
Assessing the impact of signal normalization: preliminary results on

epileptic seizure detection

Lojini Logesparan, Alexander J. Casson and Esther Rodriguez-Villegas

Abstract— Signal normalization is an essential part of patient
independent algorithms, for example to correct for variations
in signal amplitude from different parts of the body, prior to
applying a fixed threshold for event detection. Multiple methods
for providing the required normalization are available. This
paper presents a systematic investigation into the effects of
five different methods using epileptic seizure detection from
the EEG as an illustration case. It is found that, whilst
normalization is essential, four of the considered methods
actually decrease the ability to detect seizures, counteracting the
algorithm aim. For optimal detection performance the effects of
the signal normalization illustrated here should be incorporated
into future algorithm designs.

I. INTRODUCTION

Signal normalization is an essential part of patient inde-

pendent algorithms used for the analysis of physiological

signals and the automatic detection of features and salient

points. Taking the scalp electroencephalogram (EEG) as an

example, the absolute value of the EEG signal can vary

widely [1]: with age; between different people; between

different parts of the head; and between different subjects

states, such as being asleep or awake and during epileptic

seizures. Moreover it is possible for the absolute EEG values

to vary over time due to changes in the electrical activity of

the brain and also due to the varying quality of the electrode

connection to the scalp.

To correct for these changes, automated analysis algo-

rithms must utilize normalized, or relative, amplitude values.

Here the raw data is corrected by some measure of the

average background so that a fixed threshold can be applied

during signal classification. There are of course multiple

different methods by which the required normalization can

be provided. Different techniques can vary in terms of:

• The mathematical function (such as the mean or me-

dian) used to calculate the normalization.

• The amount of memory present, that is, the amount of

background data used to calculate the normalization.

• Where in the signal processing chain the normalization

is applied.

This last option is illustrated in Fig. 1 which shows a

generalized seizure detection algorithm. In the top, not-

normalized route, input data y is passed to a feature extrac-

tion stage which emphasizes the features of interest: signal
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Fig. 1. Signal normalization can be provided with topologies A, B, or
C: there is a choice over whether the normalization factor (z) is calculated
using the input signal (y) or the feature (F ), and whether this is used to
normalize y or F .

processing is applied such that the interesting sections of

the input signal are amplified relative to the non-interesting

sections. The generated signal F is then passed to a classifier

such that thresholds can be applied to separate the interesting

and non-interesting sections. To generate a normalized signal

N there is then a choice over whether the normalization

factor (z) is calculated using the input signal (y) or the

feature (F ), and whether this factor is used to normalize

y or F , illustrated as Routes A, B, and C in Fig. 1.

Regardless of the precise technique used, the key require-

ment for the normalization is that the raw data is modified to

correct for broad level amplitude changes, and that doing this

has a minimal effect on the overall algorithm performance.

As an example, consider the case of an epileptic seizure

detection algorithm [2]. Here F should be large when a

seizure is present and small when no seizure is present.

However, seizures are often associated with larger raw EEG

amplitudes [1]. If the normalization factor z also increases

during the seizure the effect of calculating a normalization

F/z is that z reduces the effective value of F . Thus, rather

than aiding, normalization makes the seizure detection more

difficult. [2] suggested using median based normalization,

rather than the standard deviation, to overcome this.

To the authors’ knowledge, however, no systematic in-

vestigation into the impact of multiple different techniques

has been considered previously in the literature. This study

presents such an investigation for five different normalization

techniques used with a simple EEG seizure detection algo-

rithm. The investigation presented is inevitably preliminary

only: there are numerous different normalization methods

which could be investigated, and the assessment methodol-

ogy required isn’t obvious a priori. We present preliminary
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Fig. 2. 1800 epochs of analyzed scalp EEG data. (a) shows the calculated line length feature (1). (b)–(f) show the resulting signals after normalizing the
line length by five different methods. The two dashed vertical lines show the start and end of an expert marked seizure.

work for establishing a suitable analysis framework and

generate initial results and directions. Also, although it is

likely that similar effects are present in a number of fields,

to keep the analysis here tractable we only consider the EEG

seizure detection case.

II. METHODS

A. Analysis methods

In this study, the feature F to be normalized has been

selected as the line length, a low computational complexity,

amplitude-dependent, linear feature which is commonly used

for seizure detection [3], [4]. The line length of a sampled

signal y(n) is calculated as the sum of the instantaneous

gradient of the signal [3]:

F (k) =
∑

n

|y(n− 1)− y(n)| (1)

where n is the sample number within a short epoch of data,

and k is the epoch being analyzed. Here, each epoch is

generated as a non-overlapping 2 s section of EEG data.

Fig. 2(a) shows the calculated F from 1800 epochs of a

single channel of scalp EEG data. An expert marked seizure

is present between epochs 1644 and 1800 and as expected

the line length increases in these epochs compared to non-

seizure (interictal) epochs. The feature has thus successfully

emphasized the seizure to be detected.

The aim now is to qualitatively and quantitatively assess

the impact of different normalization techniques on the line

length seizure emphasis shown in Fig. 2(a). Qualitative re-

sults are generated by plotting the signal N(k) resulting from

normalization of the line length signal given in Fig. 2(a). A

quantitative comparison is then provided by calculating N(k)
for a set of four EEG recordings each containing one expert

marked seizure. All recordings are approximately one hour

long with 23 EEG channels. N(k) is calculated separately

for each channel and the resulting distribution of all N(k)
values in seizure and non-seizure epochs then found.

B. Normalization techniques

In this preliminary study five different normalization

techniques, based upon methods previously reported in the

literature, are investigated. These five methods are defined as

follows. All methods require up to 120 epochs to be present

to be calculated, and no seizures are present in the first 120

epochs of the analyzed data.

1) Median decaying memory [5]–[7]: calculated here as

NA = F/z where

z(k) =(1− λ)median{F (k − 1) · · ·F (k − 120)}

+ λz(k − 1) (2)

and λ = 0.99923 with initial conditions of z(1) = F (1).
2) Mean memory [3]: calculated as NA = F − z where

z(k) = mean{F (k − 1) · · ·F (k − 120)} (3)

3) Standard deviation memory [5], [6]: calculated here

as NA = F/z where z is the standard deviation of 30 s

(15 epochs) of F ending one minute (30 epochs) before the

current epoch:

z(k) = std{F (k − 31) · · ·F (k − 46)} (4)



4) Peak detector [8]: calculated here as NA = F/z where

z(k) =

{

F (k) if F (k) > z(k − 1),

z(k − 1) if F (k) ≤ z(k − 1).
(5)

with initial conditions of z(1) = F (1).
5) Signal range [5], [6]: calculated here as NC = F/z

where

z(k) = max
k

{y(n)} − min
k

{y(n)}. (6)

III. RESULTS AND DISCUSSION

A. Qualitative results

Fig. 2 (b)-(f) show how the normalized line length (N(k))
varies for the five normalization methods used. The me-

dian decaying memory (Fig. 2(b)) is seen to preserve the

emphasis of the seizure with essentially just a change in

the amplitude value being provided. In contrast the mean

memory (Fig. 2(c)) preserves the emphasis at the start of the

seizure, but towards epoch 1800 the values are decreased,

making it more difficult to detect the end of the seizure. The

standard deviation memory (Fig. 2(d)) acts similarly although

it also modifies the artifacts present: the artifact seen in

the line length at epoch 750 is reduced in significance, but

other smaller artifacts are highlighted. Both the peak detector

(Fig. 2(e)) and signal range (Fig. 2(f)) perform relatively

poorly, removing the emphasis of the seizure provided by

the line length. In these cases it would not be possible

to threshold the normalized feature to uniquely detect the

epileptic seizure.

B. Quantitative results

Fig. 3 gives box plots demonstrating the distribution

of N(k) between seizure epochs (shaded) and non-seizure

epochs (non-shaded) for four EEG recordings from different

subjects. The boxes represent the 25th percentile (bottom

line), median (middle line) and 75th percentile (top line)

of the distribution with the maximum and minimum values

also shown. The general trend for the feature (or normalized

feature) to be increased in seizure epochs is clearly seen.

Ideally, there should be no overlap between the N(k)
values in seizure and non-seizure epochs, allowing them to be

completely separated for 100% classification accuracy. This

is not possible for any of the plots, and instead a trade-off

between the sensitivity (fraction of correct classifications)

and specificity (fraction of incorrect classifications) must

be accepted. Two possible positions for a fixed detection

threshold, determining this trade-off, are shown in Fig. 3.

Firstly, the green dotted detect line is drawn at the lowest

percentile of the seizure epochs across patients, and indicates

a threshold that would ensure that at least 75% sensitivity is

achieved for all subjects. The red dashed reject line is drawn

at the highest percentile for the non-seizure epochs across

patients, and indicates a threshold that would ensure that

at least 75% specificity is achieved for all subjects. Ideally

the reject line would be below the detect line showing that at

least 75% can be achieved for both sensitivity and specificity.

This is only achieved in the median decaying memory

case (Fig. 3(b)). This method thus provides both normaliza-

tion and enhances the detection performance compared to

just thresholding the raw feature. The other four methods

provide normalization, but the distance between these lines

is increased compared to the raw data, indicating that a worse

trade-off between sensitivity and specificity will be obtained

when using any fixed threshold.

C. Discussion, limitations and future work

The results here clearly indicate that choices are available

with regards to the normalization utilized, but normalization

methods are not all equal. Most seizure detection algorithms

dedicate significant attention to the feature extraction used

(the line length here). For example they may consider mul-

tiple different transforms, or options within any one method

such as the choice of mother wavelet to use in the wavelet

transform. The results here demonstrate that for optimal

algorithm performance similar attention needs to be given

to the normalization used within the algorithm.

The peak detection and signal range methods used here

perform comparatively poorly in terms of aiding the empha-

sis of the seizure over the background data. However both

methods guarantee that the normalized feature can only take

values within a bounded region—(0,1] for the peak detector.

With the other methods considered the normalized values can

still in principle take on any value.

Within these other methods, the median decaying memory

achieves the best performance as it provides both normal-

ization and aids the separation of seizure and non-seizure

epochs. It is noted, however, that although the median de-

caying memory only needs 120 epochs for it to be calculable,

the constant λ from (2) controls how long previous values of

z affect the current calculation. λ = 0.99923 corresponds to

a memory half-life of approximately 30 minutes and in our

experimentation it was found that depending on the choice

of initial value for z it can take several hours for the measure

to reach a steady-state value. This effect is not reflected in

the results here where only one hour EEG long records have

been used. It is thus possible that in the analysis of long term

continuous recordings the median decaying memory is of a

differing utility to that suggested here. The investigation of

this is left to future work.

The other calculation methods used here do not include

similar long transient effects: they have a maximal 120

epoch transient response. The standard deviation memory

method also introduces a one minute delay. By varying

these memory factors, for example such that the delay is

longer than the duration of any typical seizure, it may be

possible to postpone changes to the normalization factor

z. The changes in the normalization provided would still

occur, but not during the seizure itself, potentially making

their impact less critical. Such changes in the memory of

the normalization method are akin to investigating entirely

different normalization techniques and again it is noted that

it is not possible to consider all such possibilities in this

preliminary work. For example, it would also be of interest to

investigate other normalization methods such as the envelope

detector [9] and Wilcoxon rank sum test [10], and to assess
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Fig. 3. Box plots showing the distribution of the feature and normalized features in seizure (shaded) and non-seizure (non-shaded) epochs from four
subjects. The trend for features to increase during seizure epochs is clearly seen. The green dotted detect line indicates a fixed detection threshold that
could be used to ensure that at least 75% sensitivity is achieved for all subjects. In contrast the red dashed reject line indicates a fixed detection threshold
that could be used to ensure that at least 75% specificity is achieved for all subjects. Asterisk (*) numbers indicate the maximum or minimum value of
the box plot where it cannot be drawn directly for scaling reasons.

the impact on non-linear signal emphasis features such as

those considered in [11].

IV. CONCLUSIONS

Normalization is an essential tool for correcting broad

level amplitude differences in recorded signals, for exam-

ple between different patients, to allow patient independent

classification. This paper has systematically investigated five

previously reported normalization techniques in terms of

their impact on the performance of a simple seizure detection

algorithm. All five methods provide signal normalization, but

the mean memory, standard deviation memory, peak detector

and signal range methods did this at the cost of reducing

the detection performance. In contrast, the median decay-

ing memory actually improved the differentiation between

seizure and non-seizure epochs.

It is thus clear that in addition to selecting suitable sig-

nal processing bases for algorithm development, significant

attention must also be given to selecting a suitable signal

normalization basis. Preliminary directions for doing this

have been provided here, however further work is necessary

to determine the effect on non-linear features and using a

wider subset of normalization techniques at different stages

within the signal processing chain.

REFERENCES

[1] P. E. M. Smith and S. J. Wallace, Clinicians’ guide to epilepsy.
London: Arnold, 2001.

[2] J. J. Halford, “Computerized epileptiform transient detection in the
scalp electroencephalogram: Obstacles to progress and the example
of computerized ECG interpretation,” Clin. Neurophysiol., vol. 120,
no. 11, pp. 1909–1915, 2009.

[3] R. Esteller, J. Echauz, T. Tcheng, B. Litt, and B. Pless, “Line length: an
efficient feature for seizure onset detection,” in IEEE EMBC, Istanbul,
Oct. 2001, pp. 1707–1710.

[4] K. Patel, C. Chern-Pin, S. Fau, and C. J. Bleakley, “Low power real-
time seizure detection for ambulatory EEG,” in Pervasive Health,
London, Apr. 2009, pp. 1–7.

[5] L. Kuhlmann, A. N. Burkitt, M. J. Cook, K. Fuller, D. B. Grayden,
L. Seiderer, and I. M. Y. Mareels, “Seizure detection using seizure
probability estimation: Comparison of features used to detect seizures,”
Ann. Biomed. Eng., vol. 37, pp. 2129–2145, 2009.

[6] L. Kuhlmann, M. J. Cook, K. Fuller, D. B. Grayden, A. N. Burkitt, and
I. M. Y. Mareels, “Correlation analysis of seizure detection features,”
in ISSNIP, Sydney, Dec. 2008, pp. 309–314.

[7] I. Osorio, M. G. Frei, and S. B. Wilkinson, “Real-time automated de-
tection and quantitative analysis of seizures and short-term prediction
of clinical onset,” Epilepsia, vol. 39, no. 6, pp. 615–627, 1998.

[8] L. Logesparan and E. Rodriguez-Villegas, “Improving phase congru-
ency for EEG data reduction,” in IEEE EMBC, Buenos Aires, Sep.
2010, pp. 642–645.

[9] A. J. Casson and E. Rodriguez-Villegas, “Toward online data reduction
for portable electroencephalography systems in epilepsy,” IEEE Trans.

Biomed. Eng., vol. 56, no. 12, pp. 2816 –2825, 2009.
[10] R. Meier, H. Dittrich, A. Schulze-Bonhage, and A. Aertsen, “Detecting

epileptic seizures in long-term human EEG: A new approach to auto-
matic online and real-time detection and classification of polymorphic
seizure patterns,” J. Clin. Neurophysiol., vol. 25, no. 3, pp. 119–131,
2008.

[11] C. J. Stam, “Nonlinear dynamical analysis of EEG and MEG: Review
of an emerging field,” Clin. Neurophysiol., vol. 116, no. 10, pp. 2266–
2301, 2005.


