
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

A Semidefinite Relaxation-based Algorithm for

Robust Attitude Estimation

Shakil Ahmed, Eric C. Kerrigan and Imad M. Jaimoukha

Abstract

This paper presents a tractable method for solving a robust attitude estimation problem, based on a weighted

least squares approach with nonlinear constraints. Attitude estimation requires information of a few vector quantities,

each obtained from both a sensor and a mathematical model. Byconsidering the modeling errors, measurement

noise, sensor biases and offsets as infinity-norm bounded uncertainties, we formulate a robust optimization problem,

which is non-convex with nonlinear cost and constraints. The robust min-max problem is approximated with a

non-convex minimization problem using an upper bound. A newregularization scheme is also proposed to improve

the robust performance. We then use semidefinite relaxationto convert the suboptimal problem with quadratic cost

and constraints into a tractable semidefinite program with alinear objective function and linear matrix inequality

constraints. We also show how to extract the solution of the suboptimal robust estimation problem from the solution

of the semidefinite relaxation. Further, a mathematical proof supported by numerical results is presented stating the

gap between the suboptimal problem and its relaxation is zero under a given condition, which is mostly true in real

life scenarios. The usefulness of the proposed algorithm inthe presence of uncertainties is evaluated with the help

of examples.
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A Semidefinite Relaxation-based Algorithm for

Robust Attitude Estimation

I. I NTRODUCTION

ATTITUDE estimation using vector signals has been widely used inmany application areas, such as satel-

lites [1], [2], aerospace, marine and automotive systems [3]. The attitude estimate is obtained by solving an

optimization problem based on a weighted least squares approach with nonlinear constraints, known as the Wahba

problem [4] in the literature. This mathematical formulation is also closely related to some other problems in various

fields, such as independent component analysis (ICA) in signal processing and statistics, pose estimation in image

processing [5] and the orthogonal matrix Procrustes problemin mathematics [6]. This type of attitude estimation

can be called static, as it does not dependent on the dynamicsof the system, hence it could be useful for systems

with highly nonlinear dynamics. In such systems, due to highnonlinearities, the dynamic filtering approaches suffer

from divergence issues due to lack of good a priori state estimates [2]. The attitude determined using the static

approach could be used to obtain a reliable state initialization for filters, thus reducing the likelihood of divergence.

To compute the attitude of an object, two coordinate frames are needed. One, which is fixed to the body of the

object, is called the body frame, while the second is called the reference frame. Formally, the attitude of an object

is defined as a coordinate transformation that transforms reference coordinates into the body coordinates [7]. This

transformation is obtained through a proper orthogonal transformation matrixC ∈R
3×3, having the constraintCTC =

I3 for orthogonality, and det(C) = +1 to preserve the frame orientation in a rotation. This includes the set of all

rotation matrices in aspecial orthogonal group of rigid rotations inR3, denoted bySO(3) [5]. Many solutions of

this constrained least squares problem can be found in the literature, mostly developed for satellite applications [1],

[8]–[11]. Most of these algorithms are based on a quaterniontransformation [12], which transforms the Wahba

problem into an eigenvalue problem [1].

Some examples of the vector signals normally used in static attitude determination includes the earth magnetic

field, sun and star direction, position vector, etc. Information of these vectors is required both in the body and the

reference frames in order to determine the attitude. Normally the body frame vectors are measured by some sensor

installed on the object, while the same vector information in the reference frame is obtained from some mathematical

model. For both sensor measurements or mathematical models, an error is always present. This error is mainly due

to noise, biases, offsets and modeling inaccuracies. The existing algorithms do not directly address robustness of the

estimated attitude against uncertainties, although a sensitivity analysis is generally presented. One can find a lot of
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work on robust linear least square problems in literature, such as [13]–[15], however there is much less discussion

on robustness in the attitude estimation problem. Some algorithms, such as [16], [17], consider uncertainties in the

input measurement, but use a stochastic framework based on minimum variance recursive estimation. Similarly,

some related discussions can be found in [18], [19]. However, in these discussions, modeling errors are generally

not considered, which could be significant; for example, in the case of the earth magnetic field, which is one of

the most common sensors used for attitude estimation in manyapplications such as satellites and aircrafts, errors

between sophisticated models and the actual field can be around 20% [20], [21]. The use of simple models, such

as the low order IGRF model [21], which are normally preferred due to lower computational cost, result in a less

accurate earth magnetic field, leading to errors in the attitude estimate. Attitude error is further increased due to

sensor noise and installation issues. In this work, all sucherrors are considered as∞-norm bounded uncertainties.

In this paper, which is mainly based on our previous work on robust static attitude determination [22], [23], the

main contribution is to formulate a robust attitude estimation problem considering norm bounded uncertainties. The

formulated robust optimization problem is approximated bya minimization problem using an upper bound on the

maximization term of the original min-max problem. The approximate formulation is non-convex with a quadratic

objective function and constraints (a QCQP). Further, we introduce a new regularization term to improve the robust

performance. We propose a tractable method for solving thisnon-convex QCQP using semidefinite relaxation. The

relaxed formulation is convex with a linear objective and linear matrix inequality constraints, which can be solved

efficiently in polynomial time [24] using any semidefinite program (SDP) solver. It is also shown how to extract

the robust attitude from the SDR solution. Further, we study the optimality properties of the SDR solution and

theoretically show that there is no gap between the approximate problem and its semidefinite relaxation under a

given condition.

Notation: Vectors are represented by small and matrices by capital letters. For a vectorx, its 2-norm is‖x‖2 :=
√

xT x, while the infinity-norm is‖x‖∞ := max
1≤i≤n

|xi|. The cross product of vectorsx andy is represented asx×y. For

matricesA andB of the same dimension,C = A×B is the columnwise cross product i.e. ifa is the ith column ofA

andb is theith column ofB, thena×b will be the ith column ofC. We will also use the symbol× for the Cartesian

product. For a matrix,A � 0 means thatA is positive semidefinite.In denotes the identity matrix of sizen, while

0n×m represents a matrix ofn rows andm columns with all zero entries. Operator diag(λ1,λ2, . . . ,λn) represents

a matrix of sizen× n, having only diagonal elementsλ1,λ2, . . . ,λn. Operator tr(A) is the trace and det(A) is the

determinant of a matrixA, N (A) is the null space ofA and dim(·) represents dimension.
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II. CLASSICAL ATTITUDE ESTIMATION

The classical static attitude estimation is based on minimizing a weighted least square cost, first proposed by [4]

for satellite applications, given as:

min
C

1
2

n

∑
i=1

wi ‖bi −Cri‖2
2

subject to CTC = I3, det(C) = +1,

(1)

where bi ∈ R
3 represents theith measurement in the body frame fori = 1, . . . ,n, n being the total number of

sensors,ri ∈ R
3 is the corresponding vector in the reference frame obtainedfrom some model,wi ∈ R are non-

negative weights. One common approach used to solve (1) is toconvert it into an equivalent maximization problem.

Let B :=
[

b1 b2 . . . bn

]

, R :=
[

r1 r2 . . . rn

]

, W := diag(w1,w2, . . . ,wn), whereB,R ∈ R
3×n andW ∈ R

n×n.

Using this compact notation and expanding the cost functionused in (1), we get

1
2

n

∑
i=1

wi ‖bi −Cri‖2
2 =

1
2

tr(WBT B+WRTCTCR)− tr(WBTCR)

=
1
2

tr(WBT B+WRT R)− tr(WBTCR).

Using the constraintCTC = I3 and neglecting the constant term, which has no effect on the solution of the

optimization problem, an equivalent maximization problemis

max
C

tr(WBTCR)

subject to CTC = I3, det(C) = +1.

(2)

To solve this maximization problem, Davenport’s q-method [1], [12] is commonly used, which transforms the

optimization variable from matrixC to quaternionq :=
[

qT q4

]T
∈ R

4, thus reducing the number of optimization

variables. It also avoids the constraint det(C) = +1 of (1), being inherent in its definition. However, the main benefit

is the transformation of the optimization problem into an eigenvalue problem. Two steps of the q-method are given

now.

Step 1: Find an equivalent formulation of (2) in terms of a quaternion. This new formulation, first reported in

[12], states that the maximization of (2) is equivalent to the following problem (see Appendix A for derivation):

max
q

{

qT K(B,R)q | qT q = 1
}

, (3)

whereK : R
3×n ×R

3×n → R
4×4 is defined as

K(B,R) :=







(B(B,R))T +B(B,R)− tr(B(B,R))I3 z(B,R)

(z(B,R))T tr(B(B,R))






, (4)
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whereB : R
3×n×R

3×n →R
3×3 andz : R

3×n×R
3×n →R

3 are defined asB(B,R) := BWRT andz(B,R) := (B×R)W .

Moreover, K(B,R) is a symmetric and indefinite matrix, indicating that the objective function in (3) is neither

concave nor convex.

Step 2: The maximization problem (3) can easily be converted into an eigenvalue problem. For this we add the

constraintqT q = 1 using a Lagrange multiplierλ in (3) as

f (q,λ ) = qT K(B,R)q−λ (qT q−1). (5)

To obtain a stationary point, we solve∂ f/∂q = 0 and∂ f/∂λ = 0 and obtain an expression that has the same form as

the eigenvalue problem i.e.K(B,R)q = λq, whereλ represents eigenvalues ofK(B,R). Four eigenvectors ofK(B,R)

are possible solutions of this equation; however, the eigenvector corresponding to the maximum eigenvalue will

solve (3) [1], i.e.K(B,R)qopt = λmaxqopt, whereqopt is the solution to (3) andλmax is the maximum eigenvalue

of K(B,R). Most of the work on static attitude estimation is based on this result and many efficient algorithms

have been proposed, such as QUEST [1], ESOQ1 [9], ESOQ2 [10], mainlyfor satellite applications.

III. ROBUST PROBLEM DESCRIPTION

To formulate a robust attitude estimation problem, we represent an uncertain measurement vector in the body

frame with b̄i ∈ B(bi) and an uncertain reference vector with ¯ri ∈ R(ri), i = 1, . . . ,n, whereB(bi), R(ri) ⊆ R
3 are

bounded uncertainty sets. To find the best uncertainty immunized transformation matrix for attitude, we define a

robust problem as

min
C

max

b̄i ∈ B(bi), r̄i ∈ R(ri),

i = 1, . . . ,n

1
2

n

∑
i=1

wi
∥

∥b̄i −Cr̄i
∥

∥

2
2

subject to CTC = I3, det(C) = +1.

(6)

In order to take advantage of using a quaternion to simplify the optimization problem, as a first step, we reformu-

late (6) introducing the quaternionq using the same approach used to derive (3) [22]. LetB̄ :=
[

b̄1 b̄2 . . . b̄n

]

and R̄ :=
[

r̄1 r̄2 . . . r̄n

]

. Using this stacked notation, we can write the cost functionof (6) in terms ofq as

J(q, B̄, R̄) :=

{

1
2

tr(WB̄T B̄+WR̄T R̄)−qT K(B̄, R̄)q

}

. (7)

The robust attitude determination problem is then defined as

q̂∗(B,R) := argmin
q

max

B̄ ∈ B(B), R̄ ∈ R(R)

J(q, B̄, R̄)

subject to qT q = 1,

(8)
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whereB(B) := B(b1)×B(b2)×·· ·×B(bn) and R(R) := R(r1)×R(r2)×·· ·×R(rn). Like the matrixK(B,R) in

(3), the matrixK(B̄, R̄) is also symmetric and indefinite.

A. Uncertainty Model

Uncertainties in the input vectors are of a diverse nature. These vectors are obtained from sensors and mathe-

matical models. Sensor errors are generally attributed to measurement noise, having a stochastic interpretation, and

biases and misalignments, which are fixed values. Modeling inaccuracies have generally no clear interpretation. An

uncertainty model, which can fully capture all these uncertainties will be fairly complex and can make the problem

intractable. Keeping in view the tractability, we considerthe following affine parameterization of the uncertainty

setsB(b) andR(r) [25].

Let β ,ρ ∈R
3 be vectors of perturbation variables for the uncertainty parameterization andγb,γ r ∈R be uncertainty

bounds for each vector in the body and reference frame, respectively. This type of uncertainty is called an interval

uncertainty and the corresponding perturbation set represents a box [25]. The interval uncertainty model is a

suitable candidate for such a type of mixed uncertainty and can sufficiently capture most realistic errors. This

model is especially useful for vector quantities with bounded uncertainties. To elaborate this point, assume that in

the vector quantities inR3, all mentioned uncertainties will introduce an error in thetrue value. If the maximum

error introduced in each axis be bounded by±γ, then we can say that the true value will lie in an interval of

size 2γ around the measurement. This interval in each axis will form abox in R
3 with each side of length 2γ.

The size of this interval i.e. the boundγ for each measurement or model vector, should be chosen carefully, as

unnecessarily large values may result in a large residual. The choice of bounds depends on the specific sensor

or mathematical model used. Generally, sensor noise is known in a stochastic sense, e.g. standard deviation or

variance, while modelling errors are given based on previous experimentation or analysis. However, biases and

offsets need to be separately determined for each installedsensor . Overall, the chosen bound should sufficiently

capture all these errors. Further, we normalize each perturbation vector in the body and reference frame with the

corresponding uncertainty bound and denote it asδb := β/γb andδr := ρ/γ r. Using these normalized perturbation

vectors, we describe the uncertainty sets in the body and reference frame as

B(b) =

{

b+
3

∑
l=1

δbl b̃l | ‖δb‖∞ ≤ 1

}

,

R(r) =

{

r +
3

∑
l=1

δrl r̃l | ‖δr‖∞ ≤ 1

}

,

(9)

whereδb :=
[

δb1 δb2 δb3

]T
, δr :=

[

δr1 δr2 δr3

]T
, b̃l := γbel andr̃l := γ rel are fixed vectors for a given problem

settings withel being thelth standard basis vector inR3.
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B. An Approximation in the Robust Formulation

Using (9) we present the following result.

Theorem 1. The formulation given in (8) is equivalent to

q̂∗ := argmin
q

{

−qT K(B,R)q+ max
‖δ‖∞≤1

(

p(q,B,R)T δ +δ T Q(q)δ
)

}

subject to qT q = 1, (10)

whereδ :=
[

δ T
b1 δ T

r1 δ T
b2 δ T

r2 . . . δ T
bn δ T

rn

]T
, p := R

4×R
3×n ×R

3×n → R
6n is

p(q,B,R) :=



































































w1γ b1(b11−qT K1
r1q)

w1γ b1(b12−qT K2
r1q)

w1γ b1(b13−qT K3
r1q)

w1γ r1(r11−qT K1
b1q)

w1γ r1(r12−qT K2
b1q)

w1γ r1(r13−qT K3
b1q)

...

wnγ rn(rn1−qT K1
bnq)

wnγ rn(rn2−qT K2
bnq)

wnγ rn(rn3−qT K3
bnq)



































































, (11)

wherebi j andri j are thej th elements of thei th vector. The definition of matricesK j
ri andK j

bi is given in Appendix

B. The matrixQ := R
4 → R

6n×6n is given as

Q(q) :=































1
2w1γ2

b1I3 −1
2w1γb1γr1C . . . 03×3 03×3

−1
2w1γb1γr1CT 1

2w1γ2
r1I3 . . . 03×3 03×3

...
...

.. .
...

...

03×3 03×3 . . . 1
2w1γ2

bnI3 −1
2w1γbnγrnC

03×3 03×3 . . . −1
2w1γbnγrnCT 1

2w1γ2
rnI3































, (12)

where the transformation matrixC is a function ofq.
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Proof: Using (9), the first term of (7) is written as

1
2

(

tr(WB̄T B̄)+ tr(WR̄T R̄)
)

=
1
2

(

tr(WBT B)+ tr(WRT R)
)

+

tr(WBT ∆b)+ tr(WRT ∆r)+
1
2

(

tr(W∆T
b ∆b)+ tr(W∆T

r ∆r)
)

, (13)

where∆b =
[

γb1δb1 γb2δb2 . . . γbnδbn

]

and∆r =
[

γr1δr1 γr2δr2 . . . γrnδrn

]

. To simplify the second term, we

first write

K(B̄, R̄) = K(B,R)+K(B,∆r)+K(∆b,R)+K(∆b,∆r), (14)

whereK follows its usual definition (4) with

B(B̄, R̄) = B(B,R)+B(B,∆r)+B(∆b,R)+B(∆b,∆r),

= BWRT +BW∆T
r +∆bWRT +∆bW∆T

r ,

z(B̄, R̄) = z(B,R)+ z(B,∆r)+ z(∆b,R)+ z(∆b,∆r),

= (B×R)W +(B×∆r)W +(∆b ×R)W +(∆b ×∆r)W.

We first simplify and rearrange (13) and (14) and then write theexpressions as a function ofδ . Now separating

the terms, which are linear or quadratic inδ and using the transformation matrix in terms ofq [7], i.e.

C =















q2
1−q2

2−q2
3 +q2

4 2(q1q2 +q3q4) 2(q1q3−q2q4)

2(q1q2−q3q4) −q2
1 +q2

2−q2
3 +q2

4 2(q2q3 +q1q4)

2(q1q3 +q2q4) 2(q2q3−q1q4) −q2
1−q2

2 +q2
3 +q2

4















,

we can write the required expression.

It can be observed from (10) that the robust problem approaches the nominal problem if no uncertainty in the

input vectors is considered. Finding the optimal solution ofthe formulated robust problem is difficult, because of

the following two main reasons. Firstly, due to the matrixQ(q) being positive semidefinite, the maximization term

in (10) is non-concave inδ , hence making it difficult to find a unique optimal maximum, and secondly, because of

the matrixK(B,R) being indefinite, the objective function is non-convex inq. To develop a tractable method for

solving this problem, as a first step, we determine an upper bound on the maximum ofp(q,B,R)T δ + δ T Q(q)δ

over δ . The result is given in the following lemma, however the dependence ofp(q,B,R) andQ(q) on B,R andq

has been omitted for notational simplification.

Lemma 1. An upper bound on the maximization term appearing in (10) is

0≤ max
‖δ‖∞≤1

(

pT δ +δ T Qδ
)

≤ ‖p‖1 +6nλmax(Q) (15)
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Proof: We start with the following inequality

max
‖δ‖∞≤1

(pT δ +δ T Qδ ) ≤ max
‖δ‖∞≤1

pT δ + max
‖δ‖∞≤1

δ T Qδ (16)

Using the Ḧolder dual norm [26], the first term on the right hand side of (16) is given as

max
‖δ‖∞≤1

pT δ = ‖p‖1. (17)

For the second term appearing in (16), sinceQ is a symmetric matrix, we can write the maximum eigenvalue of

Q as [26]

λmax(Q) = sup
‖δ‖2≤1

δ T Qδ . (18)

Hence, we first replace the∞-norm in the second term on the right hand side of (16) with the2-norm using the

inequality‖δ‖2 ≤
√

6n‖δ‖∞ for δ ∈ R
6n [27]. We can write

max
‖δ‖∞≤1

δ T Qδ ≤ max
‖δ‖2≤

√
6n

δ T Qδ

≤ 6nλmax(Q),

Using (17) and (19), we can write (15).

Lemma 2. The maximum eigenvalue of the block diagonal matrixQ(q) does not depend onq.

Proof: To find the eigenvalues of the block diagonal matrixQ(q) = diag(Q1,Q2, . . . ,Qn), we need to solven

equations, i.e. det(Qi −λ I6) = 0, i = 1, . . . ,n. Consider thei = 1 case, where we can write

det(Q1−λ I6) = det















λ1(λ2−a) 0 0

0 λ3(λ4−a)

0 0 λ5(λ6−a)















= 0,

wherea := 1
2w1(γ2

b1 + γ2
r1). The above equation implies thatλ1 = λ3 = λ5 = 0, andλ2 = λ4 = λ6 = 1

2w1(γ2
b1 + γ2

r1).

Similarly we can find eigenvalues forQi, i = 2, . . . ,n. Finally, λmax(Q(q)) = maxi
1
2(wiγ2

bi + wiγ2
ri). However, it is

evident that the maximum eigenvalue is independent ofq.

C. Comparison of the Analytical Upper Bound

This section discusses the tightness of the upper bound givenin (15). Since the maximization term in (10) is

convex inδ , it is hard to find the optimum. For such problems, fairly tightbounds can be obtained using semidefinite

relaxation [28]. We will find an upper bound using semidefinite relaxation and compare it with the analytical bound.

For a givenB,R andq, we definep := p(q,B,R) andQ := Q(q).
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Consider the maximization term in (8). Supposeγ̄ is an upper bound on this term satisfying the constraint‖δ‖∞ ≤

1, which can also be written as−e ≤ δ ≤ e, wheree ∈ R
6n is a vector of ones. LetD ∈ R

6n×6n be a diagonal

matrix, then the following identity is always true:

δ T Qδ +pT δ − γ̄ = −(e+δ )T D(e−δ )

−
[

δ T 1
]







D−Q −p

2

−p

2 γ̄ − eT De













δ

1






.

In this expression, we know from the constraint‖δ‖∞ ≤ 1, that both(e + δ ) ≥ 0 and (e − δ ) ≥ 0. Now the

minimum value ofγ̄ represents an upper bound on the maximization term if the diagonal matrixD � 0, and matrix

F (D, γ̄) :=







D−Q −p

2

−p

2 γ̄ − eT De






� 0, i.e.

max
‖δ‖∞≤1

(δ T Qδ +pT δ ) ≤ min
D,γ̄

{γ̄ | D � 0,F (D, γ̄) � 0} , (19)

which is a semidefinite relaxation (SDR) of the maximization term of (8) for a given value ofq,B and R. A

comparison of the analytical bound and the bound obtained using the SDR is given in Section V, showing a small

relative error between the two. Thus, use of the analytical bound gives computational benefits, but at the cost of a

loss in accuracy of the true solution of (10), although the analysis shows that the loss is small assuming that the

gap between (10) and its SDR is small.

At this stage, one might think of (19) as being tighter, instead of (15) used to simplify (8). Note that (19) is

based on the assumption thatq is known. However, ifq is unknown, which is the case in actual problems, we may

not get much computational benefits, because the terms of the matrix inequalityF (D, γ̄) � 0 are nonlinear inq.

In this work, however, we used (15) to obtain a tractable, butsuboptimal solution of (10).

D. Addition of a Regularization Term

Use of the analytical upper bound in the robust problem (8) introduces an approximation, although it was

motivated for computational benefits and the fact that a unique solution of the inner loop maximization may not

be guaranteed. However, this approximation may degrade thealgorithm performance in terms of robustness. To

improve performance, we introduce a new type of regularization in the objective function. The basic idea in using

this regularization is given now.

The optimization variable in (8), i.e the quaternionq which represents a coordinate transformation as a conse-
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quence of the Euler theorem of rotation [7], is defined as

q =







q

q4






:=







êsin(α/2)

cos(α/2)






, (20)

where ê ∈ R
3 is the axis of rotation andα is the angle of rotation. We propose minimizing an additional term

−ηq2
4 along with the primary objective function. This regularization term is similar in concept to the Tikhonov

regularization in linear least squares problems [26]. In such problems, the regularization term is normally a norm of

the solution vector. While minimizing the regularized cost, the added term enforces a trade-off between the primary

objective and the norm of the solution vector. However, in our case, since the norm of the solution vector is 1

(qT q = 1), the introduced regularization term is a function ofq4, which corresponds to the angle of rotation for a

given quaternion. Hence, the added termηq2
4 enforces finding aq, which minimizes a weighted combination of

both objectives. In the added term,η > 0 is a tuning parameter. A large value ofη will make the optimal solution

of the regularized problem stiff to perturbations with a large residual in the nominal case. Simulations have shown

that in the considered environment,η = 0.5 gives good results with a smaller residual and a reasonablylarge robust

performance margin compared to the nominal solution.

Using the subsequent results and discussion, we now presentthe final simplified formulation of the robust problem

in a form suitable for semidefinite relaxation.

Corollary 1. The max term in (10), being convex, may not always give a true worst case. Replacing the max term

using Lemmas 1 and 2, along with the regularization term, (10)is approximated with the following maximization

problem

(q∗,u∗) = argmax
q,u

qT Kr(B,R)q−uT e

subject to qT q = 1,

−u ≤ p(q,B,R) ≤ u,

(21)

whereu :=
[

u1 u2 . . . u6n

]T
≥ 0, Kr(B,R) := K(B,R)+ηS andS = diag(0,0,0,1). Here we neglect all constant

terms having no effect on the argument of the optimization problem.

Proof: In (10), we replace the max term with the upper bound given in Lemma 1 and neglect the term

involving 6nλmax(Q(q)), as it does not depend onq according to Lemma 2 and will not effect the solution.

We can represent the regularization term asηq2
4 = ηqT Sq. Finally, using the fact that a set of 12n + 1 linear

inequalities−u j ≤ x j ≤ u j, ∑ j u j ≤ 1, j = 1, . . . ,6n represent the nonlinear inequality∑ j |x j| ≤ 1 [25, Definition

1.3.1] and expressing it as a maximization problem, we can write (21). All constant terms in the expression are

neglected, however for an exact upper bound, these terms need to be added in the bound obtained from SDR.
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IV. SEMIDEFINITE RELAXATION FOR THE ROBUST ESTIMATION PROBLEM

In this section we apply semidefinite relaxation on (21) [23].Supposeγ̄ is an upper bound for the objective

function of (21). Using a similar approach, as used in deriving (19), we obtain the following expression, such that

the right hand side is equal to the left hand side. Again we will drop the dependence for notational simplification,

except where necessary:

qT Krq−uT e− γ̄ = −µ1(1−qT q)−µ2(u1− p1)−µ3(u1 + p1)

−µ4(u2− p2)−µ5(u2 + p2)−·· ·−µ12n(u6n − p6n)

−µ12n+1(u6n + p6n)− xT
L (µ,B,R)x,

wherex :=
[

qT uT 1
]T

, µ :=
[

µ1 µ2 . . . µ12n+1

]T
, p(q,B,R) :=

[

p1 p2 . . . p6n

]T
,

L (µ,B,R) :=





































L1,1(µ,B,R) 04×1 . . . 04×1 04×1

01×4 0 . . . 0 1−µ2−µ3
2

01×4 0 . . . 0 1−µ4−µ6
2

...
...

. ..
...

...

01×4 0 . . . 0 1−µ12n−µ12n+1
2

01×4
1−µ2−µ3

2 . . .
1−µ12n−µ12n+1

2 ℓ j, j(µ,B,R)





































L1,1(µ,B,R) := µ1I4− (µ2−µ3)w1γb1K1
r1− (µ4−µ5)w1γb1K2

r1

− (µ6−µ7)w1γb1K3
r1− (µ8−µ9)w1γ r1K1

b1− . . .

− (µ12n −µ12n+1)wnγ r1K3
bn −Kr(B,R),

ℓ j, j(µ,B,R) := γ̄ −µ1 +
6n

∑
l=1

(µ2l −µ2l+1)cl(B,R),

where j is the size ofx andc(B,R) :=
[

w1γ b1bT
1 w1γ r1rT

1 . . . wnγ bnbT
n wnγ rnrT

n

]T
. Now if the right hand side

is either zero or negative, we can say thatγ̄ is an upper bound on the cost of (21). Using this relaxation, we write

an optimization problem to find the minimum value of this upperbound ensuring the right hand side is either zero

or negative, given as

(γ̄ ∗,µ ∗) := argmin
γ̄,µ

{γ̄ | L (µ,B,R) � 0, µi ≥ 0, i = 2,3, . . . ,12n+1} . (22)

Note that few diagonal entries of the matrixL (µ,B,R) are zero. For this matrix to be positive semidefinite, we

can force the corresponding non-diagonal terms to zero. Thiswill result in a reduced set of optimization variables

and will also avoid numerical issues arising due to the zero diagonal entries.
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Theorem 2. Using a reduced set of optimization variablesµr :=
[

µ1 µ2 µ4 . . . µ12n

]T
, an equivalent formu-

lation of (22) is

µ ∗
r = argmin

µr
µ1−

6n

∑
l=1

(2µ2l −1)cl(B,R)

subject to 0≤ µi ≤ 1, i = 2,4, ...,12n,

L1,1(µr,B,R) � 0,

(23)

whereL1,1(µr,B,R) is given by

L 1,1(µr,B,R) := µ1I4−2µ2w1γb1K1
r1−2µ4w1γb1K2

r1−2µ6w1γb1K3
r1

−2µ8w1γ r1K1
b1−·· ·−2µ12nwnγ rnK3

bn + · · ·+w1γb1K1
r1 +w1γb1K2

r1

+w1γb1K3
r1 +w1γ r1K1

b1 +w12nγ rnK3
bn −Kr(B,R).

Proof: Note that in (22) the symmetric matrixL (µ,B,R) has zero diagonal elements. ForL (µ,B,R) to be

positive semidefinite, as required in (22), all row/column elements corresponding to zero diagonal entries must also

be zero [27, Thm 4.2.6], i.e. 1−µ2−µ3 = 0,1−µ4−µ5 = 0,1−µ6−µ7 = 0 and so on. Using this property, we

can force these elements to zero by eliminatingµ3,µ5, . . . ,µ12n+1 from (22) with additional constraints 1− µ2 ≥

0,1−µ4 ≥ 0, . . . ,1−µ12n ≥ 0. Moreover, the minimum value of̄γ satisfying the constraintL (µr,B,R) � 0 results

in ℓ j, j(µr,B,R) = 0, giving

γ̄ = µ1−
6n

∑
l=1

(2µ2l −1)cl(B,R). (24)

So with these modifications, instead ofL (µ,B,R) � 0, we only needL1,1(µr,B,R) � 0, hence can write (23)

using a reduced number of optimization variables, which is equivalent to solving (22) for the minimum upper

bound on (21).

V. FINDING THE ROBUST QUATERNION (q∗)

Although the solution of the semidefinite program (23) gives aminimum upper bound on the robust estimation

problem (21), our main interest is to find aq∗ that could maximize the cost (21). Now the question arises, can we

find q∗ using the solutionµ ∗
r of (23)? Supposeµ ∗

r results in a zero value of the right hand side of (22), thenγ̄ ∗,

i.e. the minimum value of cost (23), is equal to the maximum cost of (21), and the correspondingq will be the

requiredq∗.

In this regard, as a first step, we establish whether there exists a q that can makeqT L ∗
1,1q = 0, whereL ∗

1,1 :=

L1,1(µ∗
r ,B,R). If such a q exists, it will further ensurexT L ∗x = 0, whereL ∗ := L (µ∗,B,R) and µ∗ can be

obtained fromµ ∗
r .

Lemma 3. Let µ ∗
r be a minimizer for the SDR problem (23), thenλmin(L

∗
1,1) = 0.
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Proof: Using µr, the objective function of (23) can be written asJ := µ1 − d, where d is the sum of all

remaining terms. Now whatever the sign ofd is, the costJ is minimum whenµ1 is minimum. However, at the

same time we needL1,1(µr,B,R) � 0. We can also writeL1,1(µr,B,R) = µ1I4−Kµ , whereKµ is the sum of all

other terms in the expression. This is a symmetric matrix withreal eigenvaluesλ1, . . . ,λ4, andλ1 ≥ λ2 ≥ λ3 ≥ λ4.

Then,µ1I4−Kµ will have eigenvaluesµ1−λ1,µ1−λ2,µ1−λ3,µ1−λ4. Now, µ1 = λ1 is the smallest possible value

that can makeL1,1(µr,B,R) � 0. This optimal value ofµ1, i.e. µ∗
1 , will ensureλmin(L

∗
1,1) = 0.

Remark 1. As stated in Lemma 3, the matrixL ∗
1,1 has at least one eigenvalue equal to zero. Suppose there is only

one eigenvalue equal to zero and ˜q is an eigenvector ofL ∗
1,1 corresponding to the zero eigenvalue, then this ˜q will

result in both ˜qT L ∗
1,1 = 0 and ˜qT L ∗

1,1q̃ = 0, because ˜q will belong to the null space ofL ∗
1,1. From this we can

deduce that ˜xT L ∗x̃ = 0, where ˜x :=
[

q̃T ũT 1
]T

, although we have no knowledge of ˜u at this stage. This is

possible because all elements of matrixL ∗ are zero, except sub-matrixL ∗
1,1.

The vector ˜q can be a candidate for the robust quaternion. Now, if there isno gap between the cost of (21) and

(23), then ˜q will be the required robust optimal solution of (21).

A. Relaxation Gap

To quantify the gap between the approximate robust problem (21) and its relaxation (23), we present the following

result.

Lemma 4. Let µ∗
r be a minimizer for the SDR problem (23), such thath = dimN

(

L1,1(µ∗
r )

)

≥ 1 and

L1,1(µ∗
r ) =

[

V V+

]







0h 0

0 Λ+













V

V+






(25)

be a spectral decomposition ofL1,1(µ∗
r ) for some orthogonal

[

V V+

]

andΛ+ ≻ 0. Consider the optimal cost of

(23) to beJ(µ∗
r ). Let z =

[

z1 z2 z4 . . . z12n

]T
≥ 0, wherezi ∈ R, i = 1,2,4, . . . ,12n, then there does not exist

a z such that

1) J(µ∗
r − z) = J(µ∗

r ), i.e. J(z) = 0

2) µ∗
2i ≥ z2i, i = 1, . . . ,6n,

3) 1−µ∗
2i + z2i ≥ 0, i = 1, . . . ,6n,

4) V T L0(z)V < 0, whereL0(z) = L1,1(µ∗
r − z)−L1,1(µ∗

r ).
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Proof: Suppose such az exists. We choose a small value ofε > 0 such thatµ∗
r −εz is another solution to (23),

satisfying all above points. We evaluateL1,1(µ∗
r − εz) = L1,1(µ∗

r )− εL0(z), and write







V T

V T
+






L1,1(µ∗

r − εz)
[

V V+

]

=







V T

V T
+







(

L1,1(µ∗
r )− εL0(z)

)[

V V+

]

.

Using (25), we can write






V T

V T
+






L1,1(µ∗

r − εz)
[

V V+

]

=







−εV T L0(z)V −εV T L0(z)V+

−εV T
+ L0(z)V Λ+− εV T

+ L0(z)V+






.

Now, from point 4, we know that−V T L0(z)V > 0 and

−V T
L0(z)V − εV T

L0(z)V+

(

Λ+− εV T
+ L0(z)V+

)−1
V T

+ L0(z)V > 0,

becauseΛ+ > 0 and we can chooseε > 0 such thatΛ+−εV T
+ L0(z)V+ > 0 and the above is true. Using the Schur

complement condition for positive definiteness, the above implies thatL1,1(µ∗
r −εz)≻ 0. However, this contradicts

with the requirement forµ∗
r − εz to be another solution according to Lemma 3.

Next, we present our main result regarding the gap between the SDR and (21) and will also relate the vector ˜q

determined in Remark 1 andq∗, i.e. the solution of (21).

Theorem 3. For theh = 1 case, the vector ˜q, which makes ˜qT L ∗
1,1q̃ = 0 will ensure no relaxation gap between the

approximate problem (21) and its semidefinite relaxation (23), making q̃ = q∗.

Proof: For no gap, we need to prove each term on the right hand side of (22) is zero. We use ˜q obtained from

Remark 1, satisfying ˜qT q̃ = 1 andL1,1(µ∗
r )q̃ = 0.

1) Satisfying ˜qT q̃ = 1 implies µ1(1− q̃T q̃) = 0.

2) SatisfyingL1,1(µ∗
r )q̃ = 0 implies x̃T L (µ∗)x̃ = 0.

3) To prove that remaining terms are zero, we first show that

a) if µ2i 6= 0, then pi ≥ 0, i = 1, . . . ,6n.

b) if µ2i+1 6= 0, then pi ≤ 0, i = 1, . . . ,6n.

To prove (a), first we write the optimal cost function of (23) interms ofpi. For this, pre and post multiplying

both sides of (24) by ˜qT and q̃, and using the fact that ˜qT L1,1(µ∗
r )q̃ = 0, we can write

0 = µ1− (2µ2−1)w1γb1q̃T K1
r1q̃− (2µ4−1)w1γb1q̃T K2

r1q̃

− (2µ6−1)w1γb1q̃T K3
r1q̃− (2µ8−1)w1γ r1q̃T K1

b1q̃− . . .

− (2µ12n −1)wnγ r1q̃T K3
bnq̃− q̃T Kr(B,R)q̃.
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Finally, subtracting (26) from (24), we can write

γ̄ = q̃T Kr(B,R)q̃− (2µ∗
2 −1)p1− (2µ∗

4 −1)p2− . . .

− (2µ∗
12n −1)p6n.

Now, consider the casei = 1, i.e. if p1 < 0, we need to proveµ∗
2 = 0. Let us contradict by assuming thatµ∗

2 > 0.

Then there exist az2 > 0 such thatµ∗
2 ≥ z2. We assumez4, . . . ,z12n to be zero. Using Lemma 4 (point 1), we

havez1 = 2z2c1, i.e. the newz satisfies points 1-3 of Lemma 4. Then, usingqT L1,1(µ∗
r )q = 0 we have

qT
L1,1(µ∗

r − z)q = q̃T (−z1I4 +2z2w1γb1q̃T K1
r1)q̃,

qT
L0(z)q = 2z2p1.

Here, asp1 < 0 andz2 > 0, we haveL0 ≺ 0, which is against Lemma 4. Hence we conclude that such az2

is not possible andµ∗
2 = 0. Using a similar approach, we can obtain such results for all values of i, proving

part (a). Similarly, for part (b), we need to show that ifpi > 0, thenµ2i+1 = 0 or in reduced variable settings

1− µ2i = 0, using the conditionµ2i + µ2i+1 = 1 and the constraint 1− µ2i ≥ 0. Now, following a similar

approach as part (a), we can write fori = 1

qT
L0(z)q = −2(1− z2)p1. (26)

Since p1 > 0 and 1− z2 > 0, henceL0 ≺ 0, which is not possible from Lemma 4, proving part (b).

Finally, we prove there exists au ≥ 0, such that the remaining terms in (22) are zero. Sinceµ2i + µ2i+1 = 1

and µ2i,µ2i+1 ≥ 0 and‖p‖1 = u, there are three possibilities:

i) µ2i = 1, µ2i+1 = 0: From (a), we know that in this casepi ≥ 0 and we defineui = pi.

ii) µ2i = 0, µ2i+1 = 1: From (b), we know that in this casepi ≤ 0 and we defineui = −pi.

iii) µ2i 6= 0, µ2i+1 6= 0: From (a) and (b), we know that in this casepi = 0 and we defineui = 0.

It has been observed in the numerical simulations thath > 1 is rare. However, if such a case occurs, more than

one solution is possible i.e. the eigenvectors corresponding to the zero eigenvalues. For such solutions, a zero

relaxation gap cannot be guaranteed. However, the gap will be small, because any of the solutions will result in

some of the terms on the right hand side of (22) to be zero.

VI. SIMULATION RESULTS

We consider the attitude determination for a low cost CubeSat[29], a pico-satellite moving in a circular orbit

at an average altitude of 650 km above earth surface. To find attitude, we assumed the use of two measurements,

namely the earth magnetic field and the sun vector. For the earth magnetic field, normally two magnetometers are
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installed, one inside the satellite for the post-launch tumbling phase, while the second is installed on an extended

boom, which is deployed once the satellite has achieved an equilibrium. The sun vector is sensed by a pair of

sun sensors installed on the satellite. Both of these measurements are in the body frame. For the earth magnetic

field in the reference frame, we used the 1st order IGRF model [21], while the reference sun vector is obtained

using a simplified sun model based on the sun ephemeris [30]. Both sensor measurements and reference vectors are

not accurate. For example, sensor measurements are affected by noise and misalignments. Especially in the post-

launch tumbling phase, the measurement errors further increase due to the use of an internal magnetometer, which

interacts with the magnetic field generated by the surrounding electronics. Similarly, the reference vectors are also

not accurate, because they are obtained from mathematical models, normally based on low-order approximations

for computational benefits. In this work, we consider all sucherrors as∞-norm bounded uncertainties, and for

simulations we set an uncertainty bound of 30% of the norm of the vectors in the body and the reference frame.

A. Tightness of the Analytical Upper Bound

A comparison of the analytical upper bound (15) with the bound obtained from the semidefinite relaxation (19)

is presented. We used two pairs of unit vectors, one in the body and the other in the reference frame, given as:

b1 =
[

−0.542 −0.316 0.779
]T

, r1 =
[

−0.529 −0.335 0.78
]T

,

b2 =
[

−0.673 0.02 0.739
]T

, r2 =
[

−0.666 0.00037 0.746
]T

.

(27)

A uniformly distributed bounded random error is introducedin the vectors for each simulation. A comparison of

both bounds and their relative error for 100 simulations is given in Figure 1. The plot shows that the relative error

is less than 2% on average and less than 5% in the worst cases. This analysis reveals that the price paid for using

the analytical bound is not much, provided the SDR bound is close to the actual value.

B. Performance Comparison for One Time Instant Data

The effect of uncertainty on the robust and non-robust solutions is presented for a given set of data for one time

instant. A number of tests were performed by adding uncertainty in the input vectors within the set bounds. The

set of test vectors is given as:

b1 =
[

−0.776 −0.46 0.43
]T

, r1 =
[

−0.54 −0.326 0.775
]T

,

b2 =
[

−0.927 0.01 0.374
]T

, r2 =
[

−0.673 0.000133 0.74
]T

.

(28)

The non-robust solution is obtained satisfying (3), while the robust solution satisfies (21). Figure 2 presents a

histogram of the distribution of the cost of (6) for different cases of added uncertainty. The x-axis represents the
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Fig. 1. Comparison of the analytical bound (15) and the bound obtained from SDR (19). Bound difference is given as relative error in
percent.

cost value and the y-axis shows the number of tests. The spreadof the cost for bounded uncertainties using the

nominal solution is much more than the robust solution, showing the usefulness of the robust approach.

C. Effect of the Regularization Term

This section analyzes the effect of the regularization term added in the cost function of (21). Figure 3 shows

the effect of variation of the tuning parameterη on the robust performance. In this analysis, we varied first

two components of each input vector parameterized with a single variable varying in the range -1 to 1. On the

y-axis, we plot the cost valueJ. It can be observed that the solution without regularization shows robustness

against uncertainties compared to the nominal solution; however, in some cases the benefit is not significant. The

regularization term in both of these situations improves robust performance. Moreover,η gives the user an option

to choose the robustness margins.

D. Comparison of the Quaternion Obtained from the Approximate Problem and the SDR

We present a quantitative comparison of the optimal quaternion obtained from (21) using MATLAB’sfmincon

(with interior-point algorithm, tolerance of 10−12 and an initial guess of eigenvector ofK corresponding to the

largest eigenvalue) and the solution of (23) usingmincx (with the same tolerance). We used the perturbed vector

data given in (28). A comparison is given in Table I. Note thatq∗ is obtained using Remark 1. The error between

the two quaternions is negligible.
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TABLE I
QUATERNION OBTAINED FROM (21) AND (23) FOR THE VECTOR SET(28)

q∗ q̃ |q∗− q̃|
0.0761303170 0.0761303011 1.59928936×10−8

0.0444603409 0.0444603345 6.39020509×10−9

-0.0305429683 -0.0305429452 -2.31056824×10−8

0.9956377755 0.9956377777 -2.21610053×10−9

E. Robust Performance Comparison for In-Orbit Simulation Data

This section compares the robust and non-robust approaches in the presence of uncertainties, using in-orbit data

obtained from a nonlinear simulation of the satellite initialized with roll, pitch and yaw body rates of 0.5, 0.5 and

0.1 deg/s and roll, pitch and yaw angles of 10, 0, 0 deg, respectively. The ideal data was corrupted by adding

uniformly distributed random errors in the range of±γbi and±γri in the corresponding vectors. We present attitude

determination results for 25 minutes of flight data obtained with a sample time of 1 second. We solved the robust

problem formulated in (21) using the nonlinear optimization solverfmincon of MATLAB, while the problem

formulated using semidefinite relaxation in (23) was solved using the Robust Control toolbox commandmincx.

Figure 4 shows the benefit of the robust over the non-robust approach in the presence of uncertainties, where the

non-robust approach gives large errors in the attitude, while the robust approach gives much better performance,

limiting the maximum error to a smaller band.

F. Analysis of Sections IV and V: Theoretical Results

Lastly, an analysis is presented to support different theoretical results presented in Section IV and V. Figures 5

and 6 support Theorem 3. Figure 5 shows the relaxation gap between the robust problem and its semidefinite

relaxation i.e.qT Krq−uT e− γ̄. It can be observed that the gap is zero for all time instances. Figure 6 shows the

difference between the quaternion obtained from the two solutions. For the SDR case, the quaternions are obtained

using Remark 1. It can be observed that both the relaxation gap and quaternion error is almost zero for all time

instances.

VII. C ONCLUSION

A robust attitude estimation problem was formulated for∞-norm bounded uncertainties in the measurement and

model vectors. The robust min-max optimization problem was transformed into a suboptimal minimization problem

with non-convex quadratic cost and constraints. An additional regularization term was proposed to improve robust

performance. Semidefinite relaxation was used to transform this non-convex QCQP into a semidefinite program

with a linear cost and linear matrix inequality constraints. It was also shown how to extract the robust attitude
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from the solution of the relaxed problem. Further, we also showed that the gap between the formulation (21) and

its relaxation (23) is zero forh = 1 case, showing that the extracted quaternion is the solution to the nonlinear

optimization problem (21). The simulation results showed that the robust approach has significant benefit over the

nominal approach when inputs have bounded uncertainty. The benefit is maximum in the worst case scenarios, but

at the cost of an increased residual for nominal cases.

Some issues need further investigation. Firstly, the relaxation gap for the case whenh > 1 needs to be explored.
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Secondly, a procedure to find the optimal tuning parameterη in the regularization term need to be determined.

Lastly, a computational complexity analysis of the proposedalgorithm is needed to quantify the suitability for an

online application.

APPENDIX A

DAVENPORT TRANSFORMATION

To derive the Davenport transformation, consider the cost function given in (2) i.e. tr(WBTCR). We use two

properties of the trace. Firstly trace is invariant under cyclic permutations, and secondly, tr(∑i Ai) = ∑i tr(Ai)∀A ∈
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R
n×n. Using these properties we can write

tr(WBTCR) = tr(CRWBT ) = tr(CBT (B,R)), (29)

where BT (B,R) = (BWRT )T = RWBT . Now we representC using the quaternionq :=
[

qT q4

]T
, where q :=

[

q1 q2 q3

]T
, written as [1]

C = (q2
4−qT q)I +2qqT +2q4Q. (30)

HereQ is the skew symmetric matrix, given as

Q =















0 q3 −q2

−q3 0 q1

q2 −q1 0















. (31)

Substituting (30) in (29), we get

tr(WBTCR) = (q2
4−qT q) tr(BT (B,R))+2tr(qqT BT (B,R))+2q4tr(QBT (B,R)). (32)

Here, the second right hand side term can be written as

2tr(qqT BT (B,R)) = qT (BT (B,R)+B(B,R))q. (33)
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The last term can be written as

2q4 tr(QBT (B,R)) = q4(qT z(B,R)+ zT (B,R)q), (34)

wherezT (B,R) = (B×R)W . Substituting (33) and (34) in (32) and dropping arguments ofB(B,R) andz(B,R) for

simplification, we get

tr(WBTCR) =







q

q4







T 





BT +B− tr(B)I z

zT tr(B)













q

q4






= qT K(B,R)q, (35)

which is the required form, whereK(B,R) is a symmetric, indefinite and traceless matrix defined in (4).

APPENDIX B

DEFINITION OF FEWMATRICES

K1
ri

=





















ri1 ri2 ri3 0

ri2 −ri1 0 −ri3

ri3 0 −ri1 ri2

0 −ri3 ri2 ri1





















,K2
ri

=





















−ri2 ri1 0 ri3

ri1 ri2 ri3 0

0 ri3 −ri2 −ri1

ri3 0 −ri1 ri2





















,K3
ri

=





















−ri3 0 ri1 −ri2

0 −ri3 ri2 ri1

ri1 ri2 ri3 0

−ri2 ri1 0 ri3





















,

K1
bi

=





















bi1 bi2 bi3 0

bi2 −bi1 0 ri3

bi3 0 −bi1 −bi2

0 bi3 −bi2 bi1





















,K2
bi

=





















−bi2 bi1 0 −bi3

bi1 bi2 bi3 0

0 bi3 −ri2 ri1

−bi3 0 bi1 bi2





















,K3
bi

=





















−bi3 0 bi1 bi2

0 −bi3 bi2 −bi1

bi1 bi2 bi3 0

bi2 −bi1 0 bi3





















.
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