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Abstract

In the past decade, developments of computational technology around Density Functional Theory (DFT) calcula-

tions have considerably increased the system sizes which can be practically simulated. The advent of robust high

performance computing algorithms which scale linearly with system size has unlocked numerous opportunities

for researchers. This fact enables computational physicists and chemists to investigate systems of sizes which

are comparable to systems routinely considered by experimentalists, leading to collaborations with a wide range

of techniques and communities. This has important consequences for the investigation paradigms which should

be applied to reduce the intrinsic complexity of quantum mechanical calculations of many thousand atoms. It

becomes important to consider portions of the full system in the analysis, which have to be identified, analyzed,

and employed as building-blocks from which decomposed physico-chemical observables can be derived. After

introducing the state-of-the-art in the large scale DFT community, we will illustrate the emerging research prac-

tices in this rapidly expanding field, and the knowledge gaps which need to be bridged to face the stimulating

challenge of the simulation of increasingly realistic systems.

1 Introduction
Kohn-Sham Density Functional Theory (DFT) [1, 2] is a popular quantum mechanical (QM)
framework for the modelling of molecules and materials. As the computing power available
from high performance computing (HPC) technology continues to grow and novel algorithms
are developed [3], the prospect of research paradigms based on the application of DFT to large
systems (10,000 atoms or more) is becoming closer and closer to realization. Nonetheless,
despite many articles demonstrating benchmark calculations on large systems [4], applications
which go beyond prototypes or demonstrators remain relatively uncommon.

With this in mind, in this review we will deviate from the many previously existing works which
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cover the algorithmic aspects of large DFT calculations, in order to focus on the practical work
of applying such methods. We will consider what new paradigms must be employed, such as
how to analyze calculated properties of large systems, the interplay between calculations and
experimental knowledge, and the potential for large-scale DFT calculations being employed in
other communities. We will show how the QM level of description which is available nowadays for
researchers interested in large systems is largely sufficient for providing numerous insights that
can complement characterization methods employed in other disciplines. There are therefore
numerous opportunities for novel research at the intersection of different communities. The
price to pay is to conceive the simulations differently than the common practice for “small
scale” systems.

We will begin by briefly describing the computational techniques used for large systems. We
will show how locality not only improves computational efficiency, but also leads to the concept
of a “quasi-observable”, which is a key tool for productive large scale calculations. We will
then present recent applications of QM methods to materials, where the research paradigms for
small systems can be readily deployed to larger length scales. Then we will turn to the study of
biological systems, first looking at calculations based on the Fragment Molecular Orbital method
(FMO) and then with DFT. We will find that many of the lessons learned from FMO calculations
will provide inspiration for the new research paradigms required to apply DFT to biological
systems. We will also review large scale excited states calculations, and the opportunities such
calculations present. Finally, we will discuss major differences in how large systems are prepared
for DFT analysis, and describe types of “know how” and tools that must be developed for the
DFT community in order to collaborate with other disciplines.

2 DFT at Large Scale: The Impact of Locality
In a previous advanced review article [4] we gave an overview of several mature, and in many
cases open-source, programs which implement state-of-the-art theories for performing atomistic
simulations and exploiting the power of supercomputers to speed up challenging calculations of
large systems. The techniques employed in each code to accomplish this differ in the choice
of basis set for the discretization of the Kohn-Sham (KS) orbitals, as well as the algorithms
employed to search for the ground state solution. However, all such computational approaches
deeply rely on Walter Kohn’s nearsightedness principle [5], which, in a nutshell, states that in
a “well-behaved” system, the information about the electrons of a system’s subregions can be
completely described by considering a finite domain, localized around such a region, regardless
of the actual size of the entire system. The rigorous formulation of this principle can be stated
from the exponentially localized behaviour of the single particle density matrix in systems which
have a finite electronic gap (or metals at high temperature).

This nearsightedness can be seen both in a density matrix and localized orbital picture. In Kohn-
Sham Density Functional Theory, the KS orbitals |ψ〉 are discretized in terms of some set of M
basis functions |φ〉:

|ψi〉 =

M∑
α

cαi |φα〉 . (1)

Such functions can have a localized support, for this reason they are also known as “support
functions”. This leads to the generalized eigenvalue problem:∑

β

Hαβc
β
i = Ei

∑
β

Sαβc
β
i , (2)
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where Hαβ are the matrix elements of the KS Hamiltonian in the basis set described by the

support functions, Hαβ ≡ 〈φα| Ĥ |φβ〉, Ei the orbital energies, and Sαβ ≡ 〈φα|φβ〉 is the

overlap matrix of the support functions. The single particle density operator F̂ may then be
defined from the density kernel matrix, K, constructed from the KS coefficients:

Kαβ =

N∑
i

fic
α
i c
β
i ⇒ F̂ =

∑
αβ

|φα〉Kαβ 〈φβ | , (3)

where fi is the occupation number of the i-th KS orbital. The KS orbitals themselves may be
distributed across the entire domain. The nearsightedness principle may then be realized in the
sparsity of the matrices S, H, and K. We note that nearsightedness is a property of the system,
not of the basis set.

The representation of the electronic structure in terms of such matrices is a less common picture
for basis sets like plane-waves, real space, or wavelets, where the overall number of degrees
of freedom is such that those matrices become unmanageably large. In this case, usually, one
directly manipulates the expression of the KS orbitals in the basis set, and may potentially lose
track of the locality of the F̂ operator. However, even in this case, it is possible to benefit from
the nearsightedness principle by extracting a posteriori information about the system’s localized
quantities. The simplest approach involves selecting k well chosen columns of the density matrix
to produce a set of non-orthogonal, localized orbitals, where k is the number of occupied orbitals.
The choice of those columns can be guided by the pivot vector of the QR decomposition [6].
A pivoted Cholesky decomposition can also be employed to produce a set of local, orthogonal
orbitals [7]. Localized basis sets may also be produced by performing various unitary transfor-
mations of the KS orbitals. For example, in the construction of Maximally Localized Wannier
Functions [8] (or Boys orbitals [9]), a transformation is constructed to minimize the spread of the
resulting orbitals. In the Recursive Subspace Bisection method [10], a transformation is created
using the CS decomposition [11] which localizes the orbitals on a hierarchical set of sub-domains.
An orbital is considered localized on a subset of those sub-domains if the norm of the orbital
outside those domains is below some threshold. For example, if 95% of an orbital is contained
in only a single subdomain at the lowest level after recursively bisecting each direction (x, y, z)
4 times, it would have a domain size of ( 1

24 )3 ∗ 100% = 0.024% with a threshold of 0.05 or
greater. In Fig. 1 we plot some localization measures of the previously mentioned methods, by
calculating the electronic structure with both a localized basis set description and a plane-wave
based approach.

Such considerations have two fundamental consequences. On the one hand, it states that it
should be possible to design an algorithm for QM of large systems whose computational workload
is linearly proportional to the number of the atoms of the system. Secondly, once the size of
a given system becomes large enough, the nearsightedness principle is intrinsically suggesting
that, from a QM perspective, the system can be considered as a juxtaposition of smaller QM
units, which of course are mutually entangled. This is a picture substantially different from the
usual representation of a QM calculation for a traditional DFT use-case: a small system should
always be considered as a unique QM region, whereas for a large system it should be possible
to produce a “divide-and-conquer” strategy, not just for computational efficiency, but also to
interpret the QM observables.

We know that the main physical content of a QM simulation is expressed in terms of the system’s
observables. For large systems it may become useful (under some suitable conditions) to interpret
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Figure 1: Measures of locality of a system composed of a peptide (the N3 inhibitor molecule
in a X-ray crystal structure with SARS-CoV-2 Mpro from Protein Data Bank(PDB): 6LU7) in
salt water (2536 total atoms) computed with the PBE functional [12]. The density matrix and
Cholesky orbitals (Lowdin orthogonalized) were computed with the support functions of the
BigDFT code [13] (a program based on in-situ optimized support functions) and the Recursive
Subspace Bisection (RSB) orbitals with the Qbox code [14] (a plane-wave program). Both
codes employ a frozen-core approximation based on pseudopotentials [15, 16, 17]. Left: The
percentage of matrix elements with an absolute value below a given threshold for the density
matrix, KS orbitals, and Cholesky localized orbitals. When a suitable transformation is applied to
the KS degrees of freedom, the matrices increase their level of sparsity. Right: The percentage of
the domain on which the RSB orbitals are localized at different cutoff values. The RSB orbitals
were localized by recursively subdividing the real space domain four times in each direction
(4 4 4) and using various cutoffs (0.05, 0.02, 0.01). This figure illustrates that the system’s
degree of locality is a basis-independent quantity, and can be inspected even when non-localized
computational degrees of freedom are employed.
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Figure 2: The density matrix (Lowdin orthogonalized) of a protein (1UAO [18]) computed with
the BigDFT code using the PBE functional and HGH pseudopotentials [15, 16]. Left: The
decay of the density as measured by the (absolute) value of each matrix element. Right: The
decay as measured by the norm of matrix blocks associated with each residue of the protein.
“Quasi-observables“ are expectation values taken over matrix blocks (both on and off diagonal).

the observables of the system as a whole in terms of a sum of “quasi-observables”, which are
in turn associated to localized regions. Stated otherwise, in a large system, a QM observable
can be decomposed into contributions which are associated with the system’s fragments, and
the concept of a fragment quasi-observable emerges, as illustrated by Fig. 2. These quasi-
observables, and applications that have exploited them, will be the main focus of this review.

3 Standard Paradigms: Materials Science Applications
The aim of this review is to explore the use of large scale DFT in the context of systems which
require a non-traditional approach, beyond the view of treating a system and its observables as
a single QM identity. Nonetheless, while many (potential or existing) applications of large scale
DFT require this new way of thinking, there are also a range of cases where DFT may be applied
as-is. That is, given an approach which is able to treat a sufficient number of atoms, there are
many new applications which open up without the need to substantially modify the workflows
which are typically used to treat smaller systems. Many of these applications may be loosely
described as falling into the area of materials science. Before moving on to the main topic of this
review, here we therefore briefly highlight some recent examples of large scale DFT applications
within this context.

The treatment of solid state systems based on the traditional approach of simulating a small unit
cell using plane-wave DFT has been extremely successful. Nonetheless, there are many examples
where it becomes necessary to treat a large number of atoms, either in order to generate a more
realistic model for the material itself, or to include important environmental effects which may
be highly relevant for use in a particular context. This includes the treatment of defects, disorder
or domains, which prevent the system from being mapped onto a small unit cell [19, 20, 21,
22, 23, 24, 25]. Similarly, amorphous materials intrinsically require the treatment of many
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atoms in order to effectively capture their structure [26, 27]. Another application area which
has seen a number of examples of large scale simulations is in the treatment of 2D materials.
Examples include finite nanoflakes [28, 29], defect or adsorbate calculations [30, 31, 32], and
the investigation of heterostructures, where different twist angles between layers result in large
unit cells [33, 34, 35, 36].

Large scale DFT is also particularly applicable for simulating nanomaterials. This includes
nanoparticles (NPs) and quantum dots (QDs) [37, 38, 39, 40, 41], which often require the
treatment of many atoms in order to approach realistic particle sizes. Furthermore, in other
cases it is important to model interactions between NPs and adsorbed molecules or sur-
faces [42, 43, 44, 45, 46, 47], or for QDs embedded in other systems [48, 49], further increasing
the system size. Other examples of large scale nanomaterial simulations include one-dimensional
materials such as nanotubes [50, 51, 52, 53, 54, 55], nanowires [56, 57], and nanorods [58, 59, 60].

Finally, there are various examples of applications to supramolecular systems, including donor-
acceptor complexes and molecular crystals where the size and number of molecules involved
leads to a large system size [61, 62, 63, 64, 65]. However, while such supramolecular systems do
not require any special treatment beyond the ability to simulate at least several hundred atoms,
they nonetheless may benefit from non-standard applications of DFT, including fragment-based
analysis, as we will describe in the forthcoming sections.

A number of common themes occur among the above applications concerning the types of
properties which are calculated. This includes properties which are also common for small scale
DFT calculations, such as geometry optimizations and structural comparisons, energetics such
as adsorption and defect energies, and electronic properties such as band gaps, band structures,
and densities of states. Spectral and excited state properties also arise, as is discussed further
in Section 6. Finally, there are a number of examples where DFT is used to validate or compare
with parameterized models [31, 32, 41, 29]. While the use of DFT for small systems is already
well established for parameterizing or validating a range of approaches, from force fields to
model Hamiltonians, an important advantage of large scale DFT is that such approaches can be
assessed at a representative length scale of the actual system of interest.

In summary, there already exist a number of applications of large systems which are, somehow,
conceived with an investigation paradigm that is very close to traditional studies employing
DFT for relatively few atoms. Thanks to recent advances in both computer codes and HPC
technology, this sector of applications is rich in new opportunities. However, the considerations
which are detailed in the forthcoming sections also offer the potential for conducting research
with an increasingly interdisciplinary character, thanks to the increased realism in terms of atomic
structure provided by large scale DFT.

4 Fragmentation of Large Systems
Moving beyond applications based on a more traditional view of DFT, in this section we provide
a first collection of examples in which the scientific investigation paradigm substantially differs
from the established protocols for DFT at a small scale. Before examining DFT calculations, we
first look at recent applications of the Fragment Molecular Orbital (FMO) method [66]. FMO is
a well established method, which has enabled the application of QM methods to large systems
for many years. FMO is just one method in a whole family of fragment approaches which have
been surveyed elsewhere [67, 68], however in this review we will limit our focus to FMO. By
examining recent FMO applications, we will find hints about the types of workflows which are
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needed to apply DFT to large systems.

4.1 FMO Methodology
The first consideration which drives the FMO approach is the interpretation of the most relevant
QM observable: the system’s energy. In the FMO method, a system is partitioned a priori into
a set of N non-overlapping fragments. Then, the energy of the system, E, is written as a many
body expansion:

E =

N∑
i

Ei +

N∑
i

N∑
j

(Eij − Ei − Ej) . . . .

The most commonly employed FMO2 method truncates this expansion at the two body term.
The three-body FMO3 [69, 70] and even four-body FMO4 methods [71] can also be employed
for improved accuracy. To efficiently employ the above ansatz, the FMO procedure first self-
consistently computes the energy of each lone fragment in the Coulomb bath of the other frag-
ments. The dimer energies are then computed in the frozen environment of the other monomers.
The electrostatic embedding employed by FMO plays a key role in the rapid convergence of the
many-body expansions (see the early work of Stoll and Preuss [72]). By exploiting this frag-
ment ansatz, FMO reduces the computational scaling of the employed QM method, and can be
efficiently parallelized. The FMO method can be used to compute gradients [73, 74] and full
system molecular orbitals can be recovered [75, 76].

One benefit of the FMO method is that it generates as a byproduct a matrix of quasi-observables,
∆Eij = Eij − Ei − Ej , which are called the pair interaction energies. These quasi-observables
are a measure of the interaction strength between the different fragments of a system. When
combined with the Kitaura-Morokuma energy decomposition analysis [77], we arrive at the Pair
Interaction Energy Decomposition Analysis (PIEDA) [78]. This analysis allows for a detailed
decomposition of the interactions between the system’s fragments:

∆Eij = ∆EESij + EEXij + EDIij + ECT+MIX
ij .

The terms in order are: electrostatic (ES), exchange-repulsion (EX), dispersion (DI), charge-
transfer (CT), and mixed (MIX) terms which are the remainder. The decomposition may also be
extended to include solvation effects and basis set superposition error. Recently, this analysis has
been expanded to groups of fragments through a subsystem analysis framework [79]. Remarkably,
PIEDA is able to take a fundamental weakness of the FMO method (writing the energy in terms
of monomers and dimers) and transforms it into a strength. Now when an FMO calculation is
performed on a system, detailed insight into the interactions between fragments can be obtained.

We note that FMO is not the only fragment method for which this type of interaction analysis can
be performed. Recently, a fragment interaction analysis for large systems has also been presented
as part of the Molecules-in-Molecules framework [80]. X-Pol [81] is another fragment based
method which was developed in parallel to FMO (and indeed offers many improvements). The
X-Pol method has been combined with Symmetry Adapted Perturbation Theory (SAPT) [82] to
create the XSAPT [83] method. This combination can potentially improve on an FMO+PIEDA
approach as SAPT offers an improved description of intermolecular interactions over the standard
MP2 level of theory employed in FMO calculations.

4.2 FMO Applications
As a demonstration of the utility of this type of analysis, we can look at a recent paper which
utilizes the FMO + PIEDA method to study G-Protein Coupled Receptors (GPCRs) [84]. GPCRs
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are a group of signaling proteins which are the target of about 40% of all drugs on the market.
In this study, the authors performed FMO calculations on a database of 18 GPCR-ligand crystal
structures, confirming that the total pair interaction energies between ligands correlated well
with experimental affinity. Beyond this, they were able to identify which amino acids played an
important role in binding, including some interactions that were previously unknown. For each
interaction, they were able to measure the contributions of electrostatics, dispersion, and charge
transfer to the protein-ligand interactions, resulting in detailed interaction maps.

Remarkably, in this study the FMO calculation was performed on only a cluster system defined
by the amino acids within a 4.5 Å distance from the target ligand. Similar protocols have been
recently used by other groups to develop antibiotics [85], design antidiabetic drugs [86], and
to study proteins used in clinical diagonistics [87]. We will highlight another study which used
this protocol to study Interleukin-2 inducible T-Cell kinase inhibitors (ITK) [88]. Inhibition of
ITK activity is an important target for the control of allergic asthma. This paper describes the
discovery of novel inhibitors of ITK using FMO as a guide. Starting with a known inhibitor,
FMO was used to reveal the key interactions. During the refinement process, FMO revealed
unexpected new interactions, and thereby design rules. Thus while FMO began as a method
to decrease the computational costs of computing large systems, it has shown its value through
its ability to take complex systems and extract detailed descriptions of their interactions, as
illustrated in Fig. 3. Systems are no longer seen as merely a collection of atoms, but instead can
be described at the biologically relevant level of detail (amino acids).

This is not to say that FMO has been limited in application only to small systems. In a more
recent study of GPCRs [89], full protein systems were computed so that interaction strengths
between different transmembranes could be quantified. By applying FMO to a set of 35 structures
representing different branches of the evolutionary tree, the authors were able to construct a
consensus network of interactions that are preserved across the dataset. Such a network can
shed insight into how mutations far from the active site can have an effect on ligand binding.
Many of the interactions identified are those which cannot be described well by classical force
fields. In a similar spirit, Sladek et al. [90] used the PIEDA interaction energies to define protein
residue networks. Protein residue networks (see Estrada [91] for a review) are a commonly
used technique to analyze interactions in proteins. However, standard practice relies on distance
criteria or force field energies. Using the FMO method, a more accurate description of protein
interactions can be obtained. FMO can thus provide improved descriptions of system interactions
that match the research paradigms of computational biology.

4.3 The Maturity of the FMO Method
From the examples presented above, we can see that FMO is a mature computational method
for studying large biological systems. A recent textbook [92] highlights a number of applications
of FMO to the problem of drug design. As evidence of the maturity of the FMO method, we also
highlight a recent study by Hatada et al. [93]. In this study, the FMO+PIEDA approach was
applied to study the main protease of the SARS-CoV-2 virus. This study was completed within
only a few months of the release of crystal structures of SARS-CoV-2 proteins, demonstrating
the readiness of the FMO method for practical application.

As we will discuss later in this review, the application of QM methods to biological systems
requires new workflows for pre/post-processing. These kinds of new workflows have already been
a subject of study for the FMO community. For the FMO method, it is particularly important
to have tools which can sensibly partition a system into fragments. The FU program [94] is
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Figure 3: The FMO method transforms a complex collection of atoms into the language of
biology by quantifying the interactions between protein residues. The heat map shows the
fragment interaction energies (kcal/mol) of the pictured protein (1UAO) computed with the
GAMESS program at the HF//6-31G* FMO2 level of theory.
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one such tool, providing a GUI application that can be used to prepare crystal structure files,
fix structure errors, create input files for FMO calculations, and visualize the results. FU is a
python program with the ability to run arbitrary, user-defined python scripts, which anticipates
the complex workflows that may be required.

However, manual preparation requirements would limit the size of dataset to which FMO might
be applied. To address this issue, an automatic protocol for performing FMO calculations (called
Auto-FMO) has been developed [95]. Recently a new FMO database has been created [96] which
contains over 13,000 entries. Many of these entries were prepared using the Auto-FMO program.
The availability of automatic protocols and databases of the quasi-observables generated by FMO
may be a promising source of interaction descriptors for future studies.

In this section, we have reviewed a number of applications of the Fragment Molecular Orbital
method. We have seen the advantages of FMO as a tool for studying large systems, bringing
with it new paradigms which differ from typical DFT calculations at a small scale. The division
of systems into fragments, and detailed analysis of those interactions, is the basis for FMO’s
application to drug design. Yet, there are also drawbacks to this approach, as an a priori
partitioning of the system must be employed. This type of approach relies heavily on chemical
intuition, and doesn’t provide opportunities for discovering new building blocks of the system.
In the next section, we will turn to applications of DFT to large biological systems, where we
will see how these previous FMO studies can provide guidance for new DFT-based paradigms.

5 New Paradigms for DFT
In this section, we explore applications of linear scaling DFT to large molecular systems. We
begin by discussing “traditional” applications which, like the application to materials presented
earlier, focus on simply the energy and forces of a system. We will then continue to the use of
DFT to derive novel system descriptors. Much like in the FMO section, we find that these novel
applications provide an exciting blueprint for future QM paradigms.

5.1 Energy and Forces
The improved description of molecular systems offered by DFT over classical approaches make
it an appealing method for computing the energies and forces of challenging systems. DFT in
these cases acts as a type of improved force field which can handle a diverse array of systems. In
an early application of large scale DFT, Otsuka et al. [97] performed geometry optimizations of
the FK506 binding protein and three different ligands. It is promising to apply such an approach
to the abundance of protein-ligand X-ray structures to overcome limitations in experimental
resolution. They found that the geometries of the flexible protein side chains are significantly
modified by the optimization procedure, with a correspondingly significant impact on binding
energy estimates.

However, proteins in the body have a very different structure than those measured by crystallog-
raphy due the effects of both the solute environment and finite temperature. When attempting
to predict the affinity of proteins and ligands, it has become established scientific practice to
include finite temperature sampling. One popular approach is the Molecular Mechanics Poisson-
Boltzmann Surface Area (MM-PBSA) method [98], which involves post-processing molecular
dynamics (MD) trajectories in order to compute a free energy of binding. While DFT is certainly
too computationally expensive to perform such extensive sampling, using DFT to post-process
trajectories generated by classical force fields is one possible mixed workflow.
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The MM-PBSA approach was modified by Fox et al. [99] to include enthalpic terms computed
using linear scaling DFT. In that study, MD trajectories of T4 lysozyme in complex with various
ligands were run using a classical force field, with DFT calculations then applied to snapshots
(1000 snapshots taken over 19 ns of simulation time). They found that using DFT energies
significantly improved the binding estimate over MM energies when compared to experiment.
They noted that the energy values of the force field and DFT agreed well in vacuum, and that
it was the more accurate QM solvation energy that contributed most to that improvement. Of
course, such post-processing might be possible using QM/MM with a well chosen QM region.
However, such a region can grow quickly when we are considering protein-protein binding, as
was demonstrated by Cole et al. [100], who used such an approach to study the RAD51-BRC4
protein complex. In this case, modelling of the interaction region required a cluster system of
around 2800 atoms to converge the quantum mechanical correction to the free energy of binding
to less than 1 kcal/mol.

Geometry optimization is perhaps most useful when combined with transition state searches.
While commonly employed classical force fields are well parameterized for ground state geome-
tries, transition states are more challenging. Recently, Svensson et al. [101] performed transition
state searches of inhibitors of insulin-regulated aminopeptidase (IRAP). Targeting the IRAP
enzyme is a promising approach for treating cognitive disorders or dementia. Studying the tran-
sition state of a ligand bound to an enzyme can lead to design rules for drug discovery, as novel
inhibitors can be designed to resemble the interactions of the transition state. Using the opti-
mized DFT geometries they searched for similar structures to the transition state. Importantly,
they could score candidate structures by docking them with the enzyme’s transition geometry,
allowing them to take into account conformation changes of the enzyme when influenced by
ligands similar to the known transition state.

A significant limitation of the previous study was its use of small cluster systems. With recent
developments in linear scaling DFT, however, modelling of the entire protein is now tractable,
as demonstrated by Lever et al. [102]. In this study, they computed the activation energy barrier
and transition states of the classic Claisen rearrangement with Chorismate as the catalyst. They
found that good agreement with experiment could be obtained, but only after including a QM
region of just under 1000 atoms. Large scale DFT may therefore prove to be a crucial tool for
future studies of enzymes.

Frequently, proteins contain metal atoms, which play an important role in the protein’s function.
Such systems are particularly difficult to model for classical force fields. In some cases, even
DFT can fail to accurately model these multireference effects. In a study of myoglobin, Weber
et al. [103] used a combination of linear scaling DFT and Dynamic Mean Field Theory to
understand in detail the nature of myoglobin’s binding to O2 and CO. This example suggests
that one important role which linear scaling DFT might play in the future is as an embedding
environment for higher level QM methods.

5.2 Quantum Observables
DFT includes the explicit modelling of electronic degrees of freedom, which can lead to novel
applications beyond its use as a more accurate and flexible force field for computing energy and
forces. The KS orbitals can be used to shed insight into electronic interactions in a system. For
example, Feliciano et al. [104] used orbitals around the HOMO-LUMO (highest occupied molec-
ular orbital-lowest unoccupied molecular orbital) gap to understand electron transfer between
Geobacter sulfurreducens (GS) and Fe(III) oxides. In this work, MD snapshots of the GS pilin
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(approximately 1000 atoms) were post-processed by DFT calculations in order to understand
the long range electron transfer in this system. Visualization of the frontier orbitals revealed
important amino acids for facilitating charge transfer, results which correlated well with amino
acids which are evolutionarily unique to GS.

Transformations of the KS orbitals such as through the construction of Natural Bond Orbitals
(NBOs) [105] are another way the electronic degrees of freedom can be used to analyze the results
of large scale calculations. In the previously discussed study of Claisen rearrangement [102],
NBOs were constructed [106] in order to understand the contribution of individual residues to
the stabilization of the transition state. The computed NBOs can be combined with second
order perturbation theory to estimate a stabilization energy coming from hydrogen bonding.
This allowed the authors to identify important amino acids in the active site.

In a similar spirit to the PIEDA analysis mentioned in the previous section, Energy Decomposition
Analysis techniques [107] have been integrated into large scale DFT calculations [108, 109]. In
the ONETEP code, a hybrid scheme based on the ALMO EDA [110] and a frozen density analysis
based on the LMO EDA method [111] has been implemented, decomposing the energy into:
electrostatic, exchange, Pauli repulsion, correlation, polarization, and charge transfer. Solvation
effects may be calculated and visualization of density differences is also available. This approach
was applied to the analysis of inhibitors of Thrombrin proteins, which is a target for the treatment
of thrombosis. By studying truncated systems of increasing size, it was found that exchange,
Pauli repulsion, and correlation converged at 9 Å, while electrostatics did not converge until 15 Å,
which shows the importance of large scale calculations for performing reliable analysis of protein-
ligand interactions. By analyzing the different components of the EDA, similar ligands could
be compared, and differences in the bonding nature could be understood even when overall
interaction energies are similar. Analysis can also be performed on ligand functional groups,
though care must be taken to understand the errors introduced by such a bond partitioning
process.

The most fundamental observable of DFT calculations that might be used to analyze systems
is the electron density itself. The electron density serves as the basis for topological based
analysis such as the quantum theory of atoms in molecules [112]. Recently, the Noncovalent
Interaction Technique presented by Johnson et al. [113] has become a popular way to analyze
interactions in large protein systems. The popularity of this method is in part because the
density can be efficiently estimated using a super position of atomic densities. However, recently
this approximation has been improved using a fragment based technique to construct the total
density [114]. To the best of our knowledge, this analysis has not yet been paired with large
scale DFT calculations. However, this kind of pairing represents a promising future development
for large scale DFT.

5.3 QM-based Indicators
So far in this section we have provided some examples of how ideas which can be mutated from
energy partitioning, pioneered by techniques like FMO, can be applied to DFT calculations of
large systems. By now, it should be clear to the reader that this operation is by no means easy
to handle. When a system becomes large, one cannot anymore rely on visual inspection of the
entire critical regions of the system. It is therefore important to have the possibility of instead
relying on indicators which would enable the user to understand if a particular region of the
system requires a specialized treatment.

Recently, we have been exploring the connection between density based analysis techniques and
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fragmentation. As we have seen, fragmentation provides a powerful framework for analyzing
interactions at a coarse grained level. However, the downside of fragment approaches is that
a system must be decomposed a priori. In the previously presented cases of DFT calculations,
the amino acids of proteins were chosen as the level of detail for analysis. However, it is not
clear that this is the ideal fragmentation, as the role an amino acid might play can be heavily
influenced by its environment. Furthermore, such an approach is not applicable to protein-ligand
binding (beyond treating a ligand as a single fragment), metalloproteins, solid state calculations,
etc.

When post-processing a DFT calculation, it is in theory possible to perform an analysis on an ar-
bitrarily defined set of fragments. The only challenge is to define those fragments in a chemically
meaningful way. To study the choice of fragmentation scheme, in a previous study we introduced
a measure of fragment quality called the purity indicator [115]. This measure is directly based
on the density, being computed as the deviation from idempotency of the density matrix block
associated with a given fragment, as illustrated in Fig. 4. By combining this approach with
optimization algorithms [116], it is possible to define a chemically meaningful set of de novo
fragments. Similar to the subsystem analysis derived for FMO calculations [79], fragments may
be combined in order to understand interactions in a system at different length scales. The in-
teractions of a system may be described in the same framework by computing a quasi-observable
called the “Fragment Bond Order” as a measure of the off-diagonal contributions of the density
matrix.

As seen in Fig. 4, the Purity Indicator and Fragment Bond Order are computed directly from the
density matrix. We also plot the purity indicator values of a small protein (1UAO). In this case we
see one amino acid residue (non-terminal glycine) is evaluated to be a much poorer fragment than
the others, which matches the know-how of the FMO community [117]. The Purity Indicator
and Fragment Bond Order together measure the competition between a fragment’s internal and
external interactions. This approach has recently been applied to generating graph views of
proteins as well as to understand the interaction between proteins and solvent molecules [13].

Returning now to the topic of extended systems, we find that the locality of a system can be
used to gain insight for these kinds of systems as well. For example, in a large scale study
of vacancies in bulk Silicon [19], Maximally Localized Wannier Functions [8] were constructed
and visualized to gain a chemically intuitive understanding of the vacancy site. The Recursive
Subspace Bisection method [10] is another method which is able to localize orbitals into arbitrary
subregions. While this approach was originally suggested for speeding up the computation of
Hartree-Fock exchange [118, 119], it has also been suggested as a standalone analysis tool, able
to reveal how surface effects can modify locality, or the locality that can exist even in metallic
systems [120]. The challenge for constructing locality based, quasi-observables of extended
systems is in defining a set of chemically meaningful fragments. In particular it is desirable to
have sets of fragments which are transferable both between systems and even within a system. In
the context of further accelerating linear scaling calculations and constrained DFT calculations,
a (pseudo-)fragment approach has been introduced [121, 122, 123], wherein the transferability
of a fragment can be assessed through rigid-body transformations.

In this section, we have seen ways in which DFT can be applied to gain insight into the prop-
erties of large systems. We have found that exploiting locality is a key ingredient in the new
workflows that are emerging. Locality is particularly powerful when quasi-observables of well
defined fragments can be obtained. Thus, much like in the case of the FMO method, features
of large systems that were originally of interest primarily for computational performance, can be
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Figure 4: Diagrammatic representation of the calculation of the fragment purity (π) and bond
order (B), where q is the number of electrons in a fragment. The overlap matrix can be
incorporated either through a Mulliken or Lowdin type projection. The density matrix of the
full system is idempotent, and thus has a π value of zero. Fragments have a negative, non-
zero purity indicator value, which comes from truncating the B terms in the full expansion.
Purity values of the 1UAO protein computed with BigDFT using the PBE functional are also
plotted. (Absolute) purity values below 0.05 (see previous work [115, 116] for a justification
of this threshold) indicate that the fragments are sufficiently pure and thus represent a good
decomposition of the system.
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exploited to gain intuitive understandings about system interactions.
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6 Beyond the Ground State
So far, we have discussed calculations associated with ground state quantities. While DFT
represents, in most cases, the best compromise between accuracy and computational complex-
ity for ground state calculations, the availability of new tools and approaches to study large
systems makes it also interesting for studying excited-state quantities. Excitations in molec-
ular systems as well as in materials find application in many areas within physics, chemistry,
biology and technology, such as in materials for energy conversion processes (e.g. organic solar
cells [124]), molecular rotors [125], and optical probes in biological systems (e.g. fluorophores in
proteins) [126]. In general, QM calculations of excited-state properties (including emission phe-
nomena), particularly those based on DFT, are still considered a challenge. As opposed to their
ground state counterparts, excited-states are short-lived and highly reactive making modelling
their electronic structures a crucial but extremely involved task [127]. Furthermore, their de-
scription requires an accurate method to properly include environment effects [128]. As a result,
the large-scale nature of molecular materials and biomolecular systems greatly challenges the
use of conventional quantum-chemical methods because of the steep scaling of computational
cost with system size.

Time-Dependent Density Functional Theory (TDDFT) [129] is the most widely used QM ap-
proach for computing transition energies and excited-state properties. While some recently
developed algorithms [130, 131] have made TDDFT, with its standard computational com-
plexity, applicable to medium-sized systems, the simulation of larger systems, e.g. biomolecules
and nanostructures, requires linear scaling (LS) implementations (LS-TDDFT). Linear scaling
TDDFT is implemented in various packages, e.g. in ONETEP, CONQUEST [132] and Siesta.
In the ONETEP code [133], linear-response TDDFT (both full and with the Tamm–Dancoff
approximation) can be used to compute low-lying excited states and predict optical properties
of large-scale systems (up to around 2000 atoms [134] with the PBE functional) ranging from
nanostructured materials [135] to protein complexes [136]. In recent ONETEP applications,
TDDFT has been used to study excitations of dyes in explicit solvent clusters [137, 138], the
computation of excitons in multi-chromophore pigment–protein complexes [139], and to model
implicit and explicit host effects on excitons in pentacene derivatives [140]. The Siesta package
has two main ways of obtaining the optical properties of finite systems: real-time TDDFT propa-
gation and by computing the non-interacting dielectric function. PySCF-NAO is an open-source
implementation of linear-response TDDFT which uses the KS orbitals from Siesta as a starting
point [141]. Siesta has been employed for the computation of optical properties of compact
metallic systems containing up to several hundreds of atoms [142, 143].

A widespread method for predicting electronic excitations is the GW approach, which is based
on many-body perturbation theory [144]. Thanks to its favourable scaling with respect to
system size compared to quantum chemistry methods, it has been historically applied to solids
(materials, semi-conductors, insulators) [145, 146]. However, the robustness of its performance
has motivated developments in the direction of large-scale GW simulations (where supercells
can contain up to hundreds of atoms) of surfaces, interfaces and 2D materials, as well as
molecular systems [146, 147]. For example, Govoni et al. [148] have proposed a formulation of
the GW method for large scale calculations which allows them to tackle systems of unprecedented
size, including water/semiconductor interfaces with thousands of electrons and nanoparticles up
to a diameter of 2.4 nm. As a future perspective, it is worth highlighting that the Bethe-
Salpeter equation (BSE) formalism is establishing itself as a new efficient tool in the ensemble
of computational methods available for the prediction of optical excitations. In particular, in
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combination with the GW approximation, it offers a similar computational cost to TDDFT
with hybrid functionals, while providing an accuracy comparable with range-separated hybrid
functionals. As discussed by Blase et al. [149, 150], the GW@BSE formalism has the potential
to be used for systems containing several hundred atoms.

As explored in previous sections, the decomposition of systems into sub-systems is a promising
approach for modelling the properties of large systems. This has led to the development of
multi-scale and embedding methods which are nowadays largely employed for modelling complex
systems, e.g. transition metal complexes and biological systems. Amongst these, the quantum
mechanics/molecular mechanics (QM/MM) formalism [151, 152] is certainly the most used; it
enables the description of a small part of the system, where reactions take place (active region)
using QM, while the majority of the thousands of atoms that comprise the system’s environment
are handled through MM. However, extending the QM/MM formalism to excited states is still
no trivial task as it requires high accuracy and therefore costly methods for the active region,
while accurate polarization effects need to be taken into account [153].

The FMO approach has been coupled to TDDFT within the GAMESS package to de-
scribe delocalized excitonic interactions in multichromophore systems such as pigment–protein
complexes. In one study [154], the approach was applied to a protein trimer (from the
Fenna–Matthews–Olson complex) of about 6000 atoms. In this study, the FMO1 protocol was
used, and significant analysis was required in order to construct large enough fragments to treat
the delocalized states. The newly developed model expands the FMO method’s capability to a
wider range of applications in molecular crystals and photosynthetic complexes. In addition, the
description accounts for self-consistent polarization of the environment that is overlooked with
the standard nonpolarizable QM/MM description. Fragmentation can, hence, become a very
powerful tool to improve and inform QM/MM setups for excited states, allowing for accurate
modelling of the QM region (where the excitation takes place) and inclusion of environment
effects. Furthermore, fragmentation approaches can be used to analyze in depth the excitations
computed with TDDFT. One example is the Theodore interface [155] which performs three
main functionalities: a fragment-based analysis for assigning state character, the computation
of exciton sizes for measuring charge transfer, and generation of the natural transition orbitals
used for visualization and quantification of multiconfigurational character.

In the direction of recent developments for the computation of spectroscopic properties of large
and complex molecular systems, it is worth mentioning the latest release of the Dalton Project
(DP). DP is a python-based platform for accessing the quantum chemistry codes Dalton and
LSDalton [156]. DP is capable of managing computer resources, handling user interactivity,
steering computation, and performing data processing of results (themes we will revisit in Sec. 8).
Recently, the capabilities of the package have been expanded for the modeling of spectroscopic
properties of large systems through fragment-based approaches; the developers introduced the
Polarizable Embedding (PE) [157] model which is a fragment-based scheme designed for the
inclusion of environment effects in calculations of spectroscopic properties of large molecular
systems and the PyFraME package which is used to automatize the generation of the embedding-
potential parameters. The combination of these two modules allows for setting up workflows for
the analysis of spectroscopic properties; an example of a possible workflow can be found in a
recent review of the package [156] in an application to the Nile red chromophore.

In the context of fragment approaches, a natural playground can be found in supramolecular
morphologies. For instance, in a recent paper [122], some of us have studied the impact of the
disorder imposed by realistic solid-state morphologies on the quantities which govern electron
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transfer in OLEDs. These calculations employed constrained DFT, which allows a charge to
be associated with a particular region of the material, for a system composed of a number of
fragments. Thanks to the simplicity of its framework and its ability to model charge transfer
mechanisms, constrained DFT has great potential for being employed within frameworks for
studying large systems. Variations of its implementation can, thus, be found in a number of
large scale DFT codes, e.g. ONETEP [62], Conquest [158], and BigDFT [121].

In this section we provided an overview of the variety of methodologies which are nowadays
available for the description of excited states in large systems. Such diversity highlights that a
meaningful modelling of excited states requires a certain minimal accuracy which poses a limit to
the size of the investigated systems; for this reason there is still no unique answer on how to best
model such large systems. However, thanks to advances in HPC capability, we have shown that
modelling larger systems beyond the ground state is becoming more and more feasible, while
remaining one of the most continuously evolving fields of computational physical chemistry.

7 Interplay Between Experimental and Simulated Data
In the previous sections, we have seen examples of calculations of systems of sizes compatible with
many experimental apparatuses. Contrary to more traditional applications with conventional,
small-scale DFT investigations, we are not referring here to model systems made of a few atoms,
which require particular (sometimes peculiar) experimental setups to be realized, or that are
associated with theoretical simplifications of the realistic experiment. Rather, we are referring
to realistic structures which can directly come from experimental data. This fact has a number
of implications for people working on atomistic models, since all the above-mentioned studies
have as a fundamental input the structural representation of the system.

To construct a “computational sample”, and in particular to relate such a system to a realistic
model of a particular experimental condition, there are numerous questions which have to be
answered. We employ here the term “sample” because the typical length scales, of the order of
' 10 nanometers, are identical to those accessible by a large range of experimental techniques.
The first question to answer is whether a full QM treatment can be used alone, or should be
employed in conjunction with other methods. In a previous review article [4], we have already
provided some criteria which can help in answering points such as this one. However, even for
situations where full QM approaches may help, other important questions arise. For instance, how
many conformations of the sample have to be considered? Would a traditional MD equilibration
performed in a small region of the configuration space be enough to inspect in a satisfactory
manner the variation of the quantities which are under investigation? Or, on the contrary,
are we in a situation where large conformational samplings have to be inspected to study the
system? Questions like these do not have a clear answer, nonetheless sometimes even a partial
investigation of the problem may inform experimentalists working on the system. For these
reasons, we believe it is important for computational physicists and chemists to work in close
contact with other communities, in order to understand the complexities which are related to
the retrieval of information which may appear simple from the atomistic simulation’s viewpoint.

In the context of structural studies of macro-molecular systems, X-ray and neutron protein
crystallography are important, complementary techniques. X-ray crystallography represents one
of the main techniques of structural biology, and can benefit from recent technological advances
as well the availability of numerous instruments worldwide [159]. A large number of PDB
files from X-ray experiments are available in the RCSB Protein Databank [160]. However, the
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scattering cross section of X-rays is proportional to the electron density, therefore light atoms
like hydrogens are poorly resolved by these techniques. In a biological system like DNA or a
protein, this fact implies that some 25% of the atomic positions are not easily identified by X-ray
crystallography. This is an important limitation, especially for cases where the positions of the
hydrogens are important to determine biologically relevant information. For instance, knowledge
about the protonation state of relevant residues of a protein is potentially of great importance
in understanding the mechanisms which govern enzymatic reactions.

On the other hand, neutron-based crystallography is less frequently performed. The requirements
for sample preparation (crystal size, sample deuteration) and conditioning make this technique
more delicate, therefore only a small percentage of the PDB database has been resolved by neu-
trons. Yet, with this technique it is possible to visualize the positions of hydrogen atoms (mostly
substituted by deuterium), which gives information about the network of hydrogen-related bond-
ing in such H-rich systems [161]. Furthermore, neutron protein crystallography can be performed
at ambient temperatures, avoiding any artifacts that can emerge when cooling for X-ray analysis.
When it comes to the study of such systems in solution, there are numerous techniques, like for
instance Small Angle Scattering, which can used to probe atomic structure [162], however their
overview is beyond the scope of this paper. Rather, the main message we want to highlight is
that comparison with experimental data brings an additional set of “knowledge gaps” which need
to be bridged in order to make different communities work together. Much of this knowledge
is well known in other communities or among experts of large scale DFT simulations in biology,
and we hope that highlighting it here will be helpful to DFT practitioners looking to scale up
their simulations.

7.1 DFT Modelling of a Crystallographic Structure
To illustrate the challenges that exist for modelling large systems, we will consider example cases,
extracted from the topic of drug design of potential molecules which target SARS-CoV-2. At
the time of writing this review article, the Covid-19 pandemic represents a major issue that the
world is facing. A number of crystallographic structures have been produced worldwide to offer
to scientists of different communities information which may become useful to help mitigate the
pandemic. In what follows, we will briefly discuss how such structures should be manipulated
and examined in view of a DFT treatment. The rationale is not identical, depending on whether
the structure comes from X-rays or from neutrons crystallography.

Identifying the Input Structure from X-ray Crystallography Recently, Hoffman et al. [163]
proposed a new ketone-based inhibitor of the SARS-CoV-2 main protease (MPro), which is one
of the main targets for the design of drugs to treat the Covid-19 disease. Experimental crystal
structures of this inhibitor in complex with this enzyme, as well as with the original SARS-
CoV-1 main protease (which only differs by less than 4% in its aminoacidic sequence from is
CoV-2 counterpart) are available (PDB code: 6XHM and 6XHN, respectively). However, even
in our case where we have an experimental structure, performing a DFT calculation is not
straightforward.

The PDB file contains multiple structures that must be separated out. In this case, the structure
is a dimer containing two proteases which can either be separated out or computed together.
Within a single strand of a dimer, certain atoms can crystallize in different conformations (de-
noted by the occupancy) and one should understand whether this is a consequence of the exper-
imental resolution of a single average crystal position, or if this is a signal of the coexistence of
multiple strands in crystalline form. Beyond this extraction step, many PDB files contain missing
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Figure 5: Proteins are challenging to model with DFT, as significant uncertainty exists about
their structures. In data coming from X-rays, hydrogen atoms (and some heavy elements) are
not present, whole residues might be missing (black lines), and the ensemble of conformations
the target system might take in a realistic environment is unknown (black dots).

residues and atoms. This is related to experimental resolution, and also to the fact that atoms
which have high mobility are more difficult to identify. Clearly, a DFT calculation would become
unreliable if those atoms were missing. There exist a number of software programs which can
handle the task of filling in the missing atoms of the system (for example, CHARMM-GUI [164],
PDBFixer [165], or Ambertools [166]). This step is usually followed by an equilibration process,
where atomic force fields are employed to produce a more physically accurate set of atomic
positions. Another important point is related to the total charge of the system. The protein’s
amino acids exchange protons with the environment, given a particular value of the pH of the
solvent. This fact influences the total number of protons present in the structure as well as
the total charge of the system, which of course must be explicitly set when performing DFT
calculations. All of these considerations of course assume that the structure has been reliably
prepared, however mistakes can be present, as shown by the recent work of the Coronavirus
Structural Task Force [167]. In Fig. 5 we provide a cartoon which illustrates the problem.

We see how points like these make the preparation of the structure completely different from the
equivalent procedure which has to be performed in the case of smaller systems, for which global
optimization can be readily performed, and equilibration done in a few tens of picoseconds. In
this case, even after extracting a starting structure, it is appealing to relax or even equilibrate the
structure of our protein using classical force fields. However, the presence of a covalently bonded
ligand means that standard force fields cannot be applied without parameterization. This is a
problem that, on one hand, adds further complexity to the preparation of the computational
sample, and on the other hand represents another added value associated with the availability
of QM methods for such systems, as the outcome of the DFT calculation may inform force field
energy panoramas.
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A treatment which follows the above-described guidelines has been also performed for systems
like the X-ray crystal structure with PDB code 6LU7, which has been already mentioned in the
context of the FMO+PIEDA approach [93] in Sec. 4.3, where the MPro protein is in complex
with the N3 inhibitor (which in turn has been considered for the test of Fig. 1). The 6LU7 system
has also been employed in one of our recent papers [13] as an example for the fragmentation
procedure described in Sec. 5.3. In that example, fragment charges as well as interaction graphs
of the N3 inhibitor with the enzyme amino acids have been presented.

Neutron Crystallography and the Position of Light Atoms Here we will consider, in the
same scientific topic, the possibility of generating a computational sample from a structure
which comes from neutron crystallography. In a recent paper [168], the neutron crystallographic
structure of the SARS-CoV-2 main protease has been analyzed in conjunction with another
alpha-ketoamide inhibitor, the Hepatitis C anti-retroviral drug Telaprevir (PDB code: 7LB7).
The aim of this study was to identify the relationship between the inhibitor binding network
with the protonation state of some key histidines of the active site. An investigation of the
protonation state of histidines, especially the ones which are close to the enzyme’s active sites,
may help in clarifying catalytic mechanisms which govern enzyme behaviour.

In this case as well, the positions need to be carefully analyzed before starting DFT calculations.
Neutron crystallography PDB files provide also the coordinates of deuterium atoms (exchanged
by hydrogen), and they appear in the PDB file with an occupancy factor which quantifies the
amount of D-H exchange during the experiment. Therefore, in view of a DFT calculation, all the
D atoms have to be removed in favor of their H counterpart. Since this structure was resolved at
room temperature (22 ◦C), analysis may be performed directly on this structure, and for some
studies a force field equilibration step can be avoided (it may still be desired, though, to increase
the number of configurations examined, like in the case of X-ray equilibrated structures).

A structure crystallized with the same technique has been also released by the same group [169]
for the MPro without inhibitor (PDB code: 7JUN). Here also, the procedure to create a structure
which is compatible for DFT calculations can be employed with the same guidelines as above.

DFT as a Post-Processing Tool for Interpreting Crystallographic Positions As an illus-
trative example, we performed DFT calculations using the BigDFT code and the PBE functional
on three sets of data: the neutron resolved structures (7LB7 and 7JUN) as well as the 6LU7
X-ray structure. For the X-ray structure, hydrogen atoms were added and the structure relaxed
using OpenMM [165] and the AMBER FF14SB force field [170] (as discussed earlier, a real study
would require an additional equilibration step). For the neutron structures, the actual crystal
position were employed, without external modification. We focus on two types of observables:
charges and forces. In Fig. 6, we plot those quantities for all three structures. We see for almost
all amino acids, the charges are in good agreement between these three data sources, with a dif-
ference existing for the 7LB7 structure in residue Glu288, which has a protonation state affected
by the binding with the ligand, as discussed in the associated paper [168].

In the same figure, atomic and amino acid net forces are represented. For the forces on the
amino acids, we see reasonable agreement here in terms of the range of force values, with
the benefit of the neutron structures being more representative of actual room temperature
conformations. However, if one focuses on the atomic forces, some hydrogen and sulfur atoms
present unusually large force values for the neutron-resolved structures. A closer inspection
reveals that the main deviation comes from the hydrogens bonded to sulfur in the cysteine
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Figure 6: Violin plots of the bond lengths, atomic and amino acid forces and charges computed
using the X-ray (6LU7) and Neutron structures (7LB7 and 7JUN) described in the text.

residues, which, for both the neutron structures, appear to have been placed with a bond length
that is unusually short. Refining of these issues is something that can be done by collaborations
between DFT practitioners and experimentalists. Nonetheless, it is interesting to notice that
despite these structure-model incompatibilities, the overall picture at the protein residues level
appears to have not been affected, for the observables considered here.

From the discussion and calculations presented above, we will summarize with the following three
points: i) applying DFT to large systems requires processing different kinds of input data than at
the small scale; ii) analysis of this data should be done with the goal of computing coarse grained
quantities that are evaluated in light of the many different conformations a system can take on;
and iii) electronic structure locality can ensure that modelling errors of one part of a system do
not have an overwhelming effect on the total system, which means that useful quasi-observables
may be extracted from target regions without the need for refining the model with a high level
of accuracy in the entire domain.

8 Bringing DFT to Other Communities
A general problem of atomistic simulations, and one particularly challenging aspect of large scale
DFT codes, is that they require expert knowledge (both scientific and technical) to be employed.
The codes have been developed by scientists and for scientists within the same community, and
aspects like user-friendliness, graphical interfaces, or collaborative tools have not always been
a priority. Such points are of paramount importance in order to enable collaborations between
different communities. Additionally, performing atomistic simulations requires the use of large
HPC resources. Whereas these prerequisites are ubiquitous in academia, they are not a given
in industry, and best practices can vary between academic communities. There exist already
commercial solutions on the market that target the industrial use of atomistic simulations. They
provide proprietary software packages that simplify the usage of DFT codes and make them
available for other communities. However, they follow a “traditional” on-premises strategy,
where the client has to buy the software and install it on their own computational resources,
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Figure 7: Depiction of a typical HPC workflow on the left, and how a workflow-management
engine helps on the right. Blue nodes are user tasks, maroon ones are setup tasks that can
be performed either by an administrator (code developers or cluster administrators, or the user
themselves if they have the knowledge), green ones are computationally intense kernels run on the
remote machine, and red ones are the tasks handled automatically by the workflow management
engine.
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requiring large investment in both software licenses and hardware.

By taking the most advanced codes for atomistic simulations and lowering their adoption barriers,
it will be possible to “democratize” atomistic simulations and to open them up to a much
broader community. To this end, solutions like Software-as-a-Service (SaaS) platforms represent
an interesting opportunity to accelerate research of systems at the nanoscale. SaaS combines the
most advanced simulation codes, predefined workflows, easy-to-use high-level tools, an intuitive
and collaborative user interface, and flexible computing resources in the cloud to simplify the
use of atomistic simulations.

Jupyter notebooks are one such tool which have been trending in recent years, as they allow
for the writing of reproducible scientific workflows and gather in the same place pre-processing,
running calculations, and post-processing/analysis of the results. Lots of codes from various
scientific communities provide tools to interact with such notebooks. For example, in a re-
cent summary of a special edition of the Journal of Chemical Physics on electronic structure
software, native python interfaces were found to be present in: ABINIT, BERTHA, BigDFT,
Dalton Project, Molpro, MPQC, NWChem, OpenMolcas, Psi4, PySCF, QMCPACK, Quantum
ESPRESSO, Siesta, TeraChem, TheoDORE, and TurboRVB [171]. Introspection capacities
make it also possible for notebooks to interact with specific subsets of the application, and cre-
ate advanced workflows in higher level languages, without the need to interact with the low level
code. Such a separation of concerns makes it possible to see the codes as a service, providing
a client part, python-based for example, and a server part, running said computations on local
or HPC resources. These kind of high level tools are increasingly a necessity as the scale of the
experiments goes up to help the end users keep track of everything needed to run, understand,
and reproduce experiments.

8.1 Managing Complicated Workflows
HPC workflows have specific needs that make them hard to use from a single notebook en-
gine. The experiments are not run locally but on distant supercomputers and generate large
amounts of data that sometimes can not be managed locally. In recent years, several tools have
been developed to help reduce the complexity of these workflows and handle interactions with
HPC resources in a code-agnostic manner, significantly reducing the amount of user tasks, as
shown in Fig. 7. Examples of such popular python-based tools are Parsl [172], Signac [173], or
GC3Pie [174]. In the domain of materials science, several more focused tools have also emerged
to provide common utilities to interact with the domain databases or file formats (ASE [175],
AiiDA [176], or AFLOW [177] for example).

To illustrate such capabilities, we will discuss the example of AiiDA (Automated Interactive
Infrastructure and Database for Computational Science), first developed by the Swiss Marvel
NCCR and also part of the MaX CoE. Its engine allows one to build and generate workflows
involving sometimes several codes and sub-workflows. Developers of these codes or AiiDA
developers provide and maintain plugins to interact with many materials science codes and
utilities, handle their inputs and outputs, and provide representative workflows for their usage.
The user can then decide to submit the computation blocks to local or remote HPC systems,
as the engine can interact with most existing schedulers, generate submission scripts, submit
them, monitor the execution, and retrieve the results the user wants to analyze. Everything
from the inputs to the results is stored in a database, allowing safekeeping and querying for later
use, as well as sharing the data with other users or caching to avoid running computations for
which results are already known. Managing and keeping the provenance of each input or output
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is one of the main focus points of this particular workflow management system, to ensure the
reproducibility of experiments.

Another effort from the AiiDA community is called AiiDAlab, which is a graphical user interface
for AiiDA applications, running on a Jupyter server. The goal of this interface is to provide
common graphical blocks for preparing and launching computations, for instance by getting
structures directly from several materials science online databases from a user friendly interface.
Most of the parameters for each code can then be selected from a dedicated graphical “app”,
installed through an application store, and then launched on a HPC platform through AiiDA.
This would make DFT available for users without even the need to learn a high level language
or write a notebook.

In this review, we have presented several ways in which calculations of large systems require
new research paradigms and workflows. Along with these changes come increasingly complex
pre-processing, large computational resource requirements, increases in the amount of data
generated, and more computationally demanding post-processing operations. Fortunately, there
exist a number of emerging tools, including SaaS, Jupyter notebooks, and workload managers like
AiiDA, which can cover these new requirements and will be sure to enable productive scientific
research using large scale DFT in the coming years.

9 Large Scale DFT Codes
Before concluding, we briefly outline some of the codes which were employed in the studies
presented in the review. The purpose is not to give a detailed comparison of performance or
capabilities, but to highlight their key selling-points and how they are differentiated.

CONQUEST CONQUEST [178], which is released under the MIT license, has been developed
since 2002. Its formalism enables the user to choose the level of flexibility of the degrees of
freedom employed, ranging from fixed localized degrees of freedom (blip functions or pseudo-
atomic orbitals) up to in-situ optimized basis functions. The code is capable of treating systems
of hundreds of thousands atoms as well as first-principles molecular dynamics simulations.

CP2K CP2K [179] is a GPL-licensed software package, which has been developed since 1999.
The computational implementation is based on Gaussian basis functions combined with plane-
waves. Code developments have been motivated by first-principles molecular dynamics simula-
tions within a massively parallel and linear scaling approach.

GAMESS GAMESS (US) [180] is a free, source-available quantum chemistry code developed
since 1977. It is based on Gaussian basis functions and implements a large variety of ab-initio
methods. For computing large systems, GAMESS includes implementations the Divide-and-
Conquer approach as well as a variety of fragment methods, including the Fragment Molecular
Orbital method.

ONETEP ONETEP [181] is released under various licenses, and has been developed since
2005. The approach is based on non-orthogonal generalized Wannier functions (NGWFs) ex-
pressed in terms of periodic cardinal sine functions, equivalent to a basis of plane-waves, with
the advantage of being localized and therefore prone to linear scaling calculations. In this re-
gard, ONETEP provides a link between the formalisms of the solid-state community, where
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plane-waves are the basis set of choice, and calculations typical of quantum chemistry, which
are based on localized atomic degrees of freedom.

SIESTA SIESTA [182] is a GPL code, developed since 2000. SIESTA’s efficiency stems from
the use of a basis set of strictly-localized atomic orbitals. An important feature of the code is
that its accuracy and cost can be tuned across a wide range, from quick exploratory calculations
to highly accurate simulations.

BigDFT BigDFT [13] is a GPL code, developed since 2008. The properties of BigDFT come
from its flexible, systematic, and precise basis set: Daubechies wavelets. The code provides both
cubic- and linear- scaling approaches, and very large systems containing thousands of atoms can
be simulated within a systematically improvable description. The authors of this review article
are active developers of this code.

Other codes which provide similar features are available in the community and can be employed
to perform studies which are similar to the ones presented here. This includes publicly available,
linear scaling KS DFT codes like: ErgoSCF [183], FHI-AIMS [184], HONPAS [185], LSDal-
ton [186, 156], OpenMX [187], SQDFT [188], and FMO codes such as: ABINIT-MP [189] and
PAICS [190].

Conclusion
When employing standard algorithms for performing DFT calculations, the computational cost
grows with the third power of the system size. Thus even a one thousand fold increase in
computational power would only enable the treatment of systems ten times larger. With this in
mind, it is easy to see that the typical sizes of systems treated by DFT might remain relatively
stable over the years, with research methodologies maturing around a common length scale.
However, as linear scaling methods for DFT become more and more widely used, we can expect
that the size of systems a DFT practitioner will be able to treat will change rapidly. This is both
a blessing and a curse: while new problems can be solved, DFT experts will have to adapt to
understand the unique challenges at each length scale. It is thus essential to establish research
practices that can be transferred to larger and larger systems, and can quickly incorporate
collaborations with new fields.

In this review, we have suggested a framework for thinking about large scale DFT, as illustrated in
Fig. 8. First, additional attention must be paid to the preparation of a “computational sample”,
which adequately handles the uncertainty about the configuration of a system in its natural
environment. This is particularly evident in biological applications, where structures obtained
from experiment cannot simply be used as-is. Second, DFT should be used as a guide for
creating localized descriptions of a system, for which “quasi-observables” that lead to intuitive
understanding can be derived. In this framework, there is a close interplay between: (a) locality
leading to more efficient algorithms and (b) locality leading to clear chemical insights about
increasingly complex systems. This kind of approach has been understood well by pioneers of
the fields of linear scaling DFT and the Fragment Molecular Orbital method, and can be seen
in practice by the articles we have described here.

We have seen that DFT can be used in many ways at large scale, which enables new opportunities
for researchers. One can use energy and forces of DFT to assess the quality of force fields in
unknown situations, or employ DFT description as embedding environments for higher QM level
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Figure 8: The challenge of applying DFT to large systems. The systems being studied are large
and complex, with significant uncertainty about their actual conformation. By using DFT, we
can create coarse grained descriptions that describe the interactions of large fragments in order
to gain insight.

of theories. Insights about interaction networks between systems’ fragments can be described
and inspected, and a system can be decomposed in to QM-consistent building blocks. A physico-
chemical observable can be reinterpreted in terms of fragment observables that acquire a coherent
meaning, especially when combined with consistency indicators. In addition to that, DFT can
be employed with a “historical” mindset in larger systems, both for ground-state quantities and
as a framework for electronic and optical excited states.

In the discussion presented here, we have largely ignored important questions about the choice
of density functional, basis sets, solvation models, etc. Clearly, these considerations should not
be neglected when treating systems at a large scale. However, what we have seen is that even
with traditional, well-established DFT functionals (for example, PBE + empirical dispersion),
results coming from linear scaling codes reveal useful information, especially for coarse grained
quantities and trends. Furthermore, we have seen that a true evaluation of these choices should
be done in the context of structural uncertainty and with the goal of reliable quasi-observables,
a validation framework that differs from DFT at the small scale. In the next few years, it will be
very interesting to compare results at various levels of theory to understand the impact of such
points on the overall outcome of the investigations.

In the coming decades, new computational techniques such as machine learning and the use of
quantum computers are likely to have a significant impact on the state of practice of the QM
modelling community. Joint workflows will be especially appealing for large systems. However,
if these workflows only improve energies and forces, it will be a missed opportunity. Much
like how DFT practitioners have struggled with the “inverse problem” for decades, machine
learning experts struggle with the “black box” of artificial intelligence. Even in that field,
though, considerations about computational performance can lead to new insights, such as a
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recent study using deep neural networks for which hyperparameter tuning revealed insight into
the intrinsic length scales of materials [191]. Thus even if the underlying modelling changes, we
expect that the issues discussed here about the interplay between fragments, observables, and
computational complexity will continue to play a role in the study of large systems.

Funding Information
LER and MS acknowledge support from an EPSRC Early Career Research Fellowship
(EP/P033253/1) and the Thomas Young Centre under grant number TYC-101. This work
was supported by the Next-Generation Supercomputer project (the K computer) and the FLAG-
SHIP2020 project (Supercomputer Fugaku) within the priority study5 (Development of new
fundamental technologies for high-efficiency energy creation, conversion/storage and use) from
the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Research Resources
This work used computational resources of the supercomputer Fugaku provided by RIKEN
through the HPCI System Research Project (Project ID: hp200179). Some calculations were
performed using the Hokusai supercomputer system at RIKEN.

Acknowledgments
We thank Viviana Cristiglio, Michel Masella, Bun Chan, Marco Zaccaria and Babak Momeni for
useful discussions and comments. L.G., T.N., and W.D. gratefully acknowledge the joint CEA-
RIKEN collaboration action. A.D. and L.G. also acknowledge support from the MaX Center of
Excellence.

Further Reading

References
[1] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871,

Nov 1964. doi: 10.1103/PhysRev.136.B864. URL http://link.aps.org/doi/10.

1103/PhysRev.136.B864.

[2] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation
effects. Phys. Rev., 140:A1133–A1138, Nov 1965. doi: 10.1103/PhysRev.140.A1133.
URL https://link.aps.org/doi/10.1103/PhysRev.140.A1133.

[3] D R Bowler and T Miyazaki. O(N) methods in electronic structure calculations. Rep. Prog.
Phys., 75(3):036503, mar 2012. ISSN 1361-6633. doi: 10.1088/0034-4885/75/3/036503.
URL http://www.ncbi.nlm.nih.gov/pubmed/22790422.

[4] Laura E. Ratcliff, Stephan Mohr, Georg Huhs, Thierry Deutsch, Michel Masella, and Luigi
Genovese. Challenges in large scale quantum mechanical calculations. Wiley Interdiscip.
Rev.: Comput. Mol. Sci., 7(1):e1290, 2017. ISSN 1759-0884. doi: 10.1002/wcms.1290.
URL http://dx.doi.org/10.1002/wcms.1290.

[5] W. Kohn. Density functional and density matrix method scaling linearly with the number

28

http://link.aps.org/doi/10.1103/PhysRev.136.B864
http://link.aps.org/doi/10.1103/PhysRev.136.B864
https://link.aps.org/doi/10.1103/PhysRev.140.A1133
http://www.ncbi.nlm.nih.gov/pubmed/22790422
http://dx.doi.org/10.1002/wcms.1290


of atoms. Phys. Rev. Lett., 76:3168–3171, Apr 1996. doi: 10.1103/PhysRevLett.76.3168.
URL https://link.aps.org/doi/10.1103/PhysRevLett.76.3168.

[6] Anil Damle, Lin Lin, and Lexing Ying. Compressed representation of kohn–sham orbitals
via selected columns of the density matrix. Journal of Chemical Theory and Computation,
11(4):1463–1469, Apr 2015. ISSN 1549-9618. doi: 10.1021/ct500985f. URL https:

//doi.org/10.1021/ct500985f.

[7] Francesco Aquilante, Thomas Bondo Pedersen, Alfredo Sánchez de Merás, and Henrik
Koch. Fast noniterative orbital localization for large molecules. The Journal of Chemical
Physics, 125(17):174101, 2006. doi: 10.1063/1.2360264. URL https://doi.org/10.

1063/1.2360264.

[8] Nicola Marzari and David Vanderbilt. Maximally localized generalized wannier func-
tions for composite energy bands. Phys. Rev. B, 56:12847–12865, Nov 1997. doi:
10.1103/PhysRevB.56.12847. URL https://link.aps.org/doi/10.1103/PhysRevB.

56.12847.

[9] S. F. Boys. Construction of some molecular orbitals to be approximately invariant for
changes from one molecule to another. Rev. Mod. Phys., 32:296–299, Apr 1960. doi: 10.
1103/RevModPhys.32.296. URL https://link.aps.org/doi/10.1103/RevModPhys.

32.296.
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[151] Rita P. Magalhães, Henriques S. Fernandes, and Sérgio F. Sousa. Modelling enzymatic
mechanisms with qm/mm approaches: Current status and future challenges. Israel Journal
of Chemistry, 60(7):655–666, 2020. doi: https://doi.org/10.1002/ijch.202000014. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/ijch.202000014.

[152] Qiming Sun and Garnet Kin-Lic Chan. Quantum embedding theories. Accounts of
Chemical Research, 49(12):2705–2712, 2016. doi: 10.1021/acs.accounts.6b00356. URL
https://doi.org/10.1021/acs.accounts.6b00356.

[153] Kristian Sneskov, Tobias Schwabe, Ove Christiansen, and Jacob Kongsted. Scrutinizing
the effects of polarization in qm/mm excited state calculations. Phys. Chem. Chem.
Phys., 13:18551–18560, 2011. doi: 10.1039/C1CP22067E. URL http://dx.doi.org/

10.1039/C1CP22067E.

[154] Danil S. Kaliakin, Hiroya Nakata, Yongbin Kim, Qifeng Chen, Dmitri G. Fedorov, and
Lyudmila V. Slipchenko. Fmoxfmo: Elucidating excitonic interactions in the fenna–
matthews–olson complex with the fragment molecular orbital method. Journal of Chem-
ical Theory and Computation, 16(2):1175–1187, Feb 2020. ISSN 1549-9618. doi:
10.1021/acs.jctc.9b00621. URL https://doi.org/10.1021/acs.jctc.9b00621.

[155] F. Plasser. Theodore: A toolbox for a detailed and automated analysis of electronic
excited state computations. The Journal of Chemical Physics, 152(8):084108, 2020. doi:
10.1063/1.5143076.

[156] Jógvan Magnus Haugaard Olsen, Simen Reine, Olav Vahtras, Erik Kjellgren, Peter Rein-
holdt, Karen Oda Hjorth Dundas, Xin Li, Janusz Cukras, Magnus Ringholm, Erik D.
Hedeg̊ard, Roberto Di Remigio, Nanna H. List, Rasmus Faber, Bruno Nunes Cabral Teno-
rio, Radovan Bast, Thomas Bondo Pedersen, Zilvinas Rinkevicius, Stephan P. A. Sauer,
Kurt V. Mikkelsen, Jacob Kongsted, Sonia Coriani, Kenneth Ruud, Trygve Helgaker,

43

https://www.frontiersin.org/article/10.3389/fchem.2019.00377
https://www.frontiersin.org/article/10.3389/fchem.2019.00377
https://doi.org/10.1021/acs.jctc.5b00453
https://doi.org/10.1021/acs.jctc.5b00453
https://doi.org/10.1021/ct500958p
https://doi.org/10.1021/ct500958p
https://doi.org/10.1021/acs.jpclett.0c01875
https://doi.org/10.1021/acs.jpclett.0c01875
https://doi.org/10.1021/acs.jctc.1c00101
https://onlinelibrary.wiley.com/doi/abs/10.1002/ijch.202000014
https://doi.org/10.1021/acs.accounts.6b00356
http://dx.doi.org/10.1039/C1CP22067E
http://dx.doi.org/10.1039/C1CP22067E
https://doi.org/10.1021/acs.jctc.9b00621


Hans Jørgen Aa. Jensen, and Patrick Norman. Dalton project: A python platform
for molecular- and electronic-structure simulations of complex systems. The Journal
of Chemical Physics, 152(21):214115, 2020. doi: 10.1063/1.5144298. URL https:

//doi.org/10.1063/1.5144298.

[157] Jógvan Magnus Olsen, Kestutis Aidas, and Jacob Kongsted. Excited states in solu-
tion through polarizable embedding. Journal of Chemical Theory and Computation, 6
(12):3721–3734, 2010. doi: 10.1021/ct1003803. URL https://doi.org/10.1021/

ct1003803.

[158] Alex M. P. Sena, Tsuyoshi Miyazaki, and David R. Bowler. Linear scaling constrained
density functional theory in conquest. Journal of Chemical Theory and Computation, 7(4):
884–889, 2011. doi: 10.1021/ct100601n. URL https://doi.org/10.1021/ct100601n.

[159] David P. Hoogerheide, V. Trevor Forsyth, and Katherine A. Brown. Neutron scattering
for structural biology. Physics Today, 73(6):36–42, 2020. doi: 10.1063/PT.3.4498. URL
https://doi.org/10.1063/PT.3.4498.

[160] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge
Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The Protein Data Bank. Nucleic Acids
Research, 28(1):235–242, 01 2000. ISSN 0305-1048. doi: 10.1093/nar/28.1.235. URL
https://doi.org/10.1093/nar/28.1.235.

[161] Zaccai, Nathan Richard and Coquelle, Nicolas. Opportunities and challenges in neutron
crystallography. EPJ Web Conf., 236:02001, 2020. doi: 10.1051/epjconf/202023602001.
URL https://doi.org/10.1051/epjconf/202023602001.

[162] Marco Zaccaria, William Dawson, Viviana Cristiglio, Massimo Reverberi, Laura E Rat-
cliff, Takahito Nakajima, Luigi Genovese, and Babak Momeni. Designing a bioremedi-
ator: mechanistic models guide cellular and molecular specialization. Current Opinion
in Biotechnology, 62:98–105, 2020. ISSN 0958-1669. doi: https://doi.org/10.1016/j.
copbio.2019.09.006. URL https://www.sciencedirect.com/science/article/pii/

S0958166919300758. Energy Biotechnologyy - Environmental Biotechnology.

[163] Robert L. Hoffman, Robert S. Kania, Mary A. Brothers, Jay F. Davies, Rose A. Ferre,
Ketan S. Gajiwala, Mingying He, Robert J. Hogan, Kirk Kozminski, Lilian Y. Li,
Jonathan W. Lockner, Jihong Lou, Michelle T. Marra, Lennert J. Mitchell, Brion W.
Murray, James A. Nieman, Stephen Noell, Simon P. Planken, Thomas Rowe, Kevin
Ryan, George J. Smith, James E. Solowiej, Claire M. Steppan, and Barbara Taggart.
Discovery of ketone-based covalent inhibitors of coronavirus 3cl proteases for the po-
tential therapeutic treatment of covid-19. Journal of Medicinal Chemistry, 63(21):
12725–12747, Nov 2020. ISSN 0022-2623. doi: 10.1021/acs.jmedchem.0c01063. URL
https://doi.org/10.1021/acs.jmedchem.0c01063.

[164] Sunhwan Jo, Taehoon Kim, Vidyashankara G. Iyer, and Wonpil Im. Charmm-gui:
A web-based graphical user interface for charmm. Journal of Computational Chem-
istry, 29(11):1859–1865, 2008. doi: https://doi.org/10.1002/jcc.20945. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20945.

[165] Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao,
Kyle A. Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan,
Chaya D. Stern, Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S. Pande. Openmm

44

https://doi.org/10.1063/1.5144298
https://doi.org/10.1063/1.5144298
https://doi.org/10.1021/ct1003803
https://doi.org/10.1021/ct1003803
https://doi.org/10.1021/ct100601n
https://doi.org/10.1063/PT.3.4498
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1051/epjconf/202023602001
https://www.sciencedirect.com/science/article/pii/S0958166919300758
https://www.sciencedirect.com/science/article/pii/S0958166919300758
https://doi.org/10.1021/acs.jmedchem.0c01063
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20945
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20945


7: Rapid development of high performance algorithms for molecular dynamics. PLOS
Computational Biology, 13(7):1–17, 07 2017. doi: 10.1371/journal.pcbi.1005659. URL
https://doi.org/10.1371/journal.pcbi.1005659.

[166] Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker. An overview of the amber
biomolecular simulation package. WIREs Computational Molecular Science, 3(2):198–
210, 2013. doi: https://doi.org/10.1002/wcms.1121. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/wcms.1121.

[167] Coronavirus structural task force. https://insidecorona.net/. Accessed: 2021-04-01.

[168] Daniel W. Kneller, Gwyndalyn Phillips, Kevin L. Weiss, Qiu Zhang, Leighton Coates,
and Andrey Kovalevsky. Direct observation of protonation state modulation in sars-cov-2
main protease upon inhibitor binding with neutron crystallography. Journal of Medicinal
Chemistry, Mar 2021. ISSN 0022-2623. doi: 10.1021/acs.jmedchem.1c00058. URL
https://doi.org/10.1021/acs.jmedchem.1c00058.

[169] Daniel W. Kneller, Gwyndalyn Phillips, Kevin L. Weiss, Swati Pant, Qiu Zhang, Hugh
M. O’Neill, Leighton Coates, and Andrey Kovalevsky. Unusual zwitterionic catalytic site
of sars-cov-2 main protease revealed by neutron crystallography. Journal of Biological
Chemistry, 295(50), December 2020. doi: 10.1074/jbc.AC120.016154.

[170] James A. Maier, Carmenza Martinez, Koushik Kasavajhala, Lauren Wickstrom, Kevin E.
Hauser, and Carlos Simmerling. ff14sb: Improving the accuracy of protein side chain
and backbone parameters from ff99sb. Journal of Chemical Theory and Computation,
11(8):3696–3713, Aug 2015. ISSN 1549-9618. doi: 10.1021/acs.jctc.5b00255. URL
https://doi.org/10.1021/acs.jctc.5b00255.

[171] C. David Sherrill, David E. Manolopoulos, Todd J. Mart́ınez, and Angelos Michaelides.
Electronic structure software. The Journal of Chemical Physics, 153(7):070401, 2020. doi:
10.1063/5.0023185. URL https://doi.org/10.1063/5.0023185.

[172] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan Kumar,
Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael Wilde, and Kyle
Chard. Parsl: Pervasive parallel programming in python. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed Computing, HPDC
’19, page 25–36, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450366700. doi: 10.1145/3307681.3325400. URL https://doi.org/10.1145/

3307681.3325400.

[173] Carl S. Adorf, Paul M. Dodd, Vyas Ramasubramani, and Sharon C. Glotzer. Sim-
ple data and workflow management with the signac framework. Computational Mate-
rials Science, 146:220–229, 2018. ISSN 0927-0256. doi: https://doi.org/10.1016/j.
commatsci.2018.01.035. URL https://www.sciencedirect.com/science/article/

pii/S0927025618300429.

[174] Sergio Maffioletti and Riccardo Murri. GC3Pie: A Python framework for high-throughput
computing. PoS, EGICF12-EMITC2:143, 2012. doi: 10.22323/1.1z62.0143.

[175] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune
Christensen, Marcin Du lak, Jesper Friis, Michael N Groves, Bjørk Hammer, Cory Hargus,
Eric D Hermes, Paul C Jennings, Peter Bjerre Jensen, James Kermode, John R Kitchin, Es-
ben Leonhard Kolsbjerg, Joseph Kubal, Kristen Kaasbjerg, Steen Lysgaard, Jón Bergmann

45

https://doi.org/10.1371/journal.pcbi.1005659
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121
https://insidecorona.net/
https://doi.org/10.1021/acs.jmedchem.1c00058
https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1063/5.0023185
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://www.sciencedirect.com/science/article/pii/S0927025618300429
https://www.sciencedirect.com/science/article/pii/S0927025618300429


Maronsson, Tristan Maxson, Thomas Olsen, Lars Pastewka, Andrew Peterson, Carsten
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Hans Ågren. The dalton quantum chemistry program system. WIREs Computational
Molecular Science, 4(3):269–284, 2014. doi: https://doi.org/10.1002/wcms.1172. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1172.

[187] Taisuke Ozaki. o(n) krylov-subspace method for large-scale ab initio electronic structure
calculations. Phys. Rev. B, 74:245101, Dec 2006. doi: 10.1103/PhysRevB.74.245101.
URL https://link.aps.org/doi/10.1103/PhysRevB.74.245101.

[188] Phanish Suryanarayana, Phanisri P. Pratapa, Abhiraj Sharma, and John E. Pask. Sqdft:
Spectral quadrature method for large-scale parallel o(n) kohn–sham calculations at high
temperature. Computer Physics Communications, 224:288–298, 2018. ISSN 0010-4655.
doi: https://doi.org/10.1016/j.cpc.2017.12.003. URL https://www.sciencedirect.

com/science/article/pii/S0010465517304022.

[189] Tatsuya Nakano, Yuji Mochizuki, Kaori Fukuzawa, Shinji Amari, and Shigenori Tanaka.
Chapter 2 - developments and applications of abinit-mp software based on the fragment
molecular orbital method. In Evgeni B. Starikov, James P. Lewis, and Shigenori Tanaka,
editors, Modern Methods for Theoretical Physical Chemistry of Biopolymers, pages 39–52.
Elsevier Science, Amsterdam, 2006. ISBN 978-0-444-52220-7. doi: https://doi.org/10.
1016/B978-044452220-7/50066-6. URL https://www.sciencedirect.com/science/

article/pii/B9780444522207500666.

[190] Takeshi Ishikawa. PAICS: Development of an Open-Source Software of Fragment Molecular
Orbital Method for Biomolecule, pages 69–76. Springer Singapore, Singapore, 2021. ISBN
978-981-15-9235-5. doi: 10.1007/978-981-15-9235-5 5. URL https://doi.org/10.

1007/978-981-15-9235-5_5.

[191] Kyle Mills, Kevin Ryczko, Iryna Luchak, Adam Domurad, Chris Beeler, and Isaac Tamblyn.
Extensive deep neural networks for transferring small scale learning to large scale systems.
Chem. Sci., 10:4129–4140, 2019. doi: 10.1039/C8SC04578J. URL http://dx.doi.

org/10.1039/C8SC04578J.

48

https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1172
https://link.aps.org/doi/10.1103/PhysRevB.74.245101
https://www.sciencedirect.com/science/article/pii/S0010465517304022
https://www.sciencedirect.com/science/article/pii/S0010465517304022
https://www.sciencedirect.com/science/article/pii/B9780444522207500666
https://www.sciencedirect.com/science/article/pii/B9780444522207500666
https://doi.org/10.1007/978-981-15-9235-5_5
https://doi.org/10.1007/978-981-15-9235-5_5
http://dx.doi.org/10.1039/C8SC04578J
http://dx.doi.org/10.1039/C8SC04578J

	Introduction
	DFT at Large Scale: The Impact of Locality
	Standard Paradigms: Materials Science Applications
	Fragmentation of Large Systems
	FMO Methodology
	FMO Applications
	The Maturity of the FMO Method

	New Paradigms for DFT
	Energy and Forces
	Quantum Observables
	QM-based Indicators

	Beyond the Ground State
	Interplay Between Experimental and Simulated Data
	DFT Modelling of a Crystallographic Structure

	Bringing DFT to Other Communities
	Managing Complicated Workflows

	Large Scale DFT Codes

