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In industrial bioprocesses, microbial metabolism dictates the
product yields, and therefore, our capacity to control it has an
enormous potential to help us move towards a bio-based
economy. The rapid development of multiomics data has
accelerated our systematic understanding of complex
metabolic regulatory mechanisms, which allow us to develop
tools to manipulate them. In the last few years, machine
learning-based metabolic modeling, Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) derived
synthetic biology tools, and synthetic genetic circuits have been
widely used to control the metabolism of microorganisms,
manipulate gene expression, and build synthetic pathways for
bioproduction. This review describes the latest developments
for metabolic control, and focuses on the trends and challenges
of metabolic engineering strategies.
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Introduction

Compounds of industrial interest can be biomanu-
factured by those microorganisms that naturally synthe-
tize them, but usually, the production levels of wild type
strains are low. Therefore, metabolic engineering is
often required to optimize fluxes and ultimately bio-
processes. Although in some cases the deletion, sub-
stitution or addition of a gene can be enough to increase

the accumulation of a compound, in most of the cases
the complexity of metabolism and its regulation require
further designs [1,2]. In order to achieve the desired
metabolic control, a wide range of sophisticated tools
have been developed to date [3]. Within the diversity of
methods available, in this work, we review three areas
that have proven successful in the last years: machine
learning-based models, Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) tools, and genetic
circuits. These three areas are of particular importance
because of their potential in overcoming some of the
current challenges in developing efficient cell factories,
such as our scarce understanding of metabolic regulation,
the limitation of our strain engineering techniques and
the lack of capacity to create new regulatory networks
with desired behaviors.

With the purpose of predicting the appropriate control of
biological functions, whole-cell metabolic models and
machine learning have helped us better understand
microbial bioprocesses when there is a lack of experi-
mental data, and they have guided engineering strate-
gies [3].

In addition, once the desired genetic targets have been
identified /7 sifico, microorganisms must be manipulated
to optimize their performance. This can be achieved by
mechanisms that control synthetic regulatory networks,
also known as genetic circuits [4,5]. These circuits pre-
sent different levels of complexity depending on the
application, some of them showing intricate dynamics
designed to optimize the synthesis of the compound of
interest. Synthetic genetic circuits have the advantage to
be programmable and autonomous. Its modular nature
gives them stability and predictability. As a result, they
have contributed to different areas such as bioproduc-
tion, biodiagnosis, microbiome regulation, and bio-
containment [6].

In recent years, CRISPR-based tools have become a
favorite choice to regulate metabolism, either in-
dependently or as part of a genetic circuit. CRISPR was
originally discovered as a prokaryotic immune me-
chanism that targeted potentially harmful exogenous
DNA or RNA to silence it and avoid damage [7-9]. The
discovery was later applied as a DNA editing tech-
nology, and since then it has become one of the most
powerful and used tools in biotechnology [10]. Its me-
chanism of action involves an endonuclease, which is
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usually either Casl12 (also known as Cpfl) or Cas9.
These nucleases introduce a Double Strand Break
(DSB) led by a guide RNA (gRNA) that targets a specific
sequence. The following repair can be resolved by en-
dogenous mechanisms. In addition, nuclease-deficient
version of Casl2 or Cas9 can be used to perform
CRISPRa (activation) and CRISPRi (inhibition), tech-
niques that either upregulate or downregulate gene ex-
pression, respectively [11].

In this review, we summarize the current advances in ma-
chine learning in relation to metabolic models, the devel-
opments in the area of synthetic genetic circuits, and the
uses of CRISPR technologies to control metabolism.

Machine learning-based metabolic modeling

With the development of omics technologies, metabolic
models are no longer limited to simple gene-protein-
reaction interactions. Constraint-based modeling can
integrate other factors, such as thermodynamics [12],
dynamics [13], gene expression matrices [14], environ-
mental and genetic relationships [5], and metabolic
regulation of whole-cell models [3]. The use of machine
learning has the potential to facilitate multi-omics data
analysis and the building of advanced metabolic network
models. In this section of the article, we summarize the
applications of machine learning in metabolic modeling.

Model-driven production improvement
Metabolic model prediction based on machine learning
can help to identify target genes to improve the

Figure 1

production of metabolites of interest, as it has been
proven in the production of xylitol [15] (Figure la and
Table 1). In another example, the training sets of the
two machine learning algorithms, the automatic re-
commendation tool (ART) and TeselaGen EVOLVE,
were provided by the developed high-throughput bio-
sensor. Then, the data were combined with the genome-
scale metabolic model and used to predict the optimal
metabolic pathways toward the production of trypto-
phan. The final results showed that this hybrid approach
increased tryptophan titer and productivity by 74% and
43%, respectively [16¢]. In a different work, analyzing
omics data through the Bayesian factor model in order to
design metabolic pathways was also an effective option
to increase the biosynthesis of rhamnolipids [17]. Pre-
dicting the phenotypes of genetically modified strains
under different growth conditions was essential for the
adequate development of the metabolic model. As an-
other example of improving the yield of target products,
the multiomics model and analytics (MOMA) platform
successfully identified key metabolic steps of eight dif-
ferent strains and resulted in an almost twofold increase
in the production of isopentenol, with an absolute titer
of 920 mg/L. [18] (Figure 1c).

Improving model prediction accuracy

Once the metabolic model is established, improving its
accuracy becomes a major challenge (‘Table 1). To this
end, an automatic metabolic model integration drive
(AMMEDEUS) was developed, which provides the ca-
pacity to minimize the errors between model predictions
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Representative applications of machine learning-based metabolic mode. (a) Model-driven production promotion. In E.coli K-12 MG1655, a new
method consisting of Deep Neural Network (DNN) and Differential Search Algorithm (DSA) is used to predict the best gene knockout pathway for the
model to increase xylitol production. (b) Improving model prediction accuracy. Among the 29 bacterial species, using the method of automated
metabolic model ensemble-driven elimination of uncertainty with statistical learning (AMMEDEUS) to improve gene importance prediction. (c)
Exploring the potential metabolic route. In S. cerevisiae, machine learning methods are used to coordinate empirical interaction data and model

predictions.
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and experimental data within different bacteria [19]
(Figure 1b). Machine learning algorithms, such as reg-
ularized multinomial logistic regression (RMLR) [20],
principal elementary mode analysis (PEMA) [21], and
genetic algorithms (GA) [22], can be used to compre-
hensively explore pathways that affect cell metabolism,
therefore with potential to be used to improve strain
performance. Importantly, machine learning has actively
been deployed to integrate metabolic models with omics
data such as genomics, transcriptome, and proteomics,
which can be useful for characterizing cell growth and
metabolism [23]. In Escherichia coli K-12 MG1665, a flux-
coupled metabolic subnetwork feature was introduced to
improve the prediction of essential genes using a vector
machines-based learning strategy. Following this ap-
proach, the prediction accuracy of essential response-
gene pairs was increased up to 94.28% [24]. In addition,
a multiview neural network combining fluxomics and
transcriptomics data has been developed, whose pre-
diction accuracy was validated by the use of 27 models
together with machine learning methods. In the end,
this neural network improved the prediction accuracy of
the model while simultaneously analyzing the relation-
ship between gene regulation and metabolic flux [25¢].

Exploring potential metabolic biosynthesis pathways

Oftentimes, the metabolic pathway that synthetizes a
target product is unknown. The exploration of potential
metabolic pathways requires massive omics data and
well-established platform analysis. In those cases, me-
tabolic models have proven useful to predict feasible
synthesis routes. The MFlux platform was constructed
by non-steady-state flux distribution analysis, which can
reasonably predict flux groups based on bacterial species,
substrate types, growth rates, oxygen conditions, and
culture methods, to precisely reveal unknown inter-re-
lationships in metabolic networks [27,28]. Furthermore,
principal metabolic flux pattern analysis (PMFA) can
resolve differences in gene expression or flux data in
undefined metabolic networks by coupling stoichio-
metric flux analysis and principal component analysis.
The experimental results show that PMFA can accu-
rately identify six mitochondrial pathways in response to
changes in oxygen by analyzing the culture data of the
metabolic network in  Saccharomyces cerevisiae [26]
(Table 1). In order to explore the unknown information
between gene expression data and metabolic pheno-
types, gene expression latEnt space encoder (GEESE),
which is a framework based on deep learning, trains f-
Variational Autoencoder (B-VAE) by using deep gen-
erative models in order to recognize metabolic data in
unknown environments [18]. In order to explore the
interaction between genes, machine learning methods
(random forest and logistic regression, hierarchical clus-
tering (HC)) have been used to analyze the gene epis-
tasis interaction spectrum. As a result of fusing genetic
interaction data with the model, an incorrect annotation

in the NAD biosynthesis pathway in Saccharomyces cere-
visiae was discovered [27] (Figure 1c).

CRISPR derived synthetic biology tools to
control metabolism

The applications of CRISPR in the metabolic en-
gineering are vast for both prokaryotes and eukaryotes,
including bacteria, yeast, and filamentous fungus
[28-30]. Additionally, CRISPR can also help to control
the behavior of mammal cell cultures [31] or to improve
performance of crops by engineering plant cells [32].

Beyond its utility for creating deletions, substitutions or
point mutations, CRISPR technologies have been ex-
tended for further applications. For example, due to its
ability to introduce DSB in a targeted place in the
genome, CRISPR-Cas9 has been used for counter-
selection in low-efficiency editing processes. This effi-
ciency could be increased by combining CRISPR with
previous protocols for deletion or substitution [33] or
with ssDNA recombineering tools such as MAGE [34].

In addition, CRISPR can be multiplexed, enabling the
simultaneous manipulation of multiple genes. This is of
special interest when more than one gene needs to be
edited or regulated at a given time to allow complex
rewiring of pathways. Multiplexing has been carried out
by controlling the expression of several gRNAs, pro-
cessing the gRNA arrays using different techniques such
as an RNase III, ribozymes or endonucleases like Cys4.
These strategies have also been adapted to a wide range
of microorganisms [11,29,30].

CRISPRi and CRISPRa

Additional modifications of Cas proteins have expanded
the possibilities of CRISPR as a transcription inhibition
tool CRISPRI or activation mechanism CRISPRa [11].
Both CRISPRi and CRISPRa are based on the use of
deactivated forms of the Cas proteins, achieved by point
mutations that remove the nuclease activity.

CRISPRa allows the activation of genes when an acti-
vator domain is bound to the Cas protein. For example,
in prokaryotes, it can be accomplished when Cas9 is
fused to the RNAP omega subunit [35] or AsiA, a
phague activator protein [36]. Other possibility to
achieve CRISPRa consists of binding an RNA recruiting
scaffold to the gRNA to induce the activation of sigma54
and sigma70 promoters. For eukaryotes, there are similar
strategies for CRISPRa by adding fusion proteins to
Cas9, other proteins joined to the gRNA or using both
approaches in parallel [37].

CRISPRI allows the repression of gene expression by
targeting deactivated Cas proteins to either the promoter
region of the gene or its coding sequence, effect that can
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be enhanced by the fusion of repression domains. Their
action consists in blocking the RNA polymerase, thus
reducing gene expression [38,39]. CRISPRIi have offered
the possibility to regulate the expression of selected
genes, but also have helped in genome imaging, DNA
looping or epigenetic modifications [11].

The conditional silencing of genes using CRISPRi has
permitted the study of the function of certain metabolic
genes that become deleterious when fully deleted.
Hence, it is being used as an important tool for meta-
bolic rewiring [33,40]. Furthermore, inducible CRISPRi
mechanisms can be used to achieve a dynamic regulation
of fluxes. T'o improve lactate production in Synechocystis
sp. PCC 6803, the g/fA gene was targeted with CRISPRi
to decouple growth from production, as CO, uptake
during growth phase was impairing the production [41].
Using this strategy, both stages could be alternated, in-
creasing the lactate accumulation up to 1 g/L.. This de-
coupling strategy using CRISPRi can benefit the
scalability of a bioprocess. Dynamic control of the genes
gltA, zwf and fabl in Escherichia coli, especially during
stationary phase, improved the robustness for scalability
and allowed the increase of xylitol and citramalate up to
200 g/L. and 125 g/L. respectively [42]. Another possibi-
lity is to convert this conditional induction of CRISPRi
in an autonomous switch, letting the microorganism to
self-regulate its activity for an optimal performance. For
example, using a stationary phase promoter, a protein
degradation tag and CRISPRi technology, genes in-
volved in the shikimic acid and glutamic acid production
could be repressed depending on the growth phase of E.
coli, increasing its production titer to 21 and 26 g/L., re-
spectively [43].

Machine learning, OMICS data and models to
complement CRISPRi application

The specificity of the gRNA determines how successful
a targeting is. This specificity influences its efficiency to
recognize the complementary sequence and its ability to
produce undesired off-target effects. For balancing both
parameters, data analysis and machine learning have
helped the design gRNAs, focusing on the energy level
(Nmin) that produces the R loop, a structure formed by
the gRNA and its target that is necessary for the re-
cognition of the Cas protein. Therefore, the probability
of on-target and off-target bindings of the gRNA can be
predicted and improved (Figure 2) [44].

The combination of OMICS data together with
CRISPRi has enabled the transitional regulation of
pathways in order to increase the production of a certain
compound or to investigate fluxes [45]. For example,
combining a proteomic analysis with a selective silencing
of certain genes, antibiotic production by Amycolatopsis
balhimycina has been studied. A proteomic assay com-
paring protein profile during and before antibiotic

New synthetic biology tools Lv etal. 5

production shed light on the genes that could be sup-
pressed in order to redirect the metabolism of sugars to
the production of balhimycin [46]. In addition to its use
for bioproduction optimization, multi-OMICS data in
combination with CRISPRi was utilized for the condi-
tional silencing of genes to study the general metabolic
landscape of E. co/i [40]. The study of 30 strains where
CRISPRi was induced allowed the characterization of
robustness and fitness buffering in the metabolic
network.

Furthermore, the use of models can help us select better
target genes for the increase of production yields. Using
a core kinetic model, certain genes were predicted to
influence acetyl-CoA production in P. putida. After tar-
geting accA, accC and gltA for conditional silencing using
CRISPRI, acetyl-CoA content was increased up to
eightfold compared to the wild type. The engineered
strains were later used for the synthesis of poly(3-hy-
droxybutyrate) in bioreactors, increasing by fivefold the
production over the wild type [47].

Programmable metabolic control enabled by
synthetic genetic circuits

Synthetic genetic circuits, based on concepts taken from
the electrical engineering field (like boolean logic gates),
can achieve a programable, meticulous, and sophisti-
cated control of cell metabolism [1].

Composition and working principles of synthetic genetic
circuits

In synthetic genetic circuits, input signals can be firstly
detected by a biosensor, which is followed by informa-
tion computing and processing. After that, output signals
are generated by an actuator to perform desired biolo-
gical functions (Figure 3a). On the one hand, open-loop
circuits, which are induced by environmental factors
either manually controlled such as light [48] and tem-
perature [49], or spontancously controlled such as
changes in cell density [50] oxygen [2] and pH [51,52],
can be used to control cell metabolism and morphology
(Figure 3b). On the other hand, closed-loop circuits
equipped with biosensors that respond to intermediate
metabolite [53,54] or end-product [55-57] can perform
autonomous and continuous feedback control on cell
metabolism and growth (Figure 3b).

Before executing desired biological functions, the ac-
quired signals need to be processed and computed by
the layered logical operation circuits, which are com-
posed of regulators that act at DNA, transcription, post-
transcriptional, or protein level. For example, genetic
circuit design automation has been implemented with
the help of characterized repressor-based NOT gates
[58,59e¢], thus allowing the construction of sophisticated
circuits performed as a digital display by a compiled
software [4]. In another example, a set of orthogonal
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AND gates have been generated from engineered acti-
vator—chaperone pairs [60]. Using these transcriptional
logic gates, multiple inputs including feedstock, dis-
solved oxygen, and byproduct accumulation can be
wired together [2] (Figure 3c).

Figure 3

In addition to transcriptional factors, other regulatory
mechanisms including trans-encoded small RNAs [56],
antisense transcription [61], and CRISPRi/a [53] have
also been wired into logic transduction. CRISPRi offers
a simple and elegant way to make genetic devices such

(@)

luput Biosensor Processing circuits
pH  Light
Temperature # )
Cell density
Metabolite

Ouput
Metabolic dynamic control

Actuator

Growth regulation

Morphology modification

Biocontainment system
eee

(b)

Input 1
luput mep » Ouput (&
Open-loop genetic circuits
Input 2
e (low [O2])
| I
luput * % »Ouput Input 3
([Ace])

Close-loop genetic circuits

[Oz]—iE:_@:é:\\CC)
Piurs
s e
(Acel»p> D
ginAP2s

Current Opinion in Biotechnology

Synthetic genetic circuit enabled programmable metabolic control. (a) Typical structure of synthetic genetic circuits used for metabolic regulation. (b)
Comparison between open-loop genetic circuits and close-loop genetic circuits. (c) Design and construction of transcription factor-based synthetic

genetic circuits.
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as toggle switches, oscillators, and incoherent feed-for-
ward loops, which demonstrates its potential to achieve
complex applications [62¢]. In addition, protein-level
regulation such as protease-based controllable protein
degradation allows quicker kinetics and ensures a timely
response of circuits [63].

Application of synthetic genetic circuits in microbial cell
factories

Synthetic genetic circuits can be used to control genes
that alter and optimize metabolic fluxes. Improved mi-
crobial cell factories can be achieved by using metabolic
dynamic pathway regulation, growth and morphology
control or population control.

A key challenge in microbial factory design is to balance
the distribution of metabolic fluxes to avoid the accu-
mulation of undesired metabolites and growth depletion.
To achieve this goal, dynamic pathway regulation stra-
tegies have been employed [64]. For instance, bifunc-
tional closed-loop feedback circuits composed of
metabolic responsive biosensor and CRISPRi-based
NOT gate have been constructed with the purpose of
upregulating desired synthetic pathways and down-reg-
ulating competitive reactions. Additionally, those cir-
cuits were successfully used to achieve the autonomous
regulation and dynamic control of intracellular metabolic
fluxes, and the N-acetylglucosamine titer increased from
81.7 g/l to 131.6 g/LL in a 15-L fed-batch bioreactor [61].

The lifespan of a cell can be also reprogrammed by
synthetic genetic circuits designed to regulate para-
meters like cell size, generation time, and stress toler-
ance. As an example, in order to enlarge the cell size of
E. coli for increasing the accumulation capacity of poly
lactate-co-3-hydroxybutyrate, the replicative lifespan of
E. coli was engincered with an open-loop two-output
recombinase-based state machine (a system that exists in
any of a number of states, in which transitions between
states are controlled by inputs) [65]. Furthermore, they
have also built an open-loop multioutput recombinase-
based state machine to change the chronological lifespan
of E. coli, leading to the highest titer of butyrate (29.8 g/
L) [65].

Stress resistance circuits can also be introduced to im-
prove the stability of engineered strain during the pro-
duction process. As an example, self-responsive pH
adaptable circuits were constructed using base-re-
sponsive and acid-responsive promoters [51]. Further-
more, closed-loop addiction circuits able to couple
growth and production by linking growth-associated
genes and end-product biosensors have also been pro-
posed to avoid population phenotypic heterogeneity and
negative mutation accumulation [57,66]. For example, a
mevalonic acid biosensor was used to control the ex-
pression of two nonconditionally essential genes, and

New synthetic biology tools Lv etal. 7

high-yield mevalonic acid production was retained
through 95 generations of cultivation, which is equiva-
lent to a 200 m® industrial-scale production [67].

Moreover, to prevent the leakage of engineered micro-
organisms into the environment, biocontainment sys-
tems have been designed and introduced with the aid of
circuits that could prevent cell growth [52]. In conclu-
sion, reprogrammed metabolism by these genetic cir-
cuits not only gives the microbial cell factories efficient
production capacity but also ensures their robustness,
stability, and safety.

Conclusions and future perspectives

Advances in synthetic biology have contributed to me-
tabolic control strategies and accelerated the develop-
ment of efficient microbial cell factories. In this review,
recent findings for the metabolic regulation of en-
gineered cell are reviewed, focusing on three aspects:
metabolic model, CRISPR technology, and genetic cir-
cuits. While the methods described above have been
used to improve production, additional efforts are
needed to widen their applications. We still need to
deepen our understanding of biological systems and
enhance our capacity to regulate metabolism at will. We
expect that the development of whole-cell models of
industrial microorganisms will enable the optimization of
intracellular resources allocation in microbial cell fac-
tories, ultimately improving bioproduction [68]. In ad-
dition, it is easy to overlook that the commonly used
CRISPR-based metabolic control processes require ela-
borate debugging due to their complexity. For example,
negative feedback on dCas9-based circuits may be im-
plemented to avoid the overload of CRISPRi circuits
resulted from the competition between multiple
sgRNAs [69¢]. Moreover, the burden generated by in-
troducing heterologous synthetic genetic circuits into
the cell chassis is not negligible [70], and needs to be
studied and overcome.
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