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Abstract

This paper presents a tractable method for solving a rolitiside estimation problem, based on a weighted
least squares approach with nonlinear constraints. A#itstimation requires information of a few vector quagiti
each obtained from both a sensor and a mathematical modetoBsidering the modeling errors, measurement
noise, sensor biases and offsets as infinity-norm boundeeriainties, we formulate a robust optimization problem,
which is non-convex with nonlinear cost and constraintse Tabust min-max problem is approximated with a
non-convex minimization problem using an upper bound. A negularization scheme is also proposed to improve
the robust performance. We then use semidefinite relax&i@wonvert the suboptimal problem with quadratic cost
and constraints into a tractable semidefinite program witimear objective function and linear matrix inequality
constraints. We also show how to extract the solution of thmptimal robust estimation problem from the solution
of the semidefinite relaxation. Further, a mathematicabpsuipported by numerical results is presented stating the
gap between the suboptimal problem and its relaxation i3 @eder a given condition, which is mostly true in real
life scenarios. The usefulness of the proposed algorithithénpresence of uncertainties is evaluated with the help

of examples.

Index Terms

Estimation, uncertainty, robustness, optimization meshanin-max techniques, relaxation methods

EDICS Category: SSP-PARE

Copyright (c) 2012 IEEE. Personal use of this material is permitteeieder, permission to use this material for any other purposes must
be obtained from the IEEE by sending a request to pubs-permissioes@ig.

S. Ahmed and Imad M. Jaimoukha are with the Department of ElectrichlEectronic Engineering, Imperial College London, UK
(e-mail: shakil.ahmed08, i.jaimouka@imperial.ac.uk).

Eric C. Kerrigan is with the Department of Electrical and Electronic Engingeand Department of Aeronautics, Imperial College London,
UK (e-mail: e.kerrigan@imperial.ac.uk).

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

A Semidefinite Relaxation-based Algorithm for

Robust Attitude Estimation

. INTRODUCTION

TTITUDE estimation using vector signals has been widely useshamy application areas, such as satel-
A lites [1], [2], aerospace, marine and automotive systerhsTfie attitude estimate is obtained by solving an
optimization problem based on a weighted least square®ag@pmwith nonlinear constraints, known as the Wahba
problem [4] in the literature. This mathematical formulatis also closely related to some other problems in various
fields, such as independent component analysis (ICA) in kjgoaessing and statistics, pose estimation in image
processing [5] and the orthogonal matrix Procrustes prolifemathematics [6]. This type of attitude estimation
can be called static, as it does not dependent on the dynarhtbe system, hence it could be useful for systems
with highly nonlinear dynamics. In such systems, due to mighlinearities, the dynamic filtering approaches suffer
from divergence issues due to lack of good a priori statenegéis [2]. The attitude determined using the static
approach could be used to obtain a reliable state initidizdor filters, thus reducing the likelihood of divergence.

To compute the attitude of an object, two coordinate franresnaeded. One, which is fixed to the body of the
object, is called the body frame, while the second is caltedreference frame. Formally, the attitude of an object
is defined as a coordinate transformation that transforneseete coordinates into the body coordinates [7]. This
transformation is obtained through a proper orthogonafiarmation matrixC € R3*3, having the constrair€'C =
I3 for orthogonality, and dé€) = +1 to preserve the frame orientation in a rotation. This inetuthe set of all
rotation matrices in apecial orthogonal group of rigid rotations ifR3, denoted bySO(3) [5]. Many solutions of
this constrained least squares problem can be found intdratlire, mostly developed for satellite applications [1]
[8]-[11]. Most of these algorithms are based on a quatertiansformation [12], which transforms the Wahba
problem into an eigenvalue problem [1].

Some examples of the vector signals normally used in stdfiadg determination includes the earth magnetic
field, sun and star direction, position vector, etc. Infoinrabf these vectors is required both in the body and the
reference frames in order to determine the attitude. Ndyntlaé body frame vectors are measured by some sensor
installed on the object, while the same vector informatiothe reference frame is obtained from some mathematical
model. For both sensor measurements or mathematical maaheésror is always present. This error is mainly due
to noise, biases, offsets and modeling inaccuracies. Tis#éirgxialgorithms do not directly address robustness of the

estimated attitude against uncertainties, although atsatysanalysis is generally presented. One can find a lot of
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work on robust linear least square problems in literatunehsas [13]-[15], however there is much less discussion
on robustness in the attitude estimation problem. Some itligws, such as [16], [17], consider uncertainties in the
input measurement, but use a stochastic framework basediimum variance recursive estimation. Similarly,

some related discussions can be found in [18], [19]. Howewethese discussions, modeling errors are generally
not considered, which could be significant; for example, i thse of the earth magnetic field, which is one of
the most common sensors used for attitude estimation in rappiications such as satellites and aircrafts, errors
between sophisticated models and the actual field can be a2 [20], [21]. The use of simple models, such

as the low order IGRF model [21], which are normally prefdrdeie to lower computational cost, result in a less
accurate earth magnetic field, leading to errors in the d#itestimate. Attitude error is further increased due to
sensor noise and installation issues. In this work, all sercbrs are considered asnorm bounded uncertainties.

In this paper, which is mainly based on our previous work dsusb static attitude determination [22], [23], the
main contribution is to formulate a robust attitude estioraproblem considering norm bounded uncertainties. The
formulated robust optimization problem is approximatedabsinimization problem using an upper bound on the
maximization term of the original min-max problem. The apjmmate formulation is non-convex with a quadratic
objective function and constraints (a QCQP). Further, wethice a new regularization term to improve the robust
performance. We propose a tractable method for solvingnibisconvex QCQP using semidefinite relaxation. The
relaxed formulation is convex with a linear objective antkr matrix inequality constraints, which can be solved
efficiently in polynomial time [24] using any semidefinite pragh (SDP) solver. It is also shown how to extract
the robust attitude from the SDR solution. Further, we study dptimality properties of the SDR solution and
theoretically show that there is no gap between the appeimproblem and its semidefinite relaxation under a
given condition.

Notation: Vectors are represented by small and matrices by capitaldetFor a vectok, its 2-norm is||x||2 :=
VXTx, while the infinity-norm is||x||e := 1rpiei>r<l|xi\. The cross product of vectorsandy is represented asx y. For
matricesA andB of the same dimension:_; A x B is the columnwise cross product i.e afis theit" column ofA
andb is theith column ofB, thena x b will be theit" column ofC. We will also use the symbot for the Cartesian
product. For a matrixA = 0 means thaf is positive semidefinitel, denotes the identity matrix of sizg while
Onxm represents a matrix af rows andm columns with all zero entries. Operator d{ag, Ay, ...,A,) represents
a matrix of sizen x n, having only diagonal elemenfg, A, ...,An. Operator t(A) is the trace and ded) is the

determinant of a matrid, .4 "(A) is the null space oA and din{-) represents dimension.
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Il. CLASSICAL ATTITUDE ESTIMATION

The classical static attitude estimation is based on minimgia weighted least square cost, first proposed by [4]
for satellite applications, given as:
. 12
rrg:ln > Zwi |Ibi —Cri||§
= (1)
subject to CTC = I3, defC) = +1,
where bj € R® represents thé™ measurement in the body frame foe= 1,...,n, n being the total number of
sensorsfi € R3 is the corresponding vector in the reference frame obtafred some modelw; € R are non-
negative weights. One common approach used to solve (1)isneert it into an equivalent maximization problem.
LetB:=|b; hy ... bn}’ R:= {rl ry ... rnl, W:i=diagwg,Wo,..., W), whereB,Re R3*M andW € R™N,

Using this compact notation and expanding the cost funatiged in (1), we get
12 1
> lei [y —Cri|3 = étr(WBTB+WRTCTCR) —tr(WBTCR)
i=
1
= étr(WBTB+WRT R) — tr(WB'CR).

Using the constrainC'C = I3 and neglecting the constant term, which has no effect on ¢hetisn of the
optimization problem, an equivalent maximization problasm
max tr(WB'CR)

(2)
subject to CTC = I3, defC) = +1.

To solve this maximization problem, Davenport's g-methddl [12] is commonly used, which transforms the
optimization variable from matri to quaterniong .= [qT q4]T € R4, thus reducing the number of optimization
variables. It also avoids the constraint @t= +1 of (1), being inherent in its definition. However, the maimé#t
is the transformation of the optimization problem into agesivalue problem. Two steps of the g-method are given
now.

Sep 1. Find an equivalent formulation of (2) in terms of a quaterni®his new formulation, first reported in

[12], states that the maximization of (2) is equivalent te fbllowing problem (see Appendix A for derivation):

max {d'"K(B,Rg|q'q=1}, 3)

whereK : R3*N x R3*N _, R4*4 is defined as

(B(B,R))" +B(B,R)—tr(B(B,R))ls  z(B,R)
K(B,R) := , (4)
(z(B,R)" tr(B(B,R))
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whereB : R¥"N x R¥*" — R3*3 andz: R3*" x R3*" — R? are defined aB(B,R) := BWR' andz(B,R) := (Bx R)W.
Moreover, K (B,R) is a symmetric and indefinite matrix, indicating that the ohje function in (3) is neither
concave nor convex.

Sep 2: The maximization problem (3) can easily be converted intoigaralue problem. For this we add the

constraintqg' g = 1 using a Lagrange multipliex in (3) as

f(a,A)=q"K(B,R)g—A(q'q—1). (5)

To obtain a stationary point, we soldd /dq=0 andd f /dA =0 and obtain an expression that has the same form as
the eigenvalue problem i.&(B,R)qg= Aq, whereA represents eigenvaluesi§fB, R). Four eigenvectors df (B,R)

are possible solutions of this equation; however, the @®eor corresponding to the maximum eigenvalue will
solve (3) [1], i.e.K(B,R)0opt = Amaxdopt: Whereqopt is the solution to (3) andmax is the maximum eigenvalue

of K(B,R). Most of the work on static attitude estimation is based da tesult and many efficient algorithms

have been proposed, such as QUEST [1], ESOQL1 [9], ESOQZ2 [10], nfaingatellite applications.

Ill. ROBUSTPROBLEM DESCRIPTION

To formulate a robust attitude estimation problem, we regmé an uncertain measurement vector in the body
frame withb; € B(b) and an uncertain reference vector withe R(r;), i = 1,...,n, whereB(b;), R(r;) C R3 are
bounded uncertainty sets. To find the best uncertainty impedgintransformation matrix for attitude, we define a

robust problem as

i LS W[ — G|
min max Ei;W'H i —Cril|5
bi € B(bi),ri € R(ri), -
(6)
i=1...,n
subject to C'C=13,defC) = +1.

In order to take advantage of using a quaternion to simphig/ dptimization problem, as a first step, we reformu-

late (6) introducing the quaterniapusing the same approach used to derive (3) [22].I?:.et: [61 by ... Bn]
andR:= 1 fp ... r_n}. Using this stacked notation, we can write the cost functb() in terms ofq as
3(0,8.R) = { 5 rWETE - WRTR) - K (. Rja )

The robust attitude determination problem is then defined as

§°(B,R):=argmin  max J(9,B,R)
1 Bca® Rea® (8)

subjectto q'qg=1,
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where Z(B) := B(b1) x B(b2) x --- x B(bn) and Z(R) := R(r1) x R(r2) x --- x R(rn). Like the matrixK (B,R) in

(3), the matrixK (B,R) is also symmetric and indefinite.

A. Uncertainty Model

Uncertainties in the input vectors are of a diverse natures&hvectors are obtained from sensors and mathe-
matical models. Sensor errors are generally attributed @msarement noise, having a stochastic interpretation, and
biases and misalignments, which are fixed values. Modeliagcuracies have generally no clear interpretation. An
uncertainty model, which can fully capture all these uraiattes will be fairly complex and can make the problem
intractable. Keeping in view the tractability, we considlee following affine parameterization of the uncertainty
setsB(b) andR(r) [25].

Let B, p € R3 be vectors of perturbation variables for the uncertaintapeeterization angl, y; € R be uncertainty
bounds for each vector in the body and reference frame, ctégply. This type of uncertainty is called an interval
uncertainty and the corresponding perturbation set reptssa box [25]. The interval uncertainty model is a
suitable candidate for such a type of mixed uncertainty asnd sufficiently capture most realistic errors. This
model is especially useful for vector quantities with boeddincertainties. To elaborate this point, assume that in
the vector quantities ifR®, all mentioned uncertainties will introduce an error in thee value. If the maximum
error introduced in each axis be bounded By, then we can say that the true value will lie in an interval of
size & around the measurement. This interval in each axis will fortmoa in R® with each side of length 2
The size of this interval i.e. the boundfor each measurement or model vector, should be chosenuttgrefs
unnecessarily large values may result in a large residua. choice of bounds depends on the specific sensor
or mathematical model used. Generally, sensor noise is kriowa stochastic sense, e.g. standard deviation or
variance, while modelling errors are given based on previexperimentation or analysis. However, biases and
offsets need to be separately determined for each instalador . Overall, the chosen bound should sufficiently
capture all these errors. Further, we normalize each peatiorbvector in the body and reference frame with the
corresponding uncertainty bound and denote i&as= 3/y, and & := p/y:. Using these normalized perturbation

vectors, we describe the uncertainty sets in the body arderede frame as

3
B(b):{b+ by | Hd)”oogl}?
4 ©)

3
R(r) = {“r > b |16l < 1}7
=1

T T .
whered, = |&,; O 503} , O = [5“ Or2 53} , by := ype andry = y;g are fixed vectors for a given problem

settings withg being thel!" standard basis vector iRS.
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B. An Approximation in the Robust Formulation
Using (9) we present the following result.

Theorem 1. The formulation given in (8) is equivalent to

G = argrr(}in {—qTK(B, R)g+ max (p(q,B,R)"6+57Q()d)

[6]l0 <1

subject to qg=1,

whered := [5J1 & oL &) 5

_lebl(bll —q'K}40)
wiyp1(bi2—qTKZq)
wiyp1(biz—qTK3q)
wiyri(ri—q'Kg Q)
wiyr1(ri2—q'KZq)

p(g,B,R) :=
wiyr(ris—q'K2,q)

WnYrn(fn1 — qT Kt}nq)

WnYrn(rn2 — q’ KﬁnQ)

| Wn Yrn(ra — q’ Kt?nOI)

.
gh)  pi=REX RN X RN RN i

|

(10)

(11)

wherebij andr;; are thejth elements of thét" vector. The definition of matricei; andK/. is given in Appendix

B. The matrixQ :=R* — R5"™6" js given as

_ Wi ls — w1y yaC 0O3x3
—%Wl)'blyrlCT %lerzlls O3x3
Q(a) :=
03x3 03x3 A A
O3x3 O3x3 — W1 ¥inCT

where the transformation matr@X is a function ofq.

033

033

— 3W1on)inC

%lerznls

: (12)
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Proof: Using (9), the first term of (7) is written as

% (tr(WB'B) +tr(WR'R)) = % (tr(WB'B) +tr(WR'R)) +
tr(WBT Ap) +tr(WR'A) + % (tr(WA] Ap) +tr(WATA)) (13)
whereAp = [y181 Wb ... ymaon} andAr = [Vrlérl V202 ... Vm5m]- To simplify the second term, we
first write
K(B,R) = K(B,R)+K(B,Ar) + K (8p,R) +K (8o, 4), (14)

whereK follows its usual definition (4) with

B(B,R) = B(B,R)+B(B,A;) +B(Ap,R) + B(Ap, Ay),

= BWR' +BWAT +ApWR™ + AWA/

z(l3_,§) =2(B,R) +z(B,Ar) + z(Ap, R) + 2(Ap, Ay ),
= (Bx R)\W + (B x A )W + (Ap x RW + (Ap x Ar)W.

We first simplify and rearrange (13) and (14) and then writedkpressions as a function &f Now separating

the terms, which are linear or quadraticdnand using the transformation matrix in termsf7], i.e.

0f—05—05+0;  2(0a02+ G30k) 2(010s — 0Ga)

C=| 2(me2—0sqs) —F+05—03+0; 2(CGs+010a) |-

| 2003+ %) 2(d203 — ) —(ﬁ—qurqur(ﬁ_
we can write the required expression. ]

It can be observed from (10) that the robust problem appemdhe nominal problem if no uncertainty in the
input vectors is considered. Finding the optimal solutiorthaf formulated robust problem is difficult, because of
the following two main reasons. Firstly, due to the matfig) being positive semidefinite, the maximization term
in (10) is non-concave i®, hence making it difficult to find a unique optimal maximum, aedandly, because of
the matrixK(B,R) being indefinite, the objective function is non-convexginTo develop a tractable method for
solving this problem, as a first step, we determine an uppendan the maximum op(g,B,R)T5+6'Q(q)d
over 0. The result is given in the following lemma, however the defgte ofp(q,B,R) andQ(q) on B,R andq

has been omitted for notational simplification.

Lemma 1. An upper bound on the maximization term appearing in (10) is

0< max (p'0+37Q8) < [|pll+61AmaQ) (15)
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Proof: We start with the following inequality

T T T T
max 0+0'Qd) < maxp'd+ max o Qo 16
Hél\wsl(p ) Hé\lwslp [9]l..<1 (16)

Using the Hblder dual norm [26], the first term on the right hand side of) (ik6given as

maxp'd = . 17
Hél\wﬁlp P[4 (17)

For the second term appearing in (16), siligés a symmetric matrix, we can write the maximum eigenvalue of
Q as [26]

Amax(Q) = sup 6'Q8d . (18)
18]l,<1

Hence, we first replace the-norm in the second term on the right hand side of (16) with2h®wrm using the

inequality |||, < v/6n||d||,, for & € R®" [27]. We can write

max3'Qd< max 4'Qd
18]l <1 8],<v/6n

< BnAmax(Q),
Using (17) and (19), we can write (15). ]
Lemma 2. The maximum eigenvalue of the block diagonal matifq) does not depend oq

Proof: To find the eigenvalues of the block diagonal matgixg) = diag(Q1,Q2,...,Qn), We need to solve

equations, i.e. dé@; —Alg) =0,i=1,...,n. Consider the = 1 case, where we can write

/\1()\2 — 8.) 0 0
det Q1 —Alg) = det 0 A3(As—a) =0,
0 0 /\5(A6 — a)

wherea:= 3w ()4 + y4). The above equation implies that = A3 = As = 0, andAz = As = Ag = 3w (Y3 + V)
Similarly we can find eigenvalues f@;, i = 2,...,n. Finally, Amax(Q(0d)) = max %(Wiygi +wiyZ). However, it is

evident that the maximum eigenvalue is independery. of ]

C. Comparison of the Analytical Upper Bound

This section discusses the tightness of the upper bound giv€lb). Since the maximization term in (10) is
convex ing, it is hard to find the optimum. For such problems, fairly tigbtunds can be obtained using semidefinite
relaxation [28]. We will find an upper bound using semidefingkaxation and compare it with the analytical bound.

For a givenB,R and g, we definep :=p(qg,B,R) andQ := Q(q).
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Consider the maximization term in (8). Suppgsie an upper bound on this term satisfying the constrigdif. <
1, which can also be written ase < & < e, wheree € R%" is a vector of ones. LeD € R*®" pe a diagonal
matrix, then the following identity is always true:

3"Qd+p'd—y=—(e+0)"D(e—29)
D-Q -5 o

_[5T 1] y—e'De| |1

NIT

In this expression, we know from the constraifd|, < 1, that both(e+ ) > 0 and (e— &) > 0. Now the

minimum value ofy represents an upper bound on the maximization term if thgodial matrixD = 0, and matrix

D-Q -3
Z(D,y) = B =0, ie.
—5  y—e'De

Max (87Q8+p'8) <min {y| D 0,#(D,y) = 0}, (19)
< Y

which is a semidefinite relaxation (SDR) of the maximizationmeof (8) for a given value ofy,B and R. A
comparison of the analytical bound and the bound obtainedyube SDR is given in Section V, showing a small
relative error between the two. Thus, use of the analyticahdagives computational benefits, but at the cost of a
loss in accuracy of the true solution of (10), although thalysis shows that the loss is small assuming that the
gap between (10) and its SDR is small.

At this stage, one might think of (19) as being tighter, iast®f (15) used to simplify (8). Note that (19) is
based on the assumption tlgats known. However, ifg is unknown, which is the case in actual problems, we may
not get much computational benefits, because the terms of dtexnmequality.# (D, y) = 0 are nonlinear in.

In this work, however, we used (15) to obtain a tractable,dulttoptimal solution of (10).

D. Addition of a Regularization Term

Use of the analytical upper bound in the robust problem (&oduces an approximation, although it was
motivated for computational benefits and the fact that a wnisplution of the inner loop maximization may not
be guaranteed. However, this approximation may degradaltf@ithm performance in terms of robustness. To
improve performance, we introduce a new type of regulddnrain the objective function. The basic idea in using
this regularization is given now.

The optimization variable in (8), i.e the quaterniqrwhich represents a coordinate transformation as a conse-
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guence of the Euler theorem of rotation [7], is defined as

q esin(a/2)
q= = , (20)
Ga coga/2)

where @ € R3 is the axis of rotation andr is the angle of rotation. We propose minimizing an additiceam
—nqﬁ along with the primary objective function. This regularipat term is similar in concept to the Tikhonov
regularization in linear least squares problems [26]. lchsoroblems, the regularization term is normally a norm of
the solution vector. While minimizing the regularized ¢dbe added term enforces a trade-off between the primary
objective and the norm of the solution vector. However, im case, since the norm of the solution vector is 1
(q"q= 1), the introduced regularization term is a functiongaf which corresponds to the angle of rotation for a
given quaternion. Hence, the added telrmz1 enforces finding aj, which minimizes a weighted combination of
both objectives. In the added term,> O is a tuning parameter. A large value pfwill make the optimal solution
of the regularized problem stiff to perturbations with egkaresidual in the nominal case. Simulations have shown
that in the considered environment= 0.5 gives good results with a smaller residual and a reasoraitgg robust
performance margin compared to the nominal solution.

Using the subsequent results and discussion, we now prggefial simplified formulation of the robust problem

in a form suitable for semidefinite relaxation.

Corollary 1. The max term in (10), being convex, may not always give a trusstixaase. Replacing the max term

using Lemmas 1 and 2, along with the regularization term, {d@pproximated with the following maximization

problem
(a",u") = argmax q'K(B,Rig—u'e
subjectto q'qg=1, (21)
—u S p(q) Ba R) S U,
T
whereu:=|u; w ... ug| =0, Ki(B,R):=K(B,R)+nSandS=diag0,0,0,1). Here we neglect all constant

terms having no effect on the argument of the optimizatiarbjam.

Proof: In (10), we replace the max term with the upper bound given imiba 1 and neglect the term
involving 6nAmax(Q(q)), as it does not depend am according to Lemma 2 and will not effect the solution.
We can represent the regularization termnaqﬁ = nq'Sg. Finally, using the fact that a set of A2 1 linear
inequalities—uj < xj < uj, Yjuj < 1, j=1...,6n represent the nonlinear inequalig/j |xj] <1 [25, Definition
1.3.1] and expressing it as a maximization problem, we catew21). All constant terms in the expression are

neglected, however for an exact upper bound, these terntstodme added in the bound obtained from SDm
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IV. SEMIDEFINITE RELAXATION FOR THE ROBUST ESTIMATION PROBLEM

In this section we apply semidefinite relaxation on (21) [Z3{ipposey is an upper bound for the objective
function of (21). Using a similar approach, as used in dagvil19), we obtain the following expression, such that
the right hand side is equal to the left hand side. Again wé dvdp the dependence for notational simplification,

except where necessary:

q' Krg—ue—y=—p1(1-9q"'q) — pa(us — p1) — pa(uz + p1)
— Ha(Up — p2) — Us(U2 + P2) — - - - — MUa2n(Usn — Pen)

- Illm+1(u6n + p6n) - XT'i/ﬂ(l’h B? R)X7

T T -
wherex = {qT u’ 1} y M= [Ul Uo ... Hiocn+1 , p(0,B,R) := PL P2 ... Pen| -
-"g}li(“? B,- R) 04><l e 04><l 04><1
O1x4 0 0 PLZ*%
O1x4 0 0 PLZ*HG
f(l»hByR) =
O1x4 0 0 1*!112:17?112:#1
O1x4 Toipnis 1*“12175“12'1»1 0,5(1B.R) |

Z11(,B,R) := pala — (2 — H3)W1 Yo Ky — (Ha — Us)Wayb KA
— (s — H7)W1yp1K3 — (g — po)Wayr1Kpy — ..

— (Ma2n — Maone1)WaVri K3, — K¢ (B,R),
6n
lii(U,BR) i=y— i+ Zl(ﬂz — H24+1)¢(B,R),
|=

T
wherej is the size ok andc¢(B,R) := [W1Vb1bI WlVrlrI Wanan WnVrnrH . Now if the right hand side

is either zero or negative, we can say tlds an upper bound on the cost of (21). Using this relaxatios ywite

an optimization problem to find the minimum value of this uppeund ensuring the right hand side is either zero

or negative, given as

(y*,u") :=argmin{y| Z(u,B,R) = 0, 4 > 0,i =2,3,...,12n+ 1}. (22)
Y,

Note that few diagonal entries of the matriX(u,B,R) are zero. For this matrix to be positive semidefinite, we
can force the corresponding non-diagonal terms to zero. Witligesult in a reduced set of optimization variables

and will also avoid numerical issues arising due to the zéagahal entries.
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Theorem 2. Using a reduced set of optimization variabjgs.= [Ill Uo Ha ... Him T, an equivalent formu-
lation of (22) is ’
K =argmin -y — Ii(Zuz -1)a(B.R)
(23)

subjectto Xu<li=24..12n,
ng(IJHB) R) i 07

where Z1 1(Ur,B,R) is given by

Z11(1r, B,R) i= pala — 21pWa Y Ky — 204w Vi KZ — 2UeW1 Vo1 Ky
— 2ugWiYri K — - — 2U1o0WnYinKE, 4 -+ Wa Yioa KY + Wi ye1K3
+ WlVblKr31 + WlVrlKél + WlmVrnKSn —K:(B,R).

Proof: Note that in (22) the symmetric matrig’(u,B,R) has zero diagonal elements. F&f(u,B,R) to be
positive semidefinite, as required in (22), all row/columeneénts corresponding to zero diagonal entries must also
be zero [27, Thm 4.2.6], i.e. 2 p — 3 =0,1— s — s = 0,1 — g — iz = 0 and so on. Using this property, we
can force these elements to zero by eliminatingis, . .., U121 from (22) with additional constraints 2 L, >
0,1— s >0,...,1— o0 > 0. Moreover, the minimum value of satisfying the constrain® (u,B,R) = 0 results
in ¢ ;(ur,B,R) =0, giving

Y=t~ IGan(lez -1a(BR). (24)
So with these modifications, instead &f(u,B,R) > 0, we only need? 1(ir,B,R) = 0, hence can write (23)
using a reduced number of optimization variables, whichgsivalent to solving (22) for the minimum upper

bound on (21). n

V. FINDING THE ROBUST QUATERNION (g*)

Although the solution of the semidefinite program (23) givasiaimum upper bound on the robust estimation
problem (21), our main interest is to findgd that could maximize the cost (21). Now the question arisas,vee
find g* using the solutiory,* of (23)? Suppose* results in a zero value of the right hand side of (22), thén
i.e. the minimum value of cost (23), is equal to the maximuratad (21), and the correspondirggwill be the
requiredq®.

In this regard, as a first step, we establish whether therésexis that can makeqT.Zlflq =0, where.Z7; =
Z1(4,B,R). If such aq exists, it will further ensurex” . #*x = 0, where.#* := Z(u*,B,R) and u* can be

obtained fromy,*.

Lemma 3. Let " be a minimizer for the SDR problem (23), thamin(,?flfl) =0.
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Proof: Using pr, the objective function of (23) can be written ds= u; —d, whered is the sum of all
remaining terms. Now whatever the sign afis, the cost is minimum wheny; is minimum. However, at the
same time we nee 1(ur,B,R) = 0. We can also writeZ1 1(r,B,R) = pila — Ky, whereKy, is the sum of all
other terms in the expression. This is a symmetric matrix wetl eigenvalueds,..., A4, andA; > Ao > A3 > A4,
Then, 114 — Ky, will have eigenvaluesly —Aq, Uy — Az, 1 — A3, H1 — A4. Now, Ly = Aq is the smallest possible value

that can makeZy 1(ur,B,R) = 0. This optimal value of, i.e. p;, will ensure)\mm(,iﬂlfl) =0. [ |

Remark 1. As stated in Lemma 3, the matriX’*; has at least one eigenvalue equal to zero. Suppose thereyis onl
one eigenvalue equal to zero agdsan eigenvector af£y"; corresponding to the zero eigenvalue, then thgill
result in botth.Zlfl =0 and q”rfl’flq = 0, because Will belong to the null space of£;";. From this we can
deduce thak™#*% =0, where X*= [qT a7 1}T, although we have no knowledge ofat this stage. This is

possible because all elements of mat&X are zero, except sub-matri«’*, .

The vectorq™can be a candidate for the robust quaternion. Now, if themigiap between the cost of (21) and

(23), thenq"will be the required robust optimal solution of (21).

A. Relaxation Gap

To quantify the gap between the approximate robust probBImgnd its relaxation (23), we present the following

result.

Lemma 4. Let y; be a minimizer for the SDR problem (23), such that dim.#"(Z1(1;)) > 1 and

o0h O \/
L) = |V V] (25)
0 Ayl |V

be a spectral decomposition &f (1) for some orthogona[v v+} and/\; > 0. Consider the optimal cost of
(23) to bed(y). Letz= |z, z z ... zm}T >0, wherez e R,i=1,2,4,...,12n, then there does not exist
a z such that

1) Iy —2) =I(), ie. (2 =0

2) Uy >2p,i=1,...,6n,

3) 1-pu5+2i>0,i=1,...,6n,

4) VT £4(2)V <0, where %y(2) = Lia(lf —2) — Lia(Ly).
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Proof: Suppose such aexists. We choose a small valueof- 0 such thaiu,” — £z is another solution to (23),
satisfying all above points. We evaluaté 1 (1 — €z) = 21 1(14°) — £%(2), and write
VT VT
2a -V Vo] =| | (L) -c%@) v v
Al V!

Using (25), we can write

vT —SVT.,?()(Z)V _SVTXO(Z)V+
Ll —€2) [V V+] =
Al —eV] %2V Ny —eV] L(2)Vs

Now, from point 4, we know that-VT.%(z)V > 0 and

T oyT oyT o7
V Zo(Z)V &V go(Z)V_,_ /\+ £V+$0(Z)V+ V+$o(Z)V>0,

because\; > 0 and we can choose> 0 such that\ . — eV %(2)V; > 0 and the above is true. Using the Schur
complement condition for positive definiteness, the abovaies that %7 (1, — £z) - 0. However, this contradicts
with the requirement fop,” — £z to be another solution according to Lemma 3. ]
Next, we present our main result regarding the gap betweeiSBPR and (21) and will also relate the vectpr ~
determined in Remark 1 amgt, i.e. the solution of (21).
Theorem 3. For theh =1 case, the vectay, Which makesqF.,%l’jlq: 0 will ensure no relaxation gap between the
approximate problem (21) and its semidefinite relaxatior),(88&kingd'= q*.
Proof. For no gap, we need to prove each term on the right hand sid&2piig zero. We usq 6btained from
Remark 1, satisfying|"™§= 1 and.-#11(1;)§ = 0.
1) Satisfyingq® =1 implies pi(1—§"§) =0.
2) Satisfying.#11(1)§ = 0 impliesX' . (u*)X= 0.
3) To prove that remaining terms are zero, we first show that
a) if uy #0, thenp; >0,i=1,...,6n.
b) if toiy1 #0, thenp <0,i=1,...,6n.
To prove (a), first we write the optimal cost function of (23)téims ofp;. For this, pre and post multiplying

both sides of (24) by™ andd; and using the fact that' %, 1 ()G = 0, we can write

0= i1 — (242 — 1)W1 Yor G KA G — (214 — D)Wy G KA G
— (2Us — L)WY K36 — (2ug — L)wayea G KL G— ...

— (2H12n — )Wayr1GT K36 G7 K, (B,R)G.
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Finally, subtracting (26) from (24), we can write

y=0"K:(B,R)— (23 — 1)pr— (245 — )p2— ...
— (2H12n — 1) Pen.
Now, consider the cade=1, i.e. if py < 0, we need to provg; = 0. Let us contradict by assuming thag > 0.

Then there exist @ > 0 such thatu; > z,. We assumey, ...,z to be zero. Using Lemma 4 (point 1), we

havez, = 2z,cy, i.e. the newz satisfies points 1-3 of Lemma 4. Then, us'rqngle(u;ﬁ)q =0 we have

0" Ll —29=0" (—zla+ 22wy G K/,
q' %(2)q = 22p1.
Here, asp; < 0 andz, > 0, we have% < 0, which is against Lemma 4. Hence we conclude that sugh a
is not possible andgi; = 0. Using a similar approach, we can obtain such results foradles ofi, proving
part (a). Similarly, for part (b), we need to show thapijf> 0, thenp,,1 = 0 or in reduced variable settings
1— py = 0, using the conditionus; + p2iv1 = 1 and the constraint 4 pp; > 0. Now, following a similar

approach as part (a), we can write for 1

q %(2)q=—2(1—2)p1. (26)

Sincep; > 0 and 1- 2 > 0, hence% < 0, which is not possible from Lemma 4, proving part (b).
Finally, we prove there exists @> 0, such that the remaining terms in (22) are zero. Sipge- Ui 1 =1
and Ui, Uoi+1 > 0 and||p||1 = u, there are three possibilities:
) Wi =1, Uoiy1 = 0: From (a), we know that in this cagg > 0 and we definey; = p;.
i) o =0, i1 =1: From (b), we know that in this cagg < 0 and we define; = —p;.
i) o # 0, W1 # 0: From (a) and (b), we know that in this cape= 0 and we defina; = 0.
[
It has been observed in the numerical simulations lthatl is rare. However, if such a case occurs, more than
one solution is possible i.e. the eigenvectors corresmgnth the zero eigenvalues. For such solutions, a zero
relaxation gap cannot be guaranteed. However, the gap wiirball, because any of the solutions will result in

some of the terms on the right hand side of (22) to be zero.

VI. SIMULATION RESULTS

We consider the attitude determination for a low cost Cubg®8#t a pico-satellite moving in a circular orbit
at an average altitude of 650 km above earth surface. To fiitddgf we assumed the use of two measurements,

namely the earth magnetic field and the sun vector. For thé eagnetic field, normally two magnetometers are

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

16

installed, one inside the satellite for the post-launchitlimy phase, while the second is installed on an extended
boom, which is deployed once the satellite has achieved aili@@gm. The sun vector is sensed by a pair of
sun sensors installed on the satellite. Both of these meamnts are in the body frame. For the earth magnetic
field in the reference frame, we used th& drder IGRF model [21], while the reference sun vector is inigih
using a simplified sun model based on the sun ephemeris [3}. #&msor measurements and reference vectors are
not accurate. For example, sensor measurements are dffgcteoise and misalignments. Especially in the post-
launch tumbling phase, the measurement errors furtheeaserdue to the use of an internal magnetometer, which
interacts with the magnetic field generated by the surrogndiactronics. Similarly, the reference vectors are also
not accurate, because they are obtained from mathematmdels) normally based on low-order approximations
for computational benefits. In this work, we consider all sectors ase-norm bounded uncertainties, and for

simulations we set an uncertainty bound of 30% of the normhefviectors in the body and the reference frame.

A. Tightness of the Analytical Upper Bound

A comparison of the analytical upper bound (15) with the libobtained from the semidefinite relaxation (19)

is presented. We used two pairs of unit vectors, one in the land the other in the reference frame, given as:

T

.
b1=[—0.542 ~0.316 0779} , rlz[—o.szg ~0.335 078} ,
(27)

T T

by = {—0.673 Q02 0739] ) r= [—0.666 Q00037 0746} .
A uniformly distributed bounded random error is introduéedhe vectors for each simulation. A comparison of
both bounds and their relative error for 100 simulationsivery in Figure 1. The plot shows that the relative error
is less than 2% on average and less than 5% in the worst cagesanilysis reveals that the price paid for using

the analytical bound is not much, provided the SDR bound isecto the actual value.

B. Performance Comparison for One Time Instant Data

The effect of uncertainty on the robust and non-robust swigtis presented for a given set of data for one time
instant. A number of tests were performed by adding uncggtan the input vectors within the set bounds. The

set of test vectors is given as:

T T
blZ[—O.776 —0.46 043} ) l’lZ[—O.54 —0.326 0775} )

: (28)

b22[—0.927 Q01 O.374]T, r2:[—0.673 Q000133 074}

The non-robust solution is obtained satisfying (3), while lobust solution satisfies (21). Figure 2 presents a

histogram of the distribution of the cost of (6) for diffeterases of added uncertainty. The x-axis represents the
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Fig. 1. Comparison of the analytical bound (15) and the bound obtaioed $DR (19). Bound difference is given as relative error in
percent.

cost value and the y-axis shows the number of tests. The spifetie cost for bounded uncertainties using the

nominal solution is much more than the robust solution, shgwhe usefulness of the robust approach.

C. Effect of the Regularization Term

This section analyzes the effect of the regularization tedued in the cost function of (21). Figure 3 shows
the effect of variation of the tuning parametgron the robust performance. In this analysis, we varied first
two components of each input vector parameterized with glesigariable varying in the range -1 to 1. On the
y-axis, we plot the cost valud. It can be observed that the solution without regularizatshows robustness
against uncertainties compared to the nominal solutiomelrer, in some cases the benefit is not significant. The
regularization term in both of these situations improvdsusd performance. Moreoven, gives the user an option

to choose the robustness margins.

D. Comparison of the Quaternion Obtained from the Approximate Problem and the SDR

We present a quantitative comparison of the optimal quiterobtained from (21) using MATLAB’$ mi ncon
(with interior-point algorithm, tolerance of 1% and an initial guess of eigenvector Kf corresponding to the
largest eigenvalue) and the solution of (23) usmgicx (with the same tolerance). We used the perturbed vector
data given in (28). A comparison is given in Table I. Note tfyais obtained using Remark 1. The error between

the two quaternions is negligible.
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QUATERNION OBTAINED FROM (21) AND (23) FOR THE VECTOR SET(28)

TABLE |

q*

q

g —q

0.0761303170
0.0444603409
-0.0305429683
0.9956377755

0.0761303011
0.0444603345
-0.0305429452
0.9956377777

1.59928936 10 8
6.3902050% 10 °
-2.3105682410°8
-2.2161005%10°°
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E. Robust Performance Comparison for In-Orbit Smulation Data

This section compares the robust and non-robust approactiee presence of uncertainties, using in-orbit data
obtained from a nonlinear simulation of the satellite aliged with roll, pitch and yaw body rates of 0.5, 0.5 and
0.1 deg/s and roll, pitch and yaw angles of 10, 0, 0 deg, réispc The ideal data was corrupted by adding
uniformly distributed random errors in the range-of; and+; in the corresponding vectors. We present attitude
determination results for 25 minutes of flight data obtaineith & sample time of 1 second. We solved the robust
problem formulated in (21) using the nonlinear optimizatsolverf m ncon of MATLAB, while the problem
formulated using semidefinite relaxation in (23) was solveih@ the Robust Control toolbox commanidncx.
Figure 4 shows the benefit of the robust over the non-robusoapprin the presence of uncertainties, where the
non-robust approach gives large errors in the attitudelenthie robust approach gives much better performance,

limiting the maximum error to a smaller band.

F. Analysis of Sections IV and V: Theoretical Results

Lastly, an analysis is presented to support different thealeresults presented in Section IV and V. Figures 5
and 6 support Theorem 3. Figure 5 shows the relaxation gap eettee robust problem and its semidefinite
relaxation i.e.q"K,q—u'e—y. It can be observed that the gap is zero for all time instarfeiggire 6 shows the
difference between the quaternion obtained from the twotsois. For the SDR case, the quaternions are obtained
using Remark 1. It can be observed that both the relaxatipnaga quaternion error is almost zero for all time

instances.

VIlI. CONCLUSION

A robust attitude estimation problem was formulated ¢genorm bounded uncertainties in the measurement and
model vectors. The robust min-max optimization problem wasdformed into a suboptimal minimization problem
with non-convex quadratic cost and constraints. An additidegularization term was proposed to improve robust
performance. Semidefinite relaxation was used to transfoisnntbn-convex QCQP into a semidefinite program

with a linear cost and linear matrix inequality constrairitswas also shown how to extract the robust attitude
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Fig. 3. Effect of the tuning paramete@r on robust performance.

from the solution of the relaxed problem. Further, we alsonstbthat the gap between the formulation (21) and
its relaxation (23) is zero foh =1 case, showing that the extracted quaternion is the soluticthe nonlinear

optimization problem (21). The simulation results showeat the robust approach has significant benefit over the
nominal approach when inputs have bounded uncertainty. €heflb is maximum in the worst case scenarios, but

at the cost of an increased residual for nominal cases.

Some issues need further investigation. Firstly, the relemagap for the case whem> 1 needs to be explored.
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Fig. 5. Gap between the maximum cost of (21) and its upper bgtinabtained using the solution of (23).

Secondly, a procedure to find the optimal tuning paramgtén the regularization term need to be determined.
Lastly, a computational complexity analysis of the propoakgbrithm is needed to quantify the suitability for an

online application.

APPENDIXA

DAVENPORT TRANSFORMATION

To derive the Davenport transformation, consider the costtion given in (2) i.e. tWB'CR). We use two

properties of the trace. Firstly trace is invariant undericypgermutations, and secondly,(§; Ai) = 3;tr(A)VA €
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Fig. 6. Error between the quaternions obtained by solving (21) and its SDR
RN, Using these properties we can write
tr(WBTCR) = tr(CRWB') = tr(CB" (B,R)), (29)

.
where BT (B,R) = (BWR")T = RWB'. Now we represenC using the quaterniom := [qT q4} , Whereq :=
T
[ql o qg} , written as [1]
C=(df—a'a)l +24q" +20:Q. (30)

Here Q is the skew symmetric matrix, given as

0 o @
Q: —03 0 i | - (31)
B2 % 0 ]
Substituting (30) in (29), we get
tr(WB'CR) = (d3—q'q)tr(B"(B,R))+2tr(qq'B' (B, R)) + 20atr(QB' (B,R)). (32)

Here, the second right hand side term can be written as

2tr(qq"BT (B,R)) = ¢ (BT (B,R) +B(B.R))qi. (33)
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The last term can be written as
204tr(QBT (B,R)) = 04(q" 2(B,R) + 2" (B,R)q), (34)

wherez' (B,R) = (B x R)W. Substituting (33) and (34) in (32) and dropping argumentB @&, R) andz(B,R) for
simplification, we get
-

: q| |B"+B-tr(B)l z q :
tr(WBTCR) = — 4K (B,R)q, (35)

Ja vdl tl’(B) da

which is the required form, wher€ (B, R) is a symmetric, indefinite and traceless matrix defined in (4).

APPENDIX B

DEFINITION OF FEWMATRICES

rie  rig  ri3 0 —riz rip 0O ri3 —riz 0 ripg —rp2
rig —riz 0 —ri3 ra  riz I3 0 0 —riz ri2 ri1
K = KR = KR = :
rs 0 —riz rp2 0 riz —ri2 —ria g rig riz O
|0 —riz ri2  rig iz 0 —ria 2 —fi2 ra 0 rig
bir b2 b3 0 —biz by 0 —bis —biz 0 by b
L b —b1 O ria 5 bit b2 b3 0 2 0 —biz by —bi1
Kt = K2 = K =
bz 0 —bi1 —bp 0 bz —ri2 ri1 bp b2 bz O
| 0 bz —b2 b | |—bis 0 b b | | bz —bi1 0 b |
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