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Radiation-related genomic profile of papillary thyroid cancer after the Chernobyl accident   

 

One Sentence Summary (125 character maximum): Post-Chernobyl papillary thyroid cancers 

demonstrate radiation dose-dependent increases in clonal DNA double-strand breaks. 
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Abstract (125 word maximum):  

The 1986 Chernobyl nuclear power plant accident increased papillary thyroid cancer (PTC) 

incidence in surrounding regions, particularly for 131I-exposed children. We analyzed genomic, 

transcriptomic, and epigenomic characteristics of 440 PTCs from Ukraine (359 with estimated 

childhood 131I exposure and 81 unexposed children born after 1986). PTCs displayed radiation 5 

dose-dependent enrichment of fusion drivers, nearly all in the mitogen-activated protein kinase 

pathway, and increases in small deletions and simple/balanced structural variants that were 

clonal and bore hallmarks of non-homologous end-joining repair. Radiation-related genomic 

alterations were more pronounced for those younger at exposure. Transcriptomic and epigenomic 

features were strongly associated with driver events but not radiation dose. Our results point to 10 

DNA double-strand breaks as early carcinogenic events that subsequently enable PTC growth 

following environmental radiation exposure.  
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The accidental explosion in reactor 4 at the Chernobyl nuclear power plant in April 1986 

resulted in the exposure of millions of inhabitants of the surrounding areas of Ukraine, Belarus, 

and the Russian Federation to radioactive contaminants (1). Epidemiologic and clinical research 

in the ensuing decades has demonstrated increased risk of papillary thyroid carcinoma (PTC) 

with increasing thyroid gland exposure to radioactive iodine (131I) from fallout, which was 

deposited on pastures with grazing cows and ingested through milk, particularly during early 

childhood (2). Together with data from populations exposed to other types of radiation, 

compelling evidence indicates that PTC risk increases following childhood exposure to ionizing 

radiation, a recognized carcinogen (2-5).  

Currently, there are no established molecular biomarkers for cancers induced by 

radiation, nor have there been large-scale analyses of the genomic landscape of human cancers 

occurring after a well-quantified radiation exposure. Classical cytogenetic studies have 

demonstrated radiation dose-associated increases in large chromosomal aberrations (such as 

inversions and translocations) that reflect DNA double-strand breaks and are the current standard 

for biodosimetry; however, these assays are typically performed in peripheral blood lymphocytes 

from individuals exposed to whole body irradiation and have not been directly linked to tumor 

characteristics (6, 7). Next-generation sequencing of 12 second primary tumors of various types 

that occurred within the field of previous therapeutic ionizing radiation suggested an excess of 

small deletions and balanced inversions (8), but radiation dose estimates were not available. 

RNA sequencing (RNA-seq) analyses of 65 PTCs (mean age at diagnosis=24.7 years) occurring 

after the Chernobyl accident identified that higher doses were associated with an increased 

likelihood of gene fusion drivers (9). In a genomic landscape analysis of 496 primarily 

unexposed PTCs (mean age at diagnosis=46.8 years; 16 patients with known prior radiation 
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exposure), The Cancer Genome Atlas (TCGA) reported a low density of somatic point 

mutations, especially for PTCs in younger patients, and a high frequency of activating somatic 

alterations in the mitogen-activated protein kinase (MAPK) pathway, including point mutations 

in BRAF (61.7%) and NRAS/HRAS/KRAS (12.9%) as well as fusions with RET (6.8%), BRAF 

(2.7%) and other MAPK-related genes (5.0%) (10). 

Here, we report a comprehensive characterization of the genomic, transcriptomic, and 

epigenomic profile of PTC as well as non-tumor thyroid tissue and/or blood for 440 individuals 

from Ukraine who developed PTC after the Chernobyl accident (mean age at PTC=28.0 years), 

affording an opportunity to investigate the contribution of environmental radiation to PTC 

characteristics. The study analyzed a collection of pre-treatment fresh frozen tumor tissues with 

pathological confirmation of first primary PTC by an international panel of experts through the 

Chernobyl Tissue Bank (CTB) (11, 12). Our study included 359 individuals with PTC with well-

quantified 131I-exposure before adulthood (≤18 years of age; mean=7.3 years) and, as controls, 

81 131I-unexposed individuals with PTC born >9 months after the Chernobyl accident (all were 

born after March 1, 1987) (13).  

 

RESULTS 

Samples, Clinical Data, and Analytic Approach 

Based on the availability of sufficient DNA and RNA extracted from CTB samples, we 

analyzed up to 440 individuals with whole genome sequencing (WGS) and/or mRNA-seq of 

pathologically confirmed tumor (374 both, 57 mRNA-seq only, 9 WGS only) (Fig. S1-2) (13). 

Matched normal tissue with WGS and/or mRNA-seq included non-tumor thyroid tissue and/or 

blood (233 both, 182 non-tumor tissue only, 16 blood only, 9 normal tissue not available). The 
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genomic landscape characterization was augmented by single nucleotide polymorphism (SNP) 

microarray genotyping (Illumina Infinium HumanOmniExpress-24 array) and relative telomere 

length quantification on all samples, and DNA methylation profiling (Illumina Infinium 

MethylationEPIC array) and microRNA (miRNA)-seq for PTC and non-tumor thyroid tissue 

(Fig. S3). A total of 357 individuals had tumor sample data across all platforms. 

The majority of individuals with PTC were female (n=335, 76.1%), resided in the Kiev 

region at the time of the accident (n=286, 65.0%), and were diagnosed during young adulthood 

(mean=28.0 years, range: 10.0-45.6); 131I-unexposed individuals with PTC were born at least 9 

months after the accident and thus had a younger average age than the exposed individuals 

(mean: unexposed=20.7 years, exposed=29.7 years) (Table S1, Fig. S4). For 131I-exposed  

individuals, mean age at exposure was 7.3 years (range: in utero to 18.9 years) and mean time 

from the accident to PTC diagnosis was 22.4 years (range: 12.5-29.9). Radiation doses to the 

thyroid were reconstructed by an international team of dosimetry experts (14-16). For 53  

individuals, doses were estimated using detailed information derived from individual direct 

thyroid radioactivity measurements taken within 8 weeks of the accident, with (n=49) or without 

(n=4) personal interviews regarding residential history and dietary patterns. For the remaining 

individuals, dose estimates were derived from direct measurements taken for other individuals 

who lived in the same residential area (n=249), neighboring area (n=9), or other areas (n=39), or 

based on dose estimates to the mother for individuals who were in utero at the time of the 

accident (n=9). Mean estimated radiation dose was 250 mGy (range: 11-8,800) (Fig. S4-S5).  

Our primary analyses investigated the relationship between 131I dose and 68 PTC 

molecular characteristics derived from a comprehensive genomic landscape analysis (Fig. 1) 

using multivariable linear, proportional odds, or logistic regression models adjusted for sex and 
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age at PTC diagnosis (13). For associated variables (defined as P<7.4×10-4 based on a 

Bonferroni correction for 68 tests), further analyses were conducted by specific molecular 

characteristics, as well as by age at PTC, age at exposure, and time since exposure (latency) 

because these factors influence radiation-related thyroid cancer risk (17). In addition, we 

conducted sensitivity analyses to assess whether the results were consistent when we restricted 

the population to 131I-exposed individuals with lower radiation dose (<500 mGy, resulting in 

n=326 with mean dose=110 mGy) (18, 19).  

 

Simple somatic variants  

WGS analysis of tumor/normal pairs (n=383; mean sequencing depth, tumor=89X, non-

tumor thyroid tissue=33X, blood=33X; Table S2) revealed a low burden of simple somatic 

variants (SSV) (mean=0.27 nonsynonymous mutations per Mb) (Fig. 1, Fig. S6-S7), which was 

lower than in older TCGA PTC cases (0.41 nonsynonymous mutations per Mb) (10) and 

comparable to mutationally quiet tumors typically reported for pediatric cancers (20). A total of 

318,957 SSVs were identified, the majority (93.3%) of which were single nucleotide variants 

(SNVs) (n=297,513 in 383 tumors; mean per tumor=776.8), whereas small insertions and 

deletions (indels) were less common (insertions: n=5,842, 1.8%, mean=37.2; deletions: 

n=14,231, 4.5%, mean=15.3), and doublet and triplet base substitutions were rare (dinucletodie 

polymorphism [DNP] or doublet: n=1,351, 0.4%, mean=3.5; trinucleotide polymorphism [TNP] 

or triplet: n=20, 0.006%) (Table S3). Among the 3,886 coding mutations (1.2% of total; 

0.35/Mb), most were nonsynonymous (3,023/3,886=77.8%). Approximately one-third of 

mutations (n=114,898, 36.0%) were clonal (cancer cell fraction>0.9), regardless of mutation type 

(SNV=35.9%, insertions=36.7%, deletions=38.0%) (Table S3, Fig. S8) (13). 
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In multivariable analyses restricted to n=356 samples with both high tumor and normal 

tissue purity (Fig. 1, Fig. S9) (13), increased radiation dose was associated with an increase in 

small deletions (P=8.0×10-9) as well as the deletion:SNV ratio (P=4.9×10-21), but not other SSV 

types (Fig. 2, Table S4). In addition, we observed the expected increase in the burden of SNVs 

(P=3.2×10-6), doublet mutations (P=2.7×10-5), insertions (P=1.5×10-6), and deletions (P=7.4×10-

16) with increasing age at PTC diagnosis (Table S4) (10). Few of these mutations were clustered 

(22 clusters [>2 mutations within 150 base pairs (bp)] in 18 cases; 83 clusters [>2 mutations 

within 1 kb] in 36 cases) and were not associated with radiation dose (P>0.3). In an analysis of 

the frequency and types of microsatellite indels in the tumors, detected using MSMuTect (21), all 

tumors were microsatellite stable (mean [range] per tumor, insertions=1.8 [0-7], deletions=7.3 

[0-24]), and radiation dose was not significantly associated with the number of microsatellite 

insertions or deletions (Table S4). 

An investigation of mutational processes in PTC was conducted using SigProfiler to 

determine both single base substitution (SBS) and small indel (ID) mutational signatures (20, 

22). Comparing the PTC mutations with known signatures from the Catalogue of Somatic 

Mutations in Cancer (COSMIC v3, https://cancer.sanger.ac.uk/cosmic/signatures) (20), the 

majority of the SBS signatures (69.9%) were attributable to clock-like signatures (SBS1=9.8%, 

SBS5=60.2%), with smaller fractions due to APOBEC (apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide-like) cytidine deaminase DNA-editing activity (SBS2=6.2%, 

SBS13=6.4%), damage from reactive oxygen species (SBS18=0.9%), and two signatures of 

unknown etiology (SBS8=15.1%, SBS23=1.6%) (mean cosine similarity between actual 

mutations and attributed patterns=0.94) (Fig. 1, Table S5, Fig. S10-S12). In multivariable 

analyses, no SBS signatures were significantly associated with radiation dose, whereas increased 

https://cancer.sanger.ac.uk/cosmic/signatures
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age at PTC diagnosis was associated with an increase in clock-like SBS mutations 

(PSBS1=1.9×10-7; PSBS5=6.8×10-17) as well as SBS8 (P=4.3×10-11) and SBS18 (P=2.0×10-8) 

(Table S4).  

The majority (54.0%) of indels were attributed to clock-like signatures (ID1=14.2%, 

ID5=39.8%), 21.2% to ID3 (tobacco smoking, which is not a major risk factor for PTC), 19.0% 

to repair of DNA double-strand breaks by end-joining mechanisms (ID6=3.3%, ID8=15.8%), 

and 5.8% to ID4 (unknown etiology) (mean cosine similarity=0.77) (Fig. 1, Table S5, Fig. S10-

S12). In multivariable analyses, radiation dose was strongly associated with end-joining-related 

indel mutational patterns (P=1.5×10-10), particularly ID8 (P=7.3×10-9), and more weakly with the 

clock signature ID5 (P=1.3×10-4) (Fig. 2, Table S4). In comparison, increased age at PTC 

diagnosis was associated with significantly increased numbers of ID3 (P=1.9×10-7), ID5 

(P=1.9×10-9), and ID8 (P=6.6×10-4) mutational patterns (Table S4). De novo signature extraction 

did not reveal a novel signature related to environmental exposure to ionizing radiation but 

identified 4 SBS (mean cosine similarity=0.96) and 2 ID (mean cosine similarity=0.83) 

signatures highly correlated with COSMIC signatures described above (Table S4, Table S6, Fig. 

S10-S12). Similarly, no novel signature was identified when we restricted the analysis to PTCs 

in individuals who received ≥200 mGy (Table S5). 

 

Structural variation  

Overall, 479 structural variants (SV) were identified in 356 tumors; approximately one-

quarter of SVs (n=132, 27.6%) were simple/balanced events (balanced interchromosomal 

translocations and inversions), one-half (n=253, 52.8%) were simple/unbalanced (deletions, 

unbalanced interchromosomal translocations), and the remaining (n=94, 19.6%) were complex 
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(>2 breaks repaired together in a cluster) (Fig. S13-14, Table S6) (13). Approximately one-third 

of tumors (n=113, 31.7%) had no SV, one-third (n=126, 35.4%) had one SV, and the remaining 

third had two (n=61, 17.1%) or more (n=56, 15.7%) SVs. Two tumors had >10 SV events (Fig. 

S15), one of which was the only tumor with evidence for chromothripsis (age at PTC=30.2 years, 

age at exposure=1.3 years, dose=1000 mGy).  

Multivariable analyses (n=354, excluding the 2 outliers) demonstrated that increasing 

radiation dose was significantly associated with increased SV count (P=1.4×10-8), particularly 

simple/balanced SVs (P=1.2×10-14) but not those classified as complex (P=0.52) or 

simple/unbalanced (P=5.6×10-3) (Fig. 3A, Table S4). Increasing radiation dose also was not 

associated with occurrence of chromoplexy (P=0.70) (Table S4), which was identified in 19 

tumors (n=15 single event, n=4 two events) (13, 23), nearly all unexposed or in the lower dose 

groups (nunexposed=7, n1-99 mGy=8, n100-199 mGy=2, n≥500 mGy=2).  

 

Somatic copy number alteration 

A total of 40.3% (n=143/355) of the tumors evaluated for somatic copy number 

alterations (SCNA) had one (n=96, 27.0%) or more (n=47, 13.2%) such events (Fig. S16) (13). 

Four tumors had ≥20 SCNAs each (Fig. S17): the tumor with chromothripsis and three 

additional tumors (age at PTC=19.0-29.3 years, age at exposure=1.3-2.3 years, dose=125-175 

mGy). Those three tumors predominantly had gains or copy neutral loss of heterozygosity 

(CNLOH) and were the only tumors with ploidy>2.5, with one of the three displaying extensive 

CNLOH (>20 arms), similar to previous reports for the rare thyroid Hürthle cell carcinoma (24, 

25). Exclusion of the four tumors with ≥20 SCNAs each yielded 239 total SCNAs: 69 (28.9%) at 
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the chromosome level, of which 48 were deletions, and 170 (71.1%) sub-chromosomal, of which 

106 were deletions (Table S6).  

In multivariable models, radiation dose was related to the number of sub-chromosomal 

SCNAs (P=3.5×10-5), particularly deletions (P=7.0×10-4) but not gains (P=0.32) or CNLOH 

(P=0.52); radiation dose also was not related to the number of chromosomal SCNAs (P=0.20) 

(Table S4). The most frequent recurrent event was loss of 22q (n=47/353, 13.3%) (Fig. S18-

S19), but occurrence of 22q deletions was not associated with radiation dose (P=0.37) (Table 

S4).  

 

Drivers of PTC 

We identified at least one candidate driver for 433 of 440 (98.4%) tumors (Fig. S20, 

Table S7) (13), with the majority (n=401; 92.6%) having a single candidate driver, underscoring 

the parsimony of events driving PTC carcinogenesis. We designated 429 (97.5%) drivers for 

analysis (Fig. 1). Over half the designated driver events (n=253, 59.0%) were mutations (SSVs; 

Table S8), predominantly activating point mutations in genes previously implicated in PTC. The 

most commonly mutated gene was BRAF (n=194, 45.2%), where all the mutations either were 

canonical BRAFV600E substitutions (n=190) or disrupted the V600 sequence context (n=4). RAS 

genes were the next most commonly mutated (n=44, 10.3%), specifically NRAS (n=20, 4.7%), 

HRAS (n=15, 3.5%), and KRAS (n=9, 2.1%). Additional mutation drivers were identified in 

TSHR (n=6, 1.4%), DICER1 (n=3, 0.7%), APC (n=2, 0.5%), TSC1/TSC2 (n=2, 0.5%), and 

NFE2L2 (n=2, 0.5%). In TCGA, 9.4% of PTC harbored TERT promoter mutations, often in older 

individuals (8), but only one individual with a TERT promoter mutation was observed in our 

study (age at PTC diagnosis=40.7 years, designated driver=BRAFV600E).  



 

 

9 

 

Fusion drivers accounted for 176 (41.0%) PTC cases (Table S9). The most frequently 

involved genes were RET (n=73, 17.0%) as well as other receptor tyrosine kinase (RTK) genes, 

specifically NTRK3 (n=36, 8.4%), NTRK1 (n=13, 3.0%), ALK (n=12, 2.8%), and LTK (n=3, 

0.7%). Additional fusion drivers included BRAF (n=20, 4.7%) and PPARG (n=13, 3.0%), as well 

as SVs that resulted in overexpression of IGF2 or IGF2BP3 (n=6, 1.4%). Of the 23 chromoplexy 

events described above, 16 generated driver fusions. All 22q deletions co-occurred with known 

driver mutations, most frequently RAS mutations (Pheterogeneity=2.8×10-10; n=22/38, 56.4%) (Table 

S10).  

In multivariable analyses, fusion drivers in PTC were more common in individuals 

exposed to higher radiation dose (P=6.6×10-8) and in those diagnosed at younger ages 

(P=5.4×10-9) relative to those with mutation drivers (Fig. 3B, Table S4). There was a suggestion 

of a heterogeneous effect of dose by specific gene fusion (Pheterogeneity=0.020), with higher doses 

on average for PTCs with IGF2/IGF2BP3 or BRAF fusion drivers, whereas the dose distribution 

did not differ significantly among mutation drivers (BRAF, RAS, other; Pheterogeneity=0.17) (Fig. 

4). We extended our observations by inclusion of 45 non-overlapping individuals with PTC 

(excluding the 20 individuals already in our analyses) drawn from a previous Chernobyl study 

with known drivers identified with RNAseq (7); over half had doses ≥500 mGy (mean age at 

PTC=24.2 years, mean age at exposure=7.2 years, mean dose=1050 mGy) (Table S1). That 

smaller sample set also suggested a radiation dose-related increase in fusion drivers (P=0.069), 

which was consistent with the results from our study (Pheterogeneity=0.90; pooled analysis of fusion 

vs. mutation driver, adjusting for age at PTC, sex, and study: P=4.6×10-9).  
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Gene expression and methylation patterns 

We conducted several analyses to assess whether gene expression and methylation 

patterns were related to radiation dose. First, unsupervised clustering analyses restricted to PTC 

tumor tissue yielded 5 mRNA clusters, 5 miRNA clusters, and 3 methylation clusters (Fig. S21-

S22) (13). None of these clusterings were associated with radiation dose (PmRNA=0.85; 

PmiRNA=0.38; Pmethylation=0.10), but each closely correlated with the driver gene pathway (PmRNA 

=1.6×10-64; PmiRNA=1.0×10-9; Pmethylation=6.4×10-43) (Fig. 5A, Table S4, Table S11, Fig. S23), 

supporting the overriding importance of the driver for RNA expression patterns (10). Second, we 

identified three transcriptional patterns important in PTC based on the TCGA analysis (10): the 

BRAFV600E-RAS score (BRS), estimating the degree to which the mRNA, miRNA, and 

methylation profiles resemble either BRAFV600E or RAS-mutated PTC; the thyroid differentiation 

score (TDS), based on expression of 16 thyroid metabolism and function genes; and the ERK-

activity score of 52 expressed genes responsive to MEK inhibition (13). As expected, the 

mRNA, miRNA, and methylation BRS scores were highly correlated with one another (r=0.78-

0.92) (Table S12). Consistent with TCGA (10), the three different mRNA-based scores also 

were significantly correlated, particularly the BRS with both the TDS (r=0.69) and the ERK 

score (r=-0.66). None of the scores were associated with radiation dose after correction for 

multiple testing (PmRNA-BRS=2.1×10-3; PmiRNA-BRS=5.5×10-3; Pmethylation-BRS=0.082; PERK=0.011, 

PTDS=7.8×10-3) (Table S4, Fig. S24A), whereas each was strongly related to driver gene 

pathway (P<1.0×10-30 for all scores) (Fig. S24B).  

To confirm the lack of association between radiation exposure and gene expression 

patterns, we conducted exploratory analyses of the differential expression of specific genes and 

gene sets by dose (13). In multivariable linear regression models adjusted for age at PTC, sex, 
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and batch, the Padjusted for dose was <0.05 for five genes (Fig. 5B, Table S13), with the smallest 

P-value (Padjusted=8.0×10-3; log10-fold expression change/100 mGy=0.059) for transfer RNA 

asparagine (anticodon GUU) (TRNAN-GUU-2), which is a target of the transcription factor 

MYBL2, a key regulator of cell cycle progression and apoptosis (26, 27). However, each of these 

associations were attenuated when the model was further adjusted for the driver gene pathway 

(Table S13). In contrast, over half the genes were differentially expressed (Padjusted<0.05) among 

the different driver gene pathways (Table S13). Despite previous reports suggesting radiation 

dose could be linked to CLIP2 expression (28-30), no such relationship was observed in our 

substantively larger study, which included 33 overlapping samples from the previously-

published analyses (29) (Fig. S25), either in the overall set of PTC cases (P=0.42, Fig. 5C) or in 

subsets defined by early age at radiation exposure (Fig. S26). An exploration of expression 

signatures through gene set enrichment analyses was pursued in the Molecular Signatures 

Database (MSigDB; https://www.gsea-msigdb.org/gsea/msigdb) (31). For 3,213 gene sets (those 

related to hallmark biological processes, thyroid, radiation, and the genes included in germline 

analyses below) (13), multivariable regression models adjusting for age at PTC, sex, and batch 

revealed similar results as those above for single gene differential expression analyses, namely 

no gene set expression patterns were significantly associated with radiation dose (Padjusted<0.05), 

whereas over half were strongly associated with the driver gene pathway (Fig. S27, Table S14).  

 

Germline genetic variation 

Possible contribution of germline genetic variation to radiation-related PTC was 

investigated in individuals of comparable Ukrainian ancestry (n=383 individuals, including 305 

exposed, 78 unexposed) (Fig. S28). Twelve previously reported risk SNPs for sporadic PTC 

https://www.gsea-msigdb.org/gsea/msigdb
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were used to generate a polygenic risk score (PRS) (32). Multivariable analyses adjusting for 

population substructure revealed that unexposed individuals with PTC and those who received 

lower radiation doses were more likely to have higher genetic risk (P=4.7×10-4) (Fig. 6, Table 

S4). Analyses of the 12 individual SNPs, albeit underpowered, yielded three possible 

associations with radiation dose: rs1588635 (9q22.33; P=0.012), rs2289261 (15q22.33, SMAD3; 

P=0.030) and rs10069690 (5p15.33, TERT; P=0.054) (Table S15).  

Investigation of rare potentially protein-damaging variants in genes and pathways related 

to thyroid or other cancer predisposition, clinical radiation sensitivity syndromes, and DNA 

damage response revealed no major differences in the burden of these variants among 

individuals who developed PTC after different radiation doses (Table S4, Table S16-S17). Only 

four individuals (n=2, 2.6% unexposed; n=2, 1.2% <100 mGy; 0, 0% ≥100 mGy) carried 

potentially protein-damaging variants in known thyroid cancer susceptibility genes (Table S16-

S17).  

 

Detailed analyses of molecular characteristics associated with radiation dose 

Analyses by clonality for each of the deletion metrics (total deletion count, deletion:SNV 

ratio, and ID5 and ID8 mutational patterns) revealed that the radiation dose-related associations 

were restricted consistently to clonal rather than subclonal deletions (Fig. 2, Table S18). 

Similarly, analyses of SCNAs also demonstrated associations only with clonal but not subclonal 

sub-chromosomal deletions (Table S18). Because distinct repair mechanisms can generate 

deletions of different lengths (33-35), we further stratified the clonal deletion count by length 

(Fig. S29) and found the strongest association between radiation dose and ≥5 bp clonal deletions 

with patterns characteristic of end-joining repair (P=4.9×10-31) (Fig. 3C, Table S18). These 
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results are consistent with the ID8 mutational association and suggest a key role for end-joining 

mechanisms in repairing radiation-induced DNA double-strand breaks. Analyses of the ≥5 bp 

clonal deletions by the amount of microhomology at the deletion boundary revealed consistent 

associations between radiation dose and deletions with 0-1 bp microhomology as well as those 

with ≥2 bp microhomology (Table S18). These results implicate non-homologous end-joining 

(NHEJ) repair mechanisms, which are employed regardless of the amount of microhomology, 

whereas alternative end-joining (alt-EJ) repair mechanisms such as theta-mediated end-joining 

(TMEJ) typically generate deletions with ≥2 bp microhomology (33-35). In an ancillary analysis, 

we quantified in the small insertions the number of TINS (locally templated insertions), which 

are characteristic of TMEJ repair (34), and found that TINS were not associated with radiation 

dose (P=0.69) (Fig. S30). Further exploration of insertions and deletions by genomic sequence 

context (8) revealed only weak correlations for radiation dose with occurrence of deletions 

classified by flanking GC content (P=0.015), proximity to CPG islands (P=0.014), and the mean 

replication timing at the variant locus (P=0.010); in each case deletions in the higher radiation 

dose groups were more similar to a random background distribution (Table S19) (13). No such 

correlations between radiation dose and genomic sequence context were observed for insertions. 

We undertook similar analyses of SVs after confirming each event (Table S6) (13), 

identifying those SVs with <20 bp of intervening loss/gain at the breakpoint, which indicates 

repair by end-joining mechanisms (33-35). Increased radiation dose was strongly associated with 

simple/balanced SVs that were clonal (P=1.4×10-16) but not subclonal (P=0.91), with a 

pronounced association for clonal simple/balanced SVs enriched for patterns characteristic of 

end-joining mechanisms (P=5.5×10-19) (Fig. 3D) versus other clonal SVs (P=0.41, Fig. 3E) 

(Table S18). Further analyses demonstrated consistent associations for radiation dose with clonal 
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simple/balanced/end-joining SVs with <4 bp and 4-<20 bp of intervening loss/gain (Table S18). 

Similar to our observations for small deletions, these results specifically implicate the 

importance of NHEJ repair, which accounts for almost all <4 bp events but which could 

contribute regardless of the amount of intervening loss/gain. By comparison, alt-EJ repair 

mechanisms primarily give rise to events with ≥4 bp of intervening loss/gain (33-35). Additional 

analyses of clonal simple/balanced/end-joining SVs by type revealed a strong association 

between radiation dose and inversions (P=3.6×10-14), consistent with a previous report (8), but 

also an association with translocations (P=4.4×10-4) (Table S18). 

For each of the radiation dose-associated variables, the results were similar when we 

restricted the study population to exposed individuals (Table S20). Albeit based on limited 

statistical power, further restriction to individuals with exposures 1-<500 mGy revealed 

consistent associations for dose only with the clonal deletion:SNV ratio, enrichment of fusion 

drivers, and presence of clonal simple/balanced/EJ SVs (Table S20). Linear-quadratic and 

linear-exponential models of radiation dose generally did not improve the model fit compared 

with a linear model for any of the variables, except for clonal small deletions (total and restricted 

to ≥5 bp EJ deletions) (Table S20).  

Notably, radiation dose-related increases in clonal deletions (particularly the 

deletion:SNV ratio, ID8, and the number of clonal ≥5 bp EJ small deletions), as well as fusion 

PTC drivers were substantially more pronounced for individuals exposed at younger ages (Fig. 

7, Table S21-S22), albeit based on small numbers for certain analyses. In contrast, the radiation 

dose-related increase in SCNA clonal sub-chromosomal deletions was most pronounced at 

longer latencies (Table S21).  
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Radiation-related acceleration of PTC development 

Exploratory analyses to address previous reports that ionizing radiation exposure 

accelerates aging and cancer development (36, 37) revealed no such evidence in our study 

population. First, we stratified analyses of the relationship of clock-like SBS and ID signatures 

with age at PTC and latency but found no effect modification by radiation dose (age at PTC: 

PSBS=0.63, PID=0.93; latency: PSBS=0.28, PID=0.21) (Fig. S31-S32). Additionally, radiation dose-

dependent associations with key molecular characteristics did not appear to be strongly modified 

by latency, after accounting for age at exposure and age at PTC (Table S21). Analyses of 

relative telomere length demonstrated the expected association between decreased telomere 

length and increased age at PTC in blood (P=3.2x10-5) but not in normal thyroid tissue (P=0.99) 

or PTC (P=0.81), and there was no association between relative telomere length and thyroid 

radiation dose (P>0.4 for all tissues). Methylation profiles were evaluated to estimate epigenetic 

age acceleration using two established metrics (38, 39). Regressing epigenetic age against 

chronological age in the non-tumor thyroid tissue and then comparing the residuals from this 

predicted age in the PTC tissue (13) revealed no association between age acceleration and 

radiation dose using either metric (P>0.1). 

 

Discussion 

Our large-scale integrated analyses of the genomic landscape of PTC that developed 

following the 1986 Chernobyl nuclear power plant accident provide consistent evidence that 

ionizing radiation-induced DNA damage, particularly double-strand breaks, represents an early 

carcinogenic event in thyroid tumorigenesis following radiation exposure. These findings 
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substantially extend preliminary reports of radiation-related human tumor characteristics (8, 9) 

by integrating data from multiple platforms with large sample size and detailed radiation dose 

data. Increasing radiation dose was strongly associated with increased likelihood of fusion versus 

point mutation drivers, simple/balanced SVs, and small deletions, with the strongest associations 

observed for those that bore hallmarks of NHEJ repair and were clonal, particularly for 

individuals exposed at a young age. However, no unique radiation-related biomarker was 

identified. Together, our results indicate that thyroid tumorigenesis following radiation exposure 

results from DNA double-strand breaks in the genome that have an impact on key thyroid cell 

growth and differentiation genes, which in turn drive the expression and epigenetic 

characteristics of individual PTCs.  

Most tumors had evidence for only a single, known oncogenic driver, which involved the 

MAPK pathway in nearly all cases, which is consistent with previously published studies of 

sporadic PTCs (10, 40, 41). These findings combined with the low mutational burden in thyroid 

tumors emphasize the efficiency of driver mutations in thyroid tumorigenesis even following 

ionizing radiation exposure, in contrast to other environmentally-driven cancers, such as 

cigarette smoking and lung adenocarcinoma or ultraviolet light and melanoma, that often require 

multiple drivers and have multiple subclones together with substantial somatic burden (23). 

Based on multiple lines of evidence, our study demonstrates striking radiation dose-

related increases in DNA double-strand breaks in human thyroid cancers developing after the 

Chernobyl accident, extending results from in vitro and animal radiobiological experiments (33-

35). In contrast, the PTCs did not have evidence of radiation-related specific base mutations or 

clustered mutations (42). Cells with DNA double-strand breaks can recruit various repair 

mechanisms, each of which leaves characteristic evidence in the repaired sequence. A series of 
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analyses consistently implicated NHEJ as the most important repair mechanism for the radiation 

dose-associated DNA double-strand breaks observed in the PTCs. While the importance of end-

joining repair in human tumors has been reported previously (8), our detailed examination of the 

local sequence context for the SVs (including fusion drivers) and small deletions enabled us to 

identify that radiation dose was most clearly associated with NHEJ rather than alt-EJ or other 

repair mechanisms. The lack of association between radiation dose and TINS further 

demonstrated the lack of importance of alt-EJ mechanisms. The importance of NHEJ repair also 

was supported by the lack of significant association between radiation dose and mutation 

signatures of APOBEC, which preferentially targets intermediates in replication and repair by 

homologous recombination (43). Our results necessitate further research such as using 

genetically modified organoids (44, 45) to establish the causal role of radiation-related DNA 

double-strand breaks predominantly repaired by NHEJ in human carcinogenesis.  

The role of radiation-related DNA damage as an early step in PTC carcinogenesis 

following the Chernobyl accident is further supported by the lack of association between 

radiation dose and PTC transcriptomic and epigenomic features, despite the use of various 

analytic approaches, including clustering, differential expression by gene or miRNA, and gene 

set enrichment analyses. With our large sample size, we did not confirm the previously reported 

association between radiation dose and CLIP2 expression (28-30), even when we restricted our 

analyses to individuals exposed at younger ages. Notably, however, the PTC transcriptomic and 

epigenomic features differed strikingly by driver gene/pathway, supporting the importance of the 

specific driver in shaping the tumor profile (10, 40, 41). Utilization of both WGS and RNA-seq 

enabled us to identify a driver in 98% of the PTCs in our study. Deletion of chromosome 22q has 

been suggested as a driver for PTC, but all cases in our study with 22q deletions also had other 
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known PTC drivers, suggesting that 22q did not act independently in our set of individuals who 

developed PTC during young adulthood. Intriguingly, however, 22q deletions were strongly 

related to the driver pathway, occurring most commonly in RAS-mutated PTCs, suggesting that 

22q deletion could provide a growth advantage or otherwise enhance the effect of certain MAPK 

drivers. 

 With our large sample size, we were able to explore the independent effects of radiation 

dose, age at PTC, age at exposure, and latency on PTC molecular characteristics. The 

pronounced evidence of radiation-related damage that we observed for individuals exposed at 

younger ages is consistent with epidemiologic analyses that have identified higher thyroid cancer 

risks with radiation exposure at younger ages (17). The relationship of a number of molecular 

characteristics, particularly total mutational burden and driver type, with age at PTC warrants 

further investigation across a broader age range (10). Additional research with detailed dose data 

is needed to understand whether our findings extend across a broader dose range, to other types 

of radiation, as well as to other tumor types, and whether radiation-related genomic 

characteristics have an impact on histopathological parameters (46-48). It has been hypothesized 

that ionizing radiation exposure could accelerate tumor development, and substantial evidence 

demonstrates that cancer survivors exposed to high-dose radiotherapy exhibit an aging 

phenotype (36, 37). However, exploratory analyses within our data did not support this 

hypothesis.  

Our results have important implications for radiation protection and public health, 

particularly for low dose exposure, from two perspectives. First, the lack of a unique radiation-

related pattern of molecular characteristics in the PTCs in our study, due in part to the random 

nature of ionizing radiation-related damage across the genome as well as the fact that other 
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mutagens can cause DNA double-strand breaks, suggests that we are yet to establish a reliable 

biomarker to distinguish tumors induced by radiation versus other causes. Nevertheless, the 

strong associations that we observed between radiation dose and molecular characteristics 

suggest that consideration of these factors could improve predictions of the probability that a 

specific thyroid tumor was caused by 131I exposure (probability of causation [POC] (Fig. S5) (49, 

50)), which is currently based on prior epidemiologic studies (17). Second, our data are 

consistent with a linear dose-response for the key molecular characteristics associated with 

radiation dose in the range examined in our analysis (≤1 Gy), which aligns with the extensive 

radiobiological literature and other epidemiologic evidence regarding DNA damage and cancer 

risk following ionizing radiation exposure (51, 52).  

Our study population included a substantial number of PTCs occurring after <100 mGy 

exposure, likely reflecting both the availability of remaining samples from the Chernobyl Tissue 

Bank as well as the increased detection of pre-existing PTC in the population that may not 

become clinically evident until later, if at all, due to intensive screening and heightened 

awareness of thyroid cancer risk in Ukraine. The increased genetic risk based on the PRS was 

notable among PTCs that occurred after lower doses despite limited statistical power to 

investigate germline genetic variants. The low overall mutational burden of early adulthood PTC, 

small sample sizes in certain population subgroups, and uncertainties in radiation dose estimates 

limited our statistical power to thoroughly investigate the shape of the dose-response curve, 

precisely identify the magnitude of radiation-related effects (as reflected by the wide confidence 

intervals for many effect estimates), or reliably characterize new radiation signatures.   

In conclusion, we have characterized the genomic landscape of PTC, the most frequent 

cancer observed after the Chernobyl nuclear accident. Our results demonstrate a dose-dependent 
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carcinogenic effect of radiation derived primarily from DNA double-strand breaks repaired by 

NHEJ that initiate subsequent thyroid tumor growth, the patterns of which are shaped not by 

radiation exposure but rather by the specific driver gene. The consistency of the spectrum of PTC 

drivers in our study population compared with previous PTC series suggests that current 

therapeutic approaches for PTC are appropriate even for tumors that arise following radiation 

exposure (53). Our work provides a foundation for further investigation of radiation-induced 

cancer, particularly with respect to differences in risk as a function of both dose and age, and 

underscores the deleterious consequences of ionizing radiation exposure.  
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FIGURE TITLES AND LEGENDS: 

Fig. 1. Landscape of somatic alterations in 440 papillary thyroid carcinomas, by radiation 

dose from 131I exposure. Blank (white) spaces represent unavailable data due to lack of data 

from a specific platform (Figs. S1-S3). Signature analyses were restricted to high purity samples, 

defined as those with tumor purity >20% and no evidence of tumor contamination in the normal 

tissue. 

 

Fig. 2. Relationship between radiation dose from 131I exposure and small deletions. (A) 

Total small deletion count and restricted to (B) clonal and (C) subclonal small deletions. (D) 

Total deletion:SNV ratio and restricted to (E) clonal and (F) subclonal deletions and SNVs. (G) 

Total ID5 count and restricted to (H) clonal and (I) subclonal ID5. (J) Total ID8 count and 

restricted to (K) clonal and (L) subclonal ID8. β per 100 mGy and P-value were derived from 
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multivariable linear regression models adjusting for age at PTC and sex. Full model results are 

provided in Table S18. 

 

Fig. 3. Relationship between radiation dose from 131I exposure and selected SV metrics. (A) 

Number of simple/balanced SVs. (B) Likelihood of having a fusion versus mutation driver. (C) 

Number of clonal ≥5 bp EJ small deletions. (D) Number of confirmed clonal 

simple/balanced/end-joining SVs. (E) Number of confirmed clonal other SVs (E). Different 

scales are used for each panel to reflect the distributions and uncertainties of the EOR estimates. 

Referent group for categorical analyses: EOR=0 (which is equivalent to OR=1). EOR per 100 

mGy and P-value were derived from multivariable proportional odds or logistic regression 

models adjusting for age at PTC and sex. Full model results are provided in Table S18.   

 

Fig. 4. Distribution of radiation dose from 131I exposure by driver type and pathway. 

 

Fig. 5. Selected RNA-seq results. (A) Differential expression by driver and cluster, (B) 

Differential expression for all genes by radiation dose from 131I exposure. (C) Differential 

expression of CLIP2 by radiation dose from 131I exposure. 
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Fig. 6. Relationship between radiation dose from 131I exposure and PRS. Data for the 12 

single nucleotide polymorphisms that comprise the PRS are provided in Table S15. 

 

Fig. 7. Relationship between radiation dose from 131I exposure and selected genomic 

characteristics by age at exposure. Clonal deletion:SNV ratio for (A) <5 years at exposure, (B) 

5-9 years at exposure, and (C) ≥10 years at exposure. Number of clonal ID8 mtuations for (D) 

<5 years at exposure, (E) 5-9 years at exposure, and (F) ≥10 years at exposure. Number of clonal 

≥5 bp EJ small deletions for (G) <5 years at exposure, (H) 5-9 years at exposure, and (I) ≥10 

years at exposure. Likelihood of having a fusion versus mutation driver for (J) <10 years at 

exposure and (K) ≥10 years at exposure. All analyses exclude 131I-unexposed individuals. β or 

EOR per 100 mGy and P-value were derived from multivariable linear, proportional odds, or 

logistic regression models adjusting for age at PTC and sex. Full model results are provided in 

Table S22. 

* Models evaluating the effect of dose on driver type restricted to <5 years of age at exposure did 

not converge, so individuals exposed at <5 and 5-9 years were combined in panel J. EOR/100 

mGy for 5-9 years alone=1.78, 95%CI=0.12-226. 

^^ in Panel H indicates that the upper 95% CI exceeds the y-axis maximum value. 
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Materials and Methods 

Study Populations 

The primary study population for this analysis included individuals who developed 

pathologically-confirmed papillary thyroid cancer (PTC) during young adulthood in the Ukraine 

following the April 1986 Chernobyl nuclear power plant accident and whose pre-treatment, fresh 

frozen tumor sample was collected by the Chernobyl Tissue Bank (CTB) (11) (Table S1). 

Eligibility criteria included: in utero or <19 years of age on April 26, 1986 (cases) or born >9 

months after the accident (comparison population of unexposed individuals); residence in one of 

the most contaminated territories (oblasts or states) of Ukraine, specifically, Zhytomyr, Kyiv, or 

Chernihiv; histopathologically confirmed diagnosis of a first primary papillary thyroid cancer 

based on review of tumor tissue by an international panel of experts and medical record data 

documenting no prior cancer history (11); availability of 131I dose estimates (see details below); 

availability of fresh frozen thyroid tissue with sufficient, high quality nucleic acids (see details 

below); and availability of non-tumor thyroid tissue and/or a blood sample (collected years later). 

Fig. S1 provides the distribution of available tumor tissue, non-tumor thyroid tissue, and blood in 

the final dataset of 440 individuals with PTC (n=359 131I-exposed, n=81 unexposed). Participants 

(or guardians for minors) provided informed consent for donation and broad research use of their 

materials through the CTB, and the study was approved by Institutional Review Boards at the 

tissue collection center (Institute of Endocrinology in Kiev, Ukraine), the CTB coordination 

center (Imperial College of London, UK), and the United States National Cancer Institute.  

 

Among the 440 individuals with PTC included in our final analysis, the majority (n=365, 83.0%) 

underwent a total thyroidectomy and had lesions <2.0 cm (n=247, 56.1%) (Table S1). Among 

those with available non-tumor thyroid tissue that passed quality control assessment (n=416), the 

sample was taken from the contralateral lobe/side for most individuals (n=359, 86.3%). Non-

tumor thyroid tissue from the same (ipsilateral) side (n=56, 13.5%) was taken as far from the 

tumor as possible. To our knowledge, no study participants had concurrent thyroid disease. 

 

For investigation of the relationship between radiation dose and the PTC driver type (described 

below), we also included data from 45 non-overlapping individuals with PTC occurring after the 

Chernobyl accident whose PTC drivers were identified in a previously-published RNA 

sequencing (mRNA-seq) analysis (Table S1) (9).  

 
131I Dose Estimation 

For 131I-exposed individuals with PTC (individuals who were in utero or <19 years of age on 

April 26, 1986), radiation doses to the thyroid were reconstructed by an international team of 

dosimetry experts using well-established methods that have been described in detail previously 

for studies of Chernobyl-related cancer risks (14, 15). Briefly, the dose reconstruction approach 

varied based on the type of information available for each individual: presence or absence of 

direct thyroid radioactivity measurements, presence or absence of personal interview, and 

information on place of residence (oblast/state, raion/county, settlement) in 1986. Among the 

359 131I-exposed individuals included in the primary analytic population, 49 were part of a large-

scale thyroid cancer screening cohort (54), and their doses were estimated based on individual 

thyroid radioactivity measurements taken in May-June 1986, personal interview data concerning 

residential history and intake of milk and green leafy vegetables (the main source of 131I 

exposure) after the accident, and results of radio-ecological modeling (Table S1). For an 
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additional 4 individuals, dose estimates were calculated based on individual thyroid radioactivity 

measurements, but not on personal interview. Dose estimates for the largest group of individuals 

(n=297) were based on measurements made on different individuals who lived in the same 

residential area. Finally, for the 9 individuals who were in utero at the time of the accident, 

estimated doses were based on the mother’s exposure (55). Among the 45 131I-exposed 

individuals included in analyses of the oncogenic PTC driver from the previously published 

report, doses were estimated based on direct thyroid radioactivity measurement with personal 

interview data for 39, and the dose estimation method was unknown for the remaining 6 

individuals (Table S1) (9). 

 

Laboratory Methods  

Sample Handling and Nucleic Acid Extraction 

Fig. S1 provides a schematic of the study procedures and sample sizes for laboratory work and 

statistical analyses. Frozen tissue specimens (535 PTC, 522 non-tumor thyroid tissue) were 

received from CTB and processed by Nationwide Children’s Hospital (NCH) Biospecimen Core 

Resource (BCR) (Columbus, Ohio). A 5 μm section of tissue was cut from the provided block 

for creation of an H&E slide for pathology review. Specimens were forwarded for total nucleic 

acid extraction if the tissue necrosis <20% and if the PTC tissue >50% tumor nuclei with 

matching non-tumor thyroid tissue with <10% tumor nuclei and/or blood available. Specimens 

for 72 individuals did not pass this inclusion criteria based on 66 PTC failures and 6 non-tumor 

thyroid failures without blood available, resulting in the removal of 72 PTC, 71 non-tumor 

thyroid, and 21 blood specimens. A two-column approach was utilized for extraction of DNA 

and RNA from approximately 10-40 mg of tissue, depending on tissue availability. Tissue was 

homogenized using the Qiagen Qiagen TissueLyser II. Dual DNA and RNA Extraction was 

performed utilizing the AllPrep DNA/RNA Mini Kit (Qiagen) for DNA and mirVana miRNA 

Isolation Kit (Applied Biosystems) for total RNA and small RNA. Purified nucleic acids were 

quantified and quality checked post-extraction. RNA was tested utilizing the Agilent 2100 

Bioanalyzer with the RNA 6000 NanoChip (Agilent). DNA was quantified with the Quant-iT 

PicoGreen dsDNA Assay Kit (ThermoFisher). DNA molecular weight was evaluated by E-Gel 

48 Agarose Gels, 1% (ThermoFisher). Tumor and normal tissue DNA samples were identity 

matched via SNP analysis MassARRAY system and iPLEX chemistry (Sequenom) across 50 

loci. 

 

Whole blood samples (n=326) collected in standard EDTA vacutainers were received from CTB 

and processed at the Cancer Genomics Research Laboratory (CGR) of the National Cancer 

Institute. Blood samples were extracted on the QIAsymphony SP® instrument utilizing 

manufacturer-supplied reagents and protocols (QIAGEN). Double-stranded DNA was quantified 

with QuantiFluor® dsDNA System (Promega Corporation) for use in downstream assays. 

 

Sample quality and quantity assessment and final inclusion criteria 

DNA/RNA yield and the RNA Integrity Number (RIN; Agilent Bioanalyzer) identified that 11 

individuals had insufficient yield and/or RNA quality for WGS or RNA-seq analysis and were 

excluded. Data from the Illumina Infinium OmniExpress SNP array and/or mRNA-seq were 

used as preliminary assessment of sample quality and to check for sex and/or intra-individual 

discordance, which identified 12 individuals for exclusion (11 for discordance among matched 

samples and one for DNA/RNA tumor contamination). The non-tumor thyroid tissue pathology 
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was reassessed and only tissues with no evidence for tumor nuclei were processed further. 

Following these exclusions, 440 individuals with 440 PTC (23 excluded), 416 non-tumor thyroid 

(35 excluded), and 290 blood (15 excluded) samples remained for further laboratory processing. 

 

All available tissue types (PTC, non-tumor thyroid, and blood) that passed the above quality 

control metrics were attempted on all six platforms (WGS, mRNA-seq, miRNA-seq, SNP array, 

methylation, and relative telomere length) when possible. PTC WGS required a paired normal 

tissue sample (non-tumor thyroid or blood) for analysis, thus PTC samples were excluded from 

the WGS platform if no normal tissue was available. Similarly, NT WGS (non-tumor thyroid 

tissue) required both a non-tumor thyroid tissue and blood sample. Sufficient DNA/RNA was 

available to attempt all six platforms for 369/440 PTC samples, 352/416 non-tumor thyroid 

tissues, and 232/290 blood samples, whereas only a subset of platforms was attempted for the 

remaining 71/440 PTC samples, 64/416 non-tumor thyroid tissues, and 58/290 blood samples. 

Fig. S1 provides further details regarding the number of attempted assays, the number of failed 

assays per platform, and the final number of samples per platform by sample type. 

 

Whole Genome Sequencing 

All WGS library preparation and sequencing was done at the Broad Institute. Libraries were 

constructed and sequenced on the Illumina HiSeqX with the use of 151 base pair (bp) paired-end 

reads for whole-genome sequencing. Output from Illumina software was processed by the Picard 

data-processing pipeline to yield BAM files containing well-calibrated, aligned reads. All sample 

information tracking was performed by automated LIMS messaging.  

 

WGS Library Construction  

Initial genomic DNA input for shearing was reduced from 3 μg to 350ng in 50 μL of solution. In 

addition, for adapter ligation, Illumina paired end adapters were replaced with palindromic 

forked adapters with unique 8 base index sequences embedded within the adapter. 

 

Library preparation and sequencing was done in two batches with slightly modified protocols. 

The first 919 samples were sequenced with the following library preparation protocol: Aliquots 

of genomic DNA (350ng in 50 μL) underwent fragmentation by means of acoustic shearing 

using Covaris focused-ultrasonicator, targeting 385 bp fragments. Following fragmentation, 

additional size selection was performed using a SPRI cleanup. Library preparation was 

performed using a commercially available kit provided by KAPA Biosystems (product KK8202, 

name: KAPALIBPREPKT) and with palindromic forked adapters with unique 8 base index 

sequences embedded within the adapter (purchased from IDT). Following sample preparation, 

libraries were quantified using quantitative PCR (kit purchased from KAPA biosystems) with 

probes specific to the ends of the adapters. This assay was automated using the Agilent Bravo 

liquid handling platform. Based on qPCR quantification, libraries were normalized to 1.7nM. 

Samples were then pooled into 24-plexes, and the pools were once again qPCRed. Samples were 

combined with HiSeq X Cluster Amp Reagents EPX1, EPX2 and EPX3 into single wells on a 

strip tube using the Hamilton Starlet Liquid Handling system. Cluster amplification of the 

templates was performed according to the manufacturer’s protocol (Illumina) using the Illumina 

cBot. Flowcells were sequenced either on HiSeqX Sequencing-by- Synthesis Kits to produce 151 

bp paired-end reads, then analyzed using RTA2. Output from Illumina software was processed 
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by the Picard data-processing pipeline to yield CRAM or BAM files containing demultiplexed, 

aggregated aligned reads. 

 

The final 224 samples were sequenced with the following minor changes in protocol: Library 

preparation was performed using a commercially available kit provided by KAPA Biosystems 

(KAPA Hyper Prep without amplification module, product KK8505), and with palindromic 

forked adapters with unique 8-base index sequences embedded within the adapter (purchased 

from Roche). Following sample preparation and qPCR quantification, libraries were normalized 

to 2.2nM and pooled into 24-plexes. All other aspects of the protocol remained the same as 

described in the previous paragraph. 

 

Sequencing data (FASTQ files) were aligned to the reference genome (hg19) using BWA-MEM 

(56). Duplicated fragments of DNA were marked to avoid ‘double counting’ evidence for 

somatic events using Picard MarkDuplicates (version 1.1310 broadinstitute.github.io/picard) and 

re-calibrated the base quality scores to more accurately reflect the probability of error using 

BQSR (broadinstitute.github.io/picard). Since alignments around indels can be different among 

reads, which affects downstream indel and mutation calling, we performed local realignment on 

both the tumor and normal for each patient (“co-cleaning” GATK3 IndelRealigner version 

nightly-2015-07-31-g3c929b0) (57). At the end of this step, we obtain hg19 binary alignment 

files (BAM files) for each of the tumor and normal samples. 

 

Each WGS sample was assessed for coverage (Table S2), library complexity, fingerprinting 

across tumor and normal samples, sequencing error rates, fragment length, chimeric fragment 

rate, and DNA oxidative damage using a suite of Picard tools (Picard CollectWGSmetrics, 

CollectSequencingArtifactMetrics for 8-oxoG damage, and CrosscheckFingerprints).  

 

RNA Library Preparation and Sequencing 

Quality control was performed on total RNA using the Qubit BR RNA assay (ThermoFisher 

Scientific) and Agilent RNA 6000 Pico Kit (Agilent Technologies). 100-500 ng of total RNA in 

10 µl was used as input. Libraries were prepared using the Kapa RNA HyperPrep Kit with 

RiboErase per manufacturer’s instructions with slight modifications (Kapa Biosystems, part# 

KK8561). Briefly, following depletion of ribosomal RNA, fragmentation was performed at 85ºC 

for 4.5 minutes for good quality samples, 85ºC for 4 minutes for average quality, and 65ºC for 1-

1.5 min for the lowest quality and/or lowest input samples. Following first and second strand 

cDNA synthesis, 1.5 µM NEXTflex-96 DNA Barcodes (BioO Scientific) were ligated to the A-

tailed cDNA. Eight cycles of library amplification were performed, followed by two rounds of 

1x Ampure purification. Final libraries were quantified by Qubit, equal molar pooled at 16 

samples per pool and sequenced on the Illumina HiSeq 2500 using the SBS 2x125 bp and Cluster 

v4 kits. Runs generated an average of 125,000,000 reads/sample, with 44,000 transcripts and 

19,000 genes detected. The sequenced paired-end reads were trimmed using trimmomatic/0.36. 

Trimmed reads were aligned to the GRCh38 human reference genome (illumine iGenomes NCBI 

GRCh38) using STAR/2.5.4a, and gene reads count was quantified according to illumine 

iGenomes NCBI GRCh38 annotation file. 

 

For miRNA sequencing, the Illumina Ribo-Zero Gold rRNA Removal Kit (Illumina, part# 

MRZG12324) was used for ribosomal RNA depletion from 500 ng purified total RNA per 



 

 

6 

 

manufacturer’s instructions. 500ng of the rRNA depleted sample was then processed as 

described in the NEBNext Multiplex Small RNA Library Prep Set for Illumina kit (NEB, part 

#E7300L) with minor modifications. Following first strand synthesis, Illumina indexes were 

added using 12 cycles of PCR amplification, the products purified with 1.8x Ampure XP beads 

and recovered in 15 µL low TE buffer. Size selection of the miRNA libraries was performed on 

Blue Pippin using 3% Agarose, dye free gel with internal standards selecting for 105-190 bp 

products (Sage Sciences, part# BDQ3010). Quantitation and quality control check was 

performed using Qubit dsDNA HS assay and on Agilent 2100 Bioanalyzer system with the 

Agilent HS DNA assay. Libraries were equal molar pooled at 16 samples per pool and sequenced 

on the Illumina HiSeq 2500 using the 50 cycle single read SBS and Cluster v4 kits according to 

the manufacturer's instructions. The sequenced single-end reads were processed according to the 

ENCODE microRNA-seq pipeline (https://www.encodeproject.org/microrna/microrna-

seq/#references). Briefly, reads were trimmed using Cutadapt/1.18, and after adaptor trimming 

and quality filtering only those with lengths of 15-31 nt were kept. Trimmed reads were aligned 

to the GRCh38 human reference genome (illumine iGenomes NCBI GRCh38) using 

STAR/2.5.4a, and microRNA reads count was quantified according to GENCODE V24 genome 

annotation file which was the microRNA subset from comprehensive GENCODE annotations. 

 

FASTQC/0.11.5 was used for the quality control analysis of post-trimmed RNA-seq and 

miRNA-seq reads. Samples that received warning or fail messages on the analysis of Mean 

Quality Scores, per sequence quality scores, per base N content, or adapter content were filtered. 

STAR alignment scores were used for alignment quality control analysis. Samples over 60% of 

any type of unmapped reads were filtered. Code for RNA-seq quality control and alignment is 

available at: https://github.com/NCI-CGR/ChernobylThyroidCancer-RNAseq and 

https://github.com/NCI-CGR/ChernobylThyroidCancer-miRNAseq and archived on Zenodo (58, 

59). 

 

Illumina Infinium OmniExpress Single Nucleotide Polymorphism (SNP) Arrays 

High-throughput, genome-wide SNP genotyping, using Infinium BeadChip technology (Illumina 

Inc.), was performed at the Cancer Genomics Research Laboratory (CGR) of the National 

Cancer Institute. Genotyping was performed per the manufacturer’s guidelines using the 

Infinium automated HTS Assay protocol. Briefly, 200 ng genomic DNA, quantitated using 

Quant-iT PicoGreen dsDNA Reagent (ThermoFisher Scientific) was denatured and neutralized, 

then isothermally amplified by whole-genome amplification. The amplified product was 

enzymatically fragmented, then precipitated and re-suspended. Resuspended samples were 

denatured, then hybridized to locus-specific 50-mer oligonucleotides, which were attached to 1-

micron beads on the BeadChip. These 50-mer probes stopped one base before the location of 

interest. Enzymatic single-base extension of the oligos on the BeadChip, using the captured 

DNA as a template, incorporated tagged nucleotides on the BeadChip, which were subsequently 

fluorophore-labeled during staining. The fluorescent label determined the genotype call for the 

sample. The Illumina iScan scanned the BeadChips at two wavelengths to detect the fluorescent 

label, creating image files that were converted into genotype calls based on the detected 

fluorescence.  

 

All samples in this study were scanned on the Infinium HumanOmniExpress-24 (v1.1, v1.2) 

array using the standard Illumina microarray data analysis workflow 

https://github.com/NCI-CGR/ChernobylThyroidCancer-RNAseq
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(https://www.illumina.com/documents/products/technotes/technote_array_analysis_workflows.p

df) and data quality check was performed using PLINK (v.1.90b5.4). A two-stage filter by 

completion rate threshold of >0.8 for samples and >0.8 for loci, followed by >0.95 for samples 

and >0.95 for loci was performed. Sample contamination was examined by running the tool 

VerifyIDintensity(https://genome.sph.umich.edu/wiki/VerifyIDintensity) on each sample that 

passed completion rate filters or had a median raw intensity >6000. Additionally, sex 

verification, autosomal heterozygosity, and genotype concordance checks across all samples 

were performed to identify any problematic samples. 

 

Methylation EPIC Array 

400 ng of sample DNA, according to Quant-iT PicoGreen dsDNA quantitation (ThermoFisher 

Scientific), was treated with sodium bisulfite using the EZ-96 DNA Methylation MagPrep Kit 

(Zymo Research) according to manufacturer-provided protocol. Bisulfite conversion modifies 

non-methylated cytosines into uracil, leaving 5-methylcytosine (5mC) and 5-

hydroxymethylcytosine (5hmC) unchanged. For every 95 samples, an internal control, NA07057 

(Coriell Cell Repositories), was utilized to confirm the efficiency of bisulfite conversion during 

subsequent methylation analysis. 

 

High-throughput epigenome-wide methylation analysis, using the Infinium MethylationEPIC 

BeadChip (Illumina Inc.), which uses both Infinium I and II assay chemistry technologies, was 

performed according to manufacturer’s protocol. Bisulfite-treated samples were denatured and 

neutralized and whole genome amplified isothermally to increase the amount of DNA template. 

The amplified product was enzymatically fragmented, precipitated and resuspended in 

hybridization buffer. Twelve samples were applied to each BeadChip and hybridized overnight 

where fragmented DNA samples anneal to locus-specific 50mers (covalently linked to bead 

types for more than 850,000 methylation sites). Two bead types correspond to each CpG locus 

for Infinium I assays: one bead type corresponds to methylated, another bead type to the 

unmethylated state of the CpG site, while one bead type corresponds to each CpG locus (both 

methylated and unmethylated) for Infinium II assays. Single-base extension of the oligos on the 

BeadChip, using the captured DNA as template, incorporates tagged nucleotides on the 

BeadChip, which are subsequently fluorophore-labeled during staining. The Illumina iScan 

scanned the BeadChips at two wavelengths to create image and intensity files.  

 

The intensity files from the Illumina methylation assay on the MethylationEPIC BeadChip were 

processed and analyzed with the R programming language using the R package “minfi”. Briefly, 

raw intensity file (idats) were loaded into R using minfi. Samples were excluded if the percent of 

probes with detection p value >0.01 was greater than 4%, where the detection p-value=1-p-value 

as computed from the background model characterizing the chance that the target sequence 

signal was distinguishable from the negative controls. Concordance was checked for both 

expected and unexpected replicates using the ~60 polymorphic SNPs on the array. Raw 

methylation beta values were normalized according to previously published methods (60). 

 

Relative Telomere Length Measurement  

Relative telomere length measurement was performed on DNA using a qPCR assay adapted 

from Cawthon’s originally published protocol which is briefly summarized below (61, 62). 

Relative telomere length determination by qPCR measured the ratio of telomere (T) signals, 
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specific to the telomere hexamer repeat sequence TTAGGG, to autosomal single copy gene (S) 

signals. This ratio was standardized by internal control DNA samples to yield relative 

standardized T/S ratios proportional to average telomere length. In this technique, reactions for 

each assay were performed independently, in triplicate, so a standard curve of pooled gDNA 

samples was utilized to assess the amount of each signal, while compensating for inter-plate 

variations in PCR efficiency.  

 

In this dataset, the mean coefficient of variation (CV) of triplicates for the telomere assay 

was 0.59% and for the 36B4 assay (single copy gene, S) was 0.32%. The CV for the internal 

controls (n=85) standardized T/S ratio across all plates was 5.14%. In this dataset, the intraclass 

correlation coefficient (ICC) was 0.958 (95% confidence interval: 0.947, 0.967). The mean CV 

for the standardized T/S ratio of technical replicates was 4.9% based on 61 subjects.  

 

Bioinformatic Analysis 

The bulk of WGS processing was done within the Terra workflow framework (Terra.bio) (63). 

All workflows described below are available from a public workspace REBC_methods_only. 

Some of the input parameters for the workflows (particularly the Panels-of-Normals [PoN] - 

used for mutation, structural variation, and copy number detection) are protected data which 

requires dbGaP application (accession #phs001134 / PRJNA324143) approval for access. The 

same pipeline as described below was run on the cohort of WGS tumor-normal pairs as well as 

the WGS non-tumor thyroid tissue-blood normal pairs. Additionally, the pipeline was run on 42 

individuals without known radiation exposure who had available tumor-normal paired WGS data 

from The Cancer Genome Atlas (TCGA) data set according to current quality control criteria 

(10). Note that the subset of individuals selected for WGS from the full TCGA analysis of PTC 

were more likely to have an unidentified driver (10) due to sampling of WGS for this reason.  

  

Mutation Detection, Merging, and Filtering Pipeline 

A consensus calling approach for somatic mutations combined evidence from multiple detection 

algorithms (Fig. S6).  Single nucleotide variants (SNVs) were detected by MuTect 1.0 version 

GATK3 v1.1.6 (64) (Terra task wgs_pip_m1_fragcounter_oxoq_1), MuTect2.0 version GATK3 

“3.6-97-g881c5e9” (65) (Terra task wgs_pip_m2_64core), Strelka 1 version 1.0.11 (66) (Terra 

task strelka), and Strelka 2 version 2.8.3 (67) (Terra task strelka2), all with default parameters 

except as specified in Terra workspace REBC_methods_only. Insertion/deletion variants 

(INDELs) were detected by MuTect2.0, Strelka 1, and Strelka 2, as well as PCAWG_snowman 

version 1.0 (68) (Terra task pipette_wgs_SV), and SvABA version 134 (68) (Terra task 

SvABA_xtramem) all with default parameters except as specified in Terra workspace 

REBC_methods_only.  

 

To account for algorithms that were based on similar approaches and/or development teams 

(Strelka version 1 and Strelka version 2, PCAWG snowman and SvABA), a consensus “voting” 

scheme was used to select the final calls. Specifically, the consensus voting scheme (Terra task 

rebc_consensus_maf) gave MuTect 1.0 and 2.0 one vote each because of their different 

approaches to mutation calling, whereas Strelka 1 and 2 were combined to provide one vote if 

either algorithm detected an event, and PCAWG snowman and SvABA were combined to 

provide one vote if either algorithm detected an event. The post-process consensus filter required 

at least 2 votes from all the algorithms and was applied following the artifact filters described 
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below (Fig. S7). Mutations passing all filter criteria were included in the next layer of mutation 

analysis (MutSig2CV, SigProfiler signature analysis, ABSOLUTE purity and ploidy estimation, 

clonality estimation, and association analyses).  

 

The first computational step in MuTect (1.0 and 2.0) was to estimate sample DNA contamination 

from other individuals (ContEst version Queue-1.4-437-g6b8a9e1-svn-35362.jar (69), Terra task 

wgs_pip_m1_fragcounter_oxoq_1) which was used internally within MuTect to set somatic 

evidence thresholds. The ContEst tumor sample contamination estimate was also used by a post-

process filter (described below) on the consensus mutation calls so that algorithms other than 

MuTect were also desensitized to tumor sample contamination. Mutations that passed somatic 

mutation criteria for each algorithm were converted from their native format (usually VCF 

format (70)) to a common “maf-lite” format (71) (Terra task maflite_merge_maf_workflow) so 

that algorithms detecting a given variant could be merged into a common format before being 

annotated and converted to the standard MAF format by oncotator (71). 

 

Among the decisions imposed by the merging algorithm, multiple algorithms often have 

differences in allele counts for the same variant. This was resolved by ordering the algorithms 

(MuTect 1, MuTect 2, PCAWG Snowman, Strelka 1, Strelka 2, SvABA) such that the first 

algorithm in the ordered list with a call at the specific allele would be the algorithm to provide 

the merged allele counts. Indels were merged when the indel start occurred within a window of 

three bases. The merged mutations were then filtered (Terra task 

contest_oxoG_PoN_blat_Filter_Workflow) for possible sources of artifacts including 8-oxoG 

damage, PoN, local realignment around candidate mutations, tumor sample contamination, a 

hard threshold against more than one alternate supporting read in the normal, consensus among 

algorithms (Fig. S7). At each stage in the analysis a large fraction of the mutation candidates 

were manually reviewed in IGV (72), particularly those found to be outliers in terms of overlap 

with repeat regions (73), coverage spikes (>200x), low evidence (number of ALT reads < 5), or 

evidence of the ALT allele a normal (either by the matched normal or the PoN). Conclusions 

from manual review were applied to the list of candidate mutation in terms of modifications to 

the filter rules uniformly applied to all candidate mutations rather than as separate manual review 

judgements for particular mutations. The modification of rules included filter threshold 

adjustments for sample contamination, number of ALT alleles in the normal, and the consensus 

voting (described below).  

 

OxoG filter: The deToxoG filter (74) was used to remove candidate SNV that were likely to arise 

from 8-oxoG DNA damage in library prep. The OxoG filter was included in the Terra task 

contest_oxoG_PoN_blat_Filter_Workflow. Briefly, the deToxoG filter is based on the balance of 

alternate allele counts of two possible fragment “orientations” (F1R2 and F2R1 in which read 1 

of a pair is mapped forward - F1R2 - or reverse - F2R1). The artifact null model expects that the 

F1R2 and F2R1 should be equally balanced while mutations arising from 8-oxoG damage are 

highly skewed (~96%) in favor of F1R2 for G>T and F2R1 for C>A mutations mapped to the 

reference. The filter calculates a p-value that a given SNV is balanced, and any mutation with a 

Benjamini-Hochberg FDR less than 1% was removed, which is designed to leave a pool of 

candidate mutations with less than 1% arising from 8-oxoG damage.  
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PoN filters: There were several rounds of PoN filters applied. Several algorithms had their own 

internal PoN filters (eg. MuTect1, MuTect2, SvABA) which were either in VCF or bed format 

and were used as a blacklist to remove common germline variants or sites of artifacts. The 

merged MAF was subsequently filtered based on “Token PoN” evidence. The Token PoN filter 

method has been used in many previous cancer projects (10, 74-77), the only difference being 

that one of the PoNs was specifically constructed from the CTB WGS cohort. A Token PoN 

consists of counts from each sample in the PoN at each site of the genomic classified into 8 bins 

according to the reference and non-reference coverage with Variant Allele Fractions (VAF) of 

the sample at that site. The bins for each site were defined as: 

 

1. Count samples with sequencing depth < 8x  

2. Count samples with sequencing depth ≥ 8x, and not included in bins 3-8 

3. Count samples with depth ≥ 8x, alternate alleles > 1, and 0.1% < VAF ≤ 0.3%  

4. Count samples with depth ≥ 8x, alternate alleles > 2, and 0.3% < VAF ≤ 1.0%  

5. Count samples with depth ≥ 8x, alternate alleles > 3, and 1.0% < VAF ≤ 3.0%  

6. Count samples with depth ≥ 8x, alternate alleles > 3, and 3.0% < VAF ≤ 20.0%  

7. Count samples with depth ≥ 8x, 3 ≤ alternate alleles ≤ 10, and VAF > 20.0%  

8. Count samples with depth ≥ 8x, alternate alleles >10, and VAF > 20.0% 

 

Counts of samples in these bins were used to approximate a PoN likelihood vector for each site 

in VAF bins 0-0.1%, 0.1-0.3%, 0.3-1%, 1-3%, 3-20%, and 20%-100%. For each candidate 

mutation a corresponding data likelihood was constructed based on the beta distribution of VAF 

for the observed alternate and reference counts of supporting reads. The joint likelihood between 

the PoN and data is the bin-by-bin sum of the product of the two likelihood vectors. A candidate 

mutation fails the token PoN filter when log10(PoN joint likelihood) > -2.5, a threshold which 

was empirically determined from this and previous projects with combinations of validation data 

and manual review.  

 

There were two independent PoNs used for mutation filtering included in the Terra task 

contest_oxoG_PoN_blat_Filter_Workflow. One PoN was constructed from 248 normal blood 

samples with TIn=0 (see “deTiN” below) from this cohort (dbGaP accession # phs001134 / 

PRJNA324143). The other token PoN was derived from PCAWG normal blood samples (dbGaP 

accession # phs000178.v1.p1, EGA accession # EGAS00001001692). Each PoN was used as a 

statistically separate token PoN filter, although in most cases if a mutation failed one of the PoN 

filters it would also fail the other.  

 

Realignment filter: Alternate reads from each candidate mutation were realigned to the hg19 

reference using BLAT (78). This filter was part of the Terra task 

contest_oxoG_PoN_blat_Filter_Workflow. Any mutations with 3 or more reads with an 

alignment score to another mapped position greater than or equal to the alignment score at the 

position supporting the alternate allele were rejected.  

 

Contamination filter: The presence of germline mutations from another individual DNA 

contaminating the tumor sample can lead to false detection. MuTect 1.0 and MuTect 2.0 

explicitly take this into account in their statistical model detection threshold, but Strelka (1 or 2), 

SvABA and PCAWG_snowman do not, so a post-process contamination filter (Terra task 
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postFilter_contEst) was applied to the merged set of mutation calls. The contamination filter 

calculates the VAF beta cumulative distribution for each mutation’s count of reference and 

alternate supporting reads integrating from 0 to the contEst contamination level for that tumor 

sample. The VAF beta cdf was compared to a threshold of 1e-5 and any mutation exceeding the 

threshold was rejected as a likely consequence of sample contamination.  

 

NALT≤1 filter and deTiN: The final post-process filter (Terra task filter_NALT01_maf) 

removed any mutation with more than 1 alternate allele supporting read in the normal sample. 

This would potentially contradict the effect of the deTiN (79) algorithm, which first estimated 

the level of tumor DNA in the matched normal sample (TiN) and restored mutations that were 

previously rejected due to evidence of the alternate allele in the normal that are consistent with 

the TiN estimate. The deTiN algorithm was slightly modified in that the input candidate 

mutations from the MuTect1 “call_stats” file was filtered prior to deTiN using the PoN filters 

described above, modified so that it could operate on call_stats files in addition to maf formatted 

files as input. This step in the pipeline was implemented in Terra as Filter_call_stats. After 

deTiN processing we found that the bulk of mutations with 2 or more alternate allele supporting 

reads occurred in samples with Tin=0, so we excluded all such mutations.  

 

TERT mutation detection: To identify tumors with non-coding TERT hotspot mutations (C228T 

at hg19 chr5:1295228 and C250T at hg19 chr5:1295250) we used MuTect 1.0 in “forcecall” 

mode (Terra task Mutect1_ForceCall) across the TERT UTR region from chr5:1295103-

1295257, which reported coverage and alternate allele counts across the region.  

 

Microsatellite Insertions and Deletions  

Somatic microsatellite insertions and deletions (indels) were ascertained using MSMuTect, as 

described previously (21). Briefly, microsatellite loci (sequences with at least five successive 

motifs, regardless of the motif size) and alleles were identified separately in tumor and normal 

samples. Microsatellite loci with inferred alleles that differed between tumor and normal samples 

were considered potential somatic mutations. PoN filtering to account for either missed germline 

events or sequencing artifacts excluded loci that were identified in >2 samples from a set of 210 

individuals without cancer from the Ukraine collected for another study. Analyses assessed the 

total number of microsatellite indels as well as insertions and deletions separately. 

 

Structural Variant Detection and Filtering Pipeline  

Like the mutation detection pipeline, the SV detection pipeline was based on the consensus of 

calls among four structural variation detection algorithms (Fig. S13). The four algorithms were 

dRanger/Breakpointer (80), SvABA (68), PCAWG_snowman (81), and Manta (82) (Terra task 

manta). Default parameters were used for all algorithms as specified in the configuration files in 

Terra workspace REBC_methods_only. Output SV events from each algorithm were converted 

into a common format (tab delimited list of events patterned after the Breakpointer format) and 

filtered using a PoN based on PCAWG data (dbGaP accession # phs000178.v1.p1, EGA 

accession # EGAS00001001692). The conversion was done by Terra tasks 

svaba_snowmanvcf2dRangerForBP, mantavcf2dRangerForBP, extract_dRanger_intermediates, 

and pcawg_snowmanvcf2dRangerForBP (with the relevant algorithm in the task names). The 

merged set of SV events across the four algorithms was constructed by clustering the breakpoints 

and strands of each event within a window of 350 bp (approximate fragment length) by the Terra 
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task SV_cluster_forBP. The consensus SV calls generally had slightly different breakpoints and 

allele counts from the various algorithms, so the selected variant breakpoints and allele counts 

were set according to the algorithm order dRanger, Manta, SvABA, and PCAWG snowman. 

After the set of calls from the algorithms were combined into a single call set, a final 

Breakpointer job (Terra task breakpointer) detected the consensus breakpoint positions, counts of 

alternate and reference supporting split-reads and read-pairs, and identified any sequence 

homology or novel sequence at the breakpoints.  

 

The consensus SV filter (Terra task REBC_SV_consensus_filter_v3) required at least two 

algorithms to detect a mutation for the SV event to pass to the next layer of analysis. Each 

algorithm was given one vote in the consensus. There was no need for a more sophisticated 

consensus scheme since the contribution of calls based only on PCAWG snowman and SvABA 

was negligible (2 events) after filtering (Fig. S14), while dRanger and Manta were considered as 

“independent” algorithms. SV post-process filters demanded at least four alternate allele 

supporting reads (split-reads or read pairs, with each read pair counted at most once) from the 

tumor sample and at most one alternate supporting read in the normal sample. The Variant Allele 

Fraction of a given SV was estimated as  

 

VAF=TALT/(TALT+TREF/2)  

 

 where TALT and TREF are the counts of supporting pairs (split-read or read pairs, but each 

fragment counts at most once for fragments with both read pair and split read support for the 

alternate allele). SV calls with VAF<0.1were rejected by the filtering task. The SV filter also 

excluded of SVs with breakpoints within centromere or telomere regions.  

 

At a later stage in the analysis, we found that 10% of the candidate SV events had the same 

precise breakpoints in multiple tumor samples, adjacent tissue samples, and/or unmatched 

normal samples. These “hotspot” SVs had low counts of supporting reads and tended to occur in 

in regions of germline structural variation and were interpreted as hotspot somatic artifacts. None 

of these hotspot SVs occurred in SV driver genes. These hotspot SV events were rejected as 

artifacts using a custom matlab script REBC_SV_hotspots.4May2020.m outside of the Terra 

framework (https://github.com/getzlab/REBC_tools/releases/tag/1.0) 

 

The final step in SV processing was to identify simple/balanced events, simple/unbalanced and 

complex clusters of SV events based on breakpoint proximity of the SV calls, similar to the 

recent PCAWG approach (83). An SV with both breakpoints within 1kb of another SV in the 

same sample with opposite strands (+- and -+) were classified as simple/balanced SVs, which 

represent balanced interchromosomal translocations, balanced intrachromosomal translocations, 

and inversions. SVs with a breakpoint within 50kb of another SV in the same sample regardless 

of strand were considered clustered SVs consistent with possible chromoplexy. SVs without 

reciprocal SVs identified were considered simple/unbalanced and represent deletions, tandem 

duplications, and undetected balanced partner SVs (inversions or translocations). To improve 

sensitivity to finding SV clusters, SVs that failed post-process filters and were not called by 

PCAWG snowman or SvABA only were included as potential “links” in the chain. The inclusion 

of SVs that had failed filters only marginally expanded the list of clustered SVs by less than 

10%. The classification of SVs into simple/balanced, simple/unbalanced, and complex chains 

https://github.com/getzlab/REBC_tools/releases/tag/1.0
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was done using a custom matlab script REBC_balanced_inv2_clusters_unfiltered_27Jun2020.m 

outside of the Terra framework (https://github.com/getzlab/REBC_tools/releases/tag/1.0). 

 

Chromothripsis and Chromoplexy  

Chromothripsis was defined as SV complex clusters with uninterrupted oscillations between two 

copy number states in at least seven adjacent segments, according to the recent PCAWG 

approach (83). Only one of the 383 PTC tumors was found to have chromothripsis, with the 

cluster involving chromosomes 11 and 22, which resulted in an IGF2 overexpression driver.  

  

Chromoplexy events were defined as SV complex clusters with ≥3 DNA breaks involving ≥2 

chromosomes that create a loop, similar to the recent PCAWG approach (83). Loops were 

connected if the gap was <500kb or if there was a corresponding SCNA for gaps ≥500kb. 

Chromoplexy events were manually checked to confirm if the cluster was indeed a loop, except 

for the chromoplexy events with ≥30 SV calls (n=2 in two different PTC tumors). 

Chromothripsis and chromoplexy were considered mutually exclusive; the one tumor with 

chromothripsis was not assessed for chromoplexy. 

 

SCNA Detection and Filtering Pipeline  

Copy number detection was performed on the WGS data using the GATK 4.1.4 CNV workflows 

(Fig. S16). The first step was to build a PoN (Terra task 1-CNV_Somatic_Panel), followed by 

detection of allele copy number alterations (Terra task 2-CNV_Somatic_Pair). Both of these 

GATK4.1.4 method configurations were based on workflows from the public Terra workspace 

help-gatk/Somatic-CNVs-GATK4. The PoN consisted of 423 CTB normal samples that showed 

no sign of Tumor-in-Normal (TiN) contamination. The combination of total copy number based 

on normalized read coverage and germline heterozygous SNP allele fraction shifts allowed an 

estimate of the allelic copy number ratio across the genome and to assign allelic copy number 

ratios to discrete segments. Following the 2-CNV_Somatic_Pair workflow, germline copy 

number polymorphisms were removed and the allelic copy number information was transformed 

to AllelicCapSeg (84) format using the Terra task 

Model_Segments_PostProcessing_canonical_gatk414. A preliminary collapsing step combined 

allelic copy ratio segments that were within the estimated error on the mean for the respective 

segments, which produced a substantial reduction in noise in the segments while preserving arm-

level and focal events. The preliminary collapsing step was implemented in Terra as task 

MAF_AC_PP_CCF_fit_v3. 

 

A further collapsing step was implemented (Available at: 

github.com/hartleys/REBC_SCNA_utils and archived on Zenodo (85)) to group SCNA events of 

the same type across intervening segments without an SCNA designation (untyped event, see 

below), which most often occurred when segments had no heterozygous SNPs. For example, a 

series of DEL-Untyped-DEL segments would count as one DEL compared to DEL-GAIN-DEL 

segments, which would count as two DELs and one GAIN. Merged events were marked clonal if 

at least one of the component events was clonal (defined as CCF ≥ 0.75).  

 

For analyses testing the association of radiation exposure with SCNA events, rather than utilize 

the typical arm-level designation, we separated SNCAs that result from aneuploidy (chromosome 

level) from those that were likely the result of DNA double-strand breaks (sub-chromosome 

https://github.com/getzlab/REBC_tools/releases/tag/1.0
https://portal.firecloud.org/#workspaces/help-gatk/Somatic-CNVs-GATK4/method-configs/help-gatk/1-CNV_Somatic_Panel
https://github.com/hartleys/REBC_SCNA_utils
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level). Chromosome level SCNA events were counted when the entire chromosome had only one 

merged event and that event spanned the entire chromosome. This required the absence of any 

“non-event” segments. Sub-chromosome level events were SCNA events that did not span the 

whole chromosome, with either sections of normal copy number or multiple event types.  

 

Despite best efforts to optimize parameters of GATK4.14 CNV detection, one sample suffered 

from excessive coverage dropout and copy ratio noise using GATK4.1.4 CNV and was dropped 

from the SCNA radiation exposure association analyses. Only for that sample an alternative 

CNV pipeline was used that was based on the AllelicCapSeg algorithm (Terra tasks 

wgs_pip_m1_fragcounter_oxoq_1 and allelic_Capseg_WGS). The output formats of both 

allelic_Capseg_WGS and Model_Segments_PostProcessing_canonical_gatk414 were equivalent 

so the downstream copy number analysis (GISTIC2.0 and ABSOLUTE) were the same for all 

samples or cohorts.  

 

Purity and Ploidy Assessment  

ABSOLUTE (84) was run on all pairs, however only 20% of the tumors showed sufficient allelic 

copy number signal to make tumor purity and ploidy estimates based on ABSOLUTE manual 

review of all tumors. To estimate purity for the remainder of tumors a matlab script 

(alleleFraction_clonal_hets_Purity_estimate.m, and REBC_consensus_mutations.m 

https://github.com/getzlab/REBC_tools/releases/tag/1.0) was developed to estimate purity based 

on identifying the somatic clonal allele fraction peak of multiplicity 1 mutations. Briefly, the beta 

distribution for the variant allele fraction:  

 

 p(VAF|TALT, TREF)=(VAF, TALT+1, TREF+1)  

 

was calculated for each mutation to model the variant allele fraction (VAF) probability 

distribution for each mutation with TALT alternate allele supporting reads, and TREF reference 

supporting reads. Beta distributions in bins of 0.002 VAF units for mutations passing “high 

stringency” filters (eg. Only mutations with no ALT alleles in the normal sample, NALT=0, and 

excluding regions of copy number alterations) were summed into a combined VAF distribution 

and the highest peak with a VAF<0.5 was taken as an initial estimate of the clonal VAF. 

Mutations consistent with this clonal VAF (p-value>0.05) were then selected as the mutations 

most likely to be clonal and the joint likelihood VAF was constructed across all of these “clonal 

het” mutations. The VAF distribution defines the clonal VAF confidence interval and the median 

of the VAF distribution was the estimated clonal VAF value. The tumor purity is then estimated 

as 2*VAF and the confidence interval of the purity estimate is the 68% (1-sigma) or 95% (2-

sigma) width of the 2 x VAF joint likelihood distribution.  

 

Final estimate of purity considered both ABSOLUTE and mutation VAF methods, but in most 

cases the purity estimate was based on mutation VAFs since relatively few tumors had sufficient 

copy number variation. A potential limitation of the mutation VAF method was the lack of 

constraint on tumor ploidy, but this was not a practical limitation because the samples that had 

exhibited copy number alternations used the ABSOLUTE algorithm, which did include a ploidy 

estimate. Only seven tumors had a tumor ploidy estimate inconsistent with 2.0.  

 

https://github.com/getzlab/REBC_tools/releases/tag/1.0
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For the purposes of most statistical analyses, we excluded samples with tumor purity <20% or 

with evidence of tumor contamination in the normal tissue (Fig. S1). We further excluded two 

tumors as low purity samples because the fraction of clonal mutations used to predict the purity 

at the time of final sample eligibility determination was <1% of the total variants (review of the 

VAF distribution revealed that these outlier variants were inflating the purity estimate). 

 

Variant Clonality (Cancer Cell Fraction) Estimation 

SCNA CCFs: The ABSOLUTE algorithm (84) includes an estimate of the cancer cell fraction 

(CCF) and alternate allelic copy number for each allelic copy ratio segment, however since the 

bulk of the tumors did not exhibit sufficient copy number to constrain ABSOLUTE purity and 

ploidy solutions with corresponding allelic Somatic Copy Number Alterations (aSCNA) and 

mutation CCFs so a custom matlab script MAF_AC_PP_CCF_fit_v3.m 

(https://github.com/getzlab/REBC_tools/releases/tag/1.0) was implemented as Terrra task 

MAF_AC_PP_CCF_fit_v3. The logic of this task was largely based on the logic described in the 

ABSOLUTE paper (84) with an additional constraint penalizing solution in which the fitted 

absolute allelic copy number fluctuates slightly above an integer value, leading to a sharp 

discontinuity in the SCNA CCF. A simplifying assumption in both ABSOLUTE and 

MAF_AC_PP_CCF_fit_v3 is that each aSCNA segment represents a combination of the WT 

allele (copy number 1 for each allele in the autosomes), copy number NA on the A allele (minor 

lower CN allele), and NB on the B (major allele) variant alleles in fraction (CCFA and CCFB) of 

tumor cells. The basic logic is to fit the allelic copy number (NA and NB for the minor A and 

major B alleles) with CCFs (CCFA and CCFB) to the observed allelic copy ratios: 

 

CRA ~ (CCFA*𝝰 *NA + (1-CCFA)*𝝰 + (1-𝝰))  

CRB ~ (CCFB*𝝰 *NB + (1-CCFB)*𝝰 + (1-𝝰))  

 

for each allelic copy ratio segment, where 𝝰 is the tumor purity. NA and NB were by definition 

alternate alleles (not 1 on the autosomes) so segments of normal copy number had CCFs equal to 

zero, or very close to zero due to the uncertainty in the copy ratio measurement.  

 

Mutation CCF: ABSOLUTE (84) includes an estimate of the cancer cell fraction (CCF) and 

multiplicity (m) for each mutation, however as in aSCNA CCF estimation the bulk of the tumors 

did not exhibit sufficient copy number, so mutation CCFs and multiplicities were estimated by 

the custom matlab script MAF_AC_PP_CCF_fit_v3.m 

(https://github.com/getzlab/REBC_tools/releases/tag/1.0, Terra task MAF_AC_PP_CCF_fit_v3). 

The modified aSCNA constraint also helps to constrain mutation CCF and multiplicity for those 

mutations within problematic SCNA regions. The CCF and multiplicity of a given mutation is fit 

based on the observed ALT and REF allele counts, the local copy number state (NA, NB, CCFA, 

CCFB), and tumor purity 𝝰:  

 

VAF= (CCF*𝝰 *m ) / TotDNA  

 

TotDNA=𝝰 *( NA*CCFA + NB*CCFB + (1-CCFA) + (1-CCFB)) +(1- 𝝰) 

 

The multiplicity m of a mutation depends on the substrate of allelic copy number (NA and NB) 

at the site of the mutation, where the mutation may occur on either A or B copy number alleles 

https://github.com/getzlab/REBC_tools/releases/tag/1.0
https://github.com/getzlab/REBC_tools/releases/tag/1.0
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(unless the allele is a deletion) or occurs in tumor cells that have normal copy number. The 

likelihood fit was done for each possible copy number substrate and the solution with the highest 

likelihood was selected. The six possible configurations for a mutation to occur on a copy 

substrate of NA, CCFA and NB, CCFB were:  

1) Mutation on allele A (NA, CCFA) with m=1 

2) Mutation on allele B (NB, CCFB) with m=1 

3) Mutation on allele A (normal CN, 1-CCFA), m=1 

4) Mutation on allele B (normal CN, 1-CCFB), m=1 

5) Mutation on allele A (NA, CCFA) with m=NA 

6) Mutation on allele B (NB, CCFB) with m=NB 

 

The mutation VAF was calculated for each configuration over the full range of mutation CCFs, 

and the likelihood was estimated by the binomial pdf using the mutation ALT counts, sequencing 

depth, and VAF. The maximum likelihood over mutation CCFs and configuration set the final 

mutation CCF and CCF confidence interval. The posterior likelihood included a small prior (1%) 

favoring higher CCF solutions was used to break ties between different solutions. Note that the 

overwhelming bulk of mutations in this cohort occurred in regions without measurable copy 

number alternations such that configuration 3 (the same as 4 since CCFA=CCFB=0) was the 

only possible configuration.  

 

SV CCF: Estimating the CCF of SV events is similar to the method used for mutations, except 

that SVs incur additional complications. The first complication is that each breakpoint could 

have its own copy number substrate such that the variant allele fractions for the two breakpoints 

could be different, although the cancer cell fractions for both the breaks must be the same. The 

second complication is that the observed counts of ALT and REF supporting is more prone to 

bias against the ALT allele than is the case for mutations.  

 

For each breakpoint, the somatic copy number substrate is determined by matching the side of 

the break containing the ALT supporting reads to the local copy number segment NA, NB, 

CCFA, and CCFB. Since SV breakpoints can also be copy number breaks it is important to 

match the local number segment on the side of the break with the supporting reads. Once the 

copy number state is found for each breakpoint, the SV CCF and multiplicity for each break is 

found using the same procedure as for mutations, providing two estimates of the SV CCF with 

confidence intervals. In some cases, a breakpoint occurs in a region without a measured copy 

number segment (eg. noisy SCNA region or a segment not containing any germline hets used to 

estimate allelic copy ratios). No breakpoint CCFs are estimated without a corresponding copy 

number state. The SV CCF distribution is estimated as the average of the breakpoint CCF 

distributions. The SV CCF is the median of the CCF distribution and the confidence intervals 

(95% CI and 68% CI) are calculated from the CCF distribution. The SV CCFs were calculated 

by the Terra task SV_CCF_v3, which was based on the matlab script by the same name 

(https://github.com/getzlab/REBC_tools/releases/tag/1.0) 

 

CCF Clonal and Subclonal Thresholds: For the SSV mutations, clonal variants were defined as 

those with a CCF hat >0.9 in order to generate an ultra-clean clonal set (Fig. S8). Subclonal SSV 

variants were those with a CCF hat <0.6. For both the SV and SCNA variants, clonal variants 

were defined as those with a CCF hat ≥ 0.75 with subclonal variants having a CCF hat <0.75. 

https://github.com/getzlab/REBC_tools/releases/tag/1.0
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Cohort-Level Analysis 

Mutsig2CV: MutSig2CV performs an unbiased assessment of all somatic mutations, identifying 

candidate driver genes as those with recurrent mutations occurring significantly more often than 

expected from the null model (Fig. S20) (86) (Terra task 

Mutation_MutSig2CV_hg19_consensus_fix_NALT01_maf). MutSig2CV identified eight genes 

as significantly mutated with an FDR<0.1: BRAF, NRAS, HRAS, TG, KRAS, TSHR, CR2, and 

DICER1 (Fig. S20).  

 

GISTIC2.0: Significantly recurrent copy number regions were detected using GISTIC2.0 (87) 

(Terra task CopyNumber_Gistic2_hg19_GATK414) for both chromosome arms and focal peaks. 

GISTIC identified 9 significant arm-level results, 2 significant focal amplifications, and 7 

significant focal deletions (Fig. S19). Three of the seven recurrent deletion peaks were 

associated with driver fusions (RET, NTRK3, and ALK), which was interpreted as additional 

evidence for these fusion partners.  

 

Mutational Signature Analysis 

Mutational signature classification was performed on total, clonal, and subclonal single base 

substitutions (SBS) and small indel (ID) variants separately using SigProfiler (20, 22), 

combining samples from our study with the 42 individuals without known radiation exposure 

who had available tumor-normal paired WGS data from the TCGA analysis (10). Briefly, SBS 

were classified according to the 6 possible base substitutions (C>A, C>G, C>T, T>A, T>C, T>G, 

considering the pyrimidine of the mutated bp), plus the flanking 5´ and 3´ bases. Indels were first 

classified as deletions or insertions. Single base indels were then classified by the homopolymer 

length (length of the mononucleotide repeat tract in which they occurred; 1, 2, 3, 4, 5, or 6+ for 

single base deletions; 0, 1, 2, 3, 4, 5+ for single base insertions). Indels >1 bp were then 

classified by the whether they occurred at repeats or with overlapping microhomology at deletion 

boundaries, and finally by the indel size. We identified these SBS and ID patterns using 

SigProfilerMatrixGenerator (version 1.1.0), with modification using presig, version 0.0.1 to 

identify the single base indels using our untrimmed MAF files as inputs (Available at: 

https://github.com/edawson/presig/releases/tag/0.1.0 and archived on Zenodo (88)).  

 

We then performed nonnegative matrix factorization-based signature extraction using 

SigProfilerExtractor version 1.0.3 via the SigProfilerHelper wrapper (Available at: 

https://github.com/edawson/SigProfilerHelper and archived on Zenodo (89)), performing 1000 

iterations to optimally attribute the mutational patterns to one of the known 96 SBS or 83 ID 

signatures (signature deconvolution) from the Catalogue of Somatic Mutations in Cancer 

(COSMIC v3, https://cancer.sanger.ac.uk/cosmic/signatures) (20) or to identify de novo 

signatures. SBS and ID signature analyses were run on the set of samples from the CTB and 

TCGA combined to facilitate comparison of results among the study populations (Fig. S10-S12). 

Table S5 shows the fraction of mutations attributable to each known COSMIC or de novo 

signature and the correlation amongst different signatures in the full study population. Signature 

decomposition analyses restricted only to those from the CTB overall, those who were exposed 

to any radiation, or those with an estimated thyroid radiation dose >200 mGy were highly 

correlated with those from the combined analysis with the TCGA samples and thus are not 

presented (data not shown). Results were plotted using tidysig, version 0.0.1 (Available at: 

https://github.com/edawson/presig/releases/tag/0.1.0
https://github.com/edawson/SigProfilerHelper
https://cancer.sanger.ac.uk/cosmic/signatures
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https://github.com/edawson/tidysig/releases/tag/0.0.1 and archived on Zenodo (90)), an R 

package developed to maintain a consistent style among the plots and supporting normalized 

counts across signatures in the plots.  

 

For further evaluation of the deconvolution SBS signatures, we also utilized SignatureAnalyzer, 

which has a slightly different approach to nonnegative matrix factorization compared with 

SigProfiler (91). As shown in previous studies (20), results from the two approaches were highly 

correlated and yielded similar results; herein we present data from SigProfiler. 

 

SNP Array Data Processing and Subject Ancestry 

In order to understand the underlying population genetic structure of study population, we used 

genotypes drawn from a study of 7,544 individuals from Europe (92), which included countries 

adjacent to Ukraine in Eastern Europe. Additionally, 157 European individuals from the Human 

Genome Diversity Project (93) also were included from France, Italy, Orkney Islands, and 

Russia. The total number of individuals by country were Czech Republic, n=902; Denmark, 

n=137; Finland, n=1935; France, n=300; Germany, n=108; Greece, n=36; Hungary, n=259; Italy, 

n=139; Norway, n=521; Orkney Islands, n=15; Poland, n=1075; Romania, n=228; Russia, 

n=1593; Slovakia, n=209; Spain, n=55; Sweden, n=130, and the Netherlands, n=59. 

 

Subject genotypes were cleaned using PLINK 1.90 (https://www.cog-

genomics.org/plink/1.9/general_usage#cite) with the following thresholds: SNP-level 

missingness <2%, Hardy-Weinberg equilibrium exact test P>0.001, and minor allele frequency 

>0.01. Variants were pruned for linkage disequilibrium with PLINK 1.9 --indep and --indep-

pairwise, and heterozygosity outliers were screened at |F|>0.2. Subject ancestry was computed 

with GRAF (94). Variants with informative missingness as computed with PLINK 1.9 --test-

missing (permutation p<0.05) or --test-mishap (p<1×10-5) were removed. PCA was run using 

smartpca (from EIGENSOFT v6.1.4) (95) with outliers flagged at >6 standard deviations (n=8). 

For analyses of germline genetic variants, the top 10 principal components were generated for 

inclusion in multivariable models, excluding these 8 outlier individuals, as well as 3 individuals 

with estimated East Asian ancestry >10%, and 1 individual in the set of twins. 

 

Germline Mutation Detection and Filtering Pipeline  

Germline variant calling from the WGS data was performed using HaplotypeCaller (docker 

version broadinstitute/gatk:4.0.6.0, Terra task haplotypecaller-gvcf-gatk4), FreeBayes (v1.1.0-

46-g8d2b3a0), and Strelka (version 2.8.3). For HaplotypeCaller, the GATK combineGVCFs 

(v3.8.0) utility was used to joint call all samples together. For FreeBayes and Strelka variants 

were called individually for each sample. All individual sample-level variant files were left 

aligned and trimmed, and multiallelic variants were split apart using vArmyKnife (v2.2.167, 

concordanceCaller utility) and vcftools (v0.1.16). GATK CombineVariants (v3.8.0) was used to 

create a merged, multi-sample variant file.  

 

Primary identification of genotypes was based on HaplotypeCaller, with the secondary callers 

(Strelka and/or FreeBayes) used to confirm the existence of each variant. We filtered poor 

quality data based on caller concordance and hetAB fraction (the ratio of the alternative allele 

read depth versus the total read depth among heterozygotes). Variants were required to be 

detected by HaplotypeCaller and Strelka and have hetAB>0.2 at a minimum, as well as fulfilling 

https://github.com/edawson/tidysig/releases/tag/0.0.1
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one of the following: 1) called by all three callers, 2) hetAB>0.3, or 3) <3 observed 

heterozygotes and hetAB>0.25.  

 

From these filtered germline mutations, candidate gene investigation was assessed for potentially 

protein damaging variants in genes associated with thyroid cancer predisposition specifically, 

cancer predisposition more generally, and/or DNA damage response (96). Variants were 

annotated from external variant databases using the SnpSift software library, accessed via 

vArmyKnife, filtering out those variants that had a frequency of ≥1% in any ancestral population 

in the Exome Aggregation Consortium (ExAC; excluding TCGA) (97), 1000 Genomes Project 

(98), Exome Sequencing Project (ESP; Exome Variant Server, NHLBI GO Exome Sequencing 

Project (ESP), Seattle, WA; http://evs.gs.washington.edu/EVS/), gnomAD exomes (excluding 

TCGA) or gnomAD genomes. Variants were filtered if >10% of the CTB sample set had one or 

more alternative alleles. Variants with set frequencies between 1 and 10% were flagged and 

manually reviewed by visualization in Integrative Genomics Viewer (IGV). Finally, we 

identified potentially protein-damaging variants in the genes of interest, defined as either SnpEff 

(99) classic high-impact variants without a ClinVar (100) designation of B/LB, or SnpEff 

moderate- or low-impact variants with a ClinVar designation of P/LP.  

 

SNPs were extracted from the WGS data to construct a polygenic risk score (PRS) from 12 SNPs 

previously reported to be associated with thyroid cancer (Table S15) (101). The previously 

reported meta-analysis ORs range from 1.20 to 1.71 (101). The risk allele frequencies in 

gnomAD non-Finnish Europeans ranged from 3% to 75%, with five risk alleles having ≥45% 

frequency. 

 

RNA-Based Fusion Detection 

mRNA-seq was analyzed with four fusion detection programs: ChimeraScan (102), EricScript 

(103), STAR-Fusion (104), and MapSplice 2 (105). EricsScript and Mapsplice 2 were selected 

based on previous reviews and reports on accuracy and performance (106, 107). Potential fusions 

were ranked and scored by consensus detection and the number of supporting reads. A fusion 

score of 4.0 would indicate that the fusion was the top-ranked fusion for all four programs. For 

lower values, multiple scenarios could result in the same score. For a fusion score of 3.0, the 

fusion could be the top-ranked fusion in three callers but not detected (or ranked low) by the 

fourth caller (1+1+1+0) or could have been the top-ranked fusion in two callers and the median 

ranked fusion in the other two callers (1+1+0.5+0.5). Similarly, a score of 2.0 could indicate that 

a fusion was the top-ranked fusions for two programs and not detected (or ranked low) for the 

other two programs (1+1+0+0) or that the fusion was the median ranked fusion for all four 

programs (0.5+0.5+0.5+0.5). Code for RNA fusion calling is available at: 

https://github.com/NCI-CGR/ChernobylThyroidCancer-RNAFusionCalling and archived on 

Zenodo (108). 

 

RNA-Based Mutation Detection 

mRNA-seq was analyzed with VarDict to identify SSVs (109). Variant processing was carried 

out with vArmyKnife (v2.2.305). Variants were left aligned and trimmed and annotation was 

performed using SnpEff v4.3t. Code for RNA variant calling is available at: 

https://github.com/NCI-CGR/ChernobylThyroidCancer-RNAVariantCalling and archived on 

Zenodo (110). 

https://github.com/NCI-CGR/ChernobylThyroidCancer-RNAFusionCalling
https://github.com/NCI-CGR/ChernobylThyroidCancer-RNAVariantCalling
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mRNA, miRNA, and Methylation Clustering Analyses 

We performed unsupervised consensus clustering using ConsensusClusterPlus. Input data 

included the variance stabilizing transformation (vst) expression of the 1000 most variably 

expressed genes for mRNA analysis, the vst expression of the 100 most variably expressed 

miRNAs for miRNA analysis, and the normalized beta value of 3000 most variably methylated 

CpG islands for methylation analyses. Code for clustering analyses is available at: 

https://github.com/NCI-CGR/ChernobylThyroidCancer-Clustering and archived on Zenodo 

(111). Code for detection of differentially methylated cpg islands is available at: 

https://github.com/NCI-CGR/ChernobylThyroidCancer-Methylation and archived on Zenodo 

(112). 

 

The appropriate cluster number (k) was determined by identifying the largest cluster with a delta 

area value >0.3. Because PTC formed a distinctive cluster from non-tumor thyroid tissue in 

initial mRNA clustering analyses including both sample types (Fig. S21), subsequent clustering 

analyses for mRNA, miRNA, and methylation was restricted to PTC samples only (Fig. S22-

S23).  

 

Signaling and Thyroid Differentiation Scores 

Based on the TCGA analysis (10), we constructed three scores to reflect transcriptional patterns 

related to key signaling and thyroid differentiation pathways (Fig. S24; Table S12). Since nearly 

all PTC oncogenic drivers are members of the MAPK pathway, we constructed a score to 

distinguish the transcriptional patterns of tumors with the two most common activating point 

mutations, BRAFV600E and RAS (BRAFV600E-RAS score [BRS]). We constructed the BRS score 

using mRNA, miRNA, and methylation data. Based on mRNA data, the 100 significantly 

differentially expressed genes between BRAFV600E and RAS tumor-normal paired samples were 

determined, based on a DESeq2 q-value (adjusted p-value (113)) ≤0.01 and fold change ≥2. The 

variance stabilizing transformed (vst) expression of these 100 genes was used to quantify the 

degree to which each tumor’s mRNA profile resembled that of either BRAFV600E or RAS-mutated 

PTC, as described previously (10). A miRNA BRS was constructed, based on 77 miRNAs 

significantly differentially expressed between BRAFV600E and RAS tumor-normal paired samples 

(DESeq2 q-value≤0.05 and fold change ≥1.5) in our study, and a methylation BRS, based on the 

normalized beta value of 1000 significantly differential methylated cpg islands between 

BRAFV600E and RAS PTC samples, as determined by the overlap of results from two tools: minfi 

(114) and ChAMP (115) (q-value≤0.01 and fold change ≥2.0). To confirm the validity of the 

mRNA BRS score generated using our internal gene expression data, we also reconstructed the 

mRNA BRS score using data for 70 of the 71 genes differentially expressed between BRAFV600E 

or RAS-mutated PTC in the TCGA analysis (10) (excluding ANXA2P2, a pseudogene not 

included in our GRCh38 gene annotation file). Table S12 shows the high correlation (Pearson 

correlation, r=0.98) between the internal- and TCGA-based mRNA BRS scores, as well as 

among the mRNA, miRNA, and methylation BRS (r=0.78-0.92).  

 

An ERK-activity score was constructed to estimate the expression profiles for genes that were 

shown in BRAFV600E-mutated melanoma cell lines to be responsive to MEK inhibition (116), as 

per the previous TCGA analysis (10). Briefly, we compared the vst expression of 52 genes in 

tumors, standardized based on the expression of each gene in BRAFV600E -like (BRS<0) or RAS-

https://github.com/NCI-CGR/ChernobylThyroidCancer-Clustering
https://github.com/NCI-CGR/ChernobylThyroidCancer-Methylation
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like (BRS>0) tumors. Finally, we constructed a thyroid differentiation score (TDS), also 

according to the previous TCGA analysis (10), whereby we calculated the mean fold change in 

vst expression level across 16 thyroid function genes. Code for generating all scores is available 

at: https://github.com/NCI-CGR/ChernobylThyroidCancer-Scores and archived on Zenodo 

(117). 

 

RNA-Seq Differential Expression and Gene Set Enrichment Analysis 

We conducted exploratory analyses evaluating whether radiation dose was related to differential 

expression of specific genes and gene sets, following the approach used by PCAWG (118). 

Briefly, for analyses of individual genes, normalization factors for gene-level read-pair counts 

(generated as described above) were calculated using the “UQCT” method, which takes the 75 

percentile of the counts for each sample, excluding zero-count genes. The raw counts were 

increased by 1 (to eliminate log-0 errors), divided by the normalization factor, and then log2-

transformed. These log-normalized counts were used to fit a standard multivariable linear 

regression, as described below in the Statistical Analysis, with additional adjustment for 

experiment batch (phase) in addition to age at PTC and sex.  

 

Patterns of RNA-Seq expression in previously identified pathways and gene sets were extracted 

from the Molecular Signatures Database (MSigDB v7.1; https://www.gsea-

msigdb.org/gsea/msigdb) (31). All gene sets related to hallmark biological processes, thyroid, 

radiation, and the genes from our germline analyses were included, resulting in 3,213 gene sets. 

GSVA, an R package that performs “Gene Set Variation Analysis,” was used to collapse 

expression information across gene sets. This tool takes log-normalized counts for each gene and 

set of genes, outputting a single value for each geneset/sample combination (specifically the 

Kolmogorov-Smirnov-like rank statistic) (119). Linear regression analyses were performed on 

these statistics, as described below. 

 

Methylation Age 

Exploratory analyses were conducted to evaluate whether radiation dose was associated with 

epigenetic age acceleration, estimated from tumor methylation profiles using two well-

established approaches (38, 39). Briefly, we regressed epigenetic age against chronological age 

in the non-tumor thyroid tissue and then compared the residuals from this predicted age in the 

PTC tissue. These residuals were utilized as outcomes in linear regression models described 

below. 

 

PTC Driver Identification 

Candidate mutation and fusion drivers were identified in the 440 PTC tumors by interrogating 

both the WGS and mRNA-seq with a comprehensive candidate driver gene list. For the simple 

somatic variants or mutation drivers, candidates included genes significantly mutated in the 

MutSig2CV analysis of 383 WGS tumors (Fig. S20), genes previously reported as 

mutation drivers in the TCGA analysis (10), and genes reported in the COSMIC Cancer Gene 

Census (CGC) v90 (https://cancer.sanger.ac.uk/census) with frameshift, missense, nonsense, or 

splice site mutation types. For the SV or fusion drivers, candidates included previously identified 

fusion drivers or focally deleted genes (BRAF and PTEN) in the TCGA analysis (10) and genes 

reported as oncogenes or tumor suppressors in the COSMIC CGC with fusion indicated for 

https://github.com/NCI-CGR/ChernobylThyroidCancer-Scores
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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either the “role in cancer” or “mutation type.” Fusions involving HRAS, KRAS, and NRAS were 

included because of the substantial contribution of RAS-activating mutations in thyroid cancer.  

  

For mutation drivers, we identified somatic protein altering variants that had a corresponding 

match in the COSMIC CGC v90 database; additionally, for CR2, which did not have a COSMIC 

CGC v90 entry, we considered the variants identified by MutSig2CV (described above). 

Mutation identification was carried out first in the WGS using the final somatic variant calls, 

which have inherent matched normal sample, and PoN filters (see Mutation Detection, Merging, 

and Filtering Pipeline section above). Since mRNA-seq variant calling is not as robust as WGS 

calling, additional rules were applied to exclude variants meeting any of the following criteria: 1) 

evidence in a PoN comparison set, created using the 392 high-quality non-tumor thyroid tissue 

samples that had a corresponding PTC mRNA-seq sample; 2) alternate allele read depth ≤10; 3) 

splicing variants; or 4) variants in genes not identified as drivers in the WGS data. Recurrent 

BRAF and RAS variants in the WGS dataset were force called to avoid the problem of recurrent 

drivers being present in the non-tumor thyroid tissue samples. For both WGS and mRNA-seq, 

we also manually reviewed doublet and indel mutations near BRAF p.V600 because of the strong 

supporting evidence for this locus in driving PTC. Two indels near BRAF p.V600 were identified 

and determined to be mutation drivers: one resulted in p.600_601VK>E and had a direct 

COSMIC v90 database match, and other resulted in the insertion of six amino acids and was 

similar to another COSMIC v90 database entry. Because annotated databases are often SNV-

biased and do not always match on doublets appropriately, we interrogated all nine WGS doublet 

calls individually and determined that three were drivers because the corresponding protein 

changes had a COSMIC v90 database match. Finally, TG variants were excluded as driver 

mutations because most of the TG variants were noncoding (1:17 coding:noncoding in TG versus 

10:1 in BRAF), which is a hallmark of hypermutation due to lineage-specific overexpression 

(120). 

 

For fusion drivers, we queried the WGS SV and mRNA-seq gene fusion calls to identify events 

that occurred in both the WGS (final SV calls) and mRNA-seq (RNA fusion score ≥2). Events 

occurring in only WGS or mRNA-seq utilized more stringent criteria, requiring SV calls to have 

1) tumor alt reads ≥10, 2) normal alt reads=0, 3) number of SV callers (dRanger + 

max(pcawg_snowman, SvABA) + Manta ≥ 2, and 4) breakpointer type contains fusion or 

deletion and is not antisense, transcript fusion or out of frame protein fusion. mRNA-seq-only 

calls required RNA fusion score ≥3. Our approach allowed for identification of high-confidence 

fusion drivers in the set of tumors with both WGS and mRNA-seq (n=374) as well as those with 

only WGS (n=9) or only mRNA-seq (n=57). The approach ensured identification of fusion 

drivers resulting from a complex set of multiple SV events, in which mRNA-seq identified the 

final gene fusion product but the WGS identified multiple intermediate steps, for example, 

NCOA4-RET versus NCOA4-SHOC2, and SHOC2-RET. After the fact, we performed an 

unbiased assessment of the confirmed SVs utilizing the stringent WGS fusion criteria without 

restricting the analysis to the fusion candidate gene list and did not identify additional recurrent 

fusion driver candidates. 

  

For tumors without an identified driver based on the above approach, we utilized PTC mRNA 

expression (clustering, overexpression outliers) and SCNAs to identify candidate drivers. 

Unsupervised mRNA clustering of tumors identified 5 clusters (as described above), which were 
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correlated with the already-identified drivers (Table S11). Cluster 5 included two tumors, one of 

which had both a frameshift and a stop-gained TSC2 variant suggestive of biallelic loss of the 

tumor suppressor TSC2, which forms a complex with TSC1. Further review of the other tumor 

revealed a stop-gained germline TSC1 variant with an SCNA loss over the TSC1 coding region, 

suggesting biallelic loss of TSC1 as the candidate driver. For the two tumors in cluster 3, further 

review of high impact (frameshift and stop-gained) somatic and germline variants revealed 

biallelic loss of APC as the candidate driver, with one tumor having a somatic APC frameshift 

variant (no COSMIC v90 database match) and an SCNA loss over the APC coding region, and 

other having a germline stop-gained pathogenic variant (based on ClinVar) and an SCNA over 

APC.  

 

THADA-fusions are known as drivers in thyroid cancer (10) and have been found to result in 

overexpression of IGF2BP3 (121). Three tumors with THADA fusions and corresponding 

IGF2BP3 overexpression (vst expression >6 standard deviations from the mean) were identified 

with the rules above. We designated IGF2B3 as the candidate driver for the one additional tumor 

with similar overexpression. Overexpression of IGF2BP3 leads to an increase in IGF2 protein 

levels and activation of the PI3K and MAPK pathways (121), thus we also checked for IGF2 

overexpression outliers. We identified two tumors (one with mRNA-seq only, one with multiple 

SVs near IGF2) without a candidate driver based on the rules above with IGF2 overexpression, 

which we designated as the candidate driver.  

  

All candidate drivers are listed in Table S7. For Fig. 1, driver genes were displayed for 

oncogenes if they were recurrent within the dataset and for tumor suppressor genes if they were 

recurrent and had evidence for biallelic loss. For all driver analyses, final driver designations 

were made according to the following rules: 1) if individual has only one candidate driver that is 

recurrent (observed in at least one other sample); or 2) if >1 recurrent candidate driver, all 

drivers with ≥ 5 recurrences were outputted and further evaluated (n=3 tumors). For the tumor 

with a PPARG fusion and NRAS mutation, the NRAS mutation was designated as the final driver 

because it had higher CCF, whereas the CCF of the PPARG fusion was low and the tumor did 

not cluster with the other 13 PPARG fusions in the PTC mRNA cluster analysis. For the tumor 

with a BRAF p.V600E and THSR with similar CCF, the BRAF mutation was designated as the 

final driver due to its overwhelming recurrence rate. For the tumor with a non-V600E BRAF and 

KRAS mutations with similar CCFs, no final driver was designated.  

 

For the 351 individuals that had both a high purity (>20% purity) WGS and mRNA PTC sample, 

designated mutation driver concordance was 100% (n=215 mutations), and designated fusion 

driver concordance was 100% (n=130 fusions), after accounting for the final fusion being 

identified in mRNA-seq and fusion intermediates in WGS, for example, NCOA4-RET versus 

NCOA4-SHOC2, and SHOC2-RET.  

 

Analyses by the driver pathway combined drivers by biological function for those identified in 

small numbers of samples, specifically other RTK (receptor tyrosine kinase) fusions (ALK, LTK, 

NTRK1, and NTRK3 fusions), RAS mutations (HRAS, KRAS and NRAS mutations), and IGF2 and 

IGF2BP3 overexpression drivers. Finally, the small number of other mutation drivers (APC, 

DICER1, NFE2L2, TSC1, and TSC2) were combined for model stability.  
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Identification of DNA Repair Mechanisms for SVs and Small Deletions 

DNA double-strand breaks—the most important type of radiation-related DNA damage—can be 

repaired by various mechanisms, including two key types of end-joining repair: non-homologous 

end-joining (NHEJ) and alternative end-joining (alt-EJ or theta-mediated end-joining [TMEJ]) 

(33-35). We performed a series of analyses to classify the DNA repair mechanisms that 

generated the SVs and small indels in our dataset. 

 

SV confirmation was based on a series of steps. Among individuals with a WGS sample 

(n=383), manual review in IGV was conducted for 145/150 designated fusion drivers (excluding 

four drivers without an available SV call and one where the breakpoint could not be evaluated 

due to the repetitive nature of the local sequence). During manual review, each fusion was 

categorized by the number of DNA breaks (2 [simple] versus >2 or local sequence bridge repair 

[complex]); SV type (deletion, inversion, interchromosomal translocation, intrachromosomal 

translocation, or complex); balanced (<1kb gained/lost at breakpoint) versus unbalanced (≥1kb 

gained/lost at breakpoint); end-joining (<20 bp for both breakpoints) versus non-end-

joining/other (≥20 bp at one breakpoint); and microhomology at the breakpoint, which was 

determined utilizing blast within the UCSC genome browser (http://www.genome.ucsc.edu/). 

Agreement was acceptable between the automated and manual calls for all metrics except 

microhomology (22/226 or 9.7% discordant breakpoints) and accordingly, microhomology was 

not included in the final categorization. Notably, the review of fusion drivers indicated that 

certain variant groups (simple/unbalanced SVs and complex SVs from individuals with multiple 

complex clusters) were most likely to be false positives, thus all SVs in these categories were 

manually checked in IGV. The discordant events and false positives were corrected or removed 

to generate the final SV dataset (Table S6).  

 

Following SV confirmation, SVs were first categorized as simple and balanced and end-joining 

(simple/balanced/end-joining) versus complex, unbalanced, or non-end-joining 

(complex/unbalanced/other). Simple/balanced/end-joining SV events with <4 bp of intervening 

loss/gain at both breakpoints, representing enrichment for NHEJ, were then separated from SV 

events with 4-19 bp of intervening loss/gain for at least one breakpoint, representing both NHEJ 

and alt-EJ/TMEJ repair mechanisms.  

 

For small deletions called as indels (Fig. S29), direct counting of NHEJ and alt-EJ/TMEJ 

features within the 83 ID mutational signature classifications was performed to circumvent 

potential misattribution of the indels to ID6 and ID8, both of which have been ascribed to end-

joining repair. In contrast to SVs, end-joining repair is most enriched when assessing deletions 

≥5 bp due to noise from other small indel generating mechanisms with deletions <5 bp in length. 

The patterns consistent with end-joining repair were defined as deletions ≥5 bp that are not 

within repeats and have any amount of microhomology (≥0 bp of microhomology.) The amount 

of microhomology was utilized to further group the deletions by events enriched for NHEJ (0-1 

bp microhomology at the deletion boundary) and those that are a mix of NHEJ and alt-EJ/TMEJ 

mechanisms (≥2 bp of microhomology at the deletion boundary). Locally templated insertion 

events (TINS), which are characteristic only of TMEJ repair, were identified as described 

previously (34). Briefly, small insertions ≥3 bp were interrogated for whether either the direct or 

reverse complement sequence was present within 50 bp either upstream or downstream of the 

indel breakpoint.  
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Identification of Genomic Locus-Based Attributes for Small Insertions and Deletions 

Following the approach described previously (8), we annotated small insertions and deletions 

according to a series of genomic locus-based attributes: 

Continuous metrics: 

• Distance from the centromere (log10) 
• Distance from the nearest telomere (log10) 
• Fraction of G/C bases (flanking 100 bp in either direction) 
• Trinucleotide complexity (flanking 50 bp in either direction; the sum of the squares of the 

occurrence rate for each possible trinucleotide combination. Higher values indicate lower 

complexity). 
• Chromatin state (selecting one of the 25 chromatin states [heterochromatin] from 

ROADMAP and taking consensus across all 127 cell types because no data specific to the 

thyroid were available) 
• Replication timing (average of the wavelet-smoothed replication timing signals in 1 kb 

bins across the genome, in three samples: NHEK [normal skin], GM12878 [normal 

blood], and IMR90 [normal lung] 
• LADs (Tig3ET normal human embryonic lung fibroblasts) 

Dichotomous metrics indicating whether the variant is within 100 bp of the given event: 

• Genes (known protein coding gene found in GENCODE) 
• CpG Islands (known CpG island) 
• Direct Repeats 
• G-quadruplexes 
• Cruciform inverted repeat 
• Triplex mirror repeat 
• Short tandem repeat 
• z-DNA motif 
• ALU repeats 
• MIR repeats 
• L1 repeats 
• L2 repeats 
• LTR repeats 
• DNA repeats 
• Simple repeats 

 

To compare the distribution of the small insertions and deletions observed in our study compared 

with a random background distribution, we randomly selected 100,000 loci from across the 

genome and annotated them using identical methods. 

 

Statistical Analysis 

Multivariable regression models were employed to assess the relationship between radiation dose 

and PTC molecular characteristics. Unless otherwise specified (Table S4), models were 

mutually adjusted for sex, age at PTC (continuous), and radiation dose (continuous, with doses 

>1000 mGy truncated [assigned the value of 1000 mGy] to reduce their influence on the 
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estimated model coefficients) (Fig. S4). Two-sided P-values were generated using likelihood 

ratio tests, comparing model fit with and without the variable of interest. 

 

The regression model type depended on the distribution of the molecular characteristic and is 

specified for each characteristic in the supplementary tables that present model results (Table S4, 

Table S18, Table S20-S22). For continuous characteristics, such as the number of deletions, we 

utilized linear regression to estimate the expected value (E[Y]) as: 

 

E[Y] = β0 + β1*Dose + β2*AgePTC + β3*Sex  

 

where β1 represents the change in the value of the molecular characteristic per unit dose, which 

was expressed per 100 mGy. Normality of the residuals was confirmed visually. Analyses were 

conducted using SAS version 9.4 (Cary, NC) and R (Foundation for Statistical Computing, 

Vienna, Austria).  

 

For molecular characteristics that were dichotomous, such as presence or absence of 

chromoplexy, we utilized logistic regression to estimate the odds ratio (OR; the odds of the 

characteristic being present) as: 

 

OR=exp(α1*AgePTC + α2*Sex)(1 + β1*Dose) 

 

where β1 represents the excess OR (EOR) per 100 mGy so that the effect of dose is linear (rather 

than log-linear), the standard approach in radiation epidemiology (122). For molecular 

characteristics with discrete counts over a limited range where the residuals were not normally 

distributed in linear regression models, such as the number of SVs, we utilized proportional odds 

models, collapsing the highest values into a maximum category that included at least 5% of the 

total study population. For “n” categories of each characteristic with this distribution, we created 

n-1 replications of the dataset; within each replication (i), we defined a new outcome with a 

value of 1 if the original outcome was ≥i or 0 if <i (missing values retained a missing value). We 

then included in the logistic regression model the index as a categorical variable in the log-linear 

term (along with other covariates such as sex and age at PTC), while modeling dose in the linear 

term, as in the standard dichotomous model described above. This proportional odds model 

assumes that the EOR/100 mGy is consistent across the categories of the molecular characteristic 

outcome strata. We confirmed the validity of this assumption visually for radiation-associated 

characteristics (as defined below and shown in Table S20) by fitting a polytomous model. 

Polytomous models were utilized for molecular characteristics without inherent ordering, such as 

mRNA clusters or driver gene, whereby we included the index term as a categorical variable 

crossed with every other term in the model (index*age at PTC and index*sex in the log-linear 

term, and index*dose in the linear term), thereby fitting a separate EOR/100 mGy for each level 

of the characteristic relative to the referent category. Logistic, proportional odds, and polytomous 

regression analyses were conducted using the GMBO module of Epicure, version 2.0 (Risk 

Sciences International, Ottawa, Canada) (123). 

 

Our primary analyses included 68 PTC molecular characteristics derived from a comprehensive 

landscape analysis (Fig. 1, Table S4). We defined radiation dose-associated molecular 

characteristics based on P<7.4×10-4, which represents a Bonferroni correction for multiple 
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testing (α=0.05/68). For associated variables, we conducted analyses of more specific molecular 

characteristics as well as stratifying the study population into tertiles by age at PTC, age at 

exposure, and time since exposure (latency) because these factors influence radiation-related 

thyroid cancer risk (Table S1) (17). We tested for heterogeneity (modification) of the radiation 

dose effect on the molecular characteristic across these factors using continuous variables, 

comparing the model fit with and without an interaction term (Dose*age at PTC, Dose*age at 

exposure, or Dose*latency) using likelihood ratio tests. The models evaluating modification of 

the radiation dose effect by age at exposure and latency also included main effects of these 

variables, as follows: 

 

Linear regression: 

Modification by age at PTC:  

E[Y] = β0 + β1*Dose + β2*AgePTC + β3*Sex + β4*Dose*AgePTC 

 

Modification by age at exposure or latency (Age/Lat): 

E[Y] = β0 + β1*Dose + β2*AgePTC + β3*Sex + β4*(Age/Lat) + β5*Dose*(Age/Lat) 

 

Logistic and proportional odds regression: 

Modification by age at PTC:  

OR=exp(α1*AgePTC + α2*Sex)(1 + [β1*Dose × exp(β2*AgePTC)] 

 

Modification by age at exposure or latency (Age/Lat): 

OR=exp(α1*AgePTC + α2*Sex + α3*Age/Lat)(1 + [β1*Dose × exp(β2*Age/Lat)]) 

 

We conducted sensitivity analyses to assess whether the results were consistent when we 

restricted the population to individuals with lower dose exposure (1-<500 mGy, resulting in 

n=326 with mean estimated dose=110 mGy), a critical question in radiation epidemiology (18, 

19). Finally, we evaluated whether there was a statistically significant departure from a linear 

dose model by fitting linear quadratic (Dose squared) and linear exponential [exp(Dose)] models, 

comparing the fit of these models to that of a linear model using likelihood ratio tests, as follows: 

 

Linear regression: 

Linear quadratic: 

E[Y] = β0 + β1*Dose + β2*AgePTC + β3*Sex + β4*Dose2 

 

Linear-exponential: 

E[Y] = β0 + β1*Dose + β2*AgePTC + β3*Sex + β4*exp(Dose) 

 

Logistic and proportional odds regression: 

Linear quadratic: 

OR=exp(α1*AgePTC + α2*Sex)(1 + β1*Dose + β2*Dose2) 

 

Linear-exponential: 

OR=exp(α1*AgePTC + α2*Sex)(1 + [β1*Dose × exp(β2*Dose)]) 
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 For the analyses of genomic locus-based attributes for small insertions and deletions, we 

conducted two analyses. First, we stratified the study population by 131I-exposure category 

(unexposed and 1-99, 100-199, 200-499, and ≥500 mGy) and performed dichotomous logistic 

regression, modeling the observed versus background locus as the response variable and all 

genomic characteristics as independent variables. Predicted values for each of the 100,000 

randomly selected loci across the genome were calculated using the results of each logistic 

regression, representing the estimated variant density at each locus based on the linear predictors 

(Fig. S31). Second, to test for the effect of radiation dose, we conducted multivariable linear 

regression models with dose as the response variable and age at surgery and all genomic 

characteristics as independent variables.  
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  Data source for each analysis  

n Statistical analyses WGS mRNA-seq miRNA-seq SNP array Methylation RTL 
PTC driver± X X     440 
Mutations & mutational patterns X      356 
Structural variants  X      356 
SCNAs X      355 
PTC mRNA expression patterns  X     409 
PTC miRNA expression patterns   X    405 
PTC methylation patterns     X  410 
Relative telomere length PTC      X 406 
Relative telomere length NT      X 399 
Relative telomere length NB      X 261 
Germline variation X      383 
Population substructure±     X   440 
Non-tumor thyroid tissue X      218 

 

Fig. S1. Schematic of study procedures and sample sizes for laboratory work and statistical analyses 
Gray font indicates samples for exclusion. Reasons for exclusion and thresholds for exclusion metrics are provided in the methods. 
Abbreviations: normal blood (NB), non-tumor thyroid tissue (NT), papillary thyroid carcinoma (PTC), relative telomere length (RTL). 
* WGS: total count of WGS for that tissue type.  
† WGS PTC: count of that tissue type utilized for analyses of PTC-matched normal tissue pairs.  
‡ WGS NT: count of that tissue type utilized for analyses of NT-matched blood pairs.  
§ Most statistical analyses were restricted to high purity samples, defined as those with tumor purity >20% and no evidence of tumor 
contamination in the normal tissue.   
± Analyses that include all individuals with available data (not restricted to high purity samples).  

                  Study procedure 
Reason for exclusion PTC Non-tumor thyroid tissue Blood  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Data source for each analysis Study 

population Statistical analyses WGS mRNAseq miRNAseq SNP array Methylation RTLA 
PTC driver± X X     440 
Mutations and mutational 
patterns 

X      356 

Structural variants  X      356 
SCNAs X      355 
PTC mRNA expression patterns  X     409 
PTC miRNA expression patterns   X    405 
PTC methylation patterns     X  410 
Relative telomere length PTC      X 406 
Relative telomere length NT      X 399 
Relative telomere length NB      X 261 
Germline variation X      383 
Population substructure±     X   440 
Non-tumor thyroid tissue X      218 
Abbreviations: micro RNA (miRNA), normal blood (NB), non-tumor thyroid tissue (NT), papillary thyroid carcinoma (PTC), single nucleotide polymorphism (SNP), 
somatic copy number alteration (SCNA), whole genome sequencing (WGS). 
* WGS: total count of WGS for that tissue type.  
† WGS PTC: count of that tissue type utilized for analyses of PTC-matched normal tissue pairs.  
‡ WGS NT: count of that tissue type utilized for analyses of NT-matched blood pairs.  
§ Most statistical analyses were restricted to high purity samples, defined as those with tumor purity >20% and no evidence of tumor contamination in the normal tissue.  
± Analyses that include all individuals with available data (not restricted to high purity samples).  
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A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S2. Distribution of samples passing quality control metrics for WGS and/or mRNAseq.  
(A) All samples. (B) Restricted to high purity samples (tumor purity >20% and no evidence of tumor contamination in the normal 
tissue).  
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A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S3. Distribution of samples passing quality control metrics across all platforms. 
(A) All samples. (B) Restricted to high purity samples (tumor purity >20% and no evidence of tumor contamination in the normal 
tissue).
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Fig. S4. Detailed distributions of age at PTC diagnosis and radiation dose from 131I exposure.  
(A) Age at PTC diagnosis. (B) Radiation dose from 131I exposure, with an inset panel for doses <200 mGy because this dose range accounts for the majority of our study 
population. (C)  Joint distribution of age at PTC and radiation dose to demonstrate slight differences in the age distribution among dose groups.
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 5 

 
Fig. S5. Relationship between radiation dose and the probability of causation, by age at 131I exposure, for 
the 440 individuals in our study population. 
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Fig. S6. Mutation analysis pipeline 
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Fig. S7. Distribution of mutation filters for PTC samples. 
(A) Pre-filtered calls. (B) Filtered calls. (C) Final mutational call algorithm.
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A        B 

 
C 

 
 
Fig. S8. Distribution of cancer cell fraction. 
(A) SNVs (n=286,534). (B) Insertions (n=5699). (C) Deletions (n=13,706). Counts are restricted to n=356 individuals with high purity 
samples. As described in the Materials and Methods, cancer cell fraction reflects the variant allele fraction, accounting for the purity 
of the tumor sample. Clonal mutations were defined as those with cancer cell fraction >0.9, whereas subclonal mutations were defined 
as those with cancer cell fraction <0.6. Mutations with cancer cell fraction 0.6-0.9 had undetermined clonality. Counts by mutation 
type and clonality are provided in Table S3.
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 9 

 
 
Fig. S9. Distribution of the total number of single nucleotide variants by tumor purity for 383 tumors 
with whole genome sequencing data  
High purity samples were defined as those with tumor purity >20% and no evidence of tumor contamination in the normal tissue 
(n=356). Individuals with low purity samples (n=22 with tumor purity <20%; n=2 low purity tumors where outlier variants were 
inflating the purity estimate; n=3 with evidence of tumor contamination in the normal tissue) were excluded from selected analyses 
(Fig. S1).
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A Unexposed Dose (mGy): 1-99 100-199 200-499 ≥500 
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B Unexposed Dose (mGy): 1-99 100-199 200-499 ≥500 

 

 
Fig. S10. Distribution of SBS signatures by radiation dose from 131I exposure and mutation count. 
(A) Decomposed into known COSMIC signatures. (B) Identified de novo.  
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A Unexposed Dose (mGy): 1-99 100-199 200-499 ≥500 
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B Unexposed Dose (mGy): 1-99 100-199 200-499 ≥500 

 

 
Fig. S11. Distribution of ID signatures by radiation dose from 131I exposure and mutation count. 
(A) Decomposed into known COSMIC signatures. (B) Identified de novo.  
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A    

 

B   
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Fig. S12. Distribution of cosine similarities between actual mutation counts and those extracted using 
SigProfiler.  
(A) SBS decomposition, Mean=0.94. (B) SBS de novo, Mean=0.96. (C) ID decomposition, Mean=0.77. (D) ID de novo, Mean=0.83.
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Fig. S13. Structural variant calling pipeline. 
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Fig. S14. Distribution of structural variant filters and calling algorithms. 
(A) Filters. (B) Raw calls. (C) Final calling algorithm. 
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Fig. S15. Circos plots depicting tumors with >10 structural variants each. 
The tumor depicted on the left also had evidence for chromothripsis and had ≥20 somatic copy number alterations. The outer ring shows cytoband structure within each 
chromosome. The inner ring shows the copy ratio (blue deletion, red amplification) across each chromosome. Red lines indicate SVs with breakpoints are clustered within 50kb of 
another SV to form chains of events. Purple lines indicate balanced translocations. Green indicate SVs forming inversions in which both inversion breakpoints were detected. Gray 
lines are isolated SVs with breakpoints more than 50 kb from other SVs.  
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Fig. S16. Somatic copy number alteration calling pipeline. 
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Fig. S17. Tumors with ≥20 somatic copy number alterations. 
The tumor depicted in the top panel also had evidence for chromothripsis and had >10 structural variants. 
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Fig. S18. Distribution of SCNAs, by chromosome number and SCNA type. 
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Deletions Gains 

 
Fig. S19. Results from GISTIC2.0 for the 383 tumors with WGS data. 
The horizontal scale shows the Benjamini-Hochberg corrected FDR (q-value) estimates for arm-level (SCNAs that cover more than 
half of an arm) and focal SCNAs. The FDR for 22q deletion is shown truncated to 1.0×10-10. FDR<0.1 can be considered as 
significantly recurrent relative to the null model.  
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Fig. S20. Results from MutSig2CV for the 383 tumors with WGS data. 
The MutSig2CV FDR is shown on the right side, with BRAF, NRAS, HRAS, KRAS, TSHR, CR2, DICER1, and TG  found as significantly recurrent with an FDR<0.1. TG was 
dismissed as a driver gene due to a preponderance of non-coding mutations. 
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Fig. S21.  Unsupervised mRNA clustering analyses of paired PTC and non-tumor thyroid 
tissue revealed two clusters strongly correlated with tissue type. 
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Fig. S22. Unsupervised clustering analysis of PTC only using ConsensusClusterPlus. 
(A) mRNA, k=5. (B) miRNA, k=5. (C) Methylation, k=3. The appropriate cluster number (k) was determined by identifying the largest cluster with a 
delta area value >0.3, denoted with the dashed red line.
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Fig. S23. Relationship of clusters to PTC driver. 
(A) mRNA. (B) miRNA. (C) Methylation. Table S11 provides the distribution of clusters by driver  
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Fig. S24.  Distribution of the BRAFV600E-RAS (BRS) score from mRNA, miRNA, and methylation; ERK-activity score; and thyroid 
differentiation score.  
(A) By radiation dose. (B) By PTC driver. Scores were standardized (mean=0, standard deviation=1) to facilitate comparison across the different measures.
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Fig. S25. Distribution of CLIP2 biomarker status. 
In 33 overlapping samples between our study and a previously-published analysis (25), the 

CLIP2 biomarker status identified in that study correlated with CLIP2 mRNA expression as 

measured by RNA-seq in our study (A) but did not correlate with radiation dose (B). 

 

Negative Positive
8

9

10

11

12

CLIP2 biomarker status

C
LI
P2

 e
xp

re
ss

io
n

Negative Positive

0

500

1000

CLIP2 biomarker status
Do

se
 (m

G
y)



 29 

 
β (95%CI) 

P 

A  
-0.013 (-0.065, 0.038) 

P=0.61 

B 
-0.018 (-0.079, 0.044) 

P=0.57 

C 
-0.033 (-0.093, 0.027) 

P=0.28 
 

 
 
Fig. S26. Relationship between radiation dose from 131I exposure and expression of CLIP2 by age at exposure. 
(A) <5 years at exposure, (B) 5-9 years at exposure, and (C) ≥10 years at exposure. Results for the total study population are provided in Fig. 5C.
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Fig. S27. Lack of association of radiation dose with any of 3,213 gene sets from the 
Molecular Signatures Database. 
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Fig. S28. Population substructure based on SNP array data. 
(A) All ancestries combined in a single panel. (B) Each ancestry category in separate panels. Abbreviation: EAS=East Asian.
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Fig. S29. Distribution of small deletions by length in n=356 individuals with high purity samples.
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Fig. S30. Association between count of locally templated insertions (TINS) and radiation dose from 131I 
exposure. 
TINS are characteristic of theta-mediating end-joining (TMEJ) repair of DNA double-strand breaks (EOR/Gy=0.037, 95% confidence 
interval= -0.039-0.18; P=0.69) 
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Fig. S31. Association for age at papillary thyroid cancer (years) with number of clock-like SBS and ID 
signatures, by radiation dose from 131I exposure. 
(A) SBS clock-like signatures (SBS1, SBS5), Pheterogeneity=0.63. (B) ID clock-like signatures (ID1, ID5), Pheterogeneity=0.93. Pheterogeneity 
was derived from a generalized linear regression model, comparing model fit with and without an interaction term between radiation 
dose (continuous, truncated at 1 Gy) and age at PTC (continuous).  
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Fig. S32. Association for latency (years) with number of clock-like SBS and ID signatures, by radiation 
dose from 131I exposure. 
(A) SBS clock-like signatures (SBS1, SBS5), Pheterogeneity=0.28. (B) ID clock-like signatures (ID1, ID5), Pheterogeneity=0.21. Pheterogeneity 
was derived from a generalized linear regression model, comparing model fit with and without an interaction term between radiation 
dose (continuous, truncated at 1 Gy) and age at PTC (continuous). Analyses were restricted to 131I-exposed individuals. 
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Characteristic
Sex

Female 269 (74.9%) 66 (81.5%) 27 (60.0%)
Male 90 (25.1%) 15 (18.5%) 18 (40.0%)

Age at PTC (years)
<15 4 (1.1%) 11 (13.6%) 1 (2.2%)
15-19 25 (7.0%) 25 (30.9%) 11 (24.4%)
20-24 48 (13.4%) 26 (32.1%) 12 (26.7%)
25-29 98 (27.3%) 19 (23.5%) 13 (28.9%)
30-34 125 (34.8%) 0 (0.0%) 8 (17.8%)
35-39 43 (12.0%) 0 (0.0%) 0 (0.0%)
40-44 14 (3.9%) 0 (0.0%) 0 (0.0%)
≥45 2 (0.6%) 0 (0.0%) 0 (0.0%)
Mean (± SD) 29.7 (± 6.1) 20.7 (± 4.9) 24.2 (± 5.4)

Radiation dose (mGy) †
0 0 (0.0%) 81 (100.0%) 0 (0.0%)
1-99 193 (53.8%) 0 (0.0%) 8 (17.8%)
100-199 90 (25.1%) 0 (0.0%) 6 (13.3%)
200-499 43 (12.0%) 0 (0.0%) 6 (13.3%)
≥500 33 (9.2%) 0 (0.0%) 25 (55.6%)
Mean (± SD) 247 (± 665) na 1045 (± 1126)

Age at exposure (years)
<5 139 (38.7%) na 17 (37.8%)
5-9 102 (28.4%) na 14 (31.1%)
≥10 118 (32.9%) na 14 (31.1%)
Mean (± SD) 7.3 (± 5.1) na 7.2 (± 4.5)

Time since exposure (years)
<20 119 (33.1%) na 38 (84.4%)
20-24 109 (30.4%) na 7 (15.6%)
≥25 131 (36.5%) na 0 (0.0%)
Mean (± SD) 22.4 (± 4.9) na 17.0 (± 2.5)

Probability of causality (%)
0 0 (0.0%) 81 (100.0%) 0 (0.0%)
1-24 178 (49.6%) 0 (0.0%) 8 (17.8%)
25-49 108 (30.1%) 0 (0.0%) 8 (17.8%)
50-74 46 (12.8%) 0 (0.0%) 6 (13.3%)
≥75 27 (7.5%) 0 (0.0%) 23 (51.1%)

Dose reconstruction data source
Direct measurement, with interview 49 (13.6%) na 39 (86.7%)
Direct measurement only 4 (1.1%) na 0 (0.0%)
Area measurements 297 (82.7%) na 0 (0.0%)
In utero 9 (2.5%) na 0 (0.0%)
Unknown 0 (0.0%) na 6 (13.3%)

Residence at the time of the accident
Chernigov 53 (14.8%) 8 (9.9%) 25 (55.6%)
Kiev 222 (61.8%) 64 (79.0%) 10 (22.2%)
Kirovograd 1 (0.3%) 0 (0.0%) 0 (0.0%)
Zhytomyr 83 (23.1%) 9 (11.1%) 10 (22.2%)

Thyroid surgery volume
Hemithyroidectomy 46 (12.8%) 12 (14.8%) 0 (0.0%)
Total thyroidectomy 298 (83.0%) 67 (82.7%) 0 (0.0%)
Unknown 15 (4.2%) 2 (2.5%) 45 (100.0%)

Lesion size (cm)
<1.0 47 (13.1%) 8 (9.9%) 4 (8.9%)
1.0-1.9 157 (43.7%) 35 (43.2%) 32 (71.1%)
2.0-2.9 66 (18.4%) 14 (17.3%) 2 (4.4%)
3.0-3.9 34 (9.5%) 11 (13.6%) 1 (2.2%)
≥4.0 42 (11.7%) 5 (6.2%) 0 (0.0%)
Unknown 13 (3.6%) 8 (9.9%) 6 (13.3%)
Mean (± SD) 2.1 (± 1.3) 2.0 (± 1.1) 1.4 (± 0.5)

Abbreviation: not applicable (na).

Table S1. Demographic characteristics of the study populations.
131I Exposed, 

Chernobyl Tissue 
Bank

(n=359)

131I Unexposed, 
Chernobyl Tissue 

Bank
(n=81)

131I Exposed, 
Efanov et al. (9)

(n=45)



Table S2. Whole genome sequencing coverage, by study population and sample type.

Study population n Mean (± SD) n Mean (± SD) n Mean (± SD) n Mean (± SD)
Chernobyl Tissue Bank 383 88.8 (± 12.3) (50.2 - 144.5) 383 33.2 (± 4.5) (23.3 - 51.5) 233 33.3 (± 4.8) (24.1 - 67.1) 233 33.2 (± 4.3) (25.5 - 51.5)

131I Exposed 305 91.2 (± 12.4) (50.2 - 144.5) 305 33.2 (± 4.6) (23.3 - 51.5) 178 33.6 (± 4.7) (25.4 - 67.1) 178 33.2 (± 4.4) (25.5 - 51.5)
131I Unexposed 78 79.6 (± 6.0) (71.1 - 98.1) 78 32.9 (± 4.2) (24.5 - 43.9) 55 32.3 (± 5.1) (24.1 - 45.5) 55 33.4 (± 3.9) (26.2 - 43.9)

Range 
(min-max)

Primary tumor
Primary tumor control 

(blood or non-tumor thyroid) Non-tumor thyroid Non-tumor thyroid control (blood)
Range 

(min-max)
Range 

(min-max)
Range 

(min-max)



Simple somatic variant n (column %) n (row %) n (row %) n (row %) Mean (± SD) Mean (± SD) Mean (± SD)
Total 318957 (100.0%) 114898 (36.0%) 153803 (48.2%) 50256 (15.8%) 832.8 (± 417.5) (15 - 3560) 300.0 (± 196.2) (14 - 2256) 401.6 (± 351.1) (0 - 3238)
By type

SNV 297513 (93.3%) 106881 (35.9%) 145665 (49.0%) 44967 (15.1%) 776.8 (± 401.0) (14 - 3427) 279.1 (± 188.5) (13 - 2238) 380.3 (± 336.9) (0 - 3123)
Doublet 1351 (0.4%) 456 (33.8%) 680 (50.3%) 215 (15.9%) 3.5 (± 2.6) (0 - 14) 1.2 (± 1.4) (0 - 8) 1.8 (± 1.9) (0 - 13)
Triplet 20 (0.006%) 8 (40.0%) 5 (25.0%) 7 (35.0%) 0.1 (± 0.2) (0 - 2) 0.0 (± 0.1) (0 - 1) 0.0 (± 0.1) (0 - 2)
Small insertions 5842 (1.8%) 2143 (36.7%) 1951 (33.4%) 1748 (29.9%) 37.2 (± 18.7) (0 - 140) 14.1 (± 10.1) (0 - 77) 5.1 (± 5.1) (0 - 38)
Small deletions 14231 (4.5%) 5410 (38.0%) 5502 (38.7%) 3319 (23.3%) 15.3 (± 8.7) (0 - 89) 5.6 (± 3.9) (0 - 31) 14.4 (± 11.8) (0 - 73)

Table S3. Distribution of simple somatic variants by type and clonality in 383 tumors with whole genome sequencing data.

Range 

* As described in the Materials and Methods, cancer cell fraction reflects the variant allele fraction, accounting for the purity of the tumor sample. Clonal mutations were defined as those with cancer cell fraction >0.9, whereas 
subclonal mutations were defined as those with cancer cell fraction <0.6. Distributions of cancer cell fraction by mutation type are provided in Fig. S7.

Mutations per tumor
By clonality*

Total ClonalTotal Clonal Subclonal Undetermined
By clonality*

Total number of mutations

Subclonal
Range Range 



Molecular characteristics † Regression model*
Simple somatic variants

Total Linear regression 5.4E-02 6.9E-07 ‡ 5.9E-01
SNV Linear regression 2.3E-02 3.2E-06 ‡ 5.8E-01
Doublet Linear regression 1.4E-01 2.7E-05 ‡ 1.0E+00
Triplet Logistic regression 6.8E-01 7.0E-01 6.9E-01
Small indels Linear regression 2.6E-06 ‡ 3.1E-15 ‡ 9.2E-01

Small insertions Linear regression 4.0E-01 1.5E-06 ‡ 9.2E-01
Small deletions Linear regression 8.0E-09 ‡ 7.4E-16 ‡ 1.0E+00

Indel:SNV ratio Linear regression 9.5E-19 ‡ 4.8E-02 1.3E-01
Insertion:SNV ratio Linear regression 2.4E-03 5.9E-01 3.8E-01
Deletion:SNV ratio Linear regression 4.9E-21 ‡ 6.7E-03 1.6E-01

Microsatellite indels
Total Linear regression 9.8E-02 6.1E-02 1.2E-01

Insertion Linear regression 8.2E-01 1.5E-01 2.9E-01
Deletion Linear regression 2.1E-02 1.5E-01 2.3E-01

Total:SNV ratio Linear regression 9.7E-03 3.5E-04 ‡ 5.5E-01
Insertion:SNV ratio Linear regression 1.5E-03 3.7E-04 ‡ 5.9E-01
Deletion:SNV ratio Linear regression 8.1E-01 1.7E-01 7.6E-01

SBS signatures
Clock (SBS1,SBS5) Linear regression 3.9E-02 9.1E-17 ‡ 9.2E-01

SBS1 Linear regression 5.3E-01 1.9E-07 ‡ 5.6E-01
SBS5 Linear regression 2.9E-02 6.8E-17 ‡ 8.4E-01

APOBEC (SBS2,SBS13) Proportional odds 8.9E-04 1.7E-01 8.0E-01
SBS2 Proportional odds 1.9E-03 3.8E-01 7.4E-01
SBS13 Proportional odds§ 5.3E-02 3.4E-01 8.5E-01

SBS8 Linear regression 4.1E-01 4.3E-11 ‡ 1.4E-01
SBS18 Proportional odds 4.8E-01 2.0E-08 ‡ 5.6E-01
SBS23 Proportional odds 3.9E-01 3.5E-02 6.5E-01
SBS de novo  A Linear regression 9.6E-03 3.0E-19 ‡ 8.9E-01
SBS de novo  B Linear regression 2.8E-01 2.2E-04 ‡ 4.7E-01
SBS de novo  C Proportional odds§ 2.2E-02 4.8E-01 9.6E-01
SBS de novo  D Proportional odds 2.0E-01 2.4E-05 ‡ 9.9E-01

Indel signatures
Clock (ID1,ID5) Linear regression 1.6E-03 5.8E-09 ‡ 1.0E+00

ID1 Linear regression 1.0E+00 6.9E-02 8.4E-01
ID5 Linear regression 1.3E-04 ‡ 1.9E-09 ‡ 9.2E-01

End-joining DNA repair (ID6,ID8) Linear regression 1.5E-10 ‡ 6.9E-05 ‡ 8.9E-01
ID6 Proportional odds 9.4E-01 4.8E-01 3.0E-01
ID8 Linear regression 7.3E-09 ‡ 6.6E-04 ‡ 8.2E-01

ID3 Linear regression 7.8E-01 1.9E-07 ‡ 1.0E+00
ID4 Proportional odds 5.9E-01 3.1E-02 6.2E-01
Indel de novo  A Linear regression 4.5E-07 ‡ 9.4E-13 ‡ 8.4E-01
Indel de novo  B Linear regression 7.9E-01 2.0E-02 7.1E-01

Fusion vs. mutation PTC driver Logistic regression 6.6E-08 ‡ 5.4E-09 ‡ 2.0E-01
Structural variants

Total Proportional odds 1.4E-08 ‡ 4.9E-04 ‡ 7.2E-01
Simple/balanced Proportional odds 1.2E-14 ‡ 4.2E-06 ‡ 1.9E-02
Complex Proportional odds 5.2E-01 7.5E-01 7.3E-02
Simple/unbalanced Proportional odds 5.6E-03 4.2E-01 1.5E-01

Chromoplexy Logistic regression 7.0E-01 2.3E-01 2.9E-01
Somatic copy number alterations

Total Proportional odds 2.0E-03 4.7E-02 3.3E-02
Chromosomal (aneuploidy) Logistic regression 2.0E-01 9.6E-01 7.1E-01

Table S4. Relationship for selected molecular characteristics with radiation dose from 131I exposure, age at papillary 
thyroid cancer, and sex.

Dose Age at PTC Sex



Sub-chromosome, total Proportional odds 3.5E-05 ‡ 4.8E-02 1.2E-02
Deletions Proportional odds 7.0E-04 ‡ 2.2E-02 6.6E-03
Gains Logistic regression 3.2E-01 4.7E-01 4.3E-01
CNLOH Logistic regression 5.2E-01 2.4E-01 3.1E-01

22q deletion Logistic regression 3.7E-01 7.6E-01 7.4E-01
Unsupervised clustering analyses

mRNA (k=5)|| Polytomous regression 8.5E-01 9.6E-01 1.8E-01
miRNA (k=5)|| Polytomous regression 3.8E-01 6.7E-01 8.8E-01
Methylation (k=3)|| Polytomous regression 1.0E-01 8.1E-01 ||

BRAF-RAS  score (BRS)
mRNA BRS Linear regression 2.1E-03 1.6E-01 4.4E-01
miRNA BRS Linear regression 5.5E-03 8.4E-01 4.1E-01
Methylation BRS Linear regression 8.2E-02 1.0E+00 4.3E-01

ERK-activity score Linear regression 1.1E-02 5.9E-01 4.7E-01
Thyroid differentiation score Linear regression 7.8E-03 6.8E-01 2.2E-01
Germline variants ¶

Nature 2014 CSGs Logistic regression 6.0E-01 9.4E-01 4.9E-01
Clinical radiation sensitivity syndromes Logistic regression 7.6E-01 7.8E-01 6.5E-01
Any DNA damage response gene Logistic regression 2.5E-01 2.9E-01 7.0E-01

Single strand break repair Logistic regression 4.8E-01 3.5E-01 5.2E-01
Double strand break repair Logistic regression 1.1E-01 6.1E-01 8.0E-01

Fanconi anemia Logistic regression 7.1E-01 4.8E-01 9.8E-01
Homologous recombination Logistic regression 6.1E-01 5.1E-01 5.4E-01

Polygenic risk score Linear regression 4.7E-04 ‡ 9.0E-02 7.3E-02
Abbreviation: cancer susceptibility gene (CSG).
* P-values were generated using likelihood ratio tests, comparing model fit with and without the variable of interest (dose, age 
at PTC, sex), based on multivariable generalized linear, proportional odds, or logistic regression models, depending on the 
distribution of the molecular characteristic. All models were mutually adjusted for radiation dose (linear, truncated at 1 Gy), 
age at PTC, and sex, unless otherwise noted below. 
† Methods for defining each characteristic are described in the Materials and Methods.
‡ Associations of selected molecular characteristics with radiation dose with P<7.4×10-4 were considered statistically significant 
based on a Bonferroni correction for the 68 characteristics listed above. 
§ Dose was modeled as a ordinal variable based on the means of the categories shown in Table S1 because models with the 
linear dose variable did not converge.
|| Models were restricted to strata with >10 cases (mRNA: N=3, miRNA: N=2; see Table S11). Models of methylation clusters 
did not converge with sex in the model and thus included only radiation dose and age at PTC.
¶ Details regarding the germline variants are provided in the Materials and Methods and Tables S16-S17. Selected variables 
include those with >25 carriers of potentially protein damaging rare variants. All models of germline variants were 
additionally adjusted for population substructure (top 10 principal components).



de novo SBS 
signatures 

(dose ≥200 mGy)
Signature ID3 ID4 Clock ID1 ID5 End joining ID6 ID8 A B A B SBS8 SBS18 SBS23 Clock SBS1 SBS5 APOBEC SBS2 SBS13 A B C D A
Known ID signatures from COSMIC v3* 
ID3 4138 21.2% 0.17 0.01 0.12 -0.05 0.14 0.04 0.12 0.41 0.18 0.26 0.27 0.38 -0.02 0.13 0.44 0.40 0.42 0.08 0.08 0.07 0.38 0.35 0.07 0.13 0.54

0.001 0.825 0.023 0.336 0.008 0.509 0.025 0.000 0.000 0.036 0.027 0.000 0.745 0.016 0.000 0.000 0.000 0.146 0.141 0.164 0.000 0.000 0.174 0.015 0.000
ID4 1135 5.8% 0.17 -0.08 0.00 -0.10 0.08 0.03 0.06 0.23 0.08 0.01 0.10 0.01 0.03 0.04 0.18 0.13 0.18 0.13 0.14 0.12 0.14 0.06 0.12 0.16 0.11

1.33E-03 0.136 0.982 0.072 0.149 0.525 0.274 0.000 0.118 0.906 0.402 0.795 0.533 0.485 0.001 0.011 0.001 0.013 0.008 0.022 0.009 0.236 0.020 0.003 0.382
Clock 10535 54.0% 0.01 -0.08 0.56 0.89 0.39 0.05 0.35 0.49 0.56 0.67 0.10 0.42 -0.02 0.18 0.56 0.56 0.53 -0.06 -0.05 -0.07 0.45 0.49 -0.07 0.04 0.53

0.825 0.136 0.000 0.000 0.000 0.326 0.000 0.000 0.000 0.000 0.439 0.000 0.655 0.001 0.000 0.000 0.000 0.243 0.380 0.166 0.000 0.000 0.194 0.491 0.000
ID1 2773 14.2% 0.12 0.00 0.56 0.13 0.08 0.14 0.02 -0.19 0.97 -0.10 0.73 0.26 0.05 0.18 0.26 0.42 0.22 -0.07 -0.06 -0.08 0.15 0.41 -0.08 -0.01 0.35

0.023 0.982 6.33E-31 0.013 0.112 0.009 0.708 0.000 0.000 0.410 0.000 0.000 0.354 0.001 0.000 0.000 0.000 0.199 0.280 0.154 0.005 0.000 0.132 0.842 0.004
ID5 7762 39.8% -0.05 -0.10 0.89 0.13 0.42 -0.01 0.40 0.69 0.14 0.76 -0.11 0.36 -0.06 0.12 0.53 0.44 0.51 -0.04 -0.02 -0.05 0.46 0.37 -0.04 0.05 0.47

0.336 0.072 8.47E-126 0.013 0.000 0.820 0.000 0.000 0.007 0.000 0.398 0.000 0.300 0.021 0.000 0.000 0.000 0.481 0.640 0.373 0.000 0.000 0.458 0.350 0.000
EJ 3718 19.0% 0.14 0.08 0.39 0.08 0.42 0.11 0.90 0.70 0.11 0.88 -0.31 0.22 -0.01 0.10 0.37 0.26 0.37 0.01 0.02 -0.01 0.33 0.22 0.00 0.08 0.29

0.008 0.149 2.60E-14 0.112 1.13E-16 0.031 0.000 0.000 0.046 0.00 0.01 0.000 0.855 0.055 0.000 0.000 0.000 0.905 0.715 0.920 0.000 0.000 0.969 0.143 0.017
ID6 639 3.3% 0.04 0.03 0.05 0.14 -0.01 0.11 -0.33 -0.01 0.17 -0.084 0.212 0.06 0.04 -0.02 0.07 0.05 0.07 0.02 0.02 0.02 0.07 0.04 0.03 0.02 0.04

0.509 0.525 0.326 0.009 0.820 0.031 0.000 0.858 0.002 0.50 0.09 0.270 0.467 0.668 0.198 0.309 0.207 0.668 0.710 0.642 0.212 0.431 0.627 0.644 0.728
ID8 3079 15.8% 0.12 0.06 0.35 0.02 0.40 0.90 -0.33 0.67 0.03 0.882 -0.372 0.18 -0.03 0.11 0.32 0.23 0.32 0.00 0.01 -0.02 0.29 0.19 -0.01 0.06 0.27

0.025 0.274 1.62E-11 0.708 1.75E-15 2.72E-130 2.20E-10 0.000 0.600 0.00 0.00 0.001 0.623 0.044 0.000 0.000 0.000 0.941 0.854 0.766 0.000 0.000 0.861 0.235 0.029
de novo ID signatures
A 12536 64.2% 0.41 0.23 0.49 -0.19 0.69 0.70 -0.01 0.67 -0.16 0.94 -0.29 0.37 -0.07 0.10 0.58 0.40 0.58 0.06 0.07 0.05 0.54 0.31 0.06 0.15 0.50

3.90E-16 1.21E-05 9.48E-23 3.79E-04 7.04E-51 2.17E-54 0.858 2.90E-48 0.003 0.000 0.020 0.000 0.200 0.071 0.000 0.000 0.000 0.242 0.167 0.344 0.000 0.000 0.269 0.005 0.000
B 6990 35.8% 0.18 0.08 0.56 0.97 0.14 0.11 0.17 0.03 -0.16 -0.11 0.75 0.28 0.07 0.20 0.31 0.46 0.27 -0.06 -0.04 -0.06 0.19 0.44 -0.07 0.01 0.36

4.97E-04 0.118 3.33E-30 2.39E-211 0.007 0.046 0.002 0.600 0.003 0.364 0.000 0.000 0.215 0.000 0.000 0.000 0.000 0.294 0.398 0.232 0.000 0.000 0.210 0.899 0.003
de novo ID signatures (restricted to cases with dose ≥200 mGy)
A 2426 62.2% 0.26 0.01 0.67 -0.10 0.76 0.88 -0.08 0.88 0.94 -0.11 -0.52 0.33 -0.14 0.04 0.44 0.29 0.44 0.05 0.09 0.00 0.41 0.26 0.09 0.22 0.36

0.036 0.906 6.28E-10 0.410 1.32E-13 1.15E-22 0.505 1.45E-22 4.90E-32 0.364 0.000 0.007 0.271 0.728 0.000 0.019 0.000 0.677 0.495 0.974 0.001 0.035 0.494 0.079 0.003
B 1476 37.8% 0.27 0.10 0.10 0.73 -0.11 -0.31 0.21 -0.37 -0.29 0.75 -0.52 0.26 0.04 0.17 0.25 0.42 0.22 -0.04 -0.04 -0.02 0.15 0.45 -0.13 0.07 0.29

0.027 0.402 0.439 2.61E-12 0.398 0.011 0.087 0.002 0.020 2.81E-13 8.03E-06 0.032 0.758 0.172 0.039 0.000 0.077 0.762 0.730 0.843 0.217 0.000 0.305 0.595 0.017
Known SBS signatures from COSMIC v3* 
SBS8 43397 15.1% 0.38 0.01 0.42 0.26 0.36 0.22 0.06 0.18 0.37 0.28 0.33 0.26 -0.33 0.29 0.43 0.52 0.39 -0.29 -0.28 -0.29 0.48 0.63 -0.29 -0.17 0.76

1.86E-13 0.795 0.000 4.80E-07 1.19E-12 3.97E-05 0.270 0.001 6.54E-13 6.68E-08 0.007 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
SBS18 2632 0.9% -0.02 0.03 -0.02 0.05 -0.06 -0.01 0.04 -0.03 -0.07 0.07 -0.14 0.04 -0.33 0.03 -0.06 0.06 -0.08 -0.08 -0.08 -0.08 -0.17 0.18 -0.08 -0.08 -0.07

0.745 0.533 0.655 0.354 0.300 0.855 0.467 0.623 0.200 0.215 0.271 0.758 2.04E-10 0.564 0.242 0.297 0.142 0.130 0.129 0.143 0.001 0.001 0.126 0.151 0.590
SBS23 4532 1.6% 0.13 0.04 0.18 0.18 0.12 0.10 -0.02 0.11 0.10 0.20 0.04 0.17 0.29 0.03 0.02 0.24 -0.02 -0.13 -0.13 -0.12 0.06 0.32 -0.11 -0.09 0.16

0.016 0.485 0.001 0.001 0.021 0.055 0.668 0.044 0.071 9.88E-05 0.728 0.172 1.80E-08 0.564 0.700 0.000 0.745 0.015 0.013 0.021 0.222 0.000 0.030 0.106 0.195
Clock 201505 69.9% 0.44 0.18 0.56 0.26 0.53 0.37 0.07 0.32 0.58 0.31 0.44 0.25 0.43 -0.06 0.02 0.71 0.99 0.12 0.14 0.11 0.90 0.47 0.11 0.23 0.74

3.79E-18 0.001 2.14E-30 5.91E-07 9.96E-27 4.35E-13 0.198 4.20E-10 2.99E-33 2.67E-09 2.60E-04 0.039 1.31E-17 0.242 0.700 0.000 0.000 0.020 0.010 0.043 0.000 0.000 0.031 0.000 0.000
SBS1 28137 9.8% 0.40 0.13 0.56 0.42 0.44 0.26 0.05 0.23 0.40 0.46 0.29 0.42 0.52 0.06 0.24 0.71 0.62 0.04 0.05 0.02 0.43 0.83 0.02 0.15 0.73

8.72E-15 0.011 1.07E-30 1.82E-16 1.18E-18 4.34E-07 0.309 1.47E-05 6.50E-15 2.97E-20 0.019 0.0005 2.54E-26 0.297 2.92E-06 2.57E-55 0.000 0.488 0.342 0.656 0.000 0.000 0.764 0.006 0.000
SBS5 173368 60.2% 0.42 0.18 0.53 0.22 0.51 0.37 0.07 0.32 0.58 0.27 0.44 0.22 0.39 -0.08 -0.02 0.99 0.62 0.13 0.14 0.11 0.92 0.38 0.12 0.23 0.72

9.24E-17 0.001 9.53E-27 2.55E-05 4.78E-25 6.59E-13 0.207 5.41E-10 5.34E-33 3.24E-07 0.0002 0.077 1.23E-14 0.142 0.745 0.00E+00 2.32E-39 0.014 0.007 0.030 0.000 0.000 0.019 0.000 0.000
APOBEC 36115 12.5% 0.08 0.13 -0.06 -0.07 -0.04 0.01 0.02 -0.004 0.06 -0.06 0.05 -0.04 -0.29 -0.08 -0.13 0.12 0.04 0.13 0.98 0.99 0.10 -0.38 0.98 0.89 -0.42

0.146 0.013 0.243 0.199 0.481 0.905 0.668 0.941 0.242 0.294 0.677 0.762 3.32E-08 0.130 0.015 0.020 0.488 0.014 0.000 0.000 0.065 0.000 0.000 0.000 0.000
SBS2 17780 6.2% 0.08 0.14 -0.05 -0.06 -0.02 0.02 0.02 0.01 0.07 -0.04 0.09 -0.04 -0.28 -0.08 -0.13 0.14 0.05 0.14 0.98 0.93 0.10 -0.36 0.93 0.95 -0.42

0.141 0.008 0.380 0.280 0.640 0.715 0.710 0.854 0.167 0.398 0.495 0.730 1.33E-07 0.129 0.013 0.010 0.342 0.007 9.18E-254 0.000 0.069 0.000 0.000 0.000 0.001
SBS13 18335 6.4% 0.07 0.12 -0.07 -0.08 -0.05 -0.01 0.02 -0.02 0.05 -0.06 0.00 -0.02 -0.29 -0.08 -0.12 0.11 0.02 0.11 0.99 0.93 0.10 -0.38 1.00 0.81 -0.37

0.164 0.022 0.166 0.154 0.373 0.920 0.642 0.766 0.344 0.232 0.974 0.843 2.67E-08 0.143 0.021 0.043 0.656 0.030 1.52E-274 8.38E-160 0.070 0.000 0.000 0.000 0.002
de novo SBS signatures
A 140368 48.7% 0.38 0.14 0.45 0.15 0.46 0.33 0.07 0.29 0.54 0.19 0.41 0.15 0.48 -0.17 0.06 0.90 0.43 0.92 0.10 0.10 0.10 0.20 0.11 0.16 0.69

5.11E-14 0.009 2.28E-19 0.005 3.87E-20 1.32E-10 0.212 3.66E-08 2.54E-28 4.34E-04 0.001 0.217 3.49E-22 0.001 0.222 6.67E-128 1.46E-17 1.34E-150 0.065 0.069 0.070 0.000 0.037 0.002 0.000
B 97010 33.7% 0.35 0.06 0.49 0.41 0.37 0.22 0.04 0.19 0.31 0.44 0.26 0.45 0.63 0.18 0.32 0.47 0.83 0.38 -0.38 -0.36 -0.38 0.20 -0.39 -0.26 0.76

8.67E-12 0.236 3.63E-23 1.30E-15 5.15E-13 2.92E-05 0.431 3.00E-04 3.07E-09 1.79E-18 0.035 0.0002 3.13E-40 0.001 6.50E-10 8.51E-21 9.27E-92 6.37E-14 1.28E-13 1.30E-12 1.06E-13 1.49E-04 0.000 0.000 0.000
C 25527 8.9% 0.07 0.12 -0.07 -0.08 -0.04 0.002 0.03 -0.01 0.06 -0.07 0.09 -0.13 -0.29 -0.08 -0.11 0.11 0.02 0.12 0.98 0.93 1.00 0.11 -0.39 0.79 -0.35

0.174 0.020 0.194 0.132 0.458 0.969 0.627 0.861 0.269 0.210 0.494 0.305 2.63E-08 0.126 0.030 0.031 0.764 0.019 1.21E-251 4.05E-153 0.00E+00 0.037 1.61E-14 0.000 0.004
D 25276 8.8% 0.13 0.16 0.04 -0.01 0.05 0.08 0.02 0.06 0.15 0.01 0.22 0.07 -0.17 -0.08 -0.09 0.23 0.15 0.23 0.89 0.95 0.81 0.16 -0.26 0.79 -0.09

0.015 0.003 0.491 0.842 0.350 0.143 0.644 0.235 0.005 0.899 0.079 0.595 0.001 0.151 0.106 8.89E-06 0.006 7.79E-06 1.12E-122 1.08E-183 2.54E-83 0.002 7.60E-07 1.58E-78 0.475
de novo SBS signatures (restricted to cases with dose ≥200 mGy)
A 37095 84.0% 0.54 0.11 0.53 0.35 0.47 0.29 0.04 0.27 0.50 0.36 0.36 0.29 0.76 -0.07 0.16 0.74 0.73 0.72 -0.42 -0.42 -0.37 0.69 0.76 -0.35 -0.09

2.59E-06 0.382 5.44E-06 0.004 6.07E-05 0.017 0.728 0.029 1.69E-05 0.003 0.003 0.017 1.78E-13 0.590 0.195 9.06E-13 3.88E-12 1.46E-11 4.35E-04 0.001 0.002 1.06E-10 1.14E-13 0.004 0.475
B 7055 16.0% -0.11 -0.16 0.14 0.07 0.13 0.15 0.03 0.13 0.07 0.04 0.08 -0.02 -0.11 -0.15 -0.22 0.28 0.04 0.30 0.98 0.98 0.84 0.27 -0.15 0.70 0.85 -0.40

0.393 0.202 0.279 0.589 0.308 0.239 0.821 0.287 0.572 0.726 0.511 0.875 0.360 0.224 0.076 0.025 0.768 0.014 1.35E-46 5.32E-50 8.08E-19 0.028 0.222 4.14E-11 1.32E-19 0.001

Pearson correlation (black font), P (gray font); light red shading indicates |r|>0.4

Known ID signatures from COSMIC v3* 

Table S5. Fraction of mutations attributed to specific ID or SBS signatures and correlation amongst different signatures among N=356 tumors with high purity and available whole genome sequencing data (n=66 when restricted to dose ≥200 mGy).

Mutation 
fraction

* Catalogue of Somatic Mutations in Cancer (COSMIC) v3, https://cancer.sanger.ac.uk/cosmic/signatures

Mutation 
count

de novo ID signatures 
(dose ≥200 mGy) Known SBS signatures from COSMIC v3* de novo SBS signaturesde novo ID signatures



Table S6. Distribution of structural variants and somatic copy number alterations by type and clonality

Event n (column %) n (row %) n (row %)
Structural variant events (Total)
Total 479 (100.0%) 259 (54.1%) 220 (45.9%)

Simple/balanced 132 (27.6%) 106 (80.3%) 26 (19.7%)
Complex 94 (19.6%) 66 (70.2%) 28 (29.8%)
Simple/unbalanced 253 (52.8%) 87 (34.4%) 166 (65.6%)

Structural variant events (excluding 2 PTC cases with >10 SVs)
Total 450 (100.0%) 240 (53.3%) 210 (46.7%)

Simple/balanced 125 (27.8%) 100 (80.0%) 25 (20.0%)
Complex 83 (18.4%) 60 (72.3%) 23 (27.7%)
Simple/unbalanced 242 (53.8%) 80 (33.1%) 162 (66.9%)

Confirmed structural variant events (Total)
Total 309 (100.0%) 227 (73.5%) 82 (26.5%)
Simple/balanced 139 (45.0%) 110 (79.1%) 29 (20.9%)

<20 bp intervening loss/gain 91 (29.4%) 88 (96.7%) 3 (3.3%)
<4 bp intervening loss/gain 45 (14.6%) 43 (95.6%) 2 (4.4%)
4-<20 bp intervening loss/gain 46 (14.9%) 45 (97.8%) 1 (2.2%)
Inversion 52 (30.2%) 50 (96.2%) 2 (3.8%)
Translocation 39 (22.7%) 38 (97.4%) 1 (2.6%)

Complex 90 (29.1%) 61 (67.8%) 29 (32.2%)
Simple/unbalanced 80 (25.9%) 56 (70.0%) 24 (30.0%)

Confirmed structural variant events, excluding SV/fusion drivers
Total 172 (100.0%) 99 (57.6%) 73 (42.4%)
Simple/balanced 58 (33.7%) 34 (58.6%) 24 (41.4%)

<20 bp intervening loss/gain 26 (15.1%) 23 (88.5%) 3 (11.5%)
<4 bp intervening loss/gain 15 (8.7%) 13 (86.7%) 2 (13.3%)
4-<20 bp intervening loss/gain 11 (6.4%) 10 (90.9%) 1 (9.1%)
Inversion 19 (11.0%) 17 (89.5%) 2 (10.5%)
Translocation 7 (4.1%) 6 (85.7%) 1 (14.3%)

Complex 45 (26.2%) 18 (40.0%) 27 (60.0%)
Simple/unbalanced 69 (40.1%) 47 (68.1%) 22 (31.9%)

Confirmed structural variant events, restricted to SV/fusion drivers
Total 137 (100.0%) 128 (93.4%) 9 (6.6%)
Simple/balanced 81 (59.1%) 76 (93.8%) 5 (6.2%)

<20 bp intervening loss/gain 65 (47.4%) 65 (100.0%) 0 (0.0%)
<4 bp intervening loss/gain 30 (21.9%) 30 (100.0%) 0 (0.0%)
4-<20 bp intervening loss/gain 35 (25.5%) 35 (100.0%) 0 (0.0%)
Inversion 33 (19.2%) 33 (100.0%) 0 (0.0%)
Translocation 32 (18.6%) 32 (100.0%) 0 (0.0%)

Complex 45 (32.8%) 43 (95.6%) 2 (4.4%)
Simple/unbalanced 11 (8.0%) 9 (81.8%) 2 (18.2%)

Somatic copy number alterations (Total)
Total 326 (100.0%) 248 (76.1%) 78 (23.9%)
Chromosome level (aneuploidy)
Total 132 (40.5%) 113 (85.6%) 19 (14.4%)

Deletions 48 (14.7%) 33 (68.8%) 15 (31.3%)
Gains 65 (19.9%) 61 (93.8%) 4 (6.2%)

By clonality
Total Clonal Subclonal



CNLOH 19 (5.8%) 19 (100.0%) 0 (0.0%)
Sub-chromosome level (DNA double strand breaks)
Total 194 (59.5%) 135 (69.6%) 59 (30.4%)

Deletions 115 (35.3%) 96 (83.5%) 19 (16.5%)
Gains 60 (18.4%) 28 (46.7%) 32 (53.3%)
CNLOH 19 (5.8%) 11 (57.9%) 8 (42.1%)

Somatic copy number alterations (excluding 4 PTC cases with ≥20 SCNAs each)
Total 239 (100.0%) 165 (69.0%) 74 (31.0%)
Chromosome level (aneuploidy)
Total 69 (28.9%) 50 (72.5%) 19 (27.5%)

Deletions 48 (20.1%) 33 (68.8%) 15 (31.3%)
Gains 20 (8.4%) 16 (80.0%) 4 (20.0%)
CNLOH 1 (0.4%) 1 (100.0%) 0 (0.0%)

Sub-chromosome level (DNA double strand breaks)
Total 170 (71.1%) 115 (67.6%) 55 (32.4%)

Deletions 106 (44.4%) 87 (82.1%) 19 (17.9%)
Gains 51 (21.3%) 23 (45.1%) 28 (54.9%)
CNLOH 13 (5.4%) 5 (38.5%) 8 (61.5%)



Driver gene Designated driver* Additional candidate driver n
Mutations

BRAF BRAF V600E 175
BRAF BRAF V600E AKT1 2
BRAF BRAF V600E PIK3R1 2
BRAF BRAF V600E ARID2 1
BRAF BRAF V600E BCOR 1
BRAF BRAF V600E CR2 1
BRAF BRAF V600E FAT3 1
BRAF BRAF V600E GPC3 1
BRAF BRAF V600E MTOR 1
BRAF BRAF V600E PIK3CA 1
BRAF BRAF V600E RET 1
BRAF BRAF V600E RGS7 1
BRAF BRAF V600E SETD2 1
BRAF BRAF V600E TSHR 1
BRAF BRAF Non-V600E 3
BRAF BRAF Non-V600E PTEN-PXT1  fusion 1
NRAS NRAS 15
NRAS NRAS SETD2 1
NRAS NRAS SF3B1 1
NRAS NRAS TP53 1
NRAS NRAS NEBL-TCF7L2  fusion 1
NRAS NRAS PAX8-PPARG  fusion 1
HRAS HRAS 14
HRAS HRAS TP53 1
KRAS KRAS 8
KRAS KRAS AKT1 1
TSHR TSHR 6
DICER1 DICER1 3
APC APC 2
NFE2L2 NFE2L2 1
NFE2L2 NFE2L2 GPHN-RAF1  fusion 1
TSC1 TSC1 1
TSC2 TSC2 1

Fusions
RET CCDC6-RET 39
RET CCDC6-RET PIK3R1 1
RET NCOA4-RET 14
RET NCOA4-RET SETD2 1
RET RET -Other 18
NTRK3 ETV6-NTRK3 31
NTRK3 ETV6-NTRK3 CR2 1
NTRK3 NTRK3 -Other 3
NTRK3 NTRK3 -Other BCOR 1
BRAF AGK-BRAF 6
BRAF BRAF-SND1 4
BRAF BRAF -Other 9
NTRK1 NTRK1-TPR 5
NTRK1 NTRK1-TPM3 4
NTRK1 NTRK1 -Other 4
PPARG CREB3L2-PPARG 6
PPARG PAX8-PPARG 5
PPARG PAX8-PPARG CR2 1
PPARG PPARG -Other 1
ALK ALK-STRN 6
ALK ALK-STRN H3F3B 1
ALK ALK-STRN PTPRT 1
ALK ALK -Other 4
LTK LTK -Other 3

Structural variants
BRAF BRAF 1
IGF2 IGF2 2
IGF2BP3 IGF2BP3 4

Not designated
~ ~ BRAF, Other; KRAS 1
~ ~ 7
~ ~ CTTNBP2-MET fusion 1
~ ~ CCDC30-ROS1 fusion 1
~ ~ NUTM1-WHSC1L1  fusion 1

~ Indicates not applicable.
* Rules for specifying designated and candidate drivers are provided in the 
Materials and Methods.

Table S7. Designated and candidate drivers for N=440 PTCs included in the 
study.



Gene SNV Doublet Insertion Deletion SNV+SCNA SNV+Deletion Deletion+SCNA Total
Oncogenes
BRAF V600E 190 0 0 0 190
BRAF Non-V600E 2 0 1 1 4
NRAS 20 0 0 0 20
HRAS 14 1 0 0 15
KRAS 3 6 0 0 9
TSHR 6 0 0 0 6
NFE2L2 2 0 0 0 2

Tumor suppressor genes
DICER1 0 3 0 3
APC 1 0 1 2
TSC1 0 0 1 1
TSC2 0 1 0 1
Total 237 7 1 1 1 4 2 253

Oncogenic mutation driver type Tumor suppressor mutation driver types
Table S8. Distribution of designated mutation drivers, by mutation type and gene.



Oncogene Fusion* n
Fusions

RET CCDC6-RET (RET-PTC1) 40
RET NCOA4-RET (RET-PTC3) 15
RET RET -Other* 18
NTRK3 ETV6-NTRK3 32
NTRK3 NTRK3 -Other* 4
BRAF AGK-BRAF 6
BRAF BRAF-SND1 4
BRAF BRAF -Other* 9
PPARG PAX8-PPARG 6
PPARG CREB3L2-PPARG 6
PPARG PPARG -Other* 1
NTRK1 NTRK1-TPR 5
NTRK1 NTRK1-TPM3 4
NTRK1 NTRK1 -Other* 4
ALK ALK-STRN 8
ALK ALK -Other* 4
LTK LTK -Other* 3

Structural variants
BRAF BRAF , Large deletion 1
IGF2BP3 IGF2BP3 4
IGF2 IGF2 2

* All recurrent fusions are listed separately; a full list of 
fusion partners, including those for fusions that occurred 
only once in our dataset, is provided in Data S1.

Table S9. Distribution of designated fusion or structural 
variant drivers, by oncogene and fusion partner.



Table S10. Distribution of 22q deletions by driver type and pathway.

n (%) n (%) Pheterogeneity*
Driver type

Fusion 125 (83.3%) 13 (8.7%) 0.07
Mutation 178 (79.1%) 34 (15.1%)

Driver pathway
Fusion, RET 50 (82.0%) 2 (3.3%) 2.8E-10
Fusion, Other RTK 49 (87.5%) 7 (12.5%)
Fusion, BRAF 15 (75.0%) 3 (15.0%)
Fusion, PPARG 8 (88.9%) 0 (0.0%)
Fusion, IGF2/IGF2BP3 3 (75.0%) 1 (25.0%)
Mutation, BRAF 152 (86.9%) 12 (6.9%)
Mutation, RAS 16 (41.0%) 22 (56.4%)
Mutation, Other 10 (90.9%) 0 (0.0%)

22q deletion

*Pheterogeneity computed using a likelihood ratio test, comparing logistic regression 
model fit with and without the variable of interest.

No Yes



n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)
mRNA
1 323 (79.0%) 55 (77.5%) 145 (80.6%) 67 (77.9%) 32 (80.0%) 24 (75.0%) 320 (79.4%) 62 (100.0%) 58 (95.1%) 14 (77.8%) 0 (0.0%) 0 (0.0%) 182 (98.4%) 3 (6.8%) 1 (7.1%)
2 69 (16.9%) 14 (19.7%) 28 (15.6%) 16 (18.6%) 5 (12.5%) 6 (18.8%) 66 (16.4%) 0 (0.0%) 3 (4.9%) 4 (22.2%) 0 (0.0%) 6 (100.0%) 3 (1.6%) 41 (93.2%) 9 (64.3%)
3 2 (0.5%) 1 (1.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (3.1%) 2 (0.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (14.3%)
4 13 (3.2%) 1 (1.4%) 7 (3.9%) 3 (3.5%) 1 (2.5%) 1 (3.1%) 13 (3.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 13 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
5 2 (0.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (5.0%) 0 (0.0%) 2 (0.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (14.3%)
Total 409 (100.0%) 71 (100.0%) 180 (100.0%) 86 (100.0%) 40 (100.0%) 32 (100.0%) 403 (100.0%) 62 (100.0%) 61 (100.0%) 18 (100.0%) 13 (100.0%) 6 (100.0%) 185 (100.0%) 44 (100.0%) 14 (100.0%)

miRNA
1 383 (94.6%) 65 (91.5%) 170 (96.6%) 81 (95.3%) 37 (90.2%) 30 (93.8%) 378 (94.7%) 62 (98.4%) 61 (100.0%) 17 (100.0%) 11 (84.6%) 3 (50.0%) 182 (100.0%) 38 (88.4%) 4 (28.6%)
2 1 (0.2%) 0 (0.0%) 1 (0.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.3%) 1 (1.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
3 17 (4.2%) 3 (4.2%) 5 (2.8%) 4 (4.7%) 4 (9.8%) 1 (3.1%) 16 (4.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (15.4%) 2 (33.3%) 0 (0.0%) 5 (11.6%) 7 (50.0%)
4 3 (0.7%) 3 (4.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (0.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (21.4%)
5 1 (0.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (3.1%) 1 (0.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (16.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Total 405 (100.0%) 71 (100.0%) 176 (100.0%) 85 (100.0%) 41 (100.0%) 32 (100.0%) 399 (100.0%) 63 (100.0%) 61 (100.0%) 17 (100.0%) 13 (100.0%) 6 (100.0%) 182 (100.0%) 43 (100.0%) 14 (100.0%)

Methylation
1 252 (61.5%) 48 (66.7%) 115 (63.2%) 51 (60.7%) 24 (57.1%) 14 (46.7%) 250 (61.9%) 49 (76.6%) 47 (73.4%) 9 (50.0%) 0 (0.0%) 0 (0.0%) 140 (76.5%) 5 (11.4%) 0 (0.0%)
2 101 (24.6%) 13 (18.1%) 45 (24.7%) 17 (20.2%) 14 (33.3%) 12 (40.0%) 98 (24.3%) 15 (23.4%) 17 (26.6%) 9 (50.0%) 6 (50.0%) 1 (20.0%) 40 (21.9%) 9 (20.5%) 1 (7.1%)
3 57 (13.9%) 11 (15.3%) 22 (12.1%) 16 (19.0%) 4 (9.5%) 4 (13.3%) 56 (13.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 6 (50.0%) 4 (80.0%) 3 (1.6%) 30 (68.2%) 13 (92.9%)
Total 410 (100.0%) 72 (100.0%) 182 (100.0%) 84 (100.0%) 42 (100.0%) 30 (100.0%) 404 (100.0%) 64 (100.0%) 64 (100.0%) 18 (100.0%) 12 (100.0%) 5 (100.0%) 183 (100.0%) 44 (100.0%) 14 (100.0%)

Table S11. Distribution of mRNA, miRNA, and methylation clusters from unsupervised clustering analyses, by radiation dose and PTC driver.

Mutation, 
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Mutation, 
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Mutation, 
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Fusion, 
BRAF

Fusion, 
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IGF2/IGF2BP3
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Fusion, 
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Fusion, Other 
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By PTC driver

0Cluster 
number

By radiation dose (mGy)

1-99 100-199 200-499 ≥500



mRNA BRS, 
TCGA genes mRNA BRS miRNA BRS Methylation BRS

ERK-activity 
score

mRNA BRS 0.98
2.9E-277

n=409
miRNA BRS 0.83 0.86

4.0E-103 9.6E-117
n=402 n=402

Methylation BRS 0.94 0.92 0.78
2.7E-191 3.5E-166 2.5E-82

n=402 n=402 n=398
ERK-activity score -0.66 -0.61 -0.54 -0.62

8.1E-52 1.7E-43 2.9E-31 3.0E-44
n=409 n=409 n=402 n=402

Thyroid differentiation score 0.69 0.73 0.61 0.64 -0.56
5.7E-60 5.0E-68 1.8E-42 1.3E-47 2.3E-35

n=409 n=409 n=402 n=402 n=409

Pearson correlation (black font), P (gray font), sample size (N, black font)

Table S12. Pearson correlation coefficients among the scores constructed based on the previous TCGA analysis (10) to 
reflect transcriptional patterns related to key signaling and thyroid differentiation pathways.



Table S13. Results from differential expression modeling of individual genes.

Provided as a separate Excel file available on the Science  website.



Provided as a separate Excel file available on the Science  website.

Table S14. Results from differential expression modeling for gene sets from the Molecular 
Signatures Database.



Table S15. Relationship of germline SNPs with radiation dose from 131I exposure, including the 12 SNPs that comprised the PRS.

Total 0 1-99 100-199 200-499 ≥500
SNP Chr Position‡ Ref Alt NFE EAS AFR Risk allele Frequency OR (n=383) (n=78) (n=165) (n=73) (n=36) (n=31) EOR P*
rs12129938 1 233412561 A G 0.22 0.13 0.18 A 0.80 1.32 (1.20 , 1.43) 0.82 0.84 0.82 0.83 0.83 0.81 0.0004 (-0.06 , 0.14) 0.99
rs11693806 2 218292158 C G 0.75 0.36 0.53 C 0.32 1.43 (1.33 , 1.54) 0.26 0.27 0.25 0.29 0.28 0.18 -0.05 (-0.08 , 0.02) 0.11
rs6793295 3 169518455 T C 0.27 0.68 0.39 T 0.76 1.23 (1.15 , 1.33) 0.72 0.70 0.74 0.66 0.75 0.74 0.02 (-0.05 , 0.16) 0.70
rs10069690 5 1279790 C T 0.27 0.15 0.59 T 0.28 1.20 (1.12 , 1.29) 0.29 0.31 0.28 0.32 0.29 0.21 -0.06 (-0.09 , 0.00) 0.054
rs73227498 5 111485904 A T 0.14 0.02 0.08 A 0.87 1.37 (1.23 , 1.49) 0.91 0.92 0.92 0.90 0.93 0.90 -0.04 (-0.08 , 0.12) 0.46
rs2466076 8 32432796 G T 0.53 0.85 0.54 G 0.48 1.32 (1.23 , 1.41) 0.56 0.56 0.56 0.55 0.67 0.48 -0.04 (-0.08 , 0.03) 0.20
rs1588635* 9 100537802 A C 0.65 0.89 0.81 A 0.40 1.70 (1.59 , 1.82) 0.50 0.52 0.52 0.55 0.42 0.34 -0.11 (-0.18 , -0.02) 0.012
rs7902587 10 105694301 C T 0.10 0.00 0.17 T 0.11 1.41 (1.27 , 1.56) 0.10 0.11 0.10 0.12 0.13 0.06 -0.05 (-0.09 , 0.08) 0.31
rs368187 14 36532576 G C 0.45 0.55 0.76 G 0.58 1.39 (1.30 , 1.47) 0.58 0.59 0.59 0.56 0.61 0.53 -0.02 (-0.06 , 0.06) 0.57
rs116909374* 14 36738361 C T 0.03 0.00 0.01 T 0.04 1.71 (1.47 , 2.00) 0.03 0.02 0.03 0.03 0.01 0.02 -0.10 (-0.16 , 0.19) 0.28
rs56062135 15 67455630 C T 0.23 0.02 0.09 T 0.25 1.24 (1.16 , 1.34) 0.28 0.28 0.28 0.32 0.25 0.24 -0.04 (-0.07 , 0.04) 0.28
rs2289261 15 67457485 G C 0.64 0.35 0.60 C 0.68 1.23 (1.15 , 1.32) 0.63 0.65 0.62 0.68 0.56 0.53 -0.06 (-0.08 , -0.01) 0.030
Abbreviations: African ancestry (AFR); alternate allele (alt); chromosome (chr); East Asian ancestry (EAS); non-Finnish European ancestry (NFE); referent allele (ref).
* Position from UCSC human genome assembly hg19.
† P-values were generated using likelihood ratio tests, comparing model fit with and without each SNP (modeled assuming an additive genetic effect), based on multivariable proportional odds models mutually 
adjusted for radiation dose (linear, truncated at 1 Gy), age at PTC, sex, and 10 principal components. Exceptions to this approach included use of logistic regression for rs116909374 because no individuals in our 
study were homozygous for the effect allele, and use of an ordinal dose variable (based on the means of the categories above) for rs1588635 because the linear EOR/Gy model would not converge.

gnomAD genomes 
(n=12,857 individuals)

Effect size per 100 mGy
(95% CI)(95% CI)

Radiation dose (mGy)
Risk allele frequency

Meta-analysis results for PRS constructionAlleles Alternative allele frequency



Table S16. Distribution of rare potentially protein-damaging variants in selected gene sets or pathways in our study population, overall and by radiation dose, and in external reference population data from gnomAD.

Gene set or pathway† n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)
Thyroid susceptibility 156 (0.2%) 37 (0.2%) 4 (0.5%) 4 (1.0%) 2 (2.6%) 2 (1.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Cancer susceptibility 7509 (7.3%) 1248 (8.1%) 57 (7.4%) 50 (13.1%) 9 (11.5%) 22 (13.3%) 10 (13.7%) 3 (8.3%) 6 (19.4%)
Autosomal dominant cancer susceptibility 1520 (1.5%) 303 (2.0%) 15 (2.0%) 15 (3.9%) 4 (5.1%) 7 (4.2%) 2 (2.7%) 1 (2.8%) 1 (3.2%)
Clinical radiation sensitivity 4063 (4.0%) 689 (4.5%) 27 (3.5%) 26 (6.8%) 8 (10.3%) 8 (4.8%) 5 (6.8%) 3 (8.3%) 2 (6.5%)
DNA damage response, total 29952 (29.1%) 3822 (24.8%) 228 (29.8%) 172 (44.9%) 42 (53.8%) 65 (39.4%) 33 (45.2%) 21 (58.3%) 11 (35.5%)

Single strand break repair 13824 (13.5%) 1066 (6.9%) 43 (5.6%) 39 (10.2%) 8 (10.3%) 16 (9.7%) 5 (6.8%) 6 (16.7%) 4 (12.9%)
Base excision repair 11167 (10.9%) 567 (3.7%) 22 (2.9%) 19 (5.0%) 4 (5.1%) 8 (4.8%) 2 (2.7%) 3 (8.3%) 2 (6.5%)
Nucleotide excision repair 2183 (2.1%) 401 (2.6%) 16 (2.1%) 14 (3.7%) 3 (3.8%) 6 (3.6%) 2 (2.7%) 1 (2.8%) 2 (6.5%)
Mismatch repair 1056 (1.0%) 208 (1.3%) 6 (0.8%) 6 (1.6%) 2 (2.6%) 2 (1.2%) 2 (2.7%) 0 (0.0%) 0 (0.0%)
Direct repair 432 (0.4%) 58 (0.4%) 6 (0.8%) 6 (1.6%) 0 (0.0%) 2 (1.2%) 1 (1.4%) 2 (5.6%) 1 (3.2%)

Double strand break repair 9548 (9.3%) 1581 (10.2%) 101 (13.2%) 91 (23.8%) 22 (28.2%) 35 (21.2%) 22 (30.1%) 7 (19.4%) 5 (16.1%)
Fanconi anemia pathway 3545 (3.4%) 666 (4.3%) 44 (5.7%) 44 (11.5%) 12 (15.4%) 13 (7.9%) 12 (16.4%) 4 (11.1%) 3 (9.7%)
Homologous recombination 6245 (6.1%) 992 (6.4%) 54 (7.0%) 51 (13.3%) 14 (17.9%) 23 (13.9%) 6 (8.2%) 4 (11.1%) 4 (12.9%)
Non-homologous end joining 1541 (1.5%) 235 (1.5%) 15 (2.0%) 14 (3.7%) 5 (6.4%) 3 (1.8%) 5 (6.8%) 1 (2.8%) 0 (0.0%)

Translesion synthesis 1855 (1.8%) 309 (2.0%) 21 (2.7%) 21 (5.5%) 4 (5.1%) 8 (4.8%) 5 (6.8%) 1 (2.8%) 3 (9.7%)
Checkpoint factor 2390 (2.3%) 406 (2.6%) 27 (3.5%) 25 (6.5%) 6 (7.7%) 6 (3.6%) 7 (9.6%) 3 (8.3%) 3 (9.7%)
Chromatin remodeling 458 (0.4%) 75 (0.5%) 4 (0.5%) 4 (1.0%) 3 (3.8%) 1 (0.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Chromosome segregation 611 (0.6%) 120 (0.8%) 10 (1.3%) 9 (2.3%) 1 (1.3%) 5 (3.0%) 1 (1.4%) 2 (5.6%) 0 (0.0%)
Nucleotide pools 122 (0.1%) 26 (0.2%) 2 (0.3%) 2 (0.5%) 0 (0.0%) 1 (0.6%) 0 (0.0%) 0 (0.0%) 1 (3.2%)
p53 pathway 115 (0.1%) 15 (0.1%) 1 (0.1%) 1 (0.3%) 0 (0.0%) 0 (0.0%) 1 (1.4%) 0 (0.0%) 0 (0.0%)
Telomere maintenance 1343 (1.3%) 204 (1.3%) 14 (1.8%) 13 (3.4%) 2 (2.6%) 6 (3.6%) 1 (1.4%) 4 (11.1%) 0 (0.0%)
Topoisomerase and topoisomerase damage reversal 114 (0.1%) 20 (0.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Ubiquitin response 525 (0.5%) 65 (0.4%) 6 (0.8%) 6 (1.6%) 2 (2.6%) 3 (1.8%) 0 (0.0%) 0 (0.0%) 1 (3.2%)

(n=73)
200-499
(n=36)

≥500
Chernobyl Tissue 

Bank, Total
(n=383 individuals)

Number of alleles Number of individuals

* Carrier frequencies from the gnomAD whole exome and whole genome sequencing are provided for reference only. Although the gnomAD data were restricted to individuals of non-Finnish European (NFE) descent, the methods are not directly 
comparable to the Chernobyl Tissue Bank samples due to likely differences in both the sequencing methods (e.g., capture kit, sequencing chemistries) and bioinformatics analysis (e.g., variants in gnomAD were only called using HaplotypeCaller and 
utilized different quality control filters). Additionally, note that gnomAD data are provided at the allelic rather than individual level.
† Details on the gene sets and pathways are provided in the Materials and Methods and Table S17.

Chernobyl Tissue 
Bank, Total

gnomAD NFE 
exomes 

(n=51,377 individuals)*

gnomAD NFE 
genomes 

(n=7718 individuals)* (n=31)(n=383)

Radiation dose (mGy)
0

(n=78)
1-99

(n=165)
100-199



Table S17. Distribution of rare potentially protein-damaging variants in selected genes in our study population, 
overall and by radiation dose, and in external reference population data from gnomAD.

Provided as a separate Excel file available on the Science  website.



Molecular characteristics Regression model* P*
β

Small deletions
Total Linear regression 2.16 (1.44 , 2.87) 8.0E-09
Subclonal Linear regression -0.06 (-0.57 , 0.45) 8.2E-01
Clonal Linear regression 1.48 (1.06 , 1.89) 9.9E-12

Length: 1-4 base pairs Linear regression 0.0094 (0.0062 , 0.013) 1.9E-08
Length: ≥5 base pairs (see proportional odds models below)

Deletion:SNV ratio
Total Linear regression 0.0039 (0.0032 , 0.0047) 4.9E-21
Subclonal Linear regression 0.0009 (0.0001 , 0.0017) 2.3E-02
Clonal Linear regression 0.0071 (0.0056 , 0.0086) 1.8E-18

ID5
Total Linear regression 1.07 (0.53 , 1.61) 1.3E-04
Subclonal Linear regression -0.06 (-0.43 , 0.31) 7.4E-01
Clonal Linear regression 0.72 (0.39 , 1.06) 2.3E-05

ID8
Total Linear regression 1.15 (0.77 , 1.54) 7.3E-09
Subclonal Linear regression 0.08 (-0.14 , 0.29) 4.9E-01
Clonal Linear regression 0.80 (0.60 , 1.00) 2.7E-14

EOR
PTC driver type

Fusion vs. mutation PTC driver Logistic regression 0.93 (0.37 , 2.11) 6.6E-08

Sub-chromosome somatic copy number deletions
Total Proportional odds 0.23 (0.07 , 0.51) 7.0E-04
Subclonal Logistic regression 0.29 (-0.05 , 2.39) 1.7E-01
Clonal Proportional odds 0.19 (0.03 , 0.48) 9.7E-03

Confirmed SVs†
Total simple/balanced Proportional odds 2.09 (0.89 , 5.07) 2.5E-13
Subclonal simple/balanced Logistic regression 0.01 (-0.08 , 0.31) 9.1E-01
Clonal simple/balanced Proportional odds 4.65 (1.81 , 12.98) 1.4E-16

Clonal simple/balanced/EJ Logistic regression 18.81 (5.07 , 94.61) 5.5E-19
<4 bp intervening loss/gain Logistic regression‡ 7.84 (>0 , 150) 2.0E-08
≥4 bp intervening loss/gain Logistic regression 3.61 (0.86 , 24.44) 6.1E-08
Inversion Logistic regression 21.42 (3.98 , 400) 3.6E-14
Translocation Logistic regression 0.74 (0.17 , 3.24) 4.4E-04

Clonal non-simple/balanced/EJ Proportional odds 0.04 (-0.04 , 0.18) 4.1E-01

Clonal deletions, Length: ≥5 bp Proportional odds 0.56 (0.38 , 0.79) 5.1E-29
Patterns consistent with EJ

Total Proportional odds 0.61 (0.42 , 0.86) 4.9E-31
0-1 bp microhomology at the deletion boundaryProportional odds 0.54 (0.33 , 0.84) 1.3E-18
≥2 bp microhomology at the deletion boundary Proportional odds 0.48 (0.27 , 0.80) 3.6E-13

Table S18. Relationship between detailed molecular characteristics and radiation dose from 131I exposure, 
separately for characteristics modeled using linear regression and logistic or proportional odds regression.

Clonality of ID-EJ (ID6, ID8 combined) was not considered because no ID6 mutations were identified when the 
analyses were restricted to clonal mutations.
* P-values and effect estimates were derived from multivariable generalized linear, proportional odds, or logistic 
regression models, depending on the distribution of the molecular characteristic. All models were mutually adjusted 
for radiation dose (linear, truncated at 1 Gy), age at PTC, and sex. 
† Analyses were restricted to confirmed SVs, as described in the Materials and Methods and Table S6.
‡ Lower bound would not converge.

Effect size (per 100 mGy)
(95% CI)

(95% CI)



Table S19. Analyses of genomic locus-based attributes for small insertions and deletions.

Attribute β P β P β P β P β P Ptrend
Insertions
Replication timing -0.005 3.79E-03 -0.006 1.78E-07 -0.006 1.22E-03 -0.003 0.30 -0.009 7.75E-04 0.40
GC content -3.053 2.92E-12 -3.499 8.61E-40 -3.161 7.30E-14 -2.486 9.56E-06 -3.107 3.39E-07 0.33
Trinucleotide complexity 22.997 8.72E-06 22.661 5.14E-09 24.696 2.40E-06 23.320 7.96E-05 25.079 1.89E-05 0.15
ALU repeats 0.193 0.044 0.126 0.032 0.179 0.055 0.256 0.036 0.055 0.69 0.52
MIR repeats 0.004 0.98 -0.177 0.040 -0.187 0.19 0.122 0.46 -0.283 0.19 0.88
L1 repeats 0.145 0.058 0.015 0.75 0.022 0.77 -0.004 0.97 0.172 0.10 0.63
L2 repeats -0.165 0.27 -0.038 0.65 -0.201 0.17 -0.219 0.27 0.149 0.42 0.39
LTR repeats -10.032 0.95 -10.125 0.92 -10.107 0.95 -9.517 0.96 -9.312 0.96 na
DNA repeats 0.037 0.78 -0.024 0.77 -0.149 0.28 -0.318 0.11 0.275 0.10 0.16
Simple repeats -0.139 0.37 -0.105 0.27 -0.114 0.46 -0.233 0.26 0.280 0.18 0.34
Genes 0.122 0.073 0.083 0.042 0.005 0.94 -0.007 0.93 -0.033 0.72 0.23
CpG islands 0.649 0.10 0.827 2.28E-04 1.073 6.48E-04 0.821 0.062 0.085 0.91 0.34
Direct repeats 0.153 0.28 -0.025 0.77 -0.254 0.085 0.116 0.54 -0.423 0.048 0.12
G-quadruplexes -0.234 0.39 -0.220 0.18 -0.154 0.54 -0.094 0.77 -0.032 0.93 0.61
Cruciform inverted repeats 0.014 0.84 -0.002 0.97 0.055 0.40 0.131 0.14 -0.059 0.53 0.53
MIR repeats -0.083 0.46 -0.010 0.88 0.159 0.12 -0.083 0.58 0.075 0.62 0.67
Short tandem repeats 0.414 1.82E-06 0.442 1.98E-17 0.433 2.29E-07 0.440 9.59E-05 0.625 6.83E-08 0.45
z-DNA motif -0.280 0.20 0.067 0.55 0.059 0.75 -0.261 0.35 0.007 0.98 0.72
LADs 0.028 0.70 -0.038 0.37 -0.064 0.36 0.100 0.28 -0.165 0.10 0.53
Distance from the centromere 0.346 2.77E-05 0.333 1.43E-11 0.320 5.88E-05 0.445 6.03E-05 0.358 1.74E-03 0.77
Distance from the nearest telomere 0.138 2.78E-05 0.089 1.12E-07 0.112 1.24E-04 0.123 2.46E-03 0.162 1.45E-03 0.45
Chromatin state (heterochromatin) 4.460 5.01E-04 -9.592 0.98 -9.664 0.99 -9.172 0.99 -8.688 0.99 0.52

Deletions
Replication timing -0.007 6.19E-08 -0.005 2.58E-11 -0.007 5.81E-09 -0.003 0.06 -0.001 0.37 0.010
GC content -2.634 4.42E-19 -2.220 5.05E-39 -1.862 6.94E-13 -2.277 1.28E-09 -1.341 5.33E-05 0.015
Trinucleotide complexity 21.906 1.92E-07 24.192 4.77E-17 18.986 1.85E-06 20.155 4.50E-05 14.530 4.86E-03 0.050
ALU repeats -0.040 0.58 -0.142 6.42E-04 -0.214 9.45E-04 0.021 0.81 -0.074 0.35 0.24
MIR repeats -0.117 0.22 -0.054 0.31 -0.116 0.17 -0.105 0.40 -0.115 0.29 0.82
L1 repeats -0.066 0.24 -0.066 0.041 -0.056 0.26 -0.058 0.42 -0.096 0.14 0.46
L2 repeats 0.077 0.40 -0.057 0.30 -0.088 0.31 0.072 0.54 0.002 0.99 0.94
LTR repeats -9.828 0.93 0.468 0.45 0.246 0.81 -9.262 0.93 -9.562 0.93 0.64
DNA repeats -0.138 0.16 -0.108 0.053 -0.076 0.37 -0.018 0.88 -0.076 0.48 0.92
Simple repeats 0.194 0.070 0.237 1.24E-04 -0.049 0.61 0.081 0.56 0.130 0.30 0.57
Genes 0.019 0.69 -0.024 0.39 -0.025 0.55 0.076 0.22 -0.072 0.18 0.22
CpG islands 1.458 5.74E-17 1.146 1.46E-25 1.270 2.69E-16 1.124 9.31E-07 0.581 0.017 0.014
Direct repeats 0.028 0.79 -0.047 0.43 0.145 0.10 -0.138 0.31 0.014 0.91 0.71
G-quadruplexes 0.134 0.37 0.125 0.14 0.084 0.51 0.379 0.026 -0.083 0.64 0.29
Cruciform inverted repeats 0.101 0.029 0.081 2.67E-03 0.081 0.052 0.209 4.58E-04 0.172 1.21E-03 0.065
MIR repeats -0.098 0.22 -0.016 0.73 -0.005 0.94 0.181 0.062 -0.012 0.89 0.88
Short tandem repeats 0.029 0.67 0.111 3.65E-03 0.244 1.71E-05 0.084 0.32 -0.044 0.58 0.33
z-DNA motif 0.062 0.65 -0.272 2.15E-03 -0.227 0.082 0.253 0.11 -0.085 0.62 0.74
LADs -0.080 0.10 0.006 0.84 -0.072 0.10 -0.066 0.30 -0.012 0.84 0.70
Distance from the centromere 0.423 2.45E-13 0.374 4.16E-30 0.407 1.95E-15 0.390 1.96E-07 0.464 6.19E-12 0.34
Distance from the nearest telomere 0.086 8.69E-06 0.082 2.93E-14 0.075 4.71E-06 0.051 0.017 0.083 9.33E-05 0.96
Chromatin state (heterochromatin) -9.069 0.98 -7.283 0.93 -6.422 0.94 -8.795 0.98 -8.995 0.98 na
Abbreviation: not applicable (na). No indel was observed in our study for that genomic feature, thus the models testing for trend in radiation dose excluded those parameters.

Unexposed 1-99 mGy ≥500 mGy100-199 mGy 200-499 mGy



Linear quadratic Linear exponential
Molecular characteristics Regression model* P* P* P*

β
Polygenic risk score

Total Linear regression -0.08 (-0.13 , -0.04) 4.7E-04 0.99 0.54
Exposed -0.08 (-0.12 , -0.03) 2.1E-03
Exposed, <500 mGy 0.00 (-0.15 , 0.15) 9.9E-01

Clonal small deletions
Total Linear regression 1.48 (1.06 , 1.89) 9.9E-12 6.63E-05 1.77E-03
Exposed 1.61 (1.14 , 2.08) 1.0E-10
Exposed, <500 mGy -0.65 (-1.88 , 0.58) 3.0E-01

Clonal deletion:SNV ratio
Total Linear regression 0.0071 (0.0056 , 0.0086) 1.8E-18 0.86 0.25
Exposed 0.0071 (0.0053 , 0.0088) 5.0E-14
Exposed, <500 mGy 0.0046 (0.0009 , 0.0084) 1.5E-02

Clonal ID5
Total Linear regression 0.72 (0.39 , 1.06) 2.3E-05 0.03 0.21
Exposed 0.80 (0.42 , 1.18) 3.7E-05
Exposed, <500 mGy -0.21 (-1.23 , 0.81) 6.8E-01

Clonal ID8
Total Linear regression 0.80 (0.60 , 1.00) 2.7E-14 0.08 0.18
Exposed 0.82 (0.59 , 1.05) 1.5E-11
Exposed, <500 mGy 0.22 (-0.32 , 0.77) 4.2E-01

EOR
Fusion vs. mutation PTC driver

Total Logistic regression 0.93 (0.37 , 2.11) 6.6E-08 0.54 0.56
Exposed 0.58 (0.16 , 1.89) 8.0E-05
Exposed, <500 mGy 0.59 (0.04 , 2.66) 2.6E-02

Clonal sub-chromosome somatic copy number deletions
Total Proportional odds 0.19 (0.03 , 0.48) 9.7E-03 0.01 †
Exposed 0.59 (0.15 , 2.35) 1.7E-04
Exposed, <500 mGy 0.01  (-0.21 ,1.10) 9.8E-01

Clonal simple/balanced/EJ SVs
Total Logistic regression 18.81 (5.07 , 94.61) 5.5E-19 0.60 0.60
Exposed 4.37 (0.76 , 476) 4.7E-08
Exposed, <500 mGy 12.38 (0.90 , 1894) 4.6E-05

Clonal deletions, Length: ≥5 bp, EJ
Total Proportional odds 0.61 (0.42 , 0.86) 4.9E-31 8.4E-09 †
Exposed 0.73 (0.46 , 1.18) 9.0E-28
Exposed, <500 mGy 0.13 (-0.03 , 0.40) 1.4E-01

Effect size (per 100 mGy)*
(95% CI)

(95% CI)

* P-values were generated using likelihood ratio tests, comparing model fit with and without the variable of interest (dose, dose squared, or 
exp(dose)), based on multivariable generalized linear, proportional odds, or logistic regression models, depending on the distribution of the 
molecular characteristic. All models were mutually adjusted for radiation dose (linear, truncated at 1 Gy), age at PTC, and sex, unless otherwise 
noted below. 
† Model did not converge.

Table S20. Sensitivity analyses restricted to exposed (total) and those with <500 mGy exposure, and tests for departure from a linear 
radiation dose-response relationship.

Tests for departure from linearity*
Linear dose model



Molecular characteristics † Regression model*

Polygenic risk score Linear regression 7.8E-01 2.2E-01 5.2E-01
Clonal small deletions Linear regression 5.4E-01 2.9E-02 ‡ 2.4E-02 ‡§

Clonal deletion:SNV ratio Linear regression 2.3E-01 1.8E-04 ‡ 1.2E-01
Clonal ID5 Linear regression 6.8E-01 1.1E-01 4.5E-01
Clonal ID8 Linear regression 3.6E-01 1.4E-03 ‡ 2.8E-03 ‡§

Fusion vs. mutation PTC driver Logistic regression 2.4E-02 ‡|| 2.4E-02 ‡ 9.2E-01
Clonal sub-chromosome somatic copy number deletions Proportional odds 6.1E-02 1.6E-01 2.6E-02 ‡

Clonal ≥5 bp EJ deletions Proportional odds 4.9E-01 1.1E-04 ‡ 1.6E-02 ‡§

Table S21. Tests for departure from a multiplicative relationship between radiation dose from 131I exposure and age at PTC, 
age at exposure, and latency, among exposed individuals.

* P derived from likelihood ratio tests comparing model fit with and without the interaction term of interest. Multivariable models 
included age at PTC (continuous), dose (continuous, truncated at 1 Gy), and sex. Models testing the multiplicative relationship of 
dose × age at exposure (continuous) or dose × latency (continuous) also included those main effects.
† Clonal simple/balanced/EJ SVs were excluded from these analyses because models did not converge.
‡ Indicates P<0.05.
§ Because all models adjusted for age at PTC, the latency effects for these variables appeared to actually reflect effects of age at 
exposure (because age at PTC=age at exposure + latency). Additional modeling evaluating interactions for dose with both age at 
exposure and latency (excluding age at PTC) demonstrated stronger interaction for age at exposure. 
|| Additional modeling of the driver type considering both age at PTC and age at exposure suggested a stronger interaction for age at 
exposure.

Dose ×
Age at PTC 

P*

Dose × 
Age at exposure

P*

Dose × 
Latency

P*



Molecular characteristics
    Age at exposure Regression model* P*
Clonal small deletions Linear regression

<5 years 2.19 (1.34 , 3.04) 1.3E-06
5-9 years 1.36 (0.66 , 2.07) 2.3E-04
≥10 years 0.86 (0.04 , 1.68) 3.9E-02

Clonal deletion:SNV ratio Linear regression
<5 years 0.0090 (0.005 , 0.013) 1.5E-05
5-9 years 0.0059 (0.0035 , 0.0082) 2.7E-06
≥10 years 0.0023 (0.00076 , 0.0039) 3.8E-03

Clonal ID5 Linear regression
<5 years 1.23 (0.58 , 1.88) 2.9E-04
5-9 years 0.46 (-0.22 , 1.13) 1.8E-01
≥10 years 0.40 (-0.31 , 1.10) 2.7E-01

Clonal ID8 Linear regression
<5 years 1.15 (0.70 , 1.61) 1.8E-06
5-9 years 0.82 (0.45 , 1.18) 2.5E-05
≥10 years 0.21 (-0.15 , 0.57) 2.5E-01

EOR
Fusion vs. mutation PTC driver† Logistic regression

<10 years 3.66 (0.50 , 308) 7.3E-06
≥10 years 0.15 (-0.04 , 1.03) 2.1E-01

Clonal ≥5 bp EJ deletions Proportional odds
<5 years 2.42 (0.78 , 492) 4.6E-17
5-9 years 1.21 (0.43 , 4.66) 1.8E-09
≥10 years 0.16 (0.03 , 0.41) 9.2E-03

* P-values and effect estimates were derived from multivariable generalized linear, proportional 
odds, or logistic regression models, depending on the distribution of the molecular 
characteristic. All models were stratified (run separately) by the age at exposure groupings 
specified in the table, with each model mutually adjusting for radiation dose (linear, truncated at 
1 Gy), age at PTC, and sex. 
† Models evaluating the effect of dose on driver type restricted to <5 years of age at exposure 
did not converge, so we combined individuals exposed at <5 and 5-9 years. EOR/100 mGy for 
5-9 years alone=1.78, 95%CI=0.12-226.

Table S22. Relationship between detailed molecular characteristics and radiation dose from 
131I exposure, by age at exposure, separately for characteristics modeled using linear 
regression and logistic or proportional odds regression.

Effect size (per 100 mGy)

(95% CI)
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