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Abstract

The paper focuses on econometrically justified robust analysis of the effects of the COVID-

19 pandemic on financial markets in different countries across the World. It provides the

results of robust estimation and inference on predictive regressions for returns on major

stock indexes in 23 countries in North and South America, Europe, and Asia incorporating

the time series of reported infections and deaths from COVID-19. We also present a detailed

study of persistence, heavy-tailedness and tail risk properties of the time series of the

COVID-19 infections and death rates that motivate the necessity in applications of robust

inference methods in the analysis. Econometrically justified analysis is based on heteroske-

dasticity and autocorrelation consistent (HAC) inference methods, recently developed

robust t-statistic inference approaches and robust tail index estimation.

Introduction

Several recent papers have focused on econometric and statistical analysis and forecasting of

key time series and variables associated with the on-going COVID-19 pandemics, including

infection and death rates, and their effects on economic and financial markets (see papers [1–

10], among others).

This paper contributes to the above literature by focusing on the robust analysis of the

effects of the pandemics on financial markets across the World. We provide the results of

robust estimation and inference on predictive regressions for returns on major stock indexes

in 23 developed and emerging economies in North and South America, Europe, and Asia

incorporating the time series of reported infections and deaths from COVID-19.

We also present a detailed study of persistence, heavy-tailedness and tail risk properties of

COVID-19 infections and deaths time series that emphasize the necessity in applications of

robust inference methods in the analysis and forecasting of the COVID-19 pandemic and its

impact on economic and financial markets and the society.

Econometrically justified and robust analysis in the paper is based on heteroskedasticity

and autocorrelation consistent (HAC) inference methods, recently developed robust t-statistic

inference procedures and robust tail index estimation approaches.

The results of the analysis, in particular, point to potential non-stationarity in the form of

unit roots in the time series of daily infections and deaths from COVID-19 that are commonly
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used in research on modelling and forecasting of the COVID-19 pandemic and its effects. The

results emphasize the necessity in basing the analysis of models incorporating the COVID-

19-related time series such as daily infection and death rates on their (stationary) differences.

The analysis using robust tail index inference methods further indicates potential heavy-tailed-

ness with possibly infinite variances and first moments in the time series of daily infections

and deaths from COVID-19 and their differences in countries across the World.

In order to account for the problems of potential non-stationarity in the daily COVID-19

infections and deaths time series, the paper provides the analysis of predictive regressions for

financial returns incorporating both the lagged daily infections/deaths from COVID-19 and

their differences. Further, the properties of autocorrelation, heavy-tailedness and heterogeneity

in the COVID-19 infections/deaths time series are accounted for by the use in the predictive

regression analysis of both the widely applied standard HAC inference methods as well as the

recently proposed t−statistic approaches to robust inference under the above problems in the

data (see studies [11–13] and Section in this paper).

The standard HAC inference methods indicate (apparently spurious) statistical significance

of the (potentially non-stationary) lagged daily infections and deaths from COVID-19 in pre-

dictive regressions for returns on the major stock indices in some countries. HAC methods

also point to statistical significance of (stationary) lagged daily changes in the number of

COVID-19 infections and deaths for some countries. For daily changes in COVID-19 infec-

tions, high statistical significance, with the expected negative signs of the predictive regression

coefficients, is observed in the case of Italy, India, Brazil and Argentina.

Motivated by the results on high persistence and heavy-tailedness in daily COVID-19 infec-

tions/ deaths time series obtained in the paper and also by poor finite sample properties of

HAC inference methods (see Section and references therein), we further provide the assess-

ment of statistical significance of the coefficients in the predictive regressions using t−statistic

approaches to robust inference based on group estimates. According to the statistically justi-

fied analysis using the robust t−statistic approaches, the lagged daily COVID-19 infection and

death rates and their (stationary) differences appear not to be statistically significant in predic-

tive regressions for stock index returns in all the countries considered in the analysis.

Overall, one of the main conclusions from the results in the paper is that statistical and

econometric analyses and forecasts of the on-going COVID-19 pandemic and its impacts on

economic and financial markets and the society should be based on theoretically justified

robust inference methods. The methods used in the analysis and the forecasting of the pan-

demic and its effects should account, in particular, for the problems of potential non-stationar-

ity, autocorrelation, heavy-tailedness and heterogeneity in the key time series and variables

related to COVID-19, including the infections and deaths time series.

Data

The analysis in the paper uses the data on daily COVID-19 infections and deaths in different

countries across the World (the UK, Germany, France, Italy, Spain, Russia, the Netherlands,

Sweden, India, Austria, Finland, Ireland, the US, Lithuania, Canada, Brazil, Mexico, Argen-

tina, Japan, China, South Korea, Indonesia and Australia) for the period from 22 January 2020

to 22 March 2021. The data is obtained from the Data Repository maintained by the Center for

Systems Science and Engineering (CSSE) at Johns Hopkins University [14]. The data on daily

prices of major stock indices for the countries considered is obtained from Yahoo Finance and

the data on interest rates is from the Global Rates database [15]. We consider the following

stock indices: FTSE 100 (UK), DAX (Germany), CAC 40 (France), FTSE MIB (Italy), IBEX 35

(Spain), MOEX (Russia), AEX (Netherlands), OMXS 30 (Sweden), SENSEX (India), ATX
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(Austria), OMX Helsinki 25 (Finland), ISEQ (Ireland), Dow Jones, S&P 500 (USA), OMX Vil-

nius (Lithuania), TSX (Canada), iBovespa (Brazil), IPC Mexico (Mexico), Merval (Argentina),

NIKKEI 225 (Japan), SHANGHAI (China), KOSPI (South Korea), JCI (Indonesia), ASX 50,

ASX 200 and Australian All Ordinaries (Australia). The analysis uses central bank rates for the

countries considered; European interest rate is used for the country members of European

monetary union.

Throughout the paper, It and Dt denote the (cumulative) number of COVID-19 infections

and deaths from the beginning of the period on 22 January 2020 to day t in the countries con-

sidered. Further, ΔIt and ΔDt denote the differences of the above time series, that is the number

of reported infections and deaths in day t. By Δ2 It and Δ2 Dt we denote the cumulative infec-

tions/deaths time series’ second differences, that is, the daily changes in the number of

COVID-19 infections and deaths in the countries dealt with. The estimation and testing in the

paper is based on the periods with positive values of the number of COVID-19 infections and

deaths It and Dt in the countries considered.

Empirical results

(Non-)stationarity analysis

We begin the analysis by the study of the degree of integration in the time series It, Dt, ΔIt, ΔDt,

Δ2 It and Δ2 Dt of COVID-19 infections and deaths and their differences in the countries con-

sidered. S1 and S2 Tables present the results of several unit root tests for the time series of

daily infections and deaths ΔDt, ΔDt and the time series of daily changes in their number Δ2 It,
Δ2 Dt. The results are provided for the (right tailed) likelihood ratio unit root test proposed by

[16] (with the test statistic LR in S1 and S2 Tables; see also paper [17]), the GLS-based modified

Phillips-Perron type tests (with the corresponding test statistics MZα, MSB, MZt), the modified

point optimal test (with the test statistic MPt; see [18]) and the GLS-based Augmented Dickey-

Fuller test (with the test-statistic denoted by ADF in S1 and S2 Tables; see [19]). To address the

issue of possible heavy tails and infinite variance of the series (see the next section), for calcula-

tion of the p−value of the unit root tests, we use recently justified sieve wild bootstrap algo-

rithm with a Rademacher distribution employed in the wild bootstrap re-sampling scheme

(see [20]).

An important tuning parameter in the above tests is related to the choice of lag length used

in the analysis. We use the modified Akaike information criterion (MAIC) lag choice approach

based on standard ADF regressions as suggested by study [21]. According to the results (the

wild bootstrap p−values are given in brackets), the unit root hypothesis in the time series ΔIt of

daily COVID-19 infections is not rejected at reasonable significance levels, e.g., 5% and 10%,

by all the employed tests for all the countries considered except Spain, Sweden, Ireland, China

and South Korea. For the time series ΔDt of daily COVID-19 related deaths, the unit root

hypothesis in is not rejected for all the countries considered except Spain, Sweden, Finland,

Argentina and China. For the daily infections and deaths time series ΔIt and ΔDt in China, the

rejection of the unit root hypothesis is on every reasonable significance level (even at 1%).

On the other hand, according to the results in S1 and S2 Tables, the unit root hypothesis is

rejected at all reasonable significance levels by all the tests for the time series Δ2 It and Δ2 Dt

of daily changes in the number of COVID-19 infections and deaths in all the countries

considered.

The above results of unit root tests have several important implications for statistical analy-

sis of models and key time series related to the COVID-19 pandemic and its effects. According

to the results, in the countries across the World, the time series of daily COVID-19 infections

and deaths and thus the time series of total (cumulative) infections/deaths from the disease up
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to a certain date that are typically employed in the analysis and forecasting of the pandemic

and its impact appear to exhibit non-stationarity. The daily COVID-19 infections/deaths time

series ΔIt and ΔDt appears to exhibit unit root process persistence for most of the countries

considered. This, in turn, implies very high persistence in the time series It and Dt of total

infections/deaths up to a certain date that appear to be integrated of order 2. The conclusions

on persistence properties of the time series It, Dt and ΔIt, ΔDt are somewhat similar to those

for the CPI and the inflation rate (the change in the logarithm of the CPI) time series, where

often unit root hypothesis is not rejected for the inflation rate and thus the (logarithm) of the

CPI levels appears to be integrated of order 2 (see the analysis of non-stationarity in Section

14.6 in [22] for the inflation rate and its changes in the US). These conclusions imply the

necessity of the use of differences of the inflation rate in time series modeling of inflation and

its relationship to other key economic variables such as the unemployment level in the Phillips

curve (see Chs. 14 and 16 in [22]).

Non-stationarity of daily COVID-19 infections and deaths time series implies that, due to

the spurious regression problem, the statistical analysis of models incorporating these and

other nonstationary variables related to the pandemic should be based on their stationary dif-

ferences as in the case of predictive regressions for financial returns in Section.

Heavy-tailedness and tail risk analysis

In this section, we provide the analysis of heavy-tailedness and tail risk properties of daily

COVID-19 infection and death rates in the countries considered. The estimates point to pro-

nounced heavy-tailedness in the infections/deaths time series. This further motivates the

necessity in applications of robust methods in modelling and forecasting the dynamics of

infection and death rates and other variables related to the pandemic and inference on their

effects on the world financial and economic markets.

As indicated in many empirical and theoretical works in the literature (see, among others,

the analysis and the reviews [13, 23–25], and references therein), distributions of many vari-

ables related to or affected by crises and natural disasters and characterised by the presence of

extreme values and outliers, such as financial returns, catastrophe risks or economic losses

from natural catastrophes, exhibit deviations from Gaussianity in the form of heavy power law

tails. For a positive heavy-tailed variable (e.g., representing a risk, the absolute value of a finan-

cial return, or a loss from a natural disaster X) one has

PðX > xÞ �
C
xz

ð1Þ

for large x> 0, with a constant C> 0 and the parameter z> 0 that is referred to as the tail

index (or the tail exponent) of X. The value of the tail index parameter z is important as it char-

acterises the probability mass (heaviness and the rate of decay) in the tails of power law distri-

bution (Eq 1). Heavy-tailedness (i.e., the tail index z) of the variable X governs the likelihood

of observing extremes and outliers in the variables. The smaller values of the tail index z corre-

spond to a higher degree of heavy-tailedness in X and, thus, to a higher likelihood of observing

extremely large values in realisations of the variable. In addition, importantly, the value of the

tail index z governs finiteness of moments of X, with the moment EXp of order p> 0 of the

variable being finite: EXp<1 if and only if z> p. In particular, the variance of X is defined

and is finite if and only if z> 2, and the first moment of the variable is finite if and only if

z> 1.

The degree of heavy-tailedness and finiteness of variances for variables is crucial for appli-

cability of standard statistical and econometric approaches, including regression and least
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squares methods. Similarly, the problem of potentially infinite fourth moments of (economic

and financial) time series dealt with needs to be taken into account in applications of autocor-

relation-based methods and related inference procedures in their analysis (see the discussion

in [24], Ch. 1 in [13], and references therein).

Many recent studies argue that the tail indices z in heavy-tailed models (Eq 1) typically lie

in the interval z 2 (2, 4) implying finite variances and infinite fourth moments for financial

returns in developed economies and maybe smaller than 2 implying possibly infinite variances

for financial returns in emerging markets (see, among others, [13, 25, 26], and references

therein). (Heavy-tailed power law behavior is also exhibited by many other such important

economic and financial variables as income and wealth (with z 2 (1.5, 3) and z� 3, respec-

tively; see, among others, study [25], and the references therein); financial returns from tech-

nological innovations, losses from operational risks and those from earthquakes and other

natural disasters (with tail indices that can be considerably less than one [13]).)

The recent study [27] provides (Hill’s, see below) tail index estimates supporting extreme

heavy-tailedness with z smaller than 1 and infinite first moments in the number of deaths

from 72 major epidemic and pandemic diseases from 429 BC until the present. Paper [2]

reports (Hill’s) estimates of the tail index close to 1 implying infinite variances and first

moments in the distribution of COVID-19 infections across the US counties at the beginning

of the pandemic.

Several approaches to the inference about the tail index z of heavy-tailed distributions are

available in the literature (see, among others, the reviews [23, 28], Ch. 3 [13], and references

therein). The two most commonly used ones are Hill’s estimates and the OLS approach using

the log-log rank-size regression.

It was reported in a number of studies that inference on the tail index using widely applied

Hill’s estimates suffers from several problems, including sensitivity to dependence and small

sample sizes (see, among others, Ch. 6 [23]). Motivated by these problems, several studies have

focused on alternative approaches to the tail index estimation. For instance, study [29] propose

a weighted analogue of Hill’s estimator that is reported to correct its small sample bias for sam-

ple sizes less than 1,000. Using extreme value theory, article [30] focuses on inference on the

quantiles and tail probabilities of heavy-tailed variables with a fixed number k of their extreme

observations (order statistics) employed in estimation as is typical in relatively small samples

of fat-tailed data. Study [23], among others, advocates sophisticated nonlinear procedures for

tail index estimation.

Study [28] focuses on econometrically justified inference on the tail index z in heavy-tailed

power law models (Eq 1) using the popular and widely applied approach based on log-log

rank-size regressions log(Rank) = a−blog(Size), with b taken as an estimate of z. The reason for

popularity of the approach is its simplicity and robustness. Study [28] provides a simple rem-

edy for the inherent small sample bias in log-log rank-size approaches to inference on tail indi-

ces, and propose using the (optimal) shifts of 1/2 in ranks, with the tail index estimated by the

parameter b in (small sample bias-corrected) regressions log(Rank−1/2) = a−blog(Size). Paper

[28] further derive the correct standard errors on the tail exponent z in the log-log rank-size

regression approaches. The standard error on z in the above log-log rank-size regressions is

not the OLS standard error but is asymptotically (2/k)1/2 z, where k is the number of extreme

(the largest) observations on the heavy-tailed variable X used in tail index estimation (see also

Ch. 3 [13]). The numerical results in [28] point to advantages of the proposed approaches to

inference on tail indices, including their robustness to dependence in the data and deviations

from exact power laws in the form of slowly varying functions.

Naturally, it is important that inference on the tail index in heavy-tailed power law distribu-

tions (Eq 1) is based on i.i.d. or stationary observations (op. cit.). The results in the previous
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section point to potential non-stationarity of the time series ΔIt, ΔDt of daily COVID-19 infec-

tions and deaths and stationarity of their differences Δ2 It, Δ2 Dt (the daily changes in the num-

ber of daily COVID-19 infections and deaths) in most of the countries considered. We,

therefore, focus on estimation of the tail indices z in heavy-tailed power law models for the dif-

ferences Δ2 It and Δ2 Dt. The implied tail indices for daily COVID-19 infections and deaths ΔIt,
ΔDt equal to the same values as in the case of Δ2 It and Δ2 Dt, as the former time series are

cumulations of the latter ones.

S1 and S2 Figs provide the plots of Hill’s estimates of the tail indices z in power law distribu-

tions for the time series Δ2 It and Δ2 Dt of daily changes in the number of COVID-19 infections

and deaths in several countries considered (Australia, China, France, India, Italy, Russia, the

UK and the US) with different number k of extreme (largest) observations used in tail index

estimation (the so-called Hill’s plots, see Ch. 6 in [23], and also [27], for similar plots employed

in the analysis of the inverse θ = 1/z of the tail index z in power law models (Eq 1) for the num-

ber of deaths from major epidemic and pandemic diseases from ancient times until the pres-

ent). In the diagrams, k plotted on the OX axis denotes the tail truncation level—the number

of extreme observations—used in tail index estimation, in % of the total sample size N, that is,

k equals 2.5–15% of the total sample size N. Similarly, S3 and S4 Figs provide the log-log rank-

size regression estimates of the tail indices z with optimal shifts 1/2 in ranks proposed in [28]

for the time series Δ2 It and Δ2 Dt in the above countries that use different truncation levels k
for the largest observations used in inference (see [31], for the analysis of such log-log rank-

size plots for foreign exchange rates in emerging economies). The plots in S1–S4 Figs also pro-

vide the corresponding 95% confidence intervals for tail indices z in power law models (Eq 1)

for the changes in the number of daily COVID-19 infections and deaths.

The analysis of S1–S4 Figs indicates that Hill’s and log-log rank-size regression tail index

estimates for the time series Δ2 It and Δ2 Dt of daily changes in the number of COVID-19 infec-

tions and deaths tend to stabilize as a sufficient number k of extreme (largest) observations

(order statistics) on Δ2 It and Δ2 Dt is used in inference. As expected, log-log rank-size regres-

sion estimates tend to be less sensitive to the choice of k compared to Hill’s estimates.

Importantly, the left-end points of the confidence intervals for tail indices z in power law

models for daily changes in COVID-19 infections and deaths calculated using different tail

truncation levels k in the countries in the diagrams tend to be less than two indicating possibly

infinite second moments and variances. Further, from the analysis of S1–S4 Figs it follows that

the tail indices may be even less than one for some of the countries indicating extreme heavy-

tailedness with possibly infinite first moments.

The conclusions from heavy-tailedness analysis for other countries considered in the paper

are similar to those above.

The conclusions on heavy-tailedness in the time series of daily COVID-19 infections and

deaths are important as, according to the above discussion, they point to high likelihood of

observing their large values. They further emphasise the necessity in the use of robust methods

in statistical analysis and forecasting of the dynamics of the COVID-19 pandemic and its

impacts, including the approaches robust to the problems of heavy-tailedness and heterogene-

ity in the data.

Predictive regressions

This section presents the main results of the paper on statistically justified and robust evalua-

tion of the effects of the COVID-19 pandemic on financial markets in different countries

across the World. We focus on the analysis of predictive regressions for returns on major stock

indices in the countries considered (see the introduction) incorporating the time series
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characterizing the infection and death rates from COVID-19 in the countries. Importantly,

due to the problems of nonstationarity and the unit root dynamics in the time series ΔIt, ΔDt

of daily COVID-19 infections and COVID-19 related deaths in most of the countries discussed

in Section, estimation of the predictive regressions is provided for regression models for stock

index returns Rt with both the lagged daily infections/deaths ΔIt−1, ΔDt−1 and their (stationary)

lagged differences Δ2 It−1, Δ2 Dt−1 (the daily changes in the number of COVID-19 infections

and deaths) used as regressors.

More precisely, the estimation results are provided for predictive regressions in the form

Rt ¼ aþ bXt� 1 þ εt; ð2Þ

where Rt are the excess returns on major stock indices in the countries considered at the end

of the day t given by the difference between the end of the day-t stock index returns and the

countries’ interest rates (see Section), and the regressors Xt−1 are either the number ΔIt−1, ΔDt

−1 of COVID-19 infections/deaths on day t−1 in the countries dealt with or the daily changes

Δ2 It−1 = ΔIt−1−ΔIt−2, Δ2 Dt−1 = ΔDt−1−ΔDt−2 in the number of infections/deaths. (The well-

known stylized fact of absence of linear autocorrelations in daily financial returns [24] implies

exogeneity of regressors in the predictive regressions considered.) We also conduct the analy-

sis similar to that in the paper for the first and second differences of logarithms of daily infec-

tions and deaths. It points to unit root non-stationarity in the first log differences and the

implied stationarity in the second log differences, similar to the differences of daily infections/

deaths in Section. We further obtain estimates in analogues of predictive regressions (section

2) with the lagged first and the (stationary) second differences of logarithms of daily infections

and deaths used as regressors. The conclusions from the estimates of such regressions are

mostly similar to those for regressions with the above differences ΔIt, ΔDtΔ
2 It, Δ2 Dt of daily

infections/deaths used as regressors. The estimation results are available on request.

In order to account for autocorrelation and heteroskedasticity in the regressors and the

error terms in predictive regressions (2) we use the widely applied HAC based methods (the

standard errors and t−statistics with the quadratic spectral—QS—kernel and automatic choice

of bandwidth as in [32], and the corresponding p−values based on standard normal approxi-

mations) in the analysis of statistical significance of the regression coefficients.

It is well known, however, that commonly used HAC inference methods and related

approaches based on consistent standard errors often have poor finite sample properties, espe-

cially in the case of pronounced dependence, heterogeneity and heavy-tailedness in the data

(see the discussion and the analysis in [11], Section 3.3 [13], and references therein). To

account for these problems, we also provide the analysis of statistical significance of predictive

regression coefficients using the t−statistic approaches to robust inference under dependence,

heterogeneity and heavy-tailedness of largely unknown form recently developed in [11, 12].

Following the approaches, robust large sample inference on a parameter of interest (e.g., a pre-

dictive regression coefficient β) is conducted as follows: The data is partitioned into a fixed

number q� 2 (e.g., q = 2, 4, 8) of groups, the model is estimated for each group, and inference

is based on a standard t−test with the resulting q parameter estimates.

In the context of inference on the coefficient β in time series predictive regressions (2), the

regression is estimated for q groups of consecutive time series observations with (j−1)T/q< t
� jT/q, j = 1, . . ., q, resulting in q group estimates b̂ j, j = 1, . . ., q. The robust test of a hypothe-

sis on the parameter β is based on the t−statistic in the group OLS regression estimates b̂ j;

j = 1, . . ., q. E.g., the robust test of the null hypothesis H0: β = 0 against alternative Ha: β 6¼ 0 is

based on the t−statistic tb ¼
ffiffiffiqp

�̂
b

s
b̂

; where
�̂
b ¼ q� 1

Pq
j¼1
b̂ j and s2

b̂
¼ ðq � 1Þ

� 1Pq
j¼1
ðb̂ j �

�̂
bÞ

2
:
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The above null hypothesis H0 is rejected in favor of the alternative Ha at level α� 8.3% (e.g., at

the usual significance level α = 5%) if the absolute value jtb̂ j of the t−statistic in group estimates

b̂ j exceeds the (1−α/2)−quantile of the standard Student-t distribution with q−1 degrees of

freedom. One-sided tests are conducted in a similar way, and the approaches further provide

robust confidence intervals for the unknown parameters β (studies [12, 13]).

The t−statistic based approaches do not require at all estimation of limiting variances of

estimators of interest. As discussed in [11–13], they result in asymptotically valid inference

under the assumptions that the group estimators of a parameter of interest are asymptotically

independent, unbiased and Gaussian of possibly different variances. Justification of asymptotic

validity of the robust t−statistic inference approaches in [11, 12] is based on a small sample

result in [33] that implies validity of the standard t−test under independent heterogeneous

Gaussian observations and its analogues for two-sample t−tests obtained in [12]. The assump-

tions are satisfied in a wide range of econometric models and dependence, heterogeneity and

heavy-tailedness settings of a largely unknown type. The numerical analysis in [11–13] indi-

cates favorable finite sample performance of the t−statistic based robust inference approaches

in inference on models with time series, panel, clustered and spatially correlated data. See also

[34] for a detailed numerical analysis of finite sample performance of different inference pro-

cedures, including t−statistic approaches, under small number of clusters of dependent data

and their software (STATA and R) implementation. The t-statistic robust inference approach

proposed in [11] provides a formal justification for the widespread Fama–MacBeth method

for inference in panel regressions with heteroskedasticity (see [35]). Following the method,

one estimates the regression separately for each year, and then tests hypotheses about the coef-

ficient of interest using the t-statistic of the resulting yearly coefficient estimates. The Fama–

MacBeth approach is a special case of the t-statistic based approach to inference, with observa-

tions of the same year collected in a group. See [36–41] for empirical applications of the robust

t−statistic inference approaches [11, 12]. Importantly, the t−statistic based approaches to

robust inference may also be used under convergence of group estimators of a parameter inter-

est to scale mixtures of normal distributions as in the case of models under heavy-tailedness

with infinite variances and in regressions with non-stationary exogenous regressors. See Sec-

tion 3.3.3 in [13] for applications of the robust t−statistic approaches in inference in infinite

variance heavy-tailed models. The recent works [42–44] provide further applications of the

approaches in robust inference on general classes of GARCH and AR-GARCH-type models

exhibiting heavy-tailedness and volatility clustering properties typical for real-world financial

returns, foreign exchange rates and other important economic and financial time series. The

recent paper by [45] focuses on applications of the t−statistic approaches in inference on pre-

dictive regressions with persistent and/or fat-tailed regressors and errors.

S3 and S4 Tables provide the results of the assessment of statistical significance of the coeffi-

cients β on the lagged time series ΔIt−1, ΔDt−1 of daily COVID-19 infections/deaths and their

differences Δ2 It−1, Δ2 Dt−1—the daily changes in the number of infections and deaths from the

disease—in predictive regressions (2) for the countries considered. More precisely, the tables

provide the values of HAC t−statistic with the QS kernel and the automatic choice of band-

width discussed above as well as the values of the t−statistic tβ in estimates b̂ j; j = 1, . . ., q, of

the slope parameter β obtained using q = 4, 8, 12 and 16 groups of consecutive time series

observations. The asterisks in the tables indicate statistical significance of the slope coefficient

(��� for significance at 1%, �� for significance at 5% and � for significance at 10%) implied by

formal comparisons of the HAC t−statistics with the quantiles of a standard normal distribu-

tion. As described above, following the t−statistic approaches to robust inference [11, 12], (the

absence of) statistical significance of the slope coefficient β is assessed using the comparisons
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of the t−statistic in group estimates of the regression coefficient in the table with the quantiles

of Student-t distributions with q−1 degrees of freedom.

The values of HAC t−statistics in S3 and S4 Tables indicate an apparently spurious statisti-

cal significance of the (potentially non-stationary) lagged daily infections and deaths ΔIt−1,

ΔDt−1 from COVID-19 in predictive regressions for returns on the main stock indices in some

countries. In the case of daily COVID-19 infections, this is observed for the UK, Italy, Russia,

the US, Brazil, China, South Korea and Australia, and, in the case of daily COVID-19 related

deaths, for India, Canada, Brazil, Mexico, China, South Korea, Indonesia and Australia. The

coefficients ΔIt−1, ΔDt−1 whose significance is indicated by the HAC t−statistics have the

expected negative sign.

According to the HAC t−statistics in the tables, in the case of (econometrically justified)

predictive regressions for excess returns on major stock indices considered involving (station-

ary) differences DI2
t� 1
; DD2

t� 1
of the lagged daily COVID-19 infections and deaths (daily

changes in the number of infections and deaths from the disease), the coefficients at the regres-

sors DI2
t� 1
; DD2

t� 1
are not statistically significant at conventional levels for most of the coun-

tries. Exceptions are, in the case of daily changes DI2
t� 1

in the number of COVID-19 infections,

are Italy, India, Brazil and Argentina, where the coefficient at the regressor DI2
t� 1

is highly sig-

nificant (at 1% level) according to the HAC t−statistics, with the expected negative sign, and

also the UK where some significance (at 10% level) is observed, albeit with the positive sign at

the coefficient. In the case of predictive regressions incorporating the daily changes DD2
t� 1

in

the number of COVID-19 related deaths, the HAC t−statistics indicate high statistical signifi-

cance (at 1%) of the coefficient at the regressor DD2
t� 1

only for the UK, India, Brazil, Mexico,

South Korea and Australia; among these, the predictive regression coefficient has the expected

negative sign only in the case of Australia.

However, the lagged daily COVID-19 infection and death rates ΔIt−1 and ΔDt−1 and their

(stationary) differences Δ2 It−1 and Δ2 Dt−1 appear not to be statistically significant in predictive

regressions for stock index returns in all countries considered according to the (econometri-

cally justified) robust t−statistic approaches with different choices of the number of groups q.

Discussion and conclusion

This paper presented the results of theoretically justified and robust statistical analysis of the

effects of the COVID-19 pandemic on financial markets in different countries across the

World. The analysis is based on robust inference in predictive regressions for the returns on

the countries’ major stock indices incorporating the time series characterizing the dynamics in

the COVID-19 related deaths rates.

The paper further presented the results of the statistical analysis of (non-)stationarity,

heavy-tailedness and tail risk in the time series on infections/death rates from COVID-19 in

the countries considered. The obtained results point to non-stationary unit root dynamics and

pronounced heavy-tailedness with possibly infinite variances and fist moments in the time

series of daily COVID-19 infections and deaths in most of the countries dealt with.

According to the results in the paper, the standard HAC inference methods indicate appar-

ently spurious statistical significance of the (potentially non-stationary) lagged daily infec-

tions/deaths from COVID-19 in predictive regressions for returns on the major stock indices

in some countries. HAC methods also point to statistical significance of (stationary) lagged

daily changes in the number of COVID-19 infections and deaths for some countries. For daily

changes in COVID-19 infections, high statistical significance, with the expected negative signs

of the predictive regression coefficients, is observed In the case of Italy, India, Brazil and

Argentina.
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Motivated by the results on high persistence and heavy-tailedness in daily COVID-19 infec-

tions/ deaths time series obtained in the paper and also by poor finite sample properties of

HAC inference methods, we further provide the analysis of statistical significance of the coeffi-

cients in the predictive regressions using the recently developed t−statistic approaches to

robust inference. The analysis using the robust t−statistic inference approaches indicates that

the lagged daily COVID-19 death/infection rates and their (stationary) differences appear to

be statistically insignificant in predictive regressions for stock index returns in essentially all

countries considered in the analysis.

The analysis and conclusions in the paper emphasize the necessity in the use of robust infer-

ence methods accounting for autocorrelation, heterogeneity and heavy-tailedness in statistical

and econometric analysis and forecasting of key time series and variables related to the

COVID-19 pandemic and its effects on economic and financial markets and society. They fur-

ther emphasize the importance of the use of correctly specified models of the COVID-19 pan-

demic and its effects incorporating stationary time series and variables such as the daily

changes in COVID-19 related deaths and infections used in predictive regressions in this

work.

Overall, the results of econometrically justified robust analysis in the paper point to an

insignificant relationship between COVID-19 death/infection rates and future stock index

returns for most of the countries considered. This holds whether we use as a predictor

COVID-19 death/infection rates or their stationary differences. From the point of view of

financial investors, this implies the absence of clear signals for trading based on aggregate mar-

ket returns and daily death or infection rates. There has definitely been some effect of COVID-

19 on financial markets, but it is more concentrated around some key dates (e.g., the explosion

of the pandemic and the subsequent rebound, or the day when the first vaccine was discov-

ered), rather than through the channel of daily death/infection rates.

If we consider individual stock returns, there have been clear winners and losers during the

pandemic, with some sectors clearly suffering while others outperforming. But at the index

level, COVID-19 death and infection rates do not seem to have provided the sort of systemic

event that would have led to abnormal returns or triggered some actions from investors, regu-

lators and/or policy makers.

An important research problem consists in the development of robust forecasts and esti-

mates of market risk measures like the value at risk (VaR) and the expected shortfall during

the COVID-19 pandemic and evaluating the effects of the pandemic and COVID-19 death/

infection rates on the risk measures. The research in this and related directions may focus on

the analysis of the effects of COVID-19 death and infection rates on financial returns in the

tails of their distributions, e.g., extreme negative returns. It is also important to analyse the

effects of COVID-19 death and infection rates on the degree of heavy-tailedness of financial

returns measured by their tail indices. The analysis may be based on tail index regressions sim-

ilar to, e.g., those in the study of determinants of heavy-tailedness of returns on stocks of finan-

cial companies in [46], and applications of robust t−statistic inference approaches as in this

paper. An important direction of research that is relevant, among others, for the analysis of

market risk measures may focus on modeling the volatility dynamics of financial returns using

GARCH-X time series incorporating the COVID-19 death and infection rates as explanatory

variables affecting the future returns’ volatility.

Further research may also focus on robust tests for structural breaks in models of the

dynamics of the pandemic and its effects on financial and economic markets using the robust

inference approaches based on two-sample t−statistics [12], and applications of inference

methods such as sign- and rank-based tests that are robust to relatively small sample sizes of

observations in statistical analysis of key models related to the spread of COVID-19. It would

PLOS ONE COVID-19: Tail risk and predictive regressions

PLOS ONE | https://doi.org/10.1371/journal.pone.0275516 December 1, 2022 10 / 13

https://doi.org/10.1371/journal.pone.0275516


also be of interest to apply further estimation approaches for heavy-tailed models for time

series associated with the pandemic that are robust to small samples, including the recently

developed fixed-k inference approaches for power-law models [30]. The analysis in these

directions is currently under way by the authors and co-authors.
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