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Abstract

Complement, a critical defence against pathogens, has been implicated as a driver

of pathology in COVID-19. Complement activation products are detected in

plasma and tissues and complement blockade is considered for therapy. To delin-

eate roles of complement in immunopathogenesis, we undertook the largest com-

prehensive study of complement in COVID-19 to date, comprehensive profiling of

16 complement biomarkers, including key components, regulators and activation

products, in 966 plasma samples from 682 hospitalized COVID-19 patients col-

lected across the hospitalization period as part of the UK ISARIC4C (International

Acute Respiratory and Emerging Infection Consortium) study. Unsupervised clus-

tering of complement biomarkers mapped to disease severity and supervised

machine learning identified marker sets in early samples that predicted peak

severity. Compared to healthy controls, complement proteins and activation prod-

ucts (Ba, iC3b, terminal complement complex) were significantly altered in

COVID-19 admission samples in all severity groups. Elevated alternative pathway

activation markers (Ba and iC3b) and decreased alternative pathway regulator

(properdin) in admission samples were associated with more severe disease and

risk of death. Levels of most complement biomarkers were reduced in severe dis-

ease, consistent with consumption and tissue deposition. Latent class mixed

modelling and cumulative incidence analysis identified the trajectory of increase

of Ba to be a strong predictor of peak COVID-19 disease severity and death. The

data demonstrate that early-onset, uncontrolled activation of complement, driven

by sustained and progressive amplification through the alternative pathway

amplification loop is a ubiquitous feature of COVID-19, further exacerbated in

severe disease. These findings provide novel insights into COVID-19 immuno-

pathogenesis and inform strategies for therapeutic intervention.
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INTRODUCTION

Complement is a complex innate immune surveillance
system, playing a key role in defence against pathogens.
From early in the COVID-19 pandemic, the complement
system has been implicated in the pathology of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection [1–3]. Accumulating evidence suggests that
over-activation of the tightly controlled complement sys-
tem triggers immune and inflammatory pathways that
drive inflammation and tissue damage, leading to a
vicious cycle of further complement activation and dam-
age [4–7]. All three activation pathways, classical, lectin
and alternative, have been implicated as triggers, and ter-
minal pathway activation demonstrated in numerous
studies. Complement over-activation likely contributes to
COVID-19 pathology not only driving hyperinflamma-
tory host responses but also exacerbating endothelial
injury and hypercoagulability [7–9]. Complement activa-
tion products, notably C5a and the membrane attack
complex (MAC), trigger and perpetuate inflammation by
activating pro-inflammatory pathways in leukocytes,
endothelial cells and other targets, while MAC directly
causes endothelial cell damage and may also induce and
activate cytotoxic T cells to exacerbate injury [10, 11].
Crosstalk with other pro-inflammatory cascades, for
example, the kinin system, amplifies inflammation, while
crosstalk with the coagulation system generates a pro-
coagulant state that, in combination with endothelial
injury, facilitates clotting [4–6, 12, 13].

Elevated levels of complement activation products
and consumption of complement proteins in plasma, and
abundant deposition of complement activation products
in lung, kidney and other involved tissues, are reported
in COVID-19 patients, particularly in severe disease [3,
14–20]. Plasma complement biomarker studies in
COVID-19 published to date have been limited in terms
of sample number, coverage of disease course and/or
selection of analytes, providing sparse information on
complement dysregulation in mild or early COVID [14,
15, 21–25]. The few studies that have tested in sequential
samples from patients comprised small sample sets and
measured individual analytes in fixed comparisons
(e.g., hospitalized versus non-hospitalized, Intensive Care
[ICU] versus non-ICU, or fatal versus non-fatal) [14–18];
none explored the diagnostic and/or prognostic value of
measuring complement biomarkers across the disease
course. Hence, there remains considerable uncertainty
regarding how SARS-CoV-2 infection triggers

complement over-activation, when in the disease course
this occurs, which complement pathways drive over-
activation and precisely how complement contributes to
pathology across the disease course. This knowledge gap
has important implications not only for diagnosis and
prognosis but also for therapy; effective interventions tar-
geting complement require an understanding of how,
when and where complement activation occurs in the
disease process and which activation pathways predomi-
nate. Indeed, although early studies testing available
complement-blocking drugs in severe COVID-19 reported
some remarkable outcomes [14, 21, 22, 26, 27]; none of
the large phase II/III trials that followed met endpoint
criteria [28, 29]. These failures were likely a consequence
of the knowledge gap noted above; trial protocols
included neither stratification of patients for therapy
based on evidence of complement dysregulation nor
evidence-based selection of complement targets.

These studies implicate complement dysregulation as
a driver of pathology in COVID-19, but mechanistic
details remain unclear. In particular, there is a lack of
understanding of how complement dysregulation
develops over the course of the infection. To clarify this
critical element of pathogenesis, we conducted the largest
comprehensive profiling of complement in infectious dis-
ease to date, assessing almost 1000 samples from hospi-
talized COVID-19 patients collected as part of the
ISARIC4C study (https://isaric4c.net/) [30, 31]. Collec-
tively, the data demonstrate that uncontrolled activation
of complement, propagated by sustained and progressive
alternative pathway amplification, occurs in COVID-19;
they suggest that tissue deposition of complement com-
plexes is an important component of severe disease.
These findings significantly contribute to understanding
how complement contributes to COVID-19 pathogenesis
and have relevance for understanding the roles of com-
plement in other infectious diseases.

RESULTS

Complement over-activation is apparent on
admission in all severity groups, associated
with severity at admission and predicts
peak disease

To determine the relationship between levels of plasma
complement biomarkers and disease severity in COVID-
19, we used well-validated immunoassays to measure
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16 complement proteins chosen to include key compo-
nents, regulators and activation products, and to interro-
gate activation and terminal pathways. Of the
750 patients recruited, 30 had a known symptom onset of
over 28 days before admission or over 14 days after
admission, and 38 lacked adequate outcome data; both
these groups were excluded. From the remaining
682 cases, 966 plasma samples, plus samples from
49 healthy controls, a total of 1015 samples were mea-
sured (Table 1). The median duration of symptoms prior
to recruitment and sample collection was 7 days, median
symptom onset to outcome was 18 days and median
admission to outcome was 10 days (Table 1). Corticoste-
roid use was significantly higher in more severe disease
groups. Sample numbers for each biomarker are shown
in Table S1. Donors were segregated based on severity
into five clinical groups based on their peak disease
severity as described in Methods (1, Ward; 2, Oxygen
alone; 3, NIV/HFNC; 4, IMV; 5, Death); numbers in each
severity group are in Table 1. Samples were further
grouped based on the day of sampling post-admission
(1–3; 4–7; 8–14; and Convalescent).

Admission (day 1–3) samples were available from
414 patients; data from these and the 49 healthy control
samples were clustered using a hierarchical-k means
hybrid approach and annotated with peak severity, daily
severity (both on the 5-stage WHO Ordinal scale
described above), ICU admission (Yes/No), disease dura-
tion at the time of sampling (from symptom onset; days),
time from admission to sampling (days); time from sam-
ple to outcome (days), and length of hospital stay (days).
Covariables were age, sex (Male/Female), presence of
comorbidities (other than obesity) (Yes/No) and obesity
(Yes/No; subjectively assessed by a clinician) for each
patient. All comorbidities are listed in Methods. Healthy
control samples (n = 49) were included as comparators
(coloured green in Figure 1). Complement biomarker
profiles clustered into four distinct patterns, apparent as
separate hierarchical clusters in the heat map
(Figure 1a). Cluster 4, defined by low levels of the activa-
tion markers Ba, iC3b and TCC and normal levels of
other complement biomarkers, contained almost all
healthy donor samples with only 15 COVID-19 samples.
Cluster 3, defined by the highest levels of activation
markers iC3b and TCC, moderately elevated levels of Ba
and high levels of all components and regulators except
C4 and FD, was associated with low levels of severe dis-
ease (22%), low ICU admissions (27%) and a low propor-
tion of deaths (12%). Cluster 1, defined by moderately
elevated levels of the activation markers Ba, iC3b and
TCC, moderately reduced regulators clusterin and pro-
perdin and (compared to Cluster 3) reduced levels of
other components and regulators, was associated withT
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moderate levels of severe disease (33%), intermediate ICU
admissions (36%) and deaths (17%). Cluster 2, defined by
very high levels of the alternative pathway activation
marker Ba but only moderately increased iC3b and TCC
levels, very low levels of properdin and clusterin, and low
levels of most other complement biomarkers including
FH, FI, C1q, C4, C3 and C5, was associated with the most
severe disease (63%), highest ICU admissions (62%) and
deaths (28%). The Z scores for each biomarker in each
disease severity group are shown in Figure 1b with clus-
ters colour coded as in the figure key; significant differ-
ences between the clusters were evident for all
biomarkers. Principal components analysis showed clear
separation of healthy (Cluster 4; green, includes all
healthy controls), mild-to-moderate disease (Clusters
3 and 1; yellow and orange respectively) and severe
(Cluster 2; red) disease groups (Figure 1c). The contribu-
tions of the different biomarkers to each of the principal
components in the analysis are shown (Figure 1d).

Clustering analysis revealed associations between
complement analyte levels and disease severity; hence,
we next used supervised machine learning to predict
peak disease severity from admission samples and gain
insight into the disease process by identifying key com-
plement analytes with strong predictive power. Partial
least squares discriminant analysis (PLS-DA) demon-
strated clear separation of healthy from disease groups
and separation, albeit with substantial overlap, between
moderate and severe peak disease severity groups
(Figure 2a, b). Healthy controls were characterized by
low levels of C3, C5, C1inh and the activation products
iC3b, Ba and TCC compared to the disease groups, with
TCC providing the strongest differentiation of healthy
from COVID-19 samples (Figure 2a, b, d). Moderate peak
severity in COVID-19 was most strongly associated with
elevated TCC and C3, and reduced clusterin and proper-
din, while severe peak disease was most strongly

associated with elevated Ba levels and reduced properdin
and clusterin (Figure 2a, b). Cross-validated ROC analysis
confirmed the clear separation of healthy from disease
(AUC 0.989) and showed strong predictive power for sep-
aration of individual disease groups (AUC 0.826–0.841;
Figure 2c). A PLS-DA relevance network showed that the
three activation markers Ba, TCC and iC3b were nega-
tively correlated with the healthy group, while Ba showed
a positive correlation with severe peak disease. Strong
negative correlation with properdin stood out as a predic-
tor of severe peak disease, with negative correlations of
TCC and Properdin defining Moderate peak disease
(Figure 2e). As a complementary approach, cross-
validated Random Forests analysis for all 16 complement
variables was performed using admission (day 1–3)
samples.

Overall, test-set accuracy in peak severity prediction
was 84.6% and class-balanced predictive accuracy was
85.1% for severe disease (levels 6–8), 86.2% for moderate
disease (levels 3–5) and 98.8% for healthy controls
(Figure 2f). Subanalysis of variable importance demon-
strated that TCC contributed most to the segregation of
healthy from disease samples, while four complement
variables (properdin>Ba>clusterin>C1q) provided most
of the predictive power for peak disease severity in
COVID-19 patients (Figure 2g). Partial dependence plots
(PDP) were generated from the final random forests
model to illustrate the relationship of combinations of
the most informative variables to the prediction of severe
peak disease while accounting for other variables
(Figure 2h, i). Plotting Ba against TCC demonstrated that
higher levels of both analytes increased the likelihood of
severe peak disease with a synergistic relationship. Plot-
ting either of these activation markers against properdin
showed clear cut-off levels associated with increased like-
lihood of severe disease (Figure 2h). Scatter plots of raw
data for all patients with values of plotted variables

F I GURE 1 Admission complement biomarker levels in patients hospitalized with COVID-19 show distinct response clusters that map

to peak severity. (a) Unsupervised clustering heatmap of 16 complement biomarkers, including key activators, components and regulators in

414 plasma samples collected from patients hospitalized with COVID-19 within 3 days of admission, and 49 healthy control donors. Z scores

were calculated from log10-transformed, scaled and centred values. A hybrid hierarchical k-means approach (hkmeans) was used to cluster

patients by Euclidean distances using Ward’s method. Four clusters are identified, labelled 1–4. Individual patient columns are annotated

with key clinical and demographic information, indicated in the legend. Disease severity at the time of sampling (daily severity), peak

severity, ICU admission, death as outcome, duration of illness before hospital admission, length of hospital stay, age, sex and comorbidity

are shown. (b) Admission levels of 16 complement biomarkers from all patients separated based upon the four unsupervised clusters

identified above (same colour codes). Violin plots show data distribution with overlayed boxplots indicating median and interquartile ranges.

Numbers in each cluster are shown for all biomarkers. (c) Biplot of a principal component analysis (PCA) of Z scores of admission levels of

16 complement biomarkers from all patients included in the cluster analysis. Arrows show loadings of each listed complement biomarker.

Points show PC1 and PC2 scores for individual patients, coloured as in the unsupervised clusters. Large points represent the centroids of

each respective cluster with ellipses indicating the 95% confidence levels. *p < 0.05; ****p < 0.0001; Kruskal Wallis followed by Dunn’s
multiple comparisons post-tests with false discovery rates controlled using the Benjamini-Hochberg procedure. (d) Percent contributions of

variables to PC1 and PC2 scores in the PCA analysis.
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coloured by actual peak severity are shown (Figure 2i);
although these do not consider the impact of non-plotted
complement analytes, they showed similar patterns.
Absolute values for these key biomarkers and other
patient characteristics in the different clusters are sum-
marized in Tables S2 and S3.

Complement biomarkers distinguish
disease severity groups across the disease
course

Complement biomarkers measured at intervals post-
admission were plotted in relation to peak severity
(Figure 3) and severity at the time of sampling
(Figure S1); for clarity of presentation, cases were divided
into Moderate (score 3–5 on the WHO COVID-19 ordinal
scale) and Severe (score 6–8 on the scale). Data were plot-
ted in the different time interval groups (Figure 3a;
Figure S1 a) and on a continuous time scale with the
curve generated by Loess regression to demonstrate
trends across hospitalization (Figure 3b; Figure S1 b).

All complement components tested, other than C4 and
FD, were elevated in COVID-19 samples compared with
healthy controls in both moderate and severe disease
groups and at all timepoints, whether segregated based on
peak severity (Figure 3a, b) or severity at the time of sam-
pling (Figure S1 a, b). In admission (day 1–3) samples,
levels of C1q, C3, C5 and C9 were all lower in severe dis-
ease compared to moderate, whether segregated on peak
disease severity or severity at the time of sampling; on days
4–7 samples, these trends were less pronounced, signifi-
cant only for C3; in day 7–14 samples, C1q, C3, C5 and C9
levels were all higher in the severe disease groups com-
pared to moderate disease (Figure 3a; Figure S1 a).

Of the complement regulators C1inh, FH, FHR4,
FHR125, FI and properdin, levels of C1inh, FH and clus-
terin were elevated in COVID-19 samples compared with
healthy controls in all severity groups and at all time-
points, whether segregated based on peak severity
(Figure 3a, b) or severity at the time of sampling
(Figure S1 a, b); for other regulators, there was no consis-
tent difference. In admission (day 1–3) samples, C1inh,
FHR125, properdin and clusterin were all decreased with
greater disease severity at the time of sampling and peak
severity, with particularly large decreases for properdin
and clusterin (Figure 3a; Figure S1 a); FH was signifi-
cantly decreased in severe disease relative to moderate in
the peak severity analysis (Figure 3a). In samples taken
up to day 7 post-admission, peak disease severity and
severity at the time of sampling were strongly associated
with decreased properdin and clusterin; increased C1inh
and FI were associated with severe disease in day 8–15
samples (Figure 3a; Figure S1 a). Loess curves of comple-
ment regulator levels highlighted decreased properdin
and clusterin in severe disease across the time course,
particularly in early samples, and the decrease in FI in
later moderate disease samples (Figure 3b; Figure S1 b).

All measured complement activation products, Ba,
iC3b and TCC, were elevated in COVID-19 samples com-
pared with healthy controls in all severity groups and at
all timepoints. Ba was markedly increased with increased
disease severity at the time of sampling and with peak
disease severity at all timepoints while iC3b levels were
increased in severe disease but only in samples taken late
in the disease course (Figure 3a; Figure S1 a). In contrast,
TCC levels were reduced in more severe diseases assessed
either at the time of sampling or at peak disease across
the time course. Loess curves of activation product levels
clearly illustrated the progressive increase in Ba over the

F I GURE 2 Supervised machine learning identifies key severity-associated complement biomarkers and predicts peak COVID-19

severity. Complement biomarkers were measured in 414 plasma samples collected from hospitalized COVID-19 patients within 3 days of

admission, and 49 healthy control donors. (a) Z scores were generated and plotted with peak disease severity to generate a PLS-DA model to

predict disease severity. Arrows in the biplot show loadings of each listed complement biomarker. Points show component 1 and 2 scores for

individual patients, coloured by peak disease severity (green, healthy; yellow, moderate; red, severe). (b) 3D projection of components 1, 2,

and 3 scores for all samples coloured by actual peak disease severity, with shading indicating the 95% confidence levels of the population

concentration. (c) ROC curves and cross-validated AUC values from the PLS-DA classification illustrate the predictive power for peak

severity prediction. (d) Loadings for the top six contributing complement biomarkers for PLS-DA components 1, 2, and 3. Colouring of bars

indicates peak disease severity group with the maximum median value for each biomarker. (e) Relevance network showing key complement

biomarkers contributing to disease severity prediction in the PLS-DA model. Colour key refers to connecting lines to show relative impact

and direction of change (brown-to-red indicates association with low levels of biomarker; light blue-to-dark blue indicates association with

high levels of biomarker). (f) Confusion matrix showing test set performance for prediction of peak severity using a random forests model

trained on class-balanced and cross-validated data in the sample set. The cross-validated out-of-box (OOB) error rate was 4.86%. (g) Relative

contributions of the different biomarkers to peak severity class prediction in the random forest model. (h) Partial dependence plots (PDP) for

final random forest model, showing the average effects and interactions of plotted variables on prediction of severe peak disease while

accounting for other variables. Colour bars above each plot indicate severity range from healthy (dark blue) to severe peak disease (yellow).

(i) Scatter plots showing values of plotted variables for all patients, coloured by actual peak severity.
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time course in severe disease and iC3b mirroring this rise
in earlier samples while TCC levels were similar in the
severity groups and constant across the time course
(Figure 3b; Figure S1 b).

The analysis confirmed that Ba levels were robustly
elevated in severe disease compared to moderate across
the time course with an upward trajectory in severe dis-
ease. Properdin levels were consistently decreased across
the disease course in severe disease compared to moder-
ate while low clusterin levels were associated with severe
disease in early disease but not later. These analyses also
revealed an association of increased iC3b and FI levels
with more severe peak disease in samples taken later
post-admission.

Convalescent samples taken after hospital discharge
were available from 168 patients (152 moderate peak dis-
ease, 16 severe peak disease); for most complement bio-
markers, levels had normalized to near those in healthy
controls and the peak disease severity groups were not
significantly different (Figure 3a). Levels of C1q, C3, C9,
C1inh, FH, iC3b and TCC remained high compared to
healthy controls; C3, C5, C9 and C1inh were all higher in
convalescent samples from the moderate peak disease
group.

Markers of complement dysregulation
correlate with outcome

At the time of analysis, outcome was known for 597 of
the 682 COVID-19 patients included in the analysis;
455 had been discharged alive and 142 had died. The
most informative complement biomarkers in those with
death or discharge as an outcome were assessed for asso-
ciation with that outcome in samples taken across the
time course (Figure 4a). Elevated Ba levels and decreased
levels of clusterin and properdin in both admission sam-
ples and samples taken later post-admission were highly
associated with death as outcome. Of the 302 patients
treated in ICU, 104 died (Table 1); in a subanalysis of this
ICU set, elevated Ba and decreased clusterin and

properdin levels were significantly associated with death
as outcome in samples collected after day 4 post-
admission (Figure S2a).

Loess curves demonstrated the trajectories of three
biomarkers (Ba, clusterin, properdin) differed between
outcome groups (Figure 4b; Figure S2b). For Ba in all
samples, levels remained high or further increased in
those with death as outcome and fell in those who sur-
vived; the widening gap between outcomes illustrated the
power of this biomarker as a predictor of outcome
(Figure 4b); in the ICU set widening of the gap between
outcomes with time was obvious for Ba (increased in the
death group), properdin and clusterin (both decreased in
the death group) (Figure S2b). Longitudinal data of indi-
vidual patients with repeated samples for the five comple-
ment biomarkers were also interrogated using spaghetti
plots, colour-coded for outcome (survival, blue; death,
red) and connected by lines to illustrate changes in bio-
marker levels across the time course for each individual
(Figure 4c). For almost all individuals with death as out-
come, Ba levels markedly increased over time, while for
those who survived Ba levels were stable or fell
over time.

Implication of the alternative pathway activation
marker Ba as a predictor of outcome provoked us to
develop a latent class linear mixed model to generate esti-
mated trajectories for Ba across the disease time course
(Figure 4d); two distinct classes of response were pre-
dicted in the final model, Class 1 (light blue) showed a
downward Ba trajectory with time and was associated
with moderate disease, while Class 2 (dark blue) showed
a steeply upward Ba trajectory across the time course and
was associated with severe disease and death. When plot-
ted as individual patients and separated into peak disease
severity groups, it is apparent that the mild and moderate
peak disease groups contain mainly Class 1 Ba responses
while Class 2 responses predominate in the more severe
peak severity groups (Figure 4e). The Ba trajectory classes
were also highly predictive of outcome as demonstrated
by plotting cumulative incidence curves of death (red)
and hospital discharge (blue) up to 28 days post

F I GURE 3 Complement biomarker levels across the admission correlate with peak disease severity and implicate alternative pathway

over-activation as a driver of severe disease. (a) Plasma levels of 16 complement biomarkers measured from admission to 15 days post-

admission in COVID-19 (735 samples) were grouped (days 1–3; 4–7; 8–15) and segregated by peak severity (moderate; severe). Numbers in

each group are shown in the figure. Healthy control (n = 49) and convalescent (median 21 days post-discharge, IQR = 39 days; n = 156)

samples were included for comparison. Violin plots show data distribution for moderate (yellow) and severe (red) peak disease severity with

overlaid boxplots indicating median and interquartile range; significant differences are shown (*p ≤ 0.05; **p < 0.005; ***p < 0.001;

****p < 0.0001; Kruskal Wallis test followed by Dunn’s multiple comparisons post-test with false discovery rates controlled using the

Benjamini-Hochberg procedure). (b) Plasma complement biomarker values in COVID-19 patients are shown on a continuous time scale

with the curve generated by Loess regression demonstrating trends across the hospitalization and 95% confidence intervals (shaded areas) for

moderate (yellow) and severe (red) peak disease. The healthy control values are shown in green at time zero for comparison.
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F I GURE 4 Legend on next page.
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admission in COVID-19 patients (Figure 4f), with death
and survival showing highly significant differences
between classes (p value <0.0001 for both death and sur-
vival, Grey’s modified Chi-squared test). Almost 75% of
Class 1 (left plot) Ba trajectory cases had been discharged
alive by day 28 post-admission compared to just 25% of
Class 2 (right plot) Ba trajectory cases; over half of Class
2 Ba trajectory cases had died by day 28 compared to 15%
of Class 1 cases. Competing risks regression, performed
using a Fine-Grey proportional sub-distribution hazards
model controlled for common patient characteristics
(age, sex, obesity, and comorbidity), demonstrated that
Ba trajectory class was a powerful predictor of death as
outcome, with a large and highly statistically significant
hazard ratio (HR 4.32, p < 0.001) (Figure 4f; inserted
Table).

DISCUSSION

The COVID-19 pandemic has claimed over 6 million lives
across the globe and continues to inflict severe costs. Bet-
ter understanding of pathogenesis is critical for both the
current pandemic and those to come. Evidence implicat-
ing complement in COVID-19 pathogenesis has accumu-
lated over the course of the pandemic; however, a
comprehensive understanding of how complement dysre-
gulation is triggered, when in the disease process it
occurs, which pathways of complement activation pre-
dominate and whether complement dysregulation is
cause or consequence of the disease is lacking. Here, we

demonstrate that complement dysregulation, and specific
dysregulation of the alternative pathway, is a ubiquitous
feature of severe COVID-19 across the disease course and
predicts outcome.

The study has some limitations. We did not include
assays specific for classical or lectin pathway activation;
although C1q and C4 levels were measured and low
levels suggest classical pathway engagement, inclusion of
activation markers might have provided additional infor-
mation on routes to dysregulation. More longitudinal
sampling from individual patients may have improved
the precision of reported complement trajectories; how-
ever, the large sample size with 485 of 966 (50.2%) ana-
lysed samples from patients with repeated samples,
together with the application of established methods to
combine repeated and single samples in the analysis, pro-
vided powerful coverage across the first 15 days of hospi-
talization with COVID-19. The study was limited to
COVID-19 and did not include samples from patients
with other forms of sepsis with ARDS; although it was
not our intent here to look for COVID-19-specific
markers, such samples might be informative.

Classical, lectin and alternative pathways have all
been implicated as initiators and/or drivers of comple-
ment activation in COVID-19. Direct activation of the
lectin pathway by SARS-COV-2 proteins and the pres-
ence of lectin pathway components in COVID-19 lung
implies a role of lectin pathway in local pathology [19,
32]. SARS-CoV-2 antibody titres correlated with levels of
the activation markers C3a and C5a in severe disease,
suggesting an engagement of the classical pathway in

F I GURE 4 Progressive upward trajectories of alternative pathway activation markers are strongly and specifically associated with

mortality in hospitalized COVID-19 patients. (a) Levels of the five most informative plasma complement biomarkers measured from

admission to 15 days post-admission in COVID-19 were grouped (days 1–3; 4–7; 8–15) and segregated by final outcome (survival; death).

Numbers in each group are shown in the figure. Violin plots show data distribution for survival (blue) and death (red) with overlaid boxplots

indicating median and interquartile range. Significant differences are shown (*p ≤ 0.05; **p < 0.005; ***p < 0.001; ****p < 0.0001; ns,

p > 0.5. Kruskal Wallis followed by Dunn’s multiple comparisons post-tests with false discovery rates controlled using the Benjamini-

Hochberg procedure). (b) Data from A shown on a continuous time scale with a smooth curve generated by Loess regression demonstrating

trends and 95% confidence intervals (shaded areas) for survival (blue) and death (red) as outcome. (c) Spaghetti plots showing longitudinal

changes in levels of complement biomarkers in those individual patients with repeated measurements available for analysis. Samples from

each patient are coloured based on outcome (survival, blue; death, red) and connected by lines; dashed lines indicate means for the survival

(blue) and death (red) groups. (d) Latent class linear mixed model (LCLMM) showing estimated trajectories for the alternative pathway

activation marker Ba and corresponding 95% confidence intervals during the first 15 days of hospitalization with COVID-19 for two distinct

classes of response, Class 1 (light blue), associated with moderate disease, showing a downward trajectory, and Class 2 (dark blue),

associated with severe disease and death, showing a steeply upward trajectory across the time course. Shaded areas represent 95% confidence

intervals. (e) Plasma Ba levels in individual patient samples grouped by Ba trajectory class membership in the five different peak severity

groups. Sequential samples from the same patient are connected by a line. The preponderance of Class 2 responses in the more severe peak

severity groups is apparent. (f) Cumulative incidence curves of death (red) and hospital discharge (blue), grouped by Ba trajectory class

membership (Class 1 on left, Class 2 on right), up to 28 days post admission in COVID-19 patients. Shaded areas represent 95% confidence

intervals. Analysis was performed using Grey’s modified Chi-squared test and Fine-Grey proportional sub-distribution hazards model.

Obesity was clinician-defined and the comorbidities considered are described in detail in the methods. The appended table shows that a Ba

Class 2 trajectory strongly predicts death as outcome.
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later stages [33, 34]. The alternative pathway is distinct
from the other complement activation pathways in that it
is not a linear pathway; it is a positive feedback amplifi-
cation loop that converts small activation events, whether
initiated via the classical or lectin pathway or directly on
activating surfaces, into large downstream effects [35].
This amplification property confers a high risk of uncon-
trolled activation, prevented in health by numerous
fail-safe regulatory mechanisms. Failure of the tight regu-
lation that holds the alternative pathway in check is a
core feature of many complement dysregulation diseases
[36]; indeed, the demonstration that SARS-CoV2 spike
proteins directly activate the alternative pathway suggests
that virus-triggered activation might be an initiator of
dysregulation [37]. Several recent studies of complement
biomarkers in COVID-19 have focussed attention on the
alternative pathway [16, 17, 23–25]. Ma et al. showed an
association of increased levels of FD, an essential alterna-
tive pathway enzyme, with severe disease and death as
outcomes in hospitalized COVID-19 patients, provoking
the suggestion that elevated FD levels were responsible
for propagating alternative pathway activation [17]. Bous-
sier et al. reported that levels of properdin, a critical stabi-
lizer of the alternative pathway convertase, were reduced
in severe COVID-19 and associated with the risk of
requiring mechanical ventilation [23], although others
reported the opposite – higher properdin levels in more
severe disease and those with fatal outcome [24].

We measured levels of 16 complement components,
regulators and activation products in 966 samples from
682 hospitalized COVID-19 patients, by far the largest
study of complement dysregulation in COVID-19 to date.
All samples were collected in the first wave of the pan-
demic before effective therapies were available. Cluster
analysis showed that the complement biomarkers differ-
entiated health from disease and segregated individuals
into clusters with similar disease severity on admission
and peak disease severity (Figure 1). Compared to
healthy controls (all within Cluster 4 in the heat map), Z
scores for ten of the measured complement analytes were
elevated in COVID-19 admission samples; these included
all three activation markers measured (Ba, iC3b, TCC),
the regulators C1inh and FH, and all components except
C4 and FD. The demonstration of increased levels of
complement components in the face of activation and
consumption reflects the fact that most are acute phase
reactants, inflammation-driven increased synthesis com-
pensating for increased consumption. Indeed, in Cluster
2, dominated by severe disease cases and poor outcome
levels of components (C1q, C4, C3, C5, C9) and regula-
tors (FH, FI, properdin, clusterin) were decreased com-
pared to moderate disease (Clusters 1 and 3), suggesting
that increased consumption outpaces production in

severe disease. The observation that C1q and C4 levels
were reduced in the severe disease cluster implies
increased classical pathway activation, perhaps driven by
anti-SARS-CoV-2 antibodies [33, 34]. Z scores for the
three activation markers were increased in all three dis-
ease clusters. Elevated levels of Ba, an alternative
pathway-specific activation marker generated during the
formation of the C3bBb convertase, were particularly evi-
dent in the most severe disease cluster, implying
increased activity in the alternative pathway amplifica-
tion loop. Notably, levels of the alternative pathway regu-
lator FH were significantly lower in the severe disease
cluster, suggesting that reduced FH exacerbates alterna-
tive pathway dysregulation in severe COVID-19.

PLS-DA and Random Forests analysis of data from
samples taken early after admission confirmed the pre-
dictive value of the measured complement biomarkers in
determining peak severity (Figure 2); the analyses
showed separation of healthy from disease with a predic-
tive value (healthy versus disease) of 0.989 (Figure 2c).
This near-perfect segregation was driven largely by the
three activation markers (Ba, iC3b, TCC); TCC, a marker
of terminal pathway activation, was the best single dis-
criminator between healthy and disease groups
(Figure 2d, e). Optimal segregation of disease severity
groups was provided by the three activation markers plus
properdin and clusterin (Figure 2). Elevated Ba and
decreased properdin and clusterin levels in admission
samples were strongly predictive of severe peak disease.
Elevated levels of TCC and/or C5a, indicative of terminal
pathway activation, have been reported in several previ-
ous COVID-19 studies [14–18, 24, 25], provoking the sug-
gestion that TCC, a stable and easy-to-measure marker,
might aid diagnosis. However, we show that TCC, unlike
other activation products measured, did not reflect dis-
ease severity, limiting its utility as a prognostic marker.

Three of the four complement analytes providing the
best discrimination between severity groups in COVID-
19 implicate the alternative pathway amplification loop,
the activation products Ba and iC3b and the alternative
pathway positive regulator properdin (Figure 2). In
admission samples, Ba levels were significantly higher in
those with severe compared to moderate disease, whether
segregated based on severity at peak (Figure 3a) or at the
time of sampling (Figure S1 a), whereas iC3b levels were
not different between severity groups. Elevated plasma
levels of activation fragments of FB (Ba, Bb) and/or C3
(C3a, C3b/iC3b) have been reported in severe COVID-19
patients in several small studies, further implicating alter-
native pathway dysregulation [16, 17, 23, 25]. Properdin
levels in admission samples were significantly reduced in
severe compared to moderate peak disease, demonstrat-
ing predictive value for disease outcome (Figure 3a), a
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finding consistent with a recent small study (30 patients)
showing that reduced properdin levels predicted the risk
of requiring ventilation in severe COVID-19 [23]. Proper-
din levels remained low in severe COVID-19 across the
disease course. Properdin stabilizes the alternative path-
way convertase; reduced plasma levels would thus be
anticipated to reduce alternative pathway activation. The
likely explanation for this conundrum is that properdin
acts mainly in tissues to localize and stabilize convertases
[38, 39]; reduced plasma levels thus reflect properdin
sequestration in tissues in severe disease where it contrib-
utes to alternative pathway over-activation. In samples
collected later in the disease course, the observed
increased Ba and decreased properdin levels persisted,
demonstrating sustained alternative pathway over-
activation in severe disease; iC3b was also increased in
later severe peak disease samples (Figure 3a, b). Evidence
of complement dysregulation, notably increased levels of
the three activation markers, persisted even in convales-
cent samples; TCC levels remained high in moderate and
severe peak disease convalescent samples (Figure 3a).
This observation raises the possibility that complement
activation may contribute to persistent post-COVID-19
symptoms.

Over-activation of the alternative pathway amplifica-
tion loop also predicted the outcome. Increased Ba and
decreased properdin were most predictive of death as out-
come, whether measured on admission or at later time-
points with increasingly divergent trajectories of change
across the time course (Figure 4a, b, c). In patients admit-
ted to ICU, admission values were not informative,
expected as all ICU cases are, by definition, severe; how-
ever, in later samples, elevated Ba and decreased proper-
din levels were strong predictors of outcome (Figure S2a,
b). Decreased levels of the alternative pathway regulator
FH and increased levels of FD, an enzyme essential for
alternative pathway convertase formation, were also asso-
ciated with death as outcome in admission and/or early
samples in the whole population and ICU subset, further
implicating the pathway; the association of decreased FD
with death as outcome replicates a recent study [17].
Implication of FH and FD as additional predictors of
poor outcome illustrates the complexity underpinning
alternative pathway dysregulation in severe COVID-19.
Trajectories of Ba levels clearly separated severel from
moderate disease across the time course (Figure 2d). Seg-
regating individual patients based on peak disease sever-
ity or outcome clearly demonstrated the predictive value
of the Ba trajectory model; class 2 trajectory was highly
predictive of death as outcome (Figure 2e, f).

Of the other complement biomarkers measured, clus-
terin stood out. Decreased clusterin levels correlated with
increased disease severity and were highly predictive of

poor outcome in samples taken on admission and at all
times post-admission. Clusterin is a multifunctional
chaperone protein that binds and neutralizes potentially
toxic moieties, including damage and dying cells; it
inhibits the terminal pathway by binding precursor com-
plexes and is incorporated in the TCC. It is therefore
likely that clusterin is sequestered in tissue sites of com-
plement dysregulation, both as a component of the TCC
and directly binding damaged tissues [40]. Sequestration
in tissues likely explains the association of reduced
plasma clusterin levels with more severe disease in
COVID-19; reduced plasma clusterin has been reported
in sepsis and ascribed to sequestration [41]. Sequestration
may also explain the observation that TCC levels were
lower in more severe diseases in our study. TCC is likely
trapped along with clusterin in the tissues; indeed, abun-
dant deposition of TCC in kidneys and lungs has been
reported in COVID-19 cases [3, 19, 20].

The data demonstrate that over-activation of the alter-
native pathway amplification loop, is a ubiquitous feature
of COVID-19. The degree of activation correlates with
severity and a rising trajectory of the alternative
pathway-specific activation marker Ba predicts peak
severity and outcome. The findings suggest that alterna-
tive pathway dysregulation is a driver of progression to
severe disease and death in COVID-19. Complement acti-
vation is likely triggered early in the disease process in
virus-infected lung tissue through a combination of lectin
pathway activation on SARS-CoV-2 antigens, classical
pathway activation driven by anti-viral antibodies, and
direct activation on damaged tissue. The amplification
loop of the alternative pathway is initiated via these acti-
vation pathways or directly by dead and damaged cells in
the infected tissues. Properdin binding in tissues stabi-
lizes the alternative pathway convertases and protects
from regulators, leading to a vicious cycle of increased
activation that drives severe disease. The rising trajectory
of Ba in severe disease reflects this runaway alternative
pathway activation and predicts outcome (see Graphic
Abstract). Although complement dysregulation occurs in
the infected tissues, complement activation products are
released and will impact neutrophils and other immune
cells, contributing to the systemic inflammatory response
that typifies the disease [33, 34, 42, 43].

Our observations spotlight the alternative pathway
amplification loop as the optimal target for therapy, dem-
onstrate the need for early intervention and suggest a
requirement for drugs acting locally in the lung to break
the cycle of dysregulation and reduce local and systemic
injury in COVID-19. Although all samples included in
this study were collected in the first COVID-19 wave
in 2020, these findings have relevance for later stages
of the pandemic and new variants of SARS-CoV2;
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understanding the drivers of pathology in the severe disease
that typified the first wave prepares us for the future impact
of waning immunity and escape variants. Indeed, the data
are relevant beyond the current pandemic as similar mech-
anisms are likely to be involved in other severe viral respira-
tory diseases. A handful of small intervention studies
targeting the amplification loop and trials of C3-blocking
drugs are already in progress [44, 45]; however, target-
ing FB or FD would specifically block the alternative
pathway-driven amplification essential for dysregulation
while retaining classical and terminal pathway activities
important in immune defence. Repurposing recently
described orally active FD or FB inhibitors, already in
trials for other conditions [46, 47], might prove effective;
a trial of the small molecule FD inhibitor Danicopan in
hospitalized COVID-19 patients, part of a large platform
study (NCT04988035), has completed but is yet to report
results. Patient selection and early intervention based
on evidence of alternative pathway dysregulation would
further enhance the design of trials and interventions,
improving outcomes.

MATERIALS AND METHODS

Study design

This study is a component of the ISARIC WHO Clinical
Characterization Protocol for Severe Emerging Infec-
tions in the UK (CCP-UK), an ongoing prospective
cohort study of hospitalized patients with COVID-19,
which is recruiting in 258 hospitals across England,
Scotland, and Wales (National Institute for Health
Research Clinical Research Network Central Portfolio
Management System ID: 14152) (https://isaric4c.net/), a
pre-approved pandemic preparedness study using a pub-
licly available protocol with urgent public health
research status. The ISARIC4C study collected compre-
hensive sets of data and samples from hospitalized
patients with COVID-19 to facilitate better understand-
ing of the disease process and to assist in developing
effective treatments. It has enabled many outputs,
including workstreams that better define clinical risk
factors for disease severity and progression [31], demon-
strate the contribution of host genetics to disease sever-
ity [48], and describe changes in immune and
inflammatory markers [30]. The study continues to
explore the impact of viral variants, environmental fac-
tors and host immune responses on disease severity.
The protocol, including revisions, case report forms,
patient information leaflets, consent forms and details
of the Independent Data and Material Access Commit-
tee are available online (https://isaric4c.net/).

Study registration and approvals

The ISARIC WHO CCP-UK study was registered at
https://www.isrctn.com/ISRCTN66726260 and desig-
nated an Urgent Public Health Research Study by the
National Institute for Health Research UK. Ethical
approval was given by the South Central - Oxford C
Research Ethics Committee in England (Ref
13/SC/0149), the Scotland A Research Ethics Committee
(Ref 20/SS/0028), and the WHO Ethics Review Commit-
tee (RPC571 and RPC572, 25 April 2013). Healthy con-
trols were recruited specifically for the purpose of this
study from healthy donors following informed consent at
Newcastle University (REC reference 12/NE/0121).

Participants and clinical data collection

EDTA plasma samples were obtained from 750 individual
patients hospitalized with PCR-proven SARS-CoV-2
infection during the first COVID-19 wave in the UK in
2020. Healthy control EDTA plasma samples were col-
lected from 49 consented donors with no history of
COVID-19 (mean age 37.1 years, 27 female). Blood was
collected into EDTA tubes, separated promptly and
plasma stored in aliquots at -80�C; freeze–thaw cycles
were kept to a minimum and recorded for all sample sets.
Thirty patients with a known symptom onset of over
28 days before admission or over 14 days after admission
and 38 patients with unknown peak disease severity or
outcome were excluded, leaving a total of 682 patients,
966 patient plasma samples and 49 control plasma sam-
ples for inclusion in the analyses. Samples were taken at
multiple timepoints throughout the hospital stay; of the
682 patients available after exclusions, 481 had one sam-
ple available, 141 had two samples available, 46 had three
samples available, and 14 had four or more samples avail-
able. These samples provided good coverage across the
first 15 days of hospitalization. Distributions of age, sex,
and ethnicity are shown in Table 1. Patients were strati-
fied into five clinical groups based on their peak illness
severity according to the World Health Organization
COVID-19 ordinal scale [49]: (1) Ward; no oxygen
requirement (Severity 3, 91 individuals); (2) Oxygen
alone; patients requiring oxygen by face mask or nasal
prongs (Severity 4, 232 individuals); (3) NIV/HFNC;
patients requiring high-flow nasal cannula-delivered oxy-
gen or non-invasive ventilation (Severity 5, 80 individuals);
(4) IMV; patients requiring invasive mechanical ventila-
tion (Severity 6/7, 137 individuals); and (5) Death; fatal
outcome due to COVID-19 (Severity 8, 142 individuals)
(Table 1). For clarity in some analyses, clinical groups 1–3
were combined as Moderate and groups 4 and 5 as
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Severe. For analyses across the time course, samples were
grouped as 1–3, 4–7 and 8–14 days based on the time of
sampling post-admission following a protocol harmo-
nized with international investigators to allow meaning-
ful comparison of results between studies [50]. Severity at
the time of sampling was also captured using the same
WHO ordinal scale definitions. Convalescent samples
(post-discharge) were obtained from 168 patients. ICU
admission was recorded for 302 patients (43.8%), the
large majority (95%) from the severe disease categories;
outcomes were captured separately in the ICU groups
(Table 1).

A prespecified case report form was used to collect
data on patient characteristics, treatments received in the
hospital and outcomes; the core data are captured in
Table 1. A modified Charlson comorbidity index was
used to define comorbidities, and obesity was clinician-
defined. ‘Any comorbidity’ included diabetes mellitus,
chronic cardiac disease, chronic pulmonary disease
(excluding asthma), asthma (physician-diagnosed),
chronic kidney disease, chronic hematologic disease,
malignant neoplasm, dementia, or moderate–severe liver
disease. The median and range of 1. duration of symp-
toms prior to admission and sample collection; 2. duration
of symptoms from onset to outcome (discharge or death);
3. duration of symptoms from admission to outcome,
were recorded for the whole group and for the different
disease severity groups (Table 1).

Immunoassays

Sixteen complement biomarkers including components,
regulators and activation products, were measured. Four
analytes (C3, C5, iC3b, Ba) were quantified using in-
house assays on the MSD platform (Mesoscale Diagnos-
tics, Rockville, Maryland, USA); standard or streptavidin
plates were used and analysed on an SQ120 Quickplex
instrument. MSD provided the dynamic range necessary
to capture accurate levels in healthy controls and patients
at the same sample dilutions. Assays for C3 and C5 were
designed to specifically measure only intact proteins and
not the activation products (C3a/C3b/iC3b or C5a/C5b
respectively), an important distinction from routine
assays for C3 and C5. The remaining twelve biomarkers
(C1q, C4, C9, C1 inhibitor (C1inh), factor H (FH), factor
H-related protein 4 (FHR4), factor H-related proteins 1, 2
and 5 (FHR125), factor I (FI), properdin, factor D (FD),
clusterin, terminal complement complex (TCC)) were
measured using validated in-house ELISA. The FHR125
assay measures the total concentrations of the three
homologous FHRs 1, 2 and 5; signal is dominated by the
abundant FHR1. Three activation markers were

measured, iC3b, Ba and TCC. C3a and C5a were not
measured because the supplied samples had been subject
to either one or two freeze–thaw cycles during collection
and distribution, shown in preliminary stability studies to
strongly affect measured levels of C3a and C5a in an
unpredictable manner; other biomarkers measured,
including iC3b, Ba and TCC, were not significantly
impacted. Antibodies used were either from commercial
sources or made in-house; standards were the relevant
pure proteins, either in-house or commercial (Table S1).
Plasma dilutions for each biomarker were established in
preliminary experiments. All assays passed stringent
quality control tests, including measurement of intra-
and inter-assay coefficients of variation [51]. Samples fail-
ing quality control for a specific biomarker were excluded
from the analysis for that biomarker. Prior to testing,
samples were mixed 1:1 with 1% triton x-100 in PBS to
eliminate the risk of live virus [52].

Statistical analyses

Statistical analyses used R version 4.1 with R studio ver-
sion 1.4.1717 and additional packages used, not part of
base R, are listed alongside methodical details below.
‘doParallel’ and ‘parallel’ were used for parallel comput-
ing of some more intensive statistical calculations. All
visualization used package ‘ggplot2’ unless otherwise
stated and ‘tidyverse’ packages and ‘ggpubr’ were used
to enhance figure presentation. Distribution of comple-
ment analyte data were assessed by quantile-quantile
(‘qqplotr’) and density plots, as well as D’Agostino-
Pearson (‘fBasics’) and Shapiro–Wilk’s normality tests.
Non-parametric two-way analyses were performed using
Wilcoxon rank sum tests (‘rstatix’). Comparisons of more
than two groups were performed with Kruskal-Wallis
tests followed by Dunn’s test for multiple comparisons of
patient groups (‘rstatix’). False discovery rates were con-
trolled using the Benjamini-Hochberg protocol.

An unsupervised clustered heatmap of complement
analyte data used log10-transformed, scaled and centred
values were generated using ‘ComplexHeatmap’ and
‘factoextra’ from samples within the first 3 days post-
admission. Clustering tendency was assessed by the Hop-
kins statistic and inspection of a dissimilarity matrix
(‘hopkins’, ‘factoextra’). Euclidean distances were clus-
tered using Ward’s minimum variance method and
patients were clustered using a hybrid hierarchical k-
means approach; complement analytes were clustered
using a model-based clustering method (‘mclust’). For
model-based clustering, bayesian information criterion
was used for model selection. Agglomerative and divisive
hierarchical clustering, density-based and hierarchical
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density-based hybrid clustering (‘fpc’ and ‘dbscan’), K-
means, spherical K-means (‘skmeans’), and K-medoids
(‘cluster’ and ‘fpc’) clustering approaches were also
assessed. The final approaches and models were chosen
based on the biological relevance, quality, and consis-
tency of clusters, as well as consideration of cluster sepa-
ration by principal component scores and values of key
complement analytes. Stability and internal validation
metrics and clustering statistics were assessed using ‘clva-
lid’, ‘NbClust’, ‘fpc’, and ‘factoextra’.

Principal components analysis (PCA) and partial least
squares discriminant analysis (PLS-DA) both used log10-
transformed, scaled and centred complement analyte
data within the first 3 days post-admission. PCA was per-
formed using ‘FactoMineR’ and was visualized using fac-
toextra. PLS-DA was performed using ‘mixomics’ and
visualized using ‘mixomics’ and ‘rgl’. 10-fold cross-
validation with 50 repeats was used to demonstrate that a
model using 8 PLS-DA components and Mahalanobis dis-
tance gave optimal performance, based on consideration
of error rate, class-specific error rate, class-balanced error
rate and complementary classification performance
results from a receiver operating characteristic area
under the curve.

For Random Forests, complement analyte data from
within the first 3 days post-admission were randomly
split 80:20 into training and testing datasets. Healthy,
Moderate, and severe peak severity classes were balanced
in the training dataset using ‘ROSE’. Variable selection
using ‘Boruta’ shadow features demonstrated all 16 com-
plement analytes had predictive value in classifying peak
severity. The 16-analyte model was tuned and trained on
the training test set with 5 iterations of 10-fold cross-
validation using ‘caret’ and ‘randomForest’, with final
parameters of 2500 trees and a ‘mtry’ of 4 (number of
randomly selected variables at each split) giving optimal
performance. Variable importance for prediction of each
peak disease severity class was calculated using ‘caret’.
Partial dependence plots (PDP) of the final cross-
validated random forest model were generated using
‘pdp’ to provide intuitive visualization of potentially
complex variable relationships on a target variable
(in this case peak disease severity). PDP display the aver-
age effects of the two plotted complement analytes on the
target variable (severe peak disease severity), for every
value of the two plotted complement analytes in the
training dataset, while accounting for the average effects
of all other complement analytes. ‘yhat’ represents the
relative contribution of the two plotted complement ana-
lytes on the prediction of severe peak disease severity,
with positive values meaning prediction of severe peak
disease severity is more likely for the corresponding
values of plotted complement analytes. Negative yhat

values mean prediction of severe peak disease severity is
less likely, and a yhat of zero implies there is no average
impact on the prediction of severe peak disease severity
according to the model [53].

For multivariate analyses, missing values of comple-
ment (totalling less than 5% of the data set) were imputed
by predictive mean matching using the Multivariate
Imputation by Chained Equations (MICE) package
(https://www.rdocumentation.org/packages/mice). These
imputed data were not used for univariate presentations
or analyses.

Latent class linear mixed models (LCLMM) were cre-
ated using ‘lcmm’. Trajectories of Ba over time from
admission with varying numbers of latent classes were
generated using linear or various spline-fitted (‘splines’)
models with random intercepts and random slopes at the
patient level using data from samples up to 15 days post-
admission. Selection of the best model (2 latent classes
with a natural spline function on admission to sample)
was based on consideration of posterior classification
scores, class sizes, and Bayesian information criteria.

Cumulative incidence curves of the competing events
of death and hospital discharge of COVID-19 patients up
to 28 days post-admission (grouped by Ba trajectory class
membership from the LCLMM model) were generated
with ‘cmprsk’ and visualized with ‘survminer’. Grey’s
modified Chi-squared test (‘cmprsk’) was used to compare
survival and death curves between Ba trajectory classes.
Competing risks regression was performed using a Fine-
Grey proportional subdistribution hazards model
(‘cmprsk’) to assess the impact of Ba trajectory class and
other covariates (age, sex, comorbidity, obesity, and onset
to admission) on outcomes. The final model (Ba trajectory
class, age, sex, comorbidity and obesity) was selected based
on Bayesian information criteria. Schoenfeld residuals and
covariate-time interactions were assessed to confirm the
proportional hazard sub-distribution assumption.
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