
Neurocomputing 496 (2022) 147–157
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Model design for networks of heterogeneous Hodgkin–Huxley neurons
https://doi.org/10.1016/j.neucom.2022.04.115
0925-2312/� 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail addresses: ag3614@ic.ac.uk (A.G. Giannari), a.astolfi@imperial.ac.uk (A.

Astolfi).
A.G. Giannari a,⇑, A. Astolfi a,b

aDepartment of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
bDipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma ‘‘Tor Vergata”, Via del Politecnico, 100133 Roma, Italy
a r t i c l e i n f o

Article history:
Received 10 January 2022
Revised 25 March 2022
Accepted 23 April 2022
Available online 27 April 2022

Keywords:
Hodgkin–Huxley model
Neuronal networks
Heterogeneous firing patterns
Synaptic coupling
Graph theory
Feedback
a b s t r a c t

We present a novel modular, scalable and adaptable modelling framework to accurately model neuronal
networks composed of neurons with different dynamic properties and distinct firing patterns based on a
control-inspired feedback structure. We consider three important classes of neurons: inhibitory Fast
spiking neurons, excitatory regular spiking with adaptations neurons, and excitatory intrinsic bursting
neurons. We also take into consideration two basic means of neuronal interconnection: electrical and
chemical synapses. By separating the neuronal dynamics from the network dynamics, we have developed
a fully flexible feedback structure that can be further augmented to incorporate additional types of neu-
rons and/or synapses. We use an augmented version of the Hodgkin–Huxley model to describe the indi-
vidual neuron dynamics and graph theory to define the network structure. We provide simulation results
for small fundamental neuron motifs as well as bigger neuronal networks and we verify the accuracy,
flexibility and scalability of the proposed method. Therefore, we provide the basis for a comprehensive
modelling framework that is able to imitate the dynamics of individual neurons and neuronal networks
and is able to replicate basic normal brain function. The structure of the proposed framework is ideal for
applications of control and optimization methods both for modelling the effect of pharmacological sub-
stances as well as for modelling diseased neuron and network conditions.
� 2022 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

In 1952 Hodgkin and Huxley published the first quantitative
model that describes the creation and propagation of action poten-
tials in neurons by conducting in vivo patch clamp experiments on
a nerve axon of a giant squid [1]. Following this breakthrough the
Hodgkin and Huxley (HH) model has been extensively used to
understand the complexity of neurons [2–5] and neuronal net-
works [6–9] and it is effectively considered to be the most accurate
and efficient model that describes neuronal behavior [10]. In addi-
tion the HH model, despite being computationally expensive, is
considered to be the most reliable and bio-physically meaningful
model among the existing models, such as the Integrate and Fire,
the FitzHugh-Nagumo, the Hindmarsh-Rose and the Izhikevich
models as discussed in [11].

The HH model exclusively describes the dynamics of a single
giant squid neuron. For this reason, attempts have been made to
take into consideration the biophysical and dynamical characteris-
tics of mammalian neurons, by altering the original HH model. The
modified HH model in [12] accurately predicts spiking sequences
of biological neurons under the influence of fluctuating input cur-
rents while the augmented version of the HHmodel in [13] mimics
the properties of oscillations in bursting, a typical firing pattern
observed in mammals. Finally, in [14], experimental results from
4 types of neurons have been fitted to modified HH models able
to reproduce their distinct firing patterns.

The study of neuronal dynamics, however insightful for the
function of mammalian brain cells, is not sufficient to describe
the complex functions executed by the interconnections of neu-
rons through which information propagates. For this reason, efforts
have been concentrated on the study of the collective dynamics of
neuronal networks rather than on the ones of an individual neuron.
In addition, graph theory has been immersed in the field of neuro-
science in an effort to understand the dynamics of brain networks
and their functionality, see e.g. [15–17]. The modelling of the net-
work topology can be achieved using directed graphs, in which the
nodes represent the individual neurons and the edges correspond
to their coupling [18].

The modelling of large-scale neuronal networks requires the
manipulation of highly nonlinear coupled differential equations.
The complexity and large dimensionality of a Hodgkin–Huxley-
based networkmodel, that can provide an explicit and realistic rep-
resentation of the brain function, renders its analysis complex and
its use in the scientific community scarce. Despite the existence and
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continuing development of numerous software platforms (e.g. Neu-
ron [19], Neuroconstruct [20], Brian [21]) that are purposed for sim-
ulating neuronal networks, there is lack of a unified and compact
modelling framework to act as a basis for future simulators. Our
aim is not to replace already existing powerful software but to pro-
vide an advanced universal modelling method that is independent
of the simulator environment. Besides, the existence of distinct
modelling techniques is important for their validation and there-
fore the growth of the field of neuroscience [22].

In this paper, we introduce a novel, scalable, adaptable and
modular modelling framework that is based on a control-inspired
feedback structure and accurately models neuronal networks with
different firing patterns, dynamic properties and coupling mecha-
nisms. Scalability refers to the ability of the model to handle an
increased number of neurons and therefore state variables and
parameters. Adaptability refers to the ability of the model to be
augmented with more equations or change on-demand either on
a neuron or network level, e.g. parameters, connectivity. Modular-
ity, in this context, refers to the ability of the model to separate the
dynamics of heterogeneous neurons in modules that are able to
communicate with each other. Model modularity enables the gen-
eration of large-scale networks from sub-modules that can be
tested and validated separately before studying their effect on
the large network and is inherently related to the flexibility of
the model by allowing incrementing changes [23]. For the purpose
of creating a network model with all the above characteristics, we
have merged the modified HH equations for three distinct neuronal
firing patterns commonly observed in the human brain, see [14]
(with some parameter adaptations). We have also incorporated
equations for two distinct types of synaptic coupling: electrical
and chemical. Moreover, we have used graph theory to create a
feedback structure that separates the model and network dynam-
ics and it is therefore straightforward for in silico implementation.
Finally, to verify the accuracy and the scalability of the proposed
modelling framework we have modeled and validated multiple
neuron motifs that are responsible for important functions as well
as a larger random network. The validity of the HH network model
is supported by the combination of experimentally derived param-
eters for the neuron dynamics and tuned connectivity parameters
subject to constraints to match the target functionality of the sim-
ulated neuronal motifs.

The proposed HH network model is an augmented version of
the original HH model that is able to describe the behaviour of
large-scale heterogeneous and biologically realistic networks of
neurons with meaningful parameters.

One of the biggest advantages of the feedback structure is the
separation of the neuron and network dynamics which reduces
the complexity of the overall system while allowing the indepen-
dent manipulation of the neuron and network parameters. The
separation facilitates the compact description of the network
dynamics via the direct control of the connectivity matrices with-
out compromising the interaction of individual neurons with the
network. The dynamics of the individual neurons are governed
by the injected current, the network structure and their physiolog-
ical characteristics. Assuming that the physiological characteristics
of the neurons remain the same, the process of defining a unique
brain activity is reduced to choosing the desired neuronal types
involved, the appropriate external input current, and the two con-
nectivity matrices that correspond to the electrical and chemical
connections associated with the desired network. Therefore, the
proposed feedback structure is ideal for parameter optimization
and control applications both for modelling the effect of pharmaco-
logical substances as well as for modelling diseased neuron and
network conditions.

This paper is organised as follows. Section 2 discusses the HH
model for the neurons exhibiting the three distinct firing patterns,
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along with their parameters. Section 3 explains the two different
types of synapses and their interconnections with the HH model.
Section 4 introduces the network feedback structure. Section 5
provides simulation results to illustrate the accuracy of the pro-
posed model. Finally, Section 6 summarises the results and dis-
cusses future directions. Appendix A clarifies the definition of
some basic mathematical operations used in Section 4.
2. HH Model

The HH model is a nonlinear dynamical model that uses the
hypothesis that the ionic movement, across the membrane of the
neuron through ion-specific channels (gates), is responsible for
the generation of action potentials [24]. This ionic movement, that
is a result of concentration and potential differences, generates
currents across the membrane which are sufficiently strong to
cause membrane depolarisation (that is a sudden potential drop)
[25]. During the depolarisation phase the membrane ionic perme-
ability, that corresponds to sodium and potassium conductances,
changes dramatically to restore the membrane potential leading
to a sudden increase in membrane potential, giving the so-called
repolarisation phase [26]. The change in membrane permeability
is executed via the activation and inactivation processes, the rates
and steady state values of which depend on the membrane poten-
tial [27].

The original HH model based on measurements from a giant
squid axon is only able to fire at fixed time intervals, thus it only
exhibits regular spiking patterns. Neurons in the human brain
are way more complex in terms of structural and electrophysiolog-
ical characteristics. In fact, neurons belonging to different brain
regions are characterised by extreme firing pattern variability, with
some cortical pyramidal cells in the cerebral cortex and hippocam-
pus generating regular spikes, while others exhibiting adaptation
or bursting behavior [28]. For the design of the network model,
the three most common types of neurons observed in the mam-
malian brain have been considered: Fast spiking (FS) neurons
which are the most common interneurons in the neocortex and
are important for the processing of sensory information [29]; exci-
tatory regular spiking with adaptation (RSA) neurons which are the
most typical neurons in the cortex [30]; and intrinsic bursting (IB)
neurons which are important for motor, sensory and cognitive
functions [31]. The goal of incorporating the aforementioned neu-
ronal types in the network model is to reflect some of the large
dynamical heterogeneity observed in the mammalian brain and
thus be able to simulate a variety of important neuronal processes,
such as sensory contrast enhancement and memory.

The neuronal dynamics can all be modeled as an electric circuit
(see Fig. 1) with a capacitor CM as the membrane charge, four vari-
able voltage dependent conductances, gK ; gM; gNa, and gCa, as the
potassium, slow potassium, sodium and calcium channels, respec-
tively, and the constant conductance gL modelling the leak chloride
channel to include the permeability of the membrane to chloride
ions (Cl�) [32], all connected in parallel. The resting potentials
VK ;VNa;VCa and VL, which are modeled with three constant voltage
sources, are calculated from the concentration based Nerst equa-
tion. The injected current (Iinj) models an input current to the
membrane due to a stimulus from an external source. The activa-
tion and inactivation of the potassium, sodium and calcium chan-
nels are associated with the dimensionless variables n;m;h; p; q,
and s, the values of which are bounded between 0 and 1.

Fast spiking (FS) neurons, which fire at regular faster rate than
regular spiking (RS) neurons, can be modeled with sodium (Naþ)
and potassium (Kþ) gates. In regular spiking with adaptation
(RSA) neurons high frequency spikes are followed by lower con-
stant frequency spiking. This can be modeled by the addition of a



Fig. 1. Electric equivalent of the augmented HH model.
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slow non-inactivating potassium (Kþ) gate. In intrinsically bursting
(IB) neurons, each fast spiking train is followed by a period of qui-
escence [33]. This can be modeled with the addition of a slow cal-
cium (Ca2þ) gate to the original HH model.

The neuron dynamics of an FS neuron are given by the differen-
tial equations, adapted from [14]:

_V tð Þ ¼ 1
CM

Iinj tð Þ � �gKn4 tð Þ V tð Þ � VKð Þ�
��gNam3 tð Þh tð Þ V tð Þ � VNað Þ � gL V tð Þ � VLð Þ�;

_n tð Þ ¼ an tð Þ 1� n tð Þ½ � � bnn tð Þ;
_m tð Þ ¼ am tð Þ 1�m tð Þ½ � � bmm tð Þ;
_h tð Þ ¼ ah tð Þ 1� h tð Þ½ � � bhh tð Þ;

8>>>>>>><>>>>>>>:
ð1Þ

in which

an tð Þ ¼ V tð Þ � VT � 15ð Þ �0:032

e
� V tð Þ�VT�15ð Þ

5

� �
�1

;

am tð Þ ¼ V tð Þ � VT � 13ð Þ �0:32

e
� V tð Þ�VT�13ð Þ

4

� �
�1

;

ah tð Þ ¼ 0:128e
� V tð Þ�VT�17ð Þ

18

� �
;

bn tð Þ ¼ 0:5e
� V tð Þ�VT�10ð Þ

40

� �
;

bm tð Þ ¼ 0:28e
V tð Þ�VT�40

5

� �
� 1;

bh tð Þ ¼ 4 1

e
� V tð Þ�VT�40ð Þ

5

� �
þ1

:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð2Þ
Table 1
HH model variables and definitions.

Variables Units Definitions

V mV the membrane potential

n;m; h;p; q; s dimensionless variables with values
between 0 and 1 associated with the
activation and inactivation of the
potassium, sodium and calcium
channels

Iinj lA
cm2

injected current per unit area

Table 2
HH model parameters and values for each neuron type.

Model Parameters Units FS RSA IB

CM lF
cm2

0.5 1 1

VK mV �90 �90 �90
VCa mV – – 120
VNa mV 50 56 50
VL mV �70 �70:3 �70
VT mV �56:2 �56:2 �56:2
�gK mS

cm2 10 6 5
�gM mS

cm2
– 0:075 0:03

�gCa mS
cm2

– – 0:2
�gNa mS

cm2 56 56 50

gL mS
cm2 1:5 � 10�2 2:05 � 10�2 0:01

smax msec 1 608 608
The variable potassium and sodium conductances are
gK tð Þ ¼ �gKn4 tð Þ and gNa tð Þ ¼ �gNam3h tð Þ, respectively, with �gK > 0
and �gNa > 0 the maximum potassium and sodium conductances,
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and VT a threshold adjustment constant associated with FS neu-
rons. The voltage dependent rates of activation and inactivation
of the potassium and sodium gates an;m;h tð Þ and bn;m;h tð Þ are the
result of data fitting from experimental results [14].

Similarly, modelling the neuronal dynamics for an RSA neuron
gives the differential equations:

_V tð Þ ¼ 1
CM

Iinj tð Þ � �gKn4 tð Þ V tð Þ � VKð Þ � �gMp tð Þ V tð Þ � VKð Þ�
��gNam3 tð Þh tð Þ V tð Þ � VNað Þ � �gL V tð Þ � VLð Þ�;

_p tð Þ ¼ p1 tð Þ � p tð Þ
sp tð Þ ;

ð3Þ

where n;m and h are as in Eq. (1), an;bn; am; bm; ah and bh are given in
Eq. (2), and

p1 tð Þ ¼ 1

e
� V tð Þþ35ð Þ

10ð Þþ1
;

sp tð Þ ¼ smax

3:3e
V tð Þþ35ð Þ

20ð Þþe
� V tð Þþ35ð Þ

20ð Þ :
ð4Þ

Moreover, the variable slow potassium conductance is
gM tð Þ ¼ �gMp tð Þ, with �gM > 0 the maximum conductance and
smax > 0 a time constant associated with RSA neurons.

Finally, modelling the neuronal dynamics for an IB neuron gives
the differential equations:

_V tð Þ ¼ 1
CM

Iinj tð Þ � �gKn4 tð Þ V tð Þ � VKð Þ�
��gMp tð Þ V tð Þ � VKð Þ � �gCaq2 tð Þs tð Þ V tð Þ � VCað Þ
��gNam3 tð Þh tð Þ V tð Þ � VNað Þ � �gL V tð Þ � VLð Þ�;

_q tð Þ ¼ aq tð Þ 1� q tð Þ½ � � bq tð Þq tð Þ;
_s tð Þ ¼ as tð Þ 1� s tð Þ½ � � bs tð Þs tð Þ;

8>>>>>><>>>>>>:
ð5Þ

where n;m and h are as in Eq. (1), _p is as in Eq. (3), an;bn; am; bm; ah
and bh are given in Eq. (2), p1 and sp are given in Eq. (4) and

aq tð Þ ¼ 0:0055 �27� V tð Þð Þ 1

e
�27�V tð Þð Þ

3:8ð Þ�1
;

as tð Þ ¼ 0:000457e
�13�V tð Þð Þ

50ð Þ;
bs tð Þ ¼ 0:0065 1

e
�15�V tð Þð Þ

28ð Þþ1
;

bq tð Þ ¼ 0:94e
�75�V tð Þð Þ

17ð Þ:

8>>>>>>><>>>>>>>:
ð6Þ

The variable calcium conductance is gCa tð Þ ¼ �gCaq2s tð Þ, with �gCa

the maximum calcium conductance associated with IB neurons.
The voltage dependent rates of activation and inactivation of the
calcium gate aq; as; bq and bs are the result of data fitting from
experimental results [14]. The variables involved in the HH models
are summarised in Table 1. The HH equations of the IB neurons are
able to model the dynamics of both FS and RSA neurons by adjust-
ing the values of the parameters according to Table 2.



Table 3
Synapse parameters and values for each neuron type.

Synapse Parameters Units FS RSA IB

sr msec 0:5 0:5 0:5
sd msec 8 8 8
Vsyn mV �80;�50½ � 20 20
V0 mV �20 �20 �20
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The injected current Iinj tð Þ can be modeled as a piecewise con-
stant signal as follows:

Iinj tð Þ ¼

rand a; bð Þ; t 2 0;d½ �;
rand a; bð Þ; t 2 d;2d½ �;
..
. ..

.

rand a; bð Þ; t 2 l� 1ð Þd; ld½ �;

8>>>><>>>>:
where rand a; bð Þ 2 R with 0 6 a < b is a uniformly distributed ran-
dom number between a and b; d ¼ t

l is a fixed time step, and l is the
number of time partitions, with ld the overall duration of the
simulation.

3. Network design

Two neurons can be connected together via an electrical
synapse (gap junction) (see Fig. 2A) or via a chemical synapse
(see Fig. 2B). Theses two modes of signal propagation in a neuronal
network have been proven to coexist in all nervous systems [34].
Each neuron can receive signals from multiple neurons. In electri-
cal signal transmission the axon terminal of the presynaptic neu-
ron (the neuron sending the signal) is in contact with one of the
dendrites of the postsynaptic neuron (the neuron receiving the sig-
nal). The postsynaptic action potential is directly related to the
presynaptic potential. In chemical signal transmission the action
potential of the presynaptic neuron activates the release of neuro-
transmitters in the gap (synaptic cleft) between the presynaptic
and postsynaptic neuron. The neurotransmitters activate the
receptors of the postsynaptic neuron and a postsynaptic action
potential is created that depends on both the presynaptic potential
and the neurotransmitter release.

In a network of N neurons the electrical synapse is modeled by
the addition of the sum of synaptic currents originating from other
neurons to the voltage equation of the HH model as discussed in
[35], that is

_Vi tð Þ ¼ 1

Ci
M

Iiinj � �gi
Kn

4
i tð Þ Vi tð Þ � Vi

K

� �
� �gi

Mpi tð Þ Vi tð Þ � Vi
K

� ��
��gi

Caq
2
i tð Þsi tð Þ Vi tð Þ � Vi

Ca

� �
� �gi

Nam
3
i tð Þhi tð Þ Vi tð Þ � Vi

Na

� �
�gi

L Vi tð Þ � Vi
L

� �
þ
XN
j¼1

�elij V j tð Þ � Vi tð Þ� �!
;

ð7Þ

where i is the postsynaptic neuron and j is the presynaptic neuron.
The synaptic weight �elij , that represents the strength of the connec-
tion, has unit of conductance. In a network of N neurons, the chem-
ical synapse is modeled by the addition of the sum of synaptic
currents originating from other neurons to the voltage equation of
the original HH model as discussed in [35,7], that is
Fig. 2. Coupling between two neurons with e
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_Vi tð Þ ¼ 1

Ci
M

Iiinj � �gi
Kn

4
i tð Þ Vi tð Þ � Vi

K

� �
� �gi

Mpi tð Þ Vi tð Þ � Vi
K

� ��
��gi

Caq
2
i tð Þsi tð Þ Vi tð Þ � Vi

Ca

� �
� �gi

Nam
3
i tð Þhi tð Þ Vi tð Þ � Vi

Na

� �
�gi

L Vi tð Þ � Vi
L

� �
þ
XN
j¼1

�chij rj V i
syn � Vj tð ÞÞ

� �!
;

ð8Þ

where i is the postsynaptic neurons, j is the presynaptic neuron, and

Vi
syn is the reversal potential of the synapse. In this case the synaptic

weight �chij is unit-less. In both Eq. (7) and Eq. (8), the synaptic
weights �ij conventionally correspond to the effect of neuron j on
neuron i.

Finally, the fraction of receptors r bound to the neurotransmit-
ters [36] is described by

_rj tð Þ ¼ 1
sr

� 1
sd

� �
1� rj tð Þ� �

1þ e�Vj tð ÞþV0
� 1
sd

rj tð Þ; ð9Þ

in which V0 is the reversal potential, sd is the decay time constant,
and sr is the rise time constant [35], the values of which are given in
Table 3.
4. Feedback Structure

Graph theory has been used extensively for the understanding
of complex neuronal networks in terms of structure and function-
ality, see e.g. [17]. In a graph theory based approach, the individual
neurons correspond to the nodes of the graph, illustrated by solid
dots. The coupling between neurons is represented by the edges,
i.e lines connecting the neurons. A neuronal network can ideally
be represented by a directed weighted graph, in which each edge
is paired with a non-negative synaptic weight �ij, to illustrate the
effect of neuron j on neuron i.

As previously mentioned, there are two distinct ways in which
neurons can communicate with each another: electrical and chem-
ical signal transmission. In what follows we present a novel com-
pact formalism for these two types of networks.

To begin with, we consider a network of neurons, connected
with electrical coupling with strength �el P 0, of size N. We define
lectrical (A) and chemical (B) synapses.



Fig. 3. Feedback Structure of a neuronal network with electrical (A) and chemical (B) coupling.
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the adjacency matrix Ael that is populated with the coupling
strengths between connected neurons. We do not consider the case
of self-coupling as, consistent with our mathematical framework
we only account for autapses performed by chemical synapses,
thus the diagonal is filled with zeros. We also define the diagonal
degree matrix D in which each element is the sum of the corre-
sponding row of the adjacency matrix. The matrices are of dimen-
sion N � N, and are given by the expressions

Ael ¼

0 �el12 . . . �el1N

�el21
. .
. ..

.

..

. . .
. ..

.

�elN1 . . . . . . 0

26666664

37777775;

D ¼

XN
j¼1

�el1j 0 . . . 0

0
XN
j¼1

�el2j 0 ..
.

..

.
0 . .

. ..
.

0 . . . . . .
XN
j¼1

�elNj

2666666666666664

3777777777777775
;

where, consistently with our assumptions, �ii ¼ 0. We then define
the Laplacian matrix L, which provides the matrix form of the graph,
as

L ¼ D� Ael ¼

XN
j¼1

�el1j ��el12 . . . ��el1N

��el21
XN
j¼1

�el2j . . . ..
.

..

. ..
. . .

. ..
.

��elN1 . . . . . .
XN
j¼1

�elNj

2666666666666664

3777777777777775
:

If we consider each synaptic current as an input, Eq. (7), for
i; j ¼ 1 . . .N, can be rewritten in vector form as

_V tð Þ ¼ 1�CM � Iext � �gK � n�4 tð Þ � V tð Þ � VKð Þ�
��gM � p tð Þ � V tð Þ � VKð Þ � �gCa � q�2 tð Þ � s tð Þ � V tð Þ � VCað Þ
��gNa �m�3 tð Þ � h tð Þ � V tð Þ � VNað Þ � gL � V tð Þ � VLð Þ þ uel

�
;

ð10Þ

where � denotes the Hadamard division and � the Hadamard pro-
duct or power (see Appendix A). The model parameters are the vec-
tors CM 2 RN�1; �gK 2 RN�1, �gM 2 RN�1; �gCa 2 RN�1; �gNa 2 RN�1, and
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gL 2 RN�1. The current due to the electrical synapses formed between
the neurons of the network is defined via the feedback uel ¼ �LV

where V ¼ ½V1; . . . ;VNFS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
FS

;VNFSþ1 ; . . . ;VNFSþNRSA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RSA

;VNFSþNRSAþ1; . . . ;VN|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IB

�T . The

rest of the variables and parameters of the model follow the same
pattern as the vector V to compactly represent the three different
types of neurons that exist in the network, e.g.
CM ¼ ½CM;1; . . . ; CM;NFS|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

FS

; CM;NFSþ1 ; . . . ;CM;NFSþNRSA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RSA

;CM;NFSþNRSAþ1; . . . ; CM;N|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IB

�T .

The external current Iext ¼ S � Iinj 2 RN�1 is the input vector and
S 2 RN�1 is a selection column vector that determines which of the
neurons receive it. The feedback structure of the network is illus-
trated in Fig. 3A.

Similarly, for the study of a network based on chemical interac-
tions of strength �ch P 0 we define the adjacency matrix, this time
considering the possibility of self loops, as

Ach ¼

�ch11 �ch12 . . . �ch1N

�ch21
. .
. ..

.

..

. . .
. ..

.

�chN1 . . . . . . �chNN

26666664

37777775;

and the vectors bV ¼ Vsyn � V1; . . . ;Vsyn � VN
	 
T and r ¼ r1; . . . ; rN½ �T .

Eq. (8), for i; j ¼ 1 . . .N, is then rewritten in vector form as

_V tð Þ ¼ 1�CM � Iext � �gK � n�4 tð Þ � V tð Þ � VKð Þ�
��gM � p tð Þ � V tð Þ � VKð Þ � �gCa � q�2 tð Þ � s tð Þ � V tð Þ � VCað Þ
��gNa �m�3 tð Þ � h tð Þ � V tð Þ � VNað Þ � gL � V tð Þ � VLð Þ þ uch

�
;

ð11Þ

with feedback uch ¼ Ach IN � 1T � r
� �

� bV� �
, where � denotes the

Kronecker product (see Appendix A) and and 1 is a column vector
of ones and dimension N. The feedback structure of the network
is illustrated in Fig. 3B.

For the modelling of an heterogeneous network with both elec-
trical and chemical synapses present, all neuron parameters are
considered known (see Table 2), while the network design param-
eters, which are the external current Iext , the selection vector S and
the adjacency matrices Ael and Ach are network-specific. In this case
the feedback takes the form of u ¼ uel þ uch ¼ �LVþ
Ach IN � 1T � r

� �
� bV� �

. The choice of including electrical and/or

chemical synapses is biologically motivated and does not affect
the design procedure. If only one type of synapse exists in the mod-
elled network the adjacency matrix corresponding to the absent
synapse must be filled with zeros. In any case, the performance
of the network design depends on the size of the network. The
feedback due to the electrical synapses only depends on the output



Fig. 5. Simulation results for 3 uncoupled FS, RSA and IB neurons all receiving
external input. The external current is applied from 500 msec up to 2000 msec with
maximum amplitude 1lA.
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vector V, while the feedback due to the chemical synapse depends

both on the error vector bV and the variable r. This difference in the
form of the feedback is based on the different biological processes
associated with the two modes of coupling.

The adoption of the feedback structure in the HH network
model achieves the separation of the neuron and network dynam-
ics and provides a simplified compact and straightforward vec-
torised formalism for the network equations that is easily
scalable to accommodate any size of network. The separation of
the neuron and network dynamics is achieved via the vectorisation
of the network equations, the incorporation of the feedback law
and the description of the neuron interactions via the correspond-
ing connectivity matrices.

5. Model validation

The performance and robustness of neuronal brain networks is
based on the function of some fundamental neuron motifs (see
Fig. 4). Those small networks are the building blocks of bigger neu-
ronal circuits and are responsible for essential functions such as
encoding, representation and computation [37]. Despite their pres-
ence and their significant impact on the behaviour of large neu-
ronal networks in mammalian brains there is a lack of visual
portrayal of their individual and global activity in the literature.
In what follows, we use our proposed framework to simulate the
activity of those neuronal circuits and correlate them to their
respective functions.

First we consider three uncoupled neurons with distinct firing
patters, FS, RSA and IB, all receiving external input (Fig. 5). It can
be observed that the FS neurons fire faster and more erratically
than the RSA neurons, while the IB neurons exhibit fast spiking
trains alternated by periods of quiescence. The variability of the
input current in each of the neurons prevents any periodicity of
the resulting voltages. After the current is no longer applied the
neurons return to their equilibrium.

5.1. Feedforward and feedback excitation

Feedforward excitation (Fig. 4A) facilitates the propagation of
information from one neuron to another, while the feedback exci-
tation (Fig. 4B) sustains the activation of the presynaptic neuron
using the output of the postsynaptic neuron [38]. To simulate feed-
Fig. 4. Important neuron motifs commonly observed in brain circuits: (A) Feedforward ex
(E) lateral excitation, (F) lateral inhibition, (G) disinhibition and (H) recurrent excitation
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forward excitation we have designed a network of two excitatory
RSA neurons coupled with an electrical synapse �el21 ¼ 0:1mS

� �
with only the first neuron receiving external input (Fig. 4A). We
observe that the postsynaptic neuron 2 fires solely because of its
connection to the presynaptic neuron 1 (Fig. 6A) and in accordance
with the synaptic strength between the two neurons proving the
forward relay of information. The magnitude of the synaptic cou-
pling determines the level of dependence of neuron 2 on neuron
1 and is responsible, in this example, for the different number of
occurred spikes. Keeping the external input the same, we have
added a feedback chemical synapse �ch12 ¼ 0:5

� �
from neuron 2 to

neuron 1 (Fig. 4B). As a result of the feedback connection both neu-
rons exhibit increased activity in the form of high frequency spik-
ing trains (Fig. 6B). The significance of the feedback connection is
displayed in the ability of neuron 1 to indirectly increase its indi-
vidual activity under the same external input.
5.2. Feedforward and feedback inhibition

Feedforward inhibition (Fig. 4C) limits or completely shuts
down the activity of a postsynaptic neuron. Feedback inhibition
(Fig. 4D) limits the excitation of a neuron via the activation of
the inhibitory neuron. To demonstrate the effect of feedforward
citation, (B) feedback excitation, (C) feedforward inhibition, (D) feedback inhibition,
. Blue neurons are excitatory and grey neurons are inhibitory. Adapted from [37].



Fig. 6. Simulation results for: (A) feedforward excitation, (B) feedback excitation, (C1-C2) feedforward inhibition and (D1-D2) feedback inhibition circuits.
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inhibition we have designed a network of two excitatory RSA neu-
rons and one inhibitory FS neuron (Fig. 4C). First, we consider the
case in which connection between the inhibitory neuron 1 and the
excitatory neuron 2 is disabled and the remaining circuit is feed-
forward excitation from neuron 2 to neuron 3 coupled with an
electrical synapse �el32 ¼ 0:1mS

� �
and from neuron 2 to neuron 1

coupled with an electrical synapse �el12 ¼ 0:2mS
� �

. In this case, neu-
rons 1 and 3 fire because of their connection to neuron 2, the only
neuron that receives external input (Fig. 6C1). The neurons 1 and 3
fire with different frequencies because of the different synaptic
strengths (neuron 1 is more heavily affected by neuron 2). If the
inhibitory chemical synapse between neurons 1 and 3 is enabled
�ch31 ¼ 0:05
� �

, the excitation of neuron 3 is completely shut down
by the inhibitory effect of neuron 1 and results in total quiescence
(Fig. 6C2). The inability of neuron 3 to fire demonstrates the ability
of an inhibitory neuron to terminate the activity of a postsynaptic
neuron and therefore accurately depicts the function of a feedfor-
ward inhibition circuit.

Similarly, to illustrate the function of feedback inhibition we
have designed a network of two excitatory RSA neurons and one
inhibitory FS neuron (Fig. 4D). In this case, neuron 1 is excited by
neuron 3 via an electrical synapse �el13 ¼ 0:1mS

� �
, which in turn is

excited by neuron 2 via an electrical synapse �el32 ¼ 0:1mS
� �

. When
the inhibitory synaptic connection between neurons 1 and 2 is dis-
abled all neurons successfully fire because of neuron 2 receiving
external input and their respective connections (Fig. 6D1). If the
inhibitory chemical synapse between neurons 1 and 2 is enabled
�ch21 ¼ 0:1
� �

, the activity of the output neuron 3 is limited because
of the feedback inhibition (Fig. 6D2). The biggest difference
between the two networks lies on the extent of efficacy of the inhi-
bitory neuron to silence the output of neuron 3 as well as on its
effect on the whole network. Feedforward excitation is able to
completely shut down the activity of the output neuron while
maintaining the activity of the rest of the neurons in the network,
whereas feedback excitation is only able to cap the relay of infor-
mation to the output neuron via the limited activity of all the neu-
rons in the network.
5.3. Lateral excitation and lateral inhibition

Lateral excitation (Fig. 4E) amplifies the sensitivity of the neu-
rons to an external input current [39]. On the other hand, lateral
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inhibition (Fig. 4F) is very important in edge detection as it
increases the contrast between different levels of visual stimulus
at the boundary [40,41]. To simulate lateral excitation we have
designed a network of four RSA neurons connected with electrical
�el24 ¼ 0:1mS
� �

and chemical �ch14 ¼ 0:1; �ch34 ¼ 0:1
� �

synapses with all
neurons except neuron 2 receiving external input (Fig. 4E). If the
strengths of the two chemical synapses are set to zero, therefore
neuron 4 has no effect upon neurons 1 and 3, all neurons fire dri-
ven by their respective external and synaptic input (Fig. 7E1). If the
two chemical synapses are enabled neurons 1 and 3 exhibit
increased activity (Fig. 7E2) under the same input current. This cir-
cuit establishes some sort of communication between the neurons
4, 1 and 3 in which neuron 4 dictates the level of sensitivity of neu-
rons 1 and 3 to their respective inputs. We have repeated the sim-
ulation for four IB neurons and the behaviour of the circuit is
consistent with the previous results (Fig. 7E3 and Fig. 7E4).

To demonstrate the effect of lateral inhibition we have designed
a network with six RSA and two FS neurons connected with electri-
cal �el36 ¼ �el17 ¼ �el27 ¼ �el58 ¼ 0:1mS

� �
and chemical �ch31 ¼ �ch52 ¼ 0:2

� �
synapses. If the two chemical synapses are disabled
�ch31 ¼ �ch52 ¼ 0
� �

, neurons 3 and 5 fire driven by the external input
received by neurons 6 and 8, respectively (Fig. 7F1). If the two
chemical synapses are enabled, neurons 3 and 5 exhibit decreased
firing activity because of the inhibition of neurons 1 and 2
(Fig. 7F2). The number of spikes of neurons 3, 4 and 5 are indicators
of the intensities of the input currents with smaller number of
spikes corresponding to lower input current. By observing the
behaviour of the neurons it becomes clear that the circuit amplifies
the distinction between the neurons receiving different levels of
input current, in other words increases their contrast.
5.4. Disinhibition

Disinhibition (Fig. 4G) breaks the balance of excitation/inhibi-
tion and is an important mechanism often observed in learning
and memory [42]. To demonstrate the effect of disinhibition we
have designed a network of three RSA and two FS neurons con-
nected with electrical �el13 ¼ 0:05mS; �el53 ¼ �el24 ¼ 0:1mS

� �
and

chemical �ch51 ¼ �ch12 ¼ 0:05
� �

synapses. If the chemical synapse from
neuron 2 to neuron 1 is disabled �ch12 ¼ 0

� �
, the activity of neuron 5

is shut down by the inhibitory neuron 1 despite the excitation it
receives from neuron 3 (Fig. 8G1). If the same chemical synapse



Fig. 7. Simulation results for: (E1-E4) lateral excitation and (F1-F2) lateral inhibition circuits.

Fig. 8. Simulation results for: (G1-G2) disinhibition, (H1-H4) recurrent excitation circuits.
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is enabled, neuron 2 inhibits the inhibitory neuron 1 thus limiting
its effect on neuron 5 which in this cases fires (Fig. 8G2). Disinhi-
bition acts as a conditional switch between the activity or quies-
cence of the output neuron based on the input currents and
coupling strengths and describes a very important function in
many neuronal circuits.
5.5. Recurrent excitation

Recurrent excitation (Fig. 4H) generates bistability between two
states: spontaneous activity in the frequency range 0� 10 Hz and
persistent activity in the tens of Hz frequency range once the stim-
ulus is removed [43]. To simulate the function of recurrent excita-
tion we have designed a network of five RSA neurons connected
with electrical �el21 ¼ �el32 ¼ 0:1mS; �el43 ¼ �el54 ¼ 0:1mS

� �
and chemical

�ch22 ¼ �ch25 ¼ 0:15
� �

synapses. Without the feedback �ch25 ¼ 0
� �

the
circuit is simply an in-series connection of neurons 1–5 and a
self-loop (Fig. 8H1). With the addition of the connection between
neurons 1 and 5, all neurons except neuron 1 demonstrate
increased firing activity (Fig. 8H2) as a result of the recurrent feed-
154
back. We have repeated the simulation with different input current
and chemical synaptic strength pairs �ch22 ¼ 0:18; �ch25 ¼ 0:2

� �
and

�ch22 ¼ 0:2; �ch25 ¼ 0:2
� �

to produce Fig. 8H3 and Fig. 8H4, respec-
tively. Recurrent feedback takes the form of the self loop on neuron
2 as well as the form of feedback from neuron 5 to neuron 2. The
aforementioned simulations demonstrate how recurrent feedback
generates bistability between low and high frequency firing which
persists after the removal of the external current at 2000ms.
5.6. Random large-scale network

As highlighted in the preceding discussion, the proposed model
reliably describes the dynamics of basic small networks consisting
of different types of neurons and synapses with high flexibility. To
prove its scalability we have modeled large networks with random
connectivity, synaptic strengths, external currents and input selec-
tion vectors. Three homogeneous modules composed of FS, RSA
and IB neurons have been interconnected to demonstrate the effect
of random interconnection on a large-scale network. Fig. 9A illus-
trates a network of 30 FS, 90 RSA and 30 IB neurons randomly



Fig. 9. Random network: (A) schematic representation of a random network with 30 FS, 90 RSA and 30 IB neurons, (B) voltage traces of FS neurons, (C) voltage traces of IB
neurons, (D) voltage traces of RSA neurons in groups of 30.
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interconnected with synaptic strengths ranging from 0 to 0:06mS
for the electrical synapses and from 0 to 0:1 for the chemical
synapses. The input currents are random piecewise functions with
maximum amplitude 0:1lA. The activity of the individual neurons,
which depends on the external and synaptic inputs, is presented in
Fig. 9(B-D).

6. Conclusion

We have presented a novel scalable, adaptable and modular
modelling framework based on a compact feedback structure that
is able to model networks of heterogeneous Hodgkin–Huxley neu-
rons interconnected via electrical and chemical synapses. The
model is able to reproduce the activity of neuronal networks sub-
ject to the presence of external input currents. The separation of
the individual neuron and network dynamics makes this model
adaptable and easily expandable to incorporate more types of neu-
rons, synapses and network structures. We have validated the effi-
cacy of the model by simulating a few basic important neuronal
circuits that perform specific functions and are the basis of bigger
neuronal networks commonly observed in mammalian brains. We
have demonstrated the scalability of the model by adding an
example of a larger random network and we have provided all
the necessary parameter values to maximize the reproducibility
of the results. With this work we aim to simplify the process of
simulating neuronal networks by providing a compact, flexible
and scalable modelling framework that can be adjusted and/or
expanded with ease. The ability of the proposed modelling frame-
work to produce the activity of large heterogeneous neuronal net-
works is indicative of its potential use for educational and research
purposes.
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As future development we aim to simulate modular and small-
world networks that are thought to be present in the mammalian
brain circuitry. We plan to investigate the robustness of the model
under various neuron and network parameter changes. Further-
more, we will investigate the effect of individual neurons or synap-
tic connections failing in an attempt to simulate the effects of
Alzheimer’s and Parkinson’s disease on the functionality of net-
works. Finally, we aim to apply control and consensus theory to
potentially repair any broken pathways and maintain the network
performance.
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Appendix A

Definition 1. The Hadamard product of two matrices with the
same dimensions A ¼ aij

	 
 2 Rm�n and B ¼ bij
	 
 2 Rm�n is defined

as A � B ¼ aijbij
	 
 2 Rm�n [44].
Definition 2. The Hadamard division or element-wise division of
two matrices with the same dimensions A ¼ aij

	 
 2 Rm�n and
B ¼ bij – 0

	 
 2 Rm�n is defined by AøB ¼ aij=bij
	 
 2 Rm�n [45].
Definition 3. The Hadamard power of a matrix A ¼ aij
	 
 2 Rm�n is

defined by A�k ¼ akij
h i

2 Rm�n with k 2 R and aij > 0 [46].
Definition 4. The Kronecker product of two matrices
A ¼ aij

	 
 2 Rm�n and B ¼ bij
	 
 2 Rp�q gives the block matrix

A� B ¼
a11B . . . a1nB
..
. . .

. ..
.

am1B . . . amnB

264
375 2 Rpm�qn[47].
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