus

(
γ̃M − 1/2

)
multiplied by the expected mone-

tary reward (preference for money θM is normalized to 1 in our empirical application), i.e.,
τ = τ̃ +

(
γ̃M − 1/2

)
E[Money]. The choice probability will remain unchanged. Under this

normalization, the transfer τ captures the monetary value of the workload that i transfers to
j relative to sharing the workload equally, plus the additional monetary reward that j pays
to i relative to sharing the reward equally.

With the normalization, let Pr(〈r, r′〉|R, τ) be the probability that a participant with
signal r chooses to collaborate with another participant with signal r′, conditional on the
collection of all participants’ signals R and transfer τ . The probability can be derived as

Pr(〈r, r′〉|R, τ) =
∑
a∈A

Pr(〈r, r′〉|a, r, r′,R; γM = 1/2, τ)× Pr(A = a|r), (12)

where Pr(〈r, r′〉|a, r, r′,R; γM = 1/2, τ) is the optimal choice probability on the right-hand
side of equation (10) with the values of γM = 1/2 and τ . The market-clearing condition
states that the transfer from the participant with signal r′ to the participant with signal r,
represented by τ(r, r′), has to satisfy the following equality:

Pr(〈r, r′〉|R, τ(r, r′))× PrR(r) = Pr (〈r ′, r〉|R,−τ (r , r ′))× PrR(r′), (13)

where PrR(r) and PrR(r′) represent the proportions of participants with signals r and r′,
respectively.

Substitute equation (12) into (13), and further plug equation (3) into the equation, then
apply logarithmic transformation and move terms, and we can derive that:

τ(r, r′) =
µ

2
·
[

lnPrR(r′) + ln
(∑

a

exp (V (a, r′, r,R; γM = 1/2, τ(r, r′))/µ+ τ(r, r′)/µ)∑
r̃∈(R∪∅) exp (V (a, r′, r̃,R; γM = 1/2,−τ(r, r̃))/µ)

× Pr(A = a|r′)
)

− lnPrR(r)− ln
(∑

a

exp (V (a, r, r′,R; γM = 1/2, τ(r, r′))/µ− τ(r, r′)/µ)∑
r̃∈(R∪∅) exp (V (a, r, r̃,R; γM = 1/2, τ(r, r̃))/µ)

× Pr(A = a|r)
)]

,

(14)

where V (a, r′, r,R; γM = 1/2, τ(r, r′)) is the expected payoff conditional on the values of
γM = 1/2 and τ(r, r′). This expression helps us to prove the existence of the market
equilibrium (in the next sub-section). Finally, we provide a summary of all variables and
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parameters in the model in Table 5.

Table 5: Model Variables and Parameters

Variables Explanation

i, j individual participant
A collection of abilities
Ai = a i’s ability is a
R collection/distribution of tiers
Ri = r i’s tier is r
〈i, j〉 multi-member team
〈i, ∅〉 single-member team
M the set of formed teams
p rank in competition
Moneyp money reward for rank p
Pointp point reward for rank p
Y〈i,j〉(a, a

′) 〈i, j〉’s performance with abilities a, a′

ξij unobserved team performance factor
YM collection of performances of all teams
Z〈i,j〉(YM) rank of team 〈i, j〉 under YM
Pr(Z〈i,j〉(YM) = p) probability of team 〈i, j〉’s rank equals p under YM
Money(Z〈i,j〉(YM)) money reward of team 〈i, j〉 under YM
Point(Z〈i,j〉(YM)) point reward of team 〈i, j〉 under YM
γM sharing rule of monetary reward
γP sharing rule of point reward
τ(Ri,Rj) workload transfer from tier Ri to Rj
U(Ai,Ri,Rj ,R) utility for i of Ai,Rj when teaming with j of Rj under R
εi,Rj

unobserved utility factor between i & tier Rj
Pr(〈i, j〉|Ai ,Ri ,Rj ,R; γM , τ) choice probability for i of Ai,Ri teaming with j of Rj under

R, conditional on endogenous γM , τ
Pr(Aj |Rj) prior belief of tier Rj ’s ability
Pr(Aj = a|〈i, j〉,Rj ,Ri ,R; 1− γM ,−τ) i’s posterior belief on j’s ability equaling a if j of tier Rj

agrees to form team with i of Ri under R, conditional on j
receiving 1−γM ,−τ in share of money and workload transfer

Pr(M) collection of choice probabilities of all tiers and abilities

Parameters Explanation

θMi , θPi marginal utility for money and points
λaa′ team performance
α(Ri,Rj) net benefit in team between tier Ri,Rj
τ collection of transfers
γM (Ri,Rj ,R) tier Ri’s share of money with Rj under R
µ scaling parameter of ε under extreme type I distribution
δξ standard deviation of ξ under normal distribution

4.4 Market Equilibrium

The matching game in our model is characterized by the preference parameters
{
θMi , θPi ,α (Ri,Rj)

}
for every participant (see equations (1) and (2)), the monetary and non-monetary rewards
{Prizep,Pointp} for every rank (see equations (8) and (9)), and how the non-monetary
rewards are split, i.e., γP in equation (1). The market is at equilibrium when the market-
clearing condition in equation (13) is satisfied for every (r, r′) pair. In addition, the prob-
ability that a participant with ability and signal (Ai,Ri) matches with another with signal
r has to be the participant’s optimal choice. That is, equation (3) has to be satisfied when
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γM = 1/2 and τ = τ (r, r′). The market equilibrium is represented by the choice probabilities
in equations (10) and (11) and transfer τ .

Let Pr(M) be a vector with (R × A) × (R + 1) rows that represents the collection of
the choice probabilities of all ability and signal types (including single-member team choice),
and τ be a vector with (R2 + 1) rows that represents the collection of transfers from one to
another signal type within a team (the transfer in a single-member team is fixed to zero).
We can combine equations (3) and (14) into a system of equations H : (Pr(M), τ ) →
(Pr(M), τ ): {

Pr(M) = h1(Pr(M), τ ),

τ = h2(Pr(M), τ ).
(15)

Definition 1 A Competitive Collaborative Market Equilibrium (Pr(M)∗, τ ∗) is the
solution of the equation system H.

Proposition 1 For each competition characterized by
{
θMi , θPi ,α (Ri,Rj)

}
for every partic-

ipant, {Prizep,Pointp} for every rank, and γP for every competition, market equilibrium
defined as the solution of the equation system H in equation (15) exists.

The proof is in Appendix B.
The equilibrium concept is based on the matching model with transferable utilities in

Becker (1973) and the empirical matching model in Choo and Siow (2006), both applying
to the marriage market. One important guarantee of the existence of the equilibrium is the
large market assumption, i.e., there are enough agents for each type such that one agent
could always find her most favorable type of agent if the agent is willing to pay the equi-
librium transfer. Our empirical setting satisfies the assumption, as there is a large number
of participants (hundreds or even thousands) for each public tier in each competition. As
discussed above, our study differs from these earlier papers, as we allow for incomplete infor-
mation in the empirical model. Agents form rational beliefs due to incomplete information.
The updated beliefs in equations (10) and (11) illustrate that both i and j form rational
expectations when forming a team.

Note that our model does not utilize the pairwise stability conditions in the model esti-
mation as in Fox (2008) and Wu (2015). Instead, we use the maximum likelihood estimation
while imposing marketing-clearing conditions for the transfers τ , which is similar to Chan
et al. (2015). However, under the large market assumption, the matching probability func-
tions in equations (3) and (4) imply that neither i nor j wants to switch to team up with
other agents of different tiers conditional on the beliefs in the equilibrium. This indicates
that the equilibrium is not blocked by the deviation of any two tiers conditional on on-path
beliefs. If a deviation conditional on rational off-path beliefs is also consistent with the
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market-clearing conditions, it means that we will have multiple equilibria. While this could
be possible, in Appendix D, we use numerical simulations to empirically show that the equi-
librium is unique in the range of reasonable parameters. Therefore, the pairwise stability
condition is implicitly satisfied.

5 Model Estimation

In this section, we discuss how we operationalize the model estimation in the empirical
context and provide model-identification intuitions.

In the model, each participant is characterized by her true ability and a signal about her
ability. We discretize participant ability into three levels, i.e., A = {Low,Medium,High}.
We use the public Kaggle tier status to proxy the noisy signal. That is, R = {Novice,Contributor,Expert,Master}.
As the most highlighted information on the participant’s default public profile page, tier sta-
tus is the simplest source for players to differentiate the abilities of potential teammates.
Other signals, such as a participant’s accumulated Kaggle points, are also accessible on the
detailed profile page; yet they are highly correlated with the tier status and the differences
between the points are more difficult to interpret. Our model estimation is also much sim-
plified with a finite discrete measure of participant ability signal.

There are three sets of model parameters: utility parameters that are linked with the
observed team formation decisions, parameters for the mapping between public tier informa-
tion and private ability, and parameters on team abilities driving the observed performances.
For the utility parameters, we normalize the marginal utility of the monetary rewards θMi
to 1, and allow the preference for non-monetary point rewards θPi to vary based on the
participant’s tier status, i.e., θP = {θPNovice, θPContributor, θPExpert, θPMaster}. Such heterogeneity
captures the fact that a participant’s valuation of Kaggle points may differ across tiers. We
also allow θP to change before and after Kaggle adjusted its point-allocation rule. This
reflects the fact that the points a participant can earn from a competition are significantly
different after the policy change.

We allow the benefit from collaboration, i.e., α(Ri,Rj) in equation (1), to differ across
each unique combination of participants’ public tier status (Ri,Rj), but we assume α(Ri,Rj) =

α(Rj,Ri). The symmetric benefit assumption is solely a normalization for identification pur-
poses. To understand this, suppose i receives more benefits from forming a team with j,
i.e., α(Ri,Rj) > α(Rj,Ri), then i and j could negotiate the transfer τ(Ri,Rj) such that
i will agree on a larger transfer to j; otherwise, more participants of type Ri will want to
collaborate with type Rj and the market will not be at equilibrium. In other words, under
the market clearing assumption, the difference between α(Ri,Rj) and α(Rj,Ri) can not be
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separately identified from the transfer τ(Ri,Rj) and thus the assumption is necessary. Con-
sequently, there are 10 α’s to be estimated with four public tiers. Under this normalization,
one should interpret α(Ri,Rj) + τ(Ri,Rj) as the negotiated total benefit that i obtains from
working with j, relative to competing solo. In Online Appendix C, we use numerical simu-
lations to further illustrate this argument. Regarding the transfer τ ’s, we do not put further
restrictions on the values but allow them to vary flexibly across competitions and team types.
Indeed, they are not global model parameters to be estimated; instead, they are determined
by the market equilibrium conditional on the assumed model parameters (equation 14) in
the inner level of the model estimation (details are below). Given any model parameters,
the values of τ ’s are bounded; otherwise the market will not be at the equilibrium.

Since we do not observe the actual ability, the mapping function Pr(Ai = a|Ri) in equa-
tion (10) also needs to be estimated from the data. This probability is specific to every
combination of public tier and private ability and sums up to one for each public type;
therefore, there are 4 × 3 − 4 = 8 parameters with four tiers and three ability levels. As a
reduced-form way of capturing how competitions with various prize levels may attract dif-
ferent pools of talent to participate, we also allow the probabilities to differ for competitions
with small and large monetary rewards.13

For the team performance function specified in equation (7), we estimate the team abil-
ity λ’s for each unique combination of actual player ability types (a, a′), including those for
competing solo. There are 9 λ’s to be estimated with three ability levels. The difference
between the λ’s for a team (λaa′) and its individual members (λa∅,λ∅a′) reveals the potential
benefits and challenges of team work in performance. We estimate individual team abil-
ity parameters for each unique combination of player types instead of imposing parametric
restriction, because team ability may not be a simple addition or linear combination of indi-
vidual member abilities; rather, it could depend on with whom a participant is collaborating
with. It is even possible that the team ability could be worse than that of its members when
competing solo, e.g., if communication efforts take up much working time. Finally, we also
estimate the scale parameter µ in the utility function and the variance parameter δ2ξ in the
performance function.

5.1 Maximum Likelihood under Equilibrium Constraints

The outcomes of the matching game we observe from the data include team formation M
and performance Y〈i,j〉 of every team. Given a transfer τ , the probability of i collaborating

13Since competitions with high monetary awards are usually sponsored by bigger businesses and the tasks
are more challenging, there may be other non-monetary incentives that attract talents to participate in these
competitions.
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with j is:

L(〈i, j〉|Ri,Rj,R, τ) =(
∑
a∈A

Pr(〈i, j〉|a,Ri,Rj,R; γM = 1/2, τ)× Pr(Ai = a|Ri))×

(
∑
a′∈A

Pr(〈j, i〉|a′,Rj,Ri,R; γM = 1/2,−τ)× Pr(Aj = a′|Rj)).
(16)

The equation indicates that the team will be formed only if it is optimal for both partici-
pants.14

The likelihood of observing team performance Y〈i,j〉 conditional on a team 〈i, j〉 being
formed is:

L(Y〈i,j〉|Ri,Rj,R, τ) =
∑
a∈A

∑
a′∈A

Pr(Ai = a|Ri,Rj,R; γM = 1/2, τ)×

Pr(Aj = a′|Rj,Ri,R; γM = 1/2,−τ)×

φ(Y〈i,j〉,λ(a, a′), δ2ξ ),

(17)

where φ(y,λ(a, a′), δ2ξ ) is the normal probability density function of the performance when
the teammates’ abilities are a and a′, and the conditional probability function comes from
equation (10).

The likelihood function we use in model estimation is the sum of the log-likelihoods of
the observed team formation and performance in every competition in the data. That is,

l(Θ) =
∑
g

∑
〈i,j〉∈Mg

[l(〈i, j〉|Ri,Rj,R, τ) + l(Y〈i,j〉|Ri,Rj,R, τ)], (18)

where Θ denotes the set of model parameters, subscript g a competition andMg the collec-
tion of all teams in the competition. In addition, l(〈i, j〉|Ri,Rj,R, τ) and l(Y〈i,j〉|Ri,Rj,R, τ)

are the logarithm transformations of the likelihoods in equations (16) and (17), respectively.
The challenge of evaluating equation (18) is two-fold. First, the transfer vector τ is

unobserved to researchers; it has to be recovered from the market-clearing conditions in
every competition. Second, the payoff from working in a team depends on how other teams
in the competition are formed, i.e., the matching probability of a team is a function of the
matching probabilities of other teams in the competition, as the first line of function h1 in
equation (15) suggests. Because of these two complications, the likelihood function cannot
be evaluated analytically.

14For a single team 〈i,∅〉, the second line on the right side is fixed at 1.
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We propose a two-level estimation procedure to tackle the challenge. In the inner level,
conditional on trial parameters Θ we search for the matching probabilities and transfers
(Pr(M)∗, τ ∗) for every competition such that Pr(M)∗ = h1(Pr(M)∗, τ ∗) and τ ∗ =
h2(Pr(M)∗, τ ∗). That is, we find (Pr(M)∗, τ ∗) that satisfy the equilibrium constraints.
In the outer level, we search for Θ that maximizes the likelihood function in equation (18).
The algorithm proceeds as follows:

1. Start with initial parameter vector Θ0,

(a) With initial values (Pr(M)0, τ 0), calculate expected payoffs using numerical
methods;

(b) Calculate (Pr(M)′, τ ′) = H(Pr(M)0, τ 0);

(c) Replace (Pr(M)0, τ 0) by (Pr(M)′, τ ′). Repeat the above procedure (a)-(b)
until (Pr(M), τ ) converge. They represent the market equilibrium under model
parameters Θ0;

(d) Calculate the likelihood function value in equation (18) under parameters Θ0.

2. Search for Θ and evaluate the likelihood function value with the above process and
find Θ such that the likelihood function is maximized.

Note that Proposition 1 proves the existence but not the uniqueness of the equilibrium.
Potential multiple equilibria are a concern when we estimate the model and conduct coun-
terfactuals. During model estimation, we test whether this is an issue by varying the starting
values of (Pr(M)0, τ 0) in the inner level. We find that they always converge to the same
(Pr(M)∗, τ ∗), suggesting that the equilibrium is unique in our empirical application. We
provide details in Online Appendix D.

5.2 Identification

Given that there is no analytical solution to the equilibrium, we provide an informal discus-
sion on the intuitions behind model identification arguments in this sub-section.

The identification of the parameters of the team performance function (λ, δ2ξ ), and the
probability of true ability A conditional on public signal R, Pr(A|R), comes from how team
scores vary across different combinations of Ri and Rj, as equations (17) and (10) suggest. In
the likelihood, L(Y〈i,j〉) can be treated as a latent class regression, with Pr(A|R) representing
the size of the latent classes.

The proportions of teams with members from different public tiers identify the net ben-
efits of team formation, α. Conditional on the expected Y〈i,j〉 and thus the monetary and
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non-monetary rewards, the larger the proportion of teams formed by tiers Ri and Rj, the
larger the value of α(Ri,Rj), relative to α(Ri,∅) and α(Rj,∅) that are normalized to zero.
The identification of preferences for Kaggle points, θP , comes from the proportions of teams
formed across types of tiers and across competitions. For Kaggle competitions, points al-
located to a team increase by both the ranking of the team performance and the number
of participants. As an illustration, assuming that Master-Master teams on average perform
better than Masters competing solo, or Masters teaming with other tiers. Suppose that for
competitions with a large number of participants (thus high-ranked teams will obtain more
Kaggle points), Masters are more likely to form teams with other Masters. In contrast, for
other competitions when there are not many Kaggle points to be allocated, Masters are
more likely to form teams with participants from lower tiers (and thus enjoy the transfer of
non-points benefits from the teammate). This suggests that θP is high for Masters.

Finally, conditional on monetary prizes and Kaggle points, the variation in the propor-
tions of teams formed by different types of participant tiers identifies the scale parameter µ.
Suppose, for example, as the monetary prize increases across competitions, the proportions
only vary slightly. This lack of variation in team composition will imply a high value of µ.

6 Results

In this section, we report the estimation results. The estimated marginal utilities for Kaggle
points (θP ) are presented in Table 6. As the marginal utility for the monetary prize is
normalized to one, the estimates in the table represent how much a participant would value
one Kaggle point. Because of the change in the point-allocation policy we described in
Section 3, the value of Kaggle points may adjust correspondingly; therefore, we separately
estimate the marginal utilities before and after the policy change.

Table 6: Parameter Estimates of Preferences for Kaggle Points

Parameter Public Tier

Novice Contributor Expert Master

θP : before policy change 0.36 (0.11) 1.53 (0.18) 0.82 (0.05) 0.41 (0.12)
θP : after policy change 2.02 (0.04) 8.11 (0.06) 4.98 (0.26) 3.77 (0.02)

Note: Numbers represent the point estimates; numbers in parentheses are the standard errors
of the point estimates.

There is an inverted-U shaped relationship between the marginal utility for points and
participant tiers. The marginal utility increases as participants progress from Novice to
Contributor, then decreases as they further progress to Expert and Master. The result is
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probably due to the way Kaggle determines tier status. Novices are new entrants to the plat-
form who have not participated in any competition. In the data, more than 80% of Novices
participated in only one competition. As the Kaggle points from one competition are unlikely
to benefit these individuals in the future, their average marginal utility for points may be
low. The remaining 20% progress to the Contributor tier when they participate again. They
are those who self-select to continue to compete; therefore, they may have a much higher
marginal utility for points. The decreasing marginal utility for points from Contributor to
Master probably reflects the fact that the value of gaining additional points is lower, as
participants have accumulated more points. Still, the marginal utilities of Experts and Mas-
ters are significantly positive, suggesting the value of non-monetary benefits of accumulating
more points so that they will rank high on the Kaggle leaderboard (see the discussion in the
data section). Interestingly, marginal utilities for Kaggle points increase substantially after
the policy change. One possible reason is that, as more and more participants are attracted
to join competitions in later periods, it has become more difficult to win Kaggle points. The
result also explains why collaborations have dropped after the policy change in the data: as
Kaggle points are valued more, participants are more reluctant to form teams lest they have
to split points with the others.

The results suggest that Kaggle points are quite valuable for participants. Using the
estimates multiplied by the average number of points a participant wins in competitions,
we see that the average value of Kaggle points earned in each competition is $7,600 before
and $4,900 after the policy change. As a benchmark, the expected monetary reward for an
average participant is just $39. The comparison suggests that for most participants, non-
monetary payoff dominates monetary payoff, consistent with our quote in the data section
from Gilberto Titericz, a top Kaggle player, regarding the benefits of Kaggle points. To better
understand where the benefits come from, we further examined the related discussions on
Quora.com, a popular question-and-answer website, and found various answers suggesting
that being placed high in the tier system or on the leaderboard helps enrich one’s resume and
increase the chance of getting hired with a high salary offer.15 As a high ranking on Kaggle
requires consistently gaining high points across competitions, we believe the high marginal
utility of Kaggle points reflects the improved value of future career opportunities.

Table 7 reports the estimated net benefits (α(R,R′)) from forming teams on top of earning
monetary prizes and Kaggle points. All the estimates are significantly positive, implying that

15For example, one answer for the question “Can someone make a living from solving problems on
sites like Kaggle” (https://www.quora.com/Can-someone-make-a-living-from-solving-problems-on-sites-like-
Kaggle) says that “I see more people benefiting from Kaggle by putting their ranks in resumes. Having a
decent ranking certainly sets you apart from the crowd. I won’t be surprised if you end up with a 30% to
50% jump in salaries with a decent ranking.”
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in general, the benefits of forming teams outweigh the costs. These benefits are also higher
than the expected monetary reward for an average participant, suggesting that, in addition
to Kaggle points, the non-monetary benefits from peer collaborations are important. Since
collaboration could bring in economy of scale and division of labor, these benefits could come
from the time and effort savings. For instance, when two novices work together, they can
split the workload, so the $151 benefit reflects the saving of workload relative to working
alone (in this case, the transfer τ is 0). Furthermore, the net benefits from teaming with
individuals in high tiers are higher than with those in low tiers. For example, the benefit
for an Expert working with a Master is $407, more than double that of working with a
Novice ($183). The additional benefit can come from the value of learning from the Master
teammate.16

Table 7: Parameter Estimates of Preferences for Collaborations

Team Structure Novice Contributor Expert Master
Novice 151 (0.27) 162 (0.03) 183 (0.31) 220 (0.16)
Contributor 276 (0.05) 289 (0.05) 310 (0.04)
Expert 378 (0.32) 407 (0.04)
Master 552 (0.17)

Note: Numbers represent the point estimates; numbers in parentheses are the
standard errors of the point estimates.

Table 8 reports the estimated probability of a participant’s ability level conditional on
her tier status (i.e., Pr(A|R)). We group the competitions in our data into low- and high-
prize types, using the average prize amount across competitions as the criterion. There are
77 low-prize and 25 high-prize competitions, with the average prize amount about $9,000
and $76,000, respectively. A low-prize competition attracts about 400 participants whereas
a high-prize one attracts about 1,200 participants. We separately estimate the conditional
probabilities for these two types of competitions. Results show that Kaggle’s tier system is
in general consistent with participants’ ability. For example, the proportion of high-ability
individuals increases from 33-38% for Novices to 90-94% for Masters. However, the variation
in abilities within each tier is also substantial, indicating that tiers are a noisy signal. This is
especially the case for Novices, as the proportions of individuals with low and high-ability are
both large. We further calculate the distribution of true abilities in the pool of participants,
by summing up the products of the conditional probability and the size of each tier, across

16We will show below that there is a positive transfer of value from the Expert to the Master ($1,449)
in an Expert-Master team. This implies that the total net benefit for the Expert to collaborate with the
Master is even larger than $407; otherwise, the Expert will not agree to the transfer. In contrast, the benefit
for the Master working with the Expert is much smaller.
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all tiers. We report these in the rows of “Total”. The sizes of low-ability and medium-ability
groups are about the same, and both are about half the size of high-ability participants,
indicating that Kaggle’s competitions are attractive to top talents. In comparison with
small-prize competitions, the proportion of individuals with high-ability is larger in high-
prize competitions, while the proportion of low- and medium-ability individuals is smaller.
Competitions with high monetary rewards are usually hosted by big-name companies with
more challenging and impactful problems, thus they attract more talents.

Table 8: Parameter Estimates for Conditional Probability

Public Type Private Type

Low Ability Medium Ability High Ability

Small Reward Games
Novice 0.41 (0.04) 0.26 (0.09) 0.33
Contributor 0.18 (0.07) 0.47 (0.12) 0.35
Expert 0.09 (0.14) 0.20 (0.13) 0.71
Master 0.03 (0.18) 0.07 (0.16) 0.90
Total 0.29 0.27 0.44

Large Reward Games
Novice 0.37 (0.09) 0.25 (0.11) 0.38
Contributor 0.24 (0.11) 0.28 (0.07) 0.48
Expert 0.06 (0.12) 0.12 (0.14) 0.82
Master 0.03 (0.21) 0.03 (0.11) 0.94
Total 0.27 0.22 0.51

Note: Numbers represent the point estimates; numbers in parentheses are the stan-
dard errors of the point estimates; numbers in rows of “Total” represent uncon-
ditional probability of each ability type.

Table 9 reports the estimated mean performance parameter (i.e., λ(a, a′)) of each type of
teams. Estimates in the last column of the table are the mean performance of single-member
teams, which can be used as the benchmark against the performance of collaborations.
There is a strong increase in performance from low to high-ability single-member teams.
Comparing the left columns with the last column, one can see that collaborations clearly
help improve the team performance. For example, the predicted performance of a low-low
(high-high) combination is 0.52 (2.12), much higher than that when a low-ability (high-
ability) participant works alone. However, there is a downside for high-ability participants:
if they work alone, the predicted performance is higher than if they team up with medium-
or low-ability individuals. This difference is probably because potential substandard work
from a low-ability member can have a substantial impact on the whole performance of the
team. These results imply that the lack of information regarding the true ability of other
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participants can become a hurdle for high-ability individuals to form teams. Therefore,
improving the informativeness of the tier system may create better opportunities for the
collaborations among high-ability individuals, a result we will show in the next section.

Table 9: Parameter Estimates for Team Performance

Team Structure Low Ability Medium Ability High Ability Single
Low Ability 0.52 (0.02) 0.78 (0.02) 1.62 (0.09) -2.21 (0.34)
Medium Ability 0.89 (0.12) 1.77 (0.35) -1.07 (0.14)
High Ability 2.12 (0.39) 1.82 (0.17)
σ2
ξ 0.53(0.16)
µ 1313(21.7)

Note: Numbers represent the point estimates; numbers in parentheses are the standard errors
of the point estimates.

Finally, the estimated variance of the team performance (δ2xi) is 0.53, and the scale
parameter in participants’ utility function (µ) is 1,313. Both are relatively large compared
with the predicted team performance and average payoff levels, respectively. This indicates
large randomness in both team formation and performance.

Using model estimates, we could recovered the equilibrium transfers τ within each com-
petition. The average transfer from one tier to another across competitions is reported in
Table 10. Lower tiers have to pay a positive transfer to higher tiers when forming teams,
and the magnitude increases as the difference in tiers increases. For instance, to form a team
with a Master, an Expert on average needs to pay $1,449, while a Contributor needs to pay
more than twice the amount at $3,046. The high transfers reflect the high non-monetary
benefits from forming teams with high-ability teammates. When teaming up with an Ex-
pert, for example, the average value from gaining more Kaggle points and other benefits (i.e.
α) is $9,073 for Contributors but only $6,841 for an Expert. The Contributor, therefore, is
willing to transfer a positive value to the Expert. The supply of the participants in different
tiers is another reason for the amount of transfers. As shown in Table 2, there are more
Contributors(18.7%) and Experts(11.5%) than Masters(9.8%). If the transfers are too low,
there will be more Contributors and Experts who want to form teams with Masters and the
market will not clear.

Our model also allows us to recover the choice probabilities of participants given the equi-
librium transfers. Importantly, depending on participants’ true abilities, their choice prob-
abilities differ even when they belong to the same public tier. For instance, the probability
of low-ability Novices teaming with another Novice is 42%, with a Master the probability is
1%, and there is a 43% probability that the Novice will work solo. The probabilities for a
high-ability Novice are 6%, 4% and 88%, respectively. A high-ability Novice is more likely
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Table 10: Average Transfers Between Participants

Paid by
To Teammate

Novice Contributor Expert Master

Novice 0 2701 3477 4231
Contributor 0 1088 3046
Expert 0 1449
Master 0

Note: Transfer for participants within the same tier is 0. Positive values in the upper triangle mean that
participants from a lower tier will pay positive transfer to participants in a higher tier.

to stay single, because the loss from splitting points with the teammate is potentially large.
However, if she can team up with another high-ability teammate, she can have a high chance
to achieve a top ranking and thus win both monetary and non-monetary rewards. Therefore,
she is more likely to collaborate with a Master.

Panel (A) of Table 11 compares the average percentage of team types observed in the
data with that predicted by our model. Overall, the predicted distribution of team types is
highly consistent with the data pattern. The only collaboration that the model significantly
under-predicts is Masters teaming with Masters. Panel (B) of Table 11 further compares the
average scores across each team type in the data with those predicted by our model.17 The
numbers are again quite close to each other. For example, The model is able to replicate
how collaborating with a teammate of the same or different tier, a Master is able to obtain
an average score higher than competing solo. Overall, our model is able to predict well the
team formation and performance as observed in the data.

7 Counterfactuals

In this section, we will use the estimation results to examine through counterfactual anal-
yses how the incomplete information and competitive pressure impact team formation and
performance. Specifically, we manipulate the informativeness of public tiers and the point
allocation policy at Kaggle in separate counterfactuals. The results can help the platform
to design better policies to further motivate collaborations, which could ultimately benefit
participants and sponsoring businesses.

17Note that Table 9 reports the predicted performance based on the true abilities of two teammates.
Predictions from Table 11 are based on the distribution of true abilities for each tier, and the distribution
of team types based on the tiers of two teammates.
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Table 11: Model Fit

Tier/Choice Single
Team

Novice Contributor Expert Master

(A) Team Types
Novice 40.2%

(41.6%)
15.8%

(15.7%)
2.4% (3.0%) 1.1% (1.4%) 1.3% (1.4%)

Contributor 17.2%
(14.7%)

1.0% (0.9%) 0.4% (0.4%) 0.2% (1.4%)

Expert 10.6% (9.5%) 0.1% (0.7%) 0.1% (0.7%)
Master 7.4% (7.6%) 2.2% (1.0%)

(B) Team Scores
Novice 0.64 (0.68) 0.77 (0.80) 0.76 (0.79) 0.95 (0.87) 1.32 (1.21)
Contributor 0.61 (0.68) 0.83 (0.81) 0.95 (0.89) 1.07 (1.16)
Expert 0.82 (0.82) 1.13 (1.01) 1.19 (1.31)
Master 1.03 (1.11) 1.43 (1.44)

Note: Panel (A) represents percentage of team type; panel (B) represents average performance for team types;
numbers represent values from data; numbers in parentheses represent predicted values from estimation.

7.1 Impacts of the Uncertainty Concerning a Teammate’s Ability

Our estimation results (see Table 8) show that tiers are an imperfect signal of an individ-
ual’s true ability. In the first counterfactual we explore the impacts of changing the tiers’
informativeness on how participants form teams and on their performances.

We select one competition held with the original Kaggle point policy that offered a
$50,000 reward and attracted 1,396 participants in the data for the analysis. The Novices,
Contributors, Experts, and, Masters constitute 71%, 13%, 9%, and 7%, respectively. Our
model recovers a 30%, 23%, and 47% split for the low-, medium-, and high-ability partici-
pants, respectively. We manipulate the informativeness of the tier system by changing the
conditional probability of a participant’s ability across different tiers and simulate the team
formation and performance outcomes. We refer to the information structure from model
estimates as the original-information scenario (see the three columns under “Original In-
formation” in Table 12). We also create a no-information scenario with equal probabilities
across tiers (see the three columns under “No Information”) and a high-information scenario
with a much stronger correlation between the tier and ability (see the three columns under
“High Information”). Moving from left to right in Table 12, tier status becomes more infor-
mative and thus reduces the uncertainty about potential teammates’ ability. For example,
Novices become more likely to belong to the low-ability type (increase from 30% to 39%),
while Experts and Masters are more likely to be the high-ability type (increase from 47%
to 92% and 98%, respectively). In each scenario, we simulate the equilibrium outcomes by
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solving for the fixed point in equation (15). The choice probabilities and transfers are also
computed in each scenario.

Table 12: Different Information Scenarios (Pr(A|R))

Public Type No Information Original Information High Information

Low Medium High Low Medium High Low Medium High

Novice 0.30 0.23 0.47 0.37 0.25 0.38 0.39 0.23 0.38
Contributor 0.30 0.23 0.47 0.24 0.28 0.48 0.14 0.48 0.38
Expert 0.30 0.23 0.47 0.06 0.12 0.82 0.06 0.02 0.92
Master 0.30 0.23 0.47 0.03 0.03 0.94 0.01 0.01 0.98

Figure 2 (A) graphically compares the team formation outcomes across the three scenar-
ios. The percentage of multi-member teams increases from 61.1% under the no-information
scenario to 61.5% under the original-information scenario, and further to 62.3% under the
high-information scenario. This indicates that increasing the informativeness of tier status
will enhance the collaboration of participants. The increase in collaboration mainly comes
from more high-high collaborations, i.e. collaborations between two high-ability participants,
while high-low collaborations will decrease (see the right diagram of Figure 2 (A)). The result
suggests that more precise information regarding the ability of potential teammates facili-
tates the matching between high-ability participants and reduces “mis-matches” of abilities
in the team formation.

Diagrams of Figure 2 (B) compare team performances in the three scenarios. The max-
imum performance of all the teams increases from 3.58 in the no-information scenario to
3.62 in the high-information scenario (see the left diagram). The result suggests that in-
creasing the informativeness of tier status benefits sponsoring businesses, since for them the
outcome of the winning team is most valuable and outcomes from other teams are unlikely
to be adopted. The average performance across all teams however declines from the no-
information to the high-information scenario (see the right diagram). The decline is due
to the fact that low-ability individuals find it more difficult to team up with high-ability
individuals when the tier status is informative.

Overall, the results suggest that uncertainty about the ability of teammates is an impor-
tant factor that hinders collaborations between high-ability individuals. They would face a
great chance in matching with low-ability individuals when public information is uninforma-
tive. If Kaggle focuses on delivering the best outcomes for sponsoring businesses, it should
improve the informativeness of the tier system; however, doing so may reduce the collabora-
tion opportunities for low-ability participants, limit their learning from more capable peers,
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and lower the performance of an average participant18.

Figure 2: Impact of Informativeness

Bars represent 90% confidence intervals estimated based on 100 rounds of simulations.

7.2 Impacts of Kaggle’s Point Allocation Policy

Our estimation results suggest that players value the Kaggle points they earn in competitions.
Thus, Kaggle’s policy on point allocations substantially impacts the payoffs of participants,
and because points are awarded based on ranks, it will also create competitive pressure on
teams. In the second counterfactual analysis, we study how the competitive pressure impacts
team formation and performance.

The point-allocation policy can be represented by the slope of the point function that
determines how many points a team can earn at different performance rankings. A flatter
curve means that points are allocated more evenly across teams, while a steeper curve puts
more weight on the performance ranking, such that top-ranked teams receive significantly
more points. A steeper curve also creates more competitive pressure because it gives teams
extra motivation to stay on the top. We use the average points difference between two
neighboring performance rankings as the measure of the slope, which is equivalent to the
average absolute value of the gradients across all different ranks. Under Kaggle’s current
policy (see the green solid curve in Figure 3), the slope is 204, indicating that by moving
one rank higher, a team will on average obtain 204 more Kaggle points. We then construct
two counterfactual policies with different slopes. To make sure that the results are driven

18Kaggle recently introduced a multi-dimensional tier system (tiers based on different attributes), a di-
rection that helps improve the informativeness of tiers. See https://www.kaggle.com/progression/ for
details.
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only by the change in the slope of the allocation function, we fix the total points awarded to
all teams in all scenarios to be 7 million, the same as what we observe in the data. We first
create a counterfactual “flat-slope” scenario by setting the slope to 22 (see the dashed red
curve in Figure 3), under which improving the performance ranking does not bring the team
many Kaggle points. In another “steep-slope” scenario, the slope is 5,097. The dotted blue
curve in Figure 3 shows that a large number of points are awarded to the top few teams,
and teams ranked 50 or lower will gain very few points. We use the same competition as in
Section 7.1 in this counterfactual.

Figure 3: Point Allocation Slopes

Figure 4 graphically compares the outcomes of the three scenarios. The left diagram in
Figure 4 (A) shows that as the point allocation becomes steeper, the percentage of multi-
member teams increases from 55.0% in the flat-curve scenario, to 61.5% under the current
policy, and further to 72.3% in the steep curve scenario. This indicates that the increase
of the competitive pressure motivates participants to collaborate. It affects the high-high
collaborations the most, as the percentage of this type of teams increases from 8% under the
flat-curve scenario to around 20% under the steep-curve scenario (see the right diagram of
Figure 4 (A)). High-low collaborations , however, will decline when the competitive pressure
is too high. As the result of the increase in collaborations, the top performance will improve.
The left diagram of Figure 4 (B) shows that the top performance increases from 3.60 under
the flat-curve scenario to 3.69 under the steep-curve scenario. Such increase will benefit the
sponsoring business.

All of the above results are similar to those presented in Section 7.1, where we manip-
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ulate the informativeness of public tiers. In addition, the right diagram of Figure 4 (B),
however, shows that the average performance across all teams will increase from 0.83 under
the flat-curve scenario to about 0.97 under the steep-curve scenario. What drives the ma-
jority of teams to perform better under the competitive pressure is the large jumps in the
number of multi-member teams, as shown in the left diagram of Figure 4 (A). The increase
in collaborations makes everyone become more productive. Although the increase in the
informativeness of public tiers in the first counterfactual also encourages the formation of
teams, by comparison the change is not as drastic as from the increase in the competitive
pressure.

Figure 4: Impact of Competitive Pressure

Bars represent 90% confidence intervals estimated based on 100 rounds of simulations.

7.3 Discussion

The mechanisms that affect collaborations and team performances under the two counter-
factuals are very different. Improving the informativeness of the public tiers reduces the un-
certainty about the ability of teammates and benefits high-ability participants. This comes
at the cost of low-ability participants. A steep point-allocation system would create com-
petitive pressure, forcing participants to collaborate to compete effectively. Kaggle could
use this insight to design a better policy that creates more value not only for sponsoring
businesses but also the participants on the platform.

Our study focuses on Kaggle’s competitions, but the findings could be generalized to many
other contexts where collaboration is crucial to success. For example, co-authorship among
economists has been found to be growing over the years, which helps increase the number
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of publications for individual economists (e.g., Hollis, 2001; Ductor, 2015). Collaborations
are also prevalent in the service industry. Salespeople work as teams to provide customers
better services (e.g., Chan et al., 2014a,b). Financial advisors of banks form teams to combine
expertise and provide better account management for clients19. In the gaming industry, it
is a common strategy for gamers to tackle difficult tasks together in multiplayer games20.
Collaborations are also frequently observed at the firm level. Intra-firm partnership for R&D
projects is crucial for innovation (Un et al., 2010). Collaborative marketing is also a popular
strategy that involves working with similar firms to promote brands, minimize costs, and
increase sales21.

We have shown that reducing the uncertainty about potential collaborators will improve
the performances of top teams; however, the average performance across teams will decrease.
In some business cases (e.g. salesforce and financial advisor teams), the total performance
of all teams could be more important than the performance of the best team. Our finding
suggests that improving the informativeness of public signals may not be beneficial in these
cases. Rather, increasing the competitive pressure through a more concentrated allocation
of payoffs to a few top teams can improve the performance of not only the best team but
also the majority of teams, as the second counterfactual shows.

The counterfactuals demonstrate that the maximum score increases by 0.04 from the
no-information to high-information scenario, and 0.09 from the flat-curve to the steep curve
scenario. A potential concern is that the magnitude of the change seems quite small. To
better understand the magnitude of the increases, we use the results in Table 9 as a bench-
mark: when a high-ability individual forms a team with another high-ability individual,
the predicted improvement in the performance score is 0.3 relative to when she competes
alone, and 0.35 relative to when she forms a team with a medium-ability individual. Com-
pared with these predicted improvements, the changes in the team performance in the two
counterfactuals are not negligible.

Further improvement in the maximum performance score is difficult to obtain because
the score comes from the best team among a large number of high-ability participants (about
640). In cases where talents are not as abundant, the improvement of the top performance
will be bigger. To illustrate this point, we create a new competition in which the conditional
probabilities of high ability for Novice, Contributor and Expert are reduced. The number of
participants and the percentages of four tiers remain the same as in the previous counterfac-
tuals. Compared with the 30%, 23%, and 47% split for the low-, medium-, and high-ability

19Source: https://investmentsandwealth.org/teams.
20Source: https://www.ediiie.com/blog/gaming-trends-2020.
21Source: https://www.edge-creative.com/blog/what-are-the-benefits-of-collaborative-marketing.

38

https://investmentsandwealth.org/teams
https://www.ediiie.com/blog/gaming-trends-2020
https://www.edge-creative.com/blog/what-are-the-benefits-of-collaborative-marketing


participants in the original competition, we increase the proportion of low-ability partici-
pants to 49%, decrease the proportion of high-ability participants to 24%, and adjust the
medium-ability participants to 27%.

We repeat the two counterfactual exercises. Changes in the maximum performance of
the top team, when the informativeness of public tiers and the competitive pressure in-
crease, are shown in Figure 5 (A) and (B). The magnitude of the changes has increased:
as public tiers become more informative, the maximum performance increases from 3.38 in
the no-information scenario to 3.49 in the high-information scenario. The 0.11 increase is
significantly larger than the 0.04 increase in Section 7.1. Similarly, as competitive pressure
increases, the maximum performance increases from 3.44 in the flat curve scenario to 3.58
in the steep curve scenario. The 0.14 increase again is larger than the 0.09 increase in
Section 7.2.

Figure 5: Performances of Top Teams in New Competition

Bars represent 90% confidence intervals estimated based on 100 rounds of simulations.

One of the assumptions we make in the counterfactuals is that participants do not change
across scenarios. As public tiers become more informative and more points are awarded to
top teams, the number and composition of participants entering the competition are likely
to change, which consequently can influence the equilibrium outcomes. We expect more
high-ability and fewer low-ability individuals will enter the competition. As such, the effects
on team formation and performance might be stronger than what we showed. Ignoring the
entry decisions of participants is a limitation in our counterfactuals.

Since we do not observe how transfers are made between participants in a team, we
assume that they split the benefit of forming the team, i.e., αij, equally independent from
their tiers or abilities. We make the assumption because we cannot separately identify αij and
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τij. In reality, the split could be asymmetric, so one may be concerned that the assumption
can affect our results. To investigate this issue, we repeat the counterfactuals assuming that
the split is 1

3
for the lower-tier individual and 2

3
for the higher-tier individual. Results show

that, as the lower-tier (higher-tier) individual gains less (more) from α, the transfer from
the lower-tier individual to the higher-tier individual will reduce by a similar amount. More
importantly, changes in the team formation and team performances remain largely the same
in the counterfactuals. Therefore, we believe the symmetry assumption of α does not have
significant impact on our key findings.

8 Conclusions

Collaboration is a common phenomenon among individuals, within companies, and across
industries: gamers tackle difficult tasks together in multiplayer games; salespeople work as
teams to provide customers better service; firms work together on designing modularized
components in the supply chain. Understanding the motives and outcomes of collaborations
and designing marketplaces for efficient collaboration generates significant values.

Using Kaggle as an empirical context, we address two main issues that are neglected
in the literature. First, potential participants in collaborations may not fully observe the
ability of others. When payoffs are tied with abilities, such uncertainty may impede the
incentive of collaboration. We develop a structural matching model that incorporates the
incomplete information of participants and show that, when the public signals (i.e., tier sta-
tus) for abilities are more informative, the incentive for collaboration and the performance of
top performers will both increase. Second, individuals collaborate to compete against other
collaborations. Our model incorporates the competitive effect in the payoff function where
payoff depends on performance rankings. We use counterfactuals to show that incomplete
information may hinder collaboration and that high competitive pressure is beneficial to par-
ticipants, the sponsoring business and the platform because it can boost collaboration and
increase collaboration efficiency. The findings illustrate the mechanism of how incomplete
information and competition affect collaboration, and they can be generalized to other collab-
orative markets where incomplete information and competition are important components.
We make a methodological contribution to the literature by developing a model that captures
a complicated market environment where incomplete information is prevalent, spillover from
matching exists, and transfers between collaborators are unobserved. Our model framework
in its entirety or simplified forms could be applied to large scale one-to-one matching games
that involve numerous participants.

We made a few simplifying assumptions to keep the model tractable. Future research
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could relax these assumptions to further understand the underlying mechanism that drives
collaborations. First, we model collaborations as one-to-one matching. When the collabora-
tion involves more participants, the problem will become more complicated. Recent research
that studies network formation (e.g., Ho and Lee, 2017; Ghili, 2022) offers an alternative
way to model such type of collaborations. Second, our model treats entry of participants as
exogenous. To control for the potential issue that participants with different abilities may
choose competitions based on monetary reward, we allow the distribution of ability types to
be conditional on monetary reward. Future research can study how the entry decision may
affect collaborations, if more granular data such as click streams are readily available. Third,
we assume that transfers will not affect the team performance. This is a necessary assump-
tion for the model identification because we do not observe the transfer from the data. We
combine various important economic factors, such as the economy of scale, complementarity
of skills, and moral hazard in a reduced-form way in the team performance function that
is specified on vertical differentiation of abilities. Future research could further investigate
how these factors separately affect the incentive and outcomes of collaborations. Fourth, we
assume perfect information on the performance function for all tiers of participants. Allow-
ing the information on performance function to differ among participants will require us to
incorporate learning in the model, which is infeasible in our setting. We also acknowledge
the limitation that we can not exactly tell if team members had other interaction that pro-
vides better-quality signals. Future research could further investigate the implications from
learning on collaboration. Finally, one important assumption for our matching model is the
large market assumption. Adapting our model to matching markets with small number of
participants may require extra efforts to capture preference heterogeneity in a continuous
way.
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Online Appendix

A Calculation of Team Performance Rank

We now derive the probability of team performance rank for a team Pr(Z〈i,j〉(YM|Ai,Aj,M)).The
rank of a team is determined by its own performance and the performances of the other
teams. Since the performance of a team is driven by the true ability of team members, we
first need to calculate team structureM in terms of teams’ true ability. We define a team
type t by the true ability of team members, t = 〈a, a′〉 for multi-member teams and t = 〈a, ∅〉
for single-member teams. Given A types of true ability for participant, we have a total of
T = A(A+1)

2
+ 2A unique team types.

Given M, we could calculate the percentage of team type PrT (t) with the following
equation.

PrT (t) =
∑
r∈R

∑
r′∈R

PrR(r) · PrR(r′) · Pr(a|r, r′) · Pr(a′|r′, r). (A.1)

where t = 〈a, a′〉, PrR(r) and PrR(r′) represent the proportion of participants with signal
r and r′, and Pr(a|r, r′) represents the updated probability of a participant’s true ability
a conditional on her own signal r and her choice of teammate of signal r′, as defined in
equation (10) in Section 4.3. The team structure M could then be characterized by the
proportions of team type PrT (t) for all t ∈ T .

In Section 4.2, we assume the performance of a team with type t = 〈a, a′〉, such that
Y (t) follows normal distribution N(λt,σ

2
ξ ). The performance of one team Y ∈ YM follows

a mixture normal distribution, with each of the underlying component to be distributed
as N(λt,σ

2
ξ )and the probability of each components to be PrT (t). Based on the property

of mixed normal distribution, the cumulative distribution function of team performance Y
underM is defined as

FY (y) =
∑
t∈T

PrT (t)Φ(y,λt,σ
2
ξ ). (A.2)

and the probability density function of Y is defined as

fY (y) =
∑
t∈T

PrT (t)φ(y,λt,σ
2
ξ ) (A.3)

We use Y(p) to represent the pth order statistics of Y and PrT (p, t|Y(p) = y) to represent
the probability that the pth order statistic is from a particular team type t conditional on
the pth order statistics of Y equals y, then the value of PrT (p, t|Y(p) = y) could be derived
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using Bayesian Rule

PrT (p, t|Y(p) = y) =
φ(y|λt,σ2

ξ )PrT (t)∑
t′∈T φ(y|λt′ ,σ2

ξ )PrT (t′)
(A.4)

Then we integrate PrT (p, t|Y(p) = y) over the distribution of order statistics Y(p) and get
the unconditional probability that the pth order statistic is from a particular team type t,
PrT (p, t) as

PrT (p, t) =

∫
PrT (p, t|Y(p) = y)fY(p)(y)dy (A.5)

Finally, the probability that a specific team 〈i, j〉 with type t = 〈Ai,Aj〉 ranks the pth,
Pr(Z〈i,j〉(YM|Ai,Aj) = p) is equal to the probability that pth order statistic is from team
type t divided by the number of teams with the same team type t, which is the total number
of teams M times the proportion of team type t, i.e.,

Pr(Z〈i,j〉(YM|Ai,Aj,M) = p) =
PrT (p, t = 〈Ai,Aj〉)

M × PrT (t = 〈Ai,Aj〉)
. (A.6)

The challenge of calculating this probability comes from the complicated form of the
exact distribution of the order statistics Y(p) for mixture normal distribution. We utilize the
property of the asymptotic distribution of the order statistic function for mixture normal
distribution to help alleviate the computational burden (DasGupta, 2008). Specifically,

Y(p) ∼ N

(
F−1Y (

p

M
),

p
M

(1− p
M

)

M [fY (F−1Y ( p
M

))]2

)
. (A.7)

where p
M

is the specific quantile that defines the pth order, and F and f are cumulative
distribution and density function of Y defined in equations (A.2) and (A.3). We can sim-
ulate values from this asymptotic distribution and compute the numerical integration of
equation (A.5).

Specifically, the procedure of the expected probability calculation is outlined as follows:

1. Simulate S1 random numbers ν1 from the standard normal distribution, and simulate
S2 random numbers ν2 from the standard normal distribution.

2. Given the model parameters λ,σξ, compute the proportion of team types PrT (t) in
equation (A.1), then separately scale PrT (t) × S1 samples of ν1 to be νt = λt + σξν1

for each team type t. This gives us the mixture normal distribution of team ability
according to the team structure.

3. Rank-order the above values νt, and numerically compute the quantile function F−1Y .
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4. For each rank p, compute the following:

(a) Compute the mean and variance of the asymptotic normal distribution specified
in equation (A.7), and scale the S2- generated standard normal random numbers
ν2 to νp with the calculated mean and variance of Y(p);

(b) Use the simulated random numbers νp for each team type t to compute the nu-
merical integration in equation (A.5); and

(c) Compute the probability for team performance rank in equation (A.6) for each
team type t.

B Proof: Existence of Equilibrium

As explained in the paper, the equilibrium (Pr(M)∗, τ ∗) is characterized by the fixed
point of the system of equations H : (Pr(M), τ ) → (Pr(M), τ ). So the existence of
equilibrium is equivalent to the existence of a fixed point for H. The proof is done in two
steps. First, we show that in equilibrium transfer is finite, so we could restrict the domain
of H, (Pr(M)∗, τ ∗) to be a compact and convex subset of the Euclidean space. Second,
we show that H mapped from (Pr(M)∗, τ ∗) onto itself is continuous. Therefore, we can
use Brouwer’s fixed point theorem on H to prove the existence of a fixed point.

Proof. Because Pr(M) is the matching probability for a participant of R signals and A
true abilities with participants of R signals, the coordinates of Pr(M) forms a vector in a
vector space of R × R × A dimension. τ is the transfer between participants with different
signals. The coordinates of τ is a vector in R×(R+1)

2
vector space. Because we assume both

R and A are finite, the coordinates of (Pr(M)∗, τ ∗) is a vector in (R × R × A+ R×(R+1)
2

)

dimension vector space. (Pr(M)∗, τ ∗) is a point in Euclidean space of dimension (R×R×
A+ R×(R+1)

2
).

Suppose the set of τ is unbounded, ∃r, r′, s.t. τ(r, r′) = +∞, τ(r′, r) = −∞. ∀a, a′,
Pr(〈i, j〉|a, r, r′; τ) = 1, Pr(〈i, j〉|a′, r′, r; τ) = 0. ∀Pr(A|R), Pr(〈r, r′〉|τ) = 1, Pr(〈r′, r〉|τ) =

0, market equilibrium constraint is not satisfied. Thus in equilibrium the set of τ is bounded
and there exists a finite number B, s.t. each coordinate of τ is in the finite interval [−B,B].
The set of Pr(M) is bounded and closed because each coordinate of Pr(M) is a proba-
bility that lies in the unit interval of [0, 1]. We restrict D, the domain of H to be a closed
and bounded subset of Euclidean space. Because each coordinate of (Pr(M)∗, τ ∗) is in a
closed and bounded interval, the convex combination of two points in D is still in D, i.e D is
convex. Based on the specification in the paper, each member function of H is continuous,
and thus H is continuous. ∀(Pr(M), τ ) ∈ D, H(Pr(M), τ ) ∈ D, because h1 yields a
mapping from a set of probabilities on to itself and h2 comes from the market equilibrium
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constraint that controls the boundary of τ . Thus H is a continuous function from a compact
and convex set D onto itself.

By Brouwer fixed point theorem, the fixed point (Pr(M)∗, τ ∗) exists.�

C Simulation of Symmetric Benefits in Teams

In the model, we make the symmetric benefit assumption, i.e. α(Ri,Rj) = α(Rj,Ri) for
each unique combination of (Ri,Rj). Now we use simulations to show that the assumption
is necessary for identification.

We construct two sets of parameters. One is the original parameters in the Result section
estimated under the symmetric benefit assumption, and the other is the set of modified
parameters with everything remaining the same except using asymmetric benefits. The two
sets of benefits are shown in Table C.1.

Table C.1: Benefits from Forming Teams

Team Structure Novice Contributor Expert Master
Symmetric Benefits
Novice 151 162 183 220
Contributor 162 276 289 310
Expert 183 289 378 407
Master 220 310 407 552

Asymmetric Benefits
Novice 151 262 183 120
Contributor 62 276 289 310
Expert 183 289 378 407
Master 320 310 407 552

Specifically, in the asymmetric benefit scenario, we increase αNovice,Contributor by 100 while
decreasing αContributor,Novice by 100, so the sum (αNovice,Contributor+αContributor,Novice) remains
the same as that in the symmetric benefit scenario. We also decrease αNovice,Master by 100
while increasing αMaster,Novice by 100.

Then using each set of parameters, we simulate the equilibrium outcomes and recover
the transfers by solving for the fixed point in equation (15) for each competition in the data.

Table C.2 shows the average transfer τ from one to another tier across competitions
between different tiers in the two scenarios. Compared with the τ in the symmetric-benefit
scenario, on average, τNovice,Contributor decreases by 111, and τNovice,Master increases by 109.
Using the recovered τNovice,Contributor’s in 101 competitions, we run a T-test and find that the
decrease in τNovice,Contributor is not significantly different from 100 (p value = 0.65). Similarly,
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the increase in τNovice,Master is not significantly different from 100 (p value = 0.10). For the
rest of the α’s, the differences between the two scenarios are not significantly different from
0.

Table C.2: Average Transfer Between Participants

Paid by
To Teammate

Novice Contributor Expert Master

Symmetric Benefits
Novice 0 2701 3477 4231
Contributor 0 1088 3046
Expert 0 1449
Master 0

Asymmetric Benefits
Novice 0 2590 3475 4393
Contributor 0 1093 3069
Expert 0 1477
Master 0

Note: Transfer for participants with the same tier is 0. Positive values in the upper triangle mean that
participants of lower tier will pay positive transfer to participants in higher tier.

We further compare the equilibrium outcomes in terms of the average percentage and
average performance of each team type. The differences between the two scenarios are very
close to 0. The results are reported in Table C.3 and Table C.4.

Table C.3: Difference in Team Types between Two Scenarios

Tier/Choice Single
Team

Novice Contributor Expert Master

Novice -0.000021 -0.0001 -0.00012 0.000065 0.000086
Contributor -0.00028 -0.000052 0.000044 -0.000037
Expert -0.00017 0.000039 0.00019
Master -0.00036 0.00031

Note: Each value is calculated as the estimated result in the asymmetric benefit scenario minus that in the
symmetric benefit scenario.

The simulation results suggest that the changes in the α after relaxing the symmetric
assumption could be absorbed by the corresponding changes in τ such that the sum αRi,Rj +

τRi,Rj remains the same for each pair of (Ri,Rj). Since the equilibrium outcomes in the two
scenarios are also not significantly different, we conclude that only the sum αRi,Rj + τRi,Rj
could be identified from the data. Thus, the symmetric benefit assumption is necessary for
identification.
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Table C.4: Difference in Team Scores between Two Scenarios

Tier/Choice Single
Team

Novice Contributor Expert Master

Novice 0.00015 0.00085 -0.0028 -0.0013 0.0029
Contributor -0.0014 -0.0025 0.014 -0.015
Expert -0.0012 0.0059 -0.0012
Master 0.0033 0.0068

Note: Each value is calculated as the estimated result in the asymmetric benefit scenario minus that in the
symmetric benefit scenario.

D Simulation of Unique Equilibrium

Proposition 1 proves the existence of equilibrium. In this sub-section, we use simulations
to numerically show that the equilibrium is unique in the ranges of parameters that are
resonable for our empirical context.

We first generate 50 sets of parameters Θ by randomly drawing from a sequences of
uniform distributions. The ranges are [−5, 5] for the team performances λ, [0, 20] for the
preferences θ, [−2000, 2000] for the benefits in teams α, [0, 2000] for the utility scale µ,
[0, 1] for the standard deviation of performance δξ, and [0, 1] for the condition probability
Pr(A|R). We believe these ranges are reasonable, and wide enough for the estimation.

For each set of parameters, we randomly select one competition and numerically solve for
the equilibrium (Pr(M)∗, τ ∗) using 20 sets of different starting values. We randomly select
one equilibrium outcome as benchmark, and compute the difference between the benchmark
and each of the other 19 equilibrium outcomes.

Finally, we combine all the differences between Pr(M) into a large vector of length
50× 19× 60, where 60 is the number of elements in Pr(M).

Figure D.1 shows the density plot of the vector of differences in Pr(M). We find a
large mass of differences centering around 0. The absolute value of more than 90% of all the
57,000 differences is less than 0.01.22 This indicates that the vast majority of equilibrium
outcomes Pr(M∗) numerically converge to the same value. We find similar results for the
equilibrium τ ∗. Thus, we numerically show that in the reasonable ranges of parameters, the
equilibrium is unique.

22The convergence criterion in the inner loop solving for the fixed point is set as 0.01; the differences that
are close to 1 are usually caused by the equilibrium where team formation probability is 0 for all the team
types, but such equilibrium does not appear in the data.
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Figure D.1: Density of the Differences between Equilibrium Outcomes
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