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Background. People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts 
make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
There are few data on longer term responses and the impact of a booster dose.

Methods. Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 
months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. 
Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme- 
linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced 
marker (AIM) assay, and T-cell proliferation.

Findings. In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with 
mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and 
IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell 
responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine 
compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS- 
CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent 
for Omicron.

Conclusions. In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to 
known variants of concern (VOCs).
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Currently licensed vaccines targeting severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) protect against severe 
coronavirus disease 2019 (COVID-19) disease [1–6]. They in
duce robust humoral and cellular immunity against 
SARS-CoV-2 [2, 4, 7, 8], although with evidence of waning 
6–8 months following vaccination [9–11]. The emergence of 
variants of concern (VOCs) including the B.1.1.7 (Alpha), 
B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and more re
cently the B.1.1.529 (Omicron) lineages showing increasing 
numbers of mutations [12, 13], high transmissibility [14, 15], 
immune escape [16–20], and increased incidence of 
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breakthrough infections [21, 22] is particularly relevant to vul
nerable populations [23], including people with human immu
nodeficiency virus (HIV, PWH). These factors contributed to 
the recommendation of a third dose of COVID-19 vaccine by 
some countries [10, 24–26].

For PWH, there is evidence for poorer immune responses and 
more severe clinical outcomes following infection with other non- 
related pathogens, including SARS-CoV-2 [27–33]. This can be 
partially rescued through antiretroviral therapy (ART)-mediated 
reconstitution of CD4 T-cell counts and T-cell effector function 
[34]. We recently demonstrated that similar to HIV seronegative 
individuals, PWH make potent T- and B-cell immune responses 
following 2 doses of ChAdOx1 nCoV-19 vaccination [3, 9], al
though with evidence of declining immunity at 6 months.

Third dose boosting with either homologous or heterologous 
combinations of COVID-19 vaccines results in vigorous im
mune responses [35, 36]. A third dose of BNT162b2 protected 
against infection and severe COVID-19 disease in adults >60 
years of age [37]. For PWH, the increased immune responses 
afforded by booster vaccination may therefore offer protection, 
help overcome antigenic variation seen in some SARS-CoV-2 
strains [38], and reduce the incidence of COVID-19.

We performed qualitative and quantitative assessment of hu
moral and cellular immune responses to SARS-CoV-2 and cir
culating VOCs following a third booster dose vaccine in PWH.

METHODS

Study Design and Cohort

The cohort has been described previously [3]. The study com
prised people with HIV in an open-label non-randomized 
group within the larger multicentre phase 2/3 COV002 trial. 
Inclusion criteria were age 18–55 years, a diagnosis of HIV in
fection, virological suppression on ART at enrollment (plasma 
HIV viral load [VL] <50 copies per mL), and a CD4 count 
>350 cells/μL. Participants received 2 standard intramuscular 
doses of the ChAdOx1 nCoV-19 vaccine 4–6 weeks apart, and 
a third dose of any licensed COVID-19 vaccine after 1 year.

Participants with a history of laboratory-confirmed SARS-CoV-2 
infection by anti-N protein immunoglobulin G (IgG) immunoassay 
(Abbott Architect, Abbott Park, Illinois, USA) at screening were 
excluded. Participants self-reported COVID-19 infection. Visits 
on day 0 (pre-ChAdOx1 nCoV-19 vaccine prime), 182 and 
“Post-Third Dose” were the main study timepoints for immunolog
ical analysis. As some participants did not attend their “Post-Third 
Dose” visit as they were lost to follow-up, there is a maximum of n = 
43 at this timepoint. Where possible, we collected peripheral blood 
mononuclear cells (PBMCs) from participants before and after the 
third dose booster vaccine dose (n = 9).

SARS CoV-2 Spike IgG ELISA

Humoral responses at baseline and following vaccination were 
assessed using a standardized total IgG enzyme-linked 

immunosorbent assay (ELISA) against SARS CoV-2 spike as 
described previously [2]. Full details are in Supplementary 
Materials.

Mesoscale Discovery (MSD) Binding Assays

IgG responses to SARS-CoV-2 variant spike antigens including 
Wuhan strain, Alpha, Beta, Gamma, Delta, and Omicron were 
measured using a multiplexed V-PLEX COVID-19 Coronavirus 
Panel 23 Kit (K15570U-2) from Meso Scale Diagnostics, 
Rockville, Maryland, USA. Full details are in Supplementary 
Materials.

T-Cell Proliferation Assay

T-cell proliferation was measured use a CTV assay [3, 9]. Full 
details are in Supplementary Table 2.

AIM Assay

The activation induced marker (AIM) assay was used to iden
tify and characterise antigen-specific T cells [3, 9]. Full details 
are in Supplementary Table 3.

ACE-2 Inhibition Assay

A multiplexed MSD immunoassay (MSD, Rockville, Maryland, 
USA) was used to measure the ability of human sera to inhibit 
ACE-2 binding to SARS-CoV-2 spike (B, B.1, B.1.1.7, B.1.351 
or P.1, B.1.617, B.1.1.59). Full details are in Supplementary 
Materials.

Statistical Analysis

We analyzed all outcomes in all participants who received spec
ified doses of the vaccination schedule and with available sam
ples, unless otherwise specified. We present medians and 
interquartile ranges (IQRs) for immunological endpoints. For 
comparison of 2 non-parametrically distributed unpaired vari
ables, we used the Wilcoxon rank sum (Mann-Whitney U) test. 
Where multiple data points were compared, we used a 
Kruskal-Wallis test with Dunn’s multiple comparison. For com
parison of 2 non-parametrically distributed paired data sets, we 
used the Wilcoxon matched pairs signed rank test. All analyses 
were carried out using Prism 9 (GraphPad Software).

Study Approval

Study approval in the United Kingdom was by the Medicines 
and Healthcare products Regulatory Agency (reference 
21584/0424/001-0001) and the South Central Berkshire 
Research Ethics Committee (reference 20/SC/0145). COV002 
is registered with ClinicalTrials.gov, NCT04400838.

RESULTS

Participants

Participants with HIV (n = 54; all male) were recruited as a sub- 
study group in the COV002 clinical trial (NCT04400838) in 
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November 2020. Participants were administered 2 doses of 
ChAdOx1 nCoV-19 vaccine at day 0 and after 4–6 weeks. 
They were offered a third dose with a heterologous vaccine 
around 365 days after their first ChAdOx1 nCoV-19 dose. All 
participants had undetectable VL (<50 HIV RNA copies/mL) 
and a median CD4 count of 694 cells/µL (IQR: 573.5–859.5) 
at the time of recruitment. Ethnicity was mostly White 
(81.5%). Other reported ethnicities were Asian (3.7%), mixed 
(7.4%), and other (7.4%). Participants returned for study visits 
on day 14, 28, 42, 56, 182, and “Post-Third Dose,” The 
“Post-Third Dose” visit was recorded as the first study visit fol
lowing the third dose of vaccine (mean number of days post 
third dose = 33, range: 5–115, IQR: 21–41). Participants re
ceived mostly BNT162b2 vaccine for their day 365 boost (42/ 
43; 1/43 received mRNA-1273; Moderna) (Supplementary 
Table 1). For this study, baseline (Day 0), 6 months (Day 
182), and “Post-Third Dose” samples were considered. The in
troduction of the booster vaccine as National Health Service 
(NHS) policy by the UK government meant some third doses 
were given out of sync with the study protocol, and so blood 
draws before the third dose were not available for all 

participants. However, for some (n = 9), samples were available 
either side of the third dose, as pre- and post-third dose visits 
(Figure 1A and Table 1). All participants self–reported an ab
sence of SARS-CoV-2 infection at every study visit based on in
terviews with the study team, and SARS-CoV-2 nucleocapsid 
responses measured for 6 months after recruitment.

Antibody Responses to SARS-CoV-2 Are Boosted Following a Third Dose of 
COVID-19 Vaccine in PWH

The MesoScale Discovery (MSD) assay platform was used to 
quantify plasma levels of circulating total anti-SARS-CoV-2 
spike IgG. We previously reported that anti-spike IgG and 
pseudo-neutralizing antibody levels 182 days after first vaccina
tion were significantly higher than baseline levels measured on 
day 0 [13]. Analysis of plasma samples “Post-Third Dose” 
showed that total anti-SARS-CoV-2 spike IgG titers were sig
nificantly higher than day 182 titers (n = 32; day 182 = median 
2644 (IQR: 1341–6614) AU/mL, post-third dose = median 143 
088 (IQR 96 854–189 674) AU/mL; P < .0001), and to an even 
higher degree when compared to baseline levels (n = 32; day 
0 = median 40 (IQR: 19.5–109.6) AU/mL; P < .0001) 

A

B C D E F G

Figure 1. Anti-SARS-CoV-2 antibody responses are boosted following third dose of COVID-19 vaccines in PWH. A, Vaccination schedule for all participants showing time
points where samples were used for this study in black. PWH received either BNT162b2, mRNA1273, or ChAdOx1 nCoV-19 vaccines. The third dose was given as close to 1 y 
after the first vaccine dose as possible. The “Day 365” visit sample was the “post-third dose” sample”. B, Anti-SARS-CoV-2 spike IgG antibody titers before priming vaccine 
dose at day 0 and post-prime doses at day 182 and 365 (after third dose). C, Anti-SARS-CoV-2 spike IgG antibody titers in HIV positive participants with pre- and post-third 
dose timepoints. D, In-house ELISA showing anti-spike IgG responses at baseline, day 182 and after third dose (E) ACE-2 inhibition assay on day 0, 182, and after third dose in 
all participants. F and G, ACE-2 inhibition assay in participants with pre- and post-third dose timepoints expressed as F, AU/mL or G, % inhibition. Comparison of 2 timepoints 
within the same group was done by Wilcoxon matched pair sign ranked test. Where indicated * = P <.05, ** = P <.01, *** = P < .001 and **** = <.000. “Pre-B” and 
“Post-B” refer to pre-third dose and post-third dose. Dotted lines indicate cutoff points determined for each SARS-CoV-2 spike antigen based on pre-pandemic sera + 3 × SD. 
N = 27–33 for HIV positive volunteers in MSD assay. Error bars represent median and interquartile range. Abbreviations: COVID-19, coronavirus disease 2019; ELISA, enzyme- 
linked immunosorbent assay; HIV, human immunodeficiency virus; IgG, immunoglobulin G; MSD, MesoScale Discovery; PWH, people with HIV; SARS-CoV-2, severe acute 
respiratory syndrome coronavirus 2.
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(Figure 1B). To further evaluate the impact of a third dose on 
antibody levels, we measured anti-SARS-CoV-2 spike IgG in 
plasma of the subset of 9 participants with both pre- and post- 
third boost samples. We found a significant increase in 
anti-SARS-CoV-2 spike IgG titers in participants following 
booster vaccination (pre-boost = median 1714 (IQR: 417– 
4622) AU/mL; post-boost = median 188 590 (IQR: 104 806– 
290 778) AU/mL; P = .0078) (Figure 1C, and Supplementary 
Figure 1A). Antibodies against the SARS-CoV-2 spike protein 
were also measured by IgG ELISA, which supported the in
creased response after a third dose. IgG responses peaked 42 
days after the first of the 2 initial vaccine doses (median 1440 
ELISA units [EU], IQR: 704–2728; n = 50) but had reduced sig
nificantly by the 6 months timepoint (median 158 ELISA units 
[EU], IQR: 88–325; n = 47) (P < .0001) (Supplementary 
Figure 1B). After the third vaccine dose the response was signif
icantly boosted (median 17 025 ELISA units [EU], IQR: 10 634– 
22 847; n = 43)(P < .0001) (Figure 1D).

Next, we evaluated the level of antibodies capable of out- 
competing the binding of SARS-CoV-2 to human ACE-2 to 
prevent viral entry in an ACE-2 inhibition assay, a surrogate 
of antibody neutralisation. We found significantly higher titers 
of antibodies capable of blocking ACE-2 binding of 
SARS-CoV-2 “Post-Third Dose” visit compared to day 182 
and day 0 (n = 27, day 0 = median 0.39 (IQR: 0.253–0.50) 
AU/mL, day 182 median 0.99 (IQR: 0.83–1.37) AU/mL, “post- 
third dose” median 27.15 (IQR: 15.36–42.77) AU/mL) 
(Figure 1E). This booster effect of the vaccination was con
firmed in participants with pre- and post-boost timepoints 
(n = 9 pre-boost median 0.1 (IQR: 0.1–4.44) AU/mL, post- 
boost median 37.05 (IQR: 30.42–73.1) AU/mL) (Figure 1F,
1G, and Supplementary Figure 1C). We did not observe any 
correlations between the number of days post-boost and anti
body titers or ACE-2 binding inhibition (data not shown).

Increased Magnitude of T-Cell Responses After Third COVID-19 Vaccine 
Dose in PWH

T-cell immune responses were first measured using an ex vivo 
AIM assay to measure effector-type responses and then a CTV 
proliferation assay on 7-day expanded cells to quantify recall 
response. (Flow cytometric gating strategy for AIM and prolif
eration assays are shown in Supplementary Figures 2A and F, 
respectively). Staphylococcal enterotoxin B (SEB) and cyto
megalovirus (CMV) responses were used as mitogenic and an
tigenic control responses in the AIM assay (Supplementary 
Figure 2B–E), whereas phytohemagglutinin (PHA) and Flu, 
EBV, CMV, Tetanus (FECT) optimal peptides were used as 
controls in the proliferation assays (Supplementary 
Figure 2G–J).

The AIM assay showed that the frequency of 
SARS-CoV-2 specific CD4+ T-cell responses against 
SARS-CoV-2 S1 and S2 peptide pools was significantly in
creased by >3-fold after a third vaccine compared to their 
levels 6 months post ChAdOx1 nCoV-19 prime (CD4+ 
SARS-CoV-2 S1: day 182 median 0.35% (IQR: 0.21–0.56), 
post-third dose median 1.11% (IQR: 0.68–3.93); CD4+ 
SARS-CoV-2 S2: day 182 median 0.235% (IQR: 0.12–0.3), 
post-third dose median 0.76% (IQR 0.42–1.17)) 
(Figure 2A and 2B). The frequency of AIM+ SARS-CoV-2 
specific CD8+ T cells targeting SARS-CoV-2 S1 but not S2 
significantly increased at the “Post-Third Dose” visit com
pared to 6 months (CD8+ SARS-CoV-2 S1: day 182 = medi
an 0.03% (IQR: 0.003–0.057), post-third dose median 0.1% 
(IQR: 0.06–0.21); CD8+ SARS-CoV-2 S2: day 182 median 
0.04% (IQR: 0.02–0.066), post-third dose median 0.04% 
(IQR: 0.03–0.1) (Figure 2C and 2D).

These observed T-cell responses from the AIM assay were 
also seen when measuring T-cell proliferation, although with 
a greater magnitude. Proliferative CD4+ and CD8+ T-cell re
sponses to SARS-CoV-2 S1 and S2 following the third dose 
were significantly greater than responses at baseline (day 0) 
and day 182 after first dose (Figure 2E–H ). Analysis of the mag
nitude of the CD4+ and CD8+ proliferative response following 
vaccination showed that T-cell responses were primed after ini
tial vaccine, peaking between days 28 and 42, had waned by day 
182 [13], and then increased again following the third dose 
(Supplementary Figure 3A–H). These assays indicate potent 
boosting of T-cell responses by vaccination and efficient recall 
upon antigen re-exposure.

Phenotypic Analysis of SARS-CoV-2 Specific Cells Following Booster 
Vaccination

As we had observed an increase in the magnitude of SARS- 
CoV-2 T cells following third dose vaccination, we assessed if 
there were changes in the distribution of the phenotype of 
the CD4+ T helper cell subsets following the booster vaccine. 
We first compared the magnitude of all antigen-specific cells 

Table 1. Demographic Information for Participants Used in This Study

Participant Summary

Sex Male 54 (100%)

Female 0 (0%)

Age in years 42.5 (37.2–49.8)

Ethnicity White 44 (81.5%)

Black 0 (0%)

Asian 2 (3.7%)

… Mixed 4 (7.4%)

… Other 4 (7.4%)

Antiretroviral therapy Y 54 (100%)

N …

Plasma HIV VL (copies/mL) <50

CD4 count > 350 cells/uL 694.0 (573.5–859.5)b

Nadir CD4 count (cells/uL)a 366 (220–514)b

Abbreviations: HIV, human immunodeficiency virus; IQR, interquartile range; VL, viral load.  
aData available for n = 31.  
bMedian (IQR).
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within CD4 and CD8+ T-cell compartments using the AIM as
say. We observed that despite the recent boost of SARS-CoV-2 
spike-specific T cells, CMVpp65-specific T-cell response re
mained at a higher frequency compared to SARS-CoV-2 
spike-specific responses (Figure 3A and 3B). We then used che
mokine receptors CXCR3 and CCR6 to evaluate the distribu
tion of CD4+ T-cell subsets within the antigen-specific AIM+ 
CD4+ T cells 6 months after priming vaccination and after 
the third dose. We found no change in the frequency of 
SARS-CoV-2 spike-specific CD4+ T cells that exhibited a Th1 
(CXCR3+ CCR6−), Th17 (CXCR3− CCR6+) or circulating 
Tfh (CXCR5+) phenotype following a third dose (Figure 3C, 
E, and F). We noted an increase in the frequency of Th2 
(CXCR3− CCR6−) cells within the CD4+ antigen-specific 
compartment; however, this was found with all antigens (in
cluding CMV) and, in the absence of functional data, larger 
studies would be needed to determine if this was reproducible 
(Figure 3D).

Potent VOC Immune Responses Are Induced Following Booster Vaccines

Finally, we evaluated the magnitude of humoral and T-cell re
sponses to circulating VOCs (including the recently categorized 
Omicron BA1 variant) after a third dose. Compared to total 

anti-SARS-CoV-2 spike IgG titers in the ancestral strain, total 
anti-spike antibody responses to all VOCs were significantly re
duced (Figure 4A). This was also found with the SARS-CoV-2 
ACE-2 binding assay, which indicated a decreased potency of 
neutralising antibodies in the “Post-Third Dose” sample to 
bind to spike protein from VOCs (Figure 4B). For VOCs— 
Alpha, Beta, and Gamma—for which we had historical day 0 
and day 182 data, we assessed the kinetics of the antibody re
sponse after the third dose. We noted a striking increase in 
ACE inhibition (Supplementary Figure 1D–F) and antibody ti
ters (Supplementary Figure 4A–C). after the third dose com
pared to samples tested at baseline and 6 months after the first 
of the 2 ChAdOx1 nCoV-19 doses.

We also investigated T-cell responses to VOCs in compari
son to the ancestral SARS-CoV-2 Victoria strain. Similar to 
our previous report [13], the magnitude of the proliferative 
CD4+ and CD8+ T-cell response was comparable between 
the ancestral strain and the Beta, Gamma, and Delta variants 
—with the exception of the CD8+ T-cell response to 
SARS-CoV-2 S2 peptide pool. Interestingly, we found the pro
liferative T-cell response to the Omicron variant targeting both 
spike S1 and S2 peptide pools was significantly reduced in the 
CD4 and CD8+ T-cell compartments (Figure 4C–F). Where 

A B C D

E F G H

Figure 2. T-cell response to SARS-CoV-2 following third dose of COVID-19 vaccines in PWH. T-cell responses measured by AIM assay showing magnitude of CD4+ T-cell 
responses to (A) SARS-CoV-2 S1 and (B) SARS-CoV-2 S2 and magnitude of CD8+ T-cell responses to (C ) SARS-CoV-2 S1 and (D) SARS-CoV-2 S2 on days 182 and after third 
dose (D365). Proliferative T-cell responses assessing kinetics of the T-cell response longitudinally for CD4+ T cells to (E) SARS-CoV-2 S1 and (F ) SARS-CoV-2 S2 and CD8+ T 
cells to (G) SARS-CoV-2 S1 and (H ) SARS-CoV-2 S2. Statistical test in (A–D) was done by Mann-Whitney t test. Statistical test in (E–H ) was done by Wilcoxon matched pair 
sign ranked test. Where indicated * = P <.05, ** = P <.01, *** = P < .001 and **** = P <.000. Dotted lines indicate cutoff points determined based on DMSO controls + 3 
× SD. n = 24–40 for AIM assay and 41–52 for proliferation assay. Error bars represent median and interquartile range. Abbreviations: AIM, activation induced marker; 
DMSO, dimethyl sulfoxide; PWH, people with HIV; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SD, standard deviation.
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sample availability allowed, we compared the kinetics of the 
T-cell response 6 months after first vaccination and after a third 
dose, and found an increase in T-cell responses to all variants 
tested after a third dose, with the sole exception of the CD8 
T-cell response to the SARS-CoV-2 Beta variant S1 subunit 
(Supplementary Figure 4D–O).

As Omicron-directed antibody and T-cell responses were sig
nificantly lower than the responses to the ancestral SARS-CoV-2 
strain, we looked in more detail in participants sampled before 
and shortly after their third dose of COVID-19 vaccine (n = 9). 
We found moderate but statistically significant increases in both 
humoral (Supplementary Figure 5A and B) and CD4+ and CD8 
+ T cell (Supplementary Figure 5C and D) responses to the 
Omicron variant after the third dose. Taken together our data 
show that booster vaccination in PWH significantly boosts an
tibody and T-cell responses to Alpha, Beta, Gamma, and Delta 
VOCs, and to a lesser extent to Omicron.

DISCUSSION

We show evidence that a third dose of the licensed COVID-19 
vaccines significantly boosted antibody and T-cell responses in 
PWH (VL undetectable and CD4 count >350 cells/µL). The ro
bust responses generated in our cohort of PWH following het
erologous third dose regimen are consistent with reports in 

people without HIV [39–41] and are reassuring, especially as 
the ChAdOx1 nCov-19 vaccine is well designed for distribution 
in low- to middle-income countries including those with a sig
nificant prevalence of PWH [42].

Equally crucial in the strategic management of the 
COVID-19 pandemic is that boosted SARS-CoV-2 immune re
sponses can target circulating VOCs, especially as immune es
cape has been reported [16–18, 43]. We found humoral 
responses to VOCs to be boosted although to a lesser degree 
than responses targeting the ancestral strain. There was no dif
ference between the magnitude of T-cell responses to the VOCs 
except for the Omicron variant, which was boosted but to lower 
levels than other VOCs. The relatively high number of muta
tions on key sites of antibody target including K417N and 
N501Y in the Omicron spike protein may account for this 
[13, 44]. Interestingly, our data may suggest that antibody im
mune evasion is more prevalent than T cell escape in immune 
response to VOCs—whether T cells may therefore play a role in 
protection from VOC-mediated COVID-19 needs further in
vestigation [45]. Real world data would also be needed to deter
mine if boosted VOC responses confer protection from severe 
COVID-19 disease in PWH. Finally, the quality of the induced 
immune response may be impacted by the vaccine platform. 
For example, there is evidence that the ChAdOx1 nCoV-19 
vaccine results in a more dominant Th1-driven response [46] 

C CXCR3+ CCR6- (Th1) CXCR3+ CCR6- (Th2) CXCR3- CCR6+ (Th17) CXCR5+ (Th17)D E F

BA

Figure 3. Phenotype of AIM+ antigen specific responses following third COVID-19 vaccine dose in PWH. Comparative analysis of the magnitude of antigen-specific T cells 
to SARS-CoV-2 S1, SARS-CoV-2 S2, and CMVpp65 in (A) CD4+ and (B) CD8+ T cells. Phenotype of antigen specific T cells 6 m after the priming ChAdOx1 nCoV-19 dose and 
after third heterologous dose showing (C ) CXCR3+ CCR6-Th1, (D) CXCR3− CCR6-Th2, (E) CXCR3− CCR6+ Th17, and (F ) CXCR5+ circulating Tfh CD4+ T cells. Statistical tests 
for (A) and (B) were done by Kruskal-Wallis with Dunn’s multiple comparison. Statistical tests in (C–F ) were done by Mann-Whitney t test. Where indicated * = P <.05, ** = 
P <.01, *** = P < .001, and **** = <.000. n = 20–40. Error bars represent median and interquartile range. Abbreviations: AIM, activation induced marker; COVID-19, co
ronavirus disease 2019; PWH, people with HIV; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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and mRNA vaccines may induce stronger antibody responses 
[47], possibly by soliciting Tfh cell help [48–50].

Our study has some limitations. We do not have access to a 
control group of HIV seronegative volunteers tested with the 
same assays in the same conditions post-boost, and so cannot 
comment on how the magnitude of immune response in our 
cohort of PWH would compare to HIV negative controls. 
We assessed breakthrough infection with SARS-CoV-2 by di
rect questioning of participants at every study visit. This was 
supported by nucleocapsid responses, but only for the first 
six months of the study. Our cohort of PWH represent the sce
nario of ART suppressed volunteers with an undetectable VL 
and high CD4 count. This is not the case for many PWH. As 
such, the data from our cohort should be extrapolated cautious
ly to other populations with HIV, especially as our cohort was 
also biaised to male participants in the United Kingdom. Due to 
the roll-out of the UK vaccination program during the study, 
we were only able to obtain pre-third dose samples from nine 
participants. It is therefore difficult to state exactly what the im
mediate increase in immune response was, although it is clear 

that the overall response was significantly augmented. Finally, 
as most participants received the BNT162b2 vaccine as the 
third dose after the two ChAdOx1 nCoV-19 doses, we did 
not have the scope to perform a comparative analysis of im
mune responses following a different third dose vaccine, which 
may be especially relevant in countries without access to RNA 
vaccines. In summary, we show a robust booster effect on an
tibody and T-cell responses to SARS-CoV-2 in PWH after a 
third dose in a heterologous vaccination schedule.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding 
author.
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