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Chlamydia trachomatis is the causative agent of a highly prevalent sexually transmitted bacterial disease and
is associated with a number of severe disease complications. Current therapy options are successful at treat-
ing disease, but patients are left without protective immunity and do not benefit the majority asymptomatic
patients who do not seek treatment. As such, there is a clear need for a broad acting, protective vaccine that
can prevent transmission and protect against symptomatic disease presentation. There are three key ele-
ments that underlie successful vaccine development: 1) Chlamydia biology and immune-evasion adaptations,
2) the correlates of protection that prevent disease in natural and experimental infection, 3) reflection upon
the evidence provided by previous vaccine attempts. In this review, we give an overview of the unique intra-
cellular biology of C. trachomatis and give insight into the dynamic combination of adaptations that allow
Chlamydia to subvert host immunity and survive within the cell. We explore the current understanding of
chlamydial immunity in animal models and in humans and characterise the key immune correlates of pro-
tection against infection. We discuss in detail the specific immune interactions involved in protection, with
relevance placed on the CD4+ T lymphocyte and B lymphocyte responses that are key to pathogen clearance.
Finally, we provide a timeline of C. trachomatis vaccine research to date and evaluate the successes and fail-
ures in development so far. With insight from these three key elements of research, we suggest potential
solutions for chlamydial vaccine development and promising avenues for further exploration.
� 2021 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Chlamydia trachomatis and disease. Chlamydia trachomatis serovars, their corresponding biovar and associated complications. Created with BioRender.com.
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1. Introduction

Chlamydia trachomatis (Ct) is the causative agent of a highly
prevalent sexually transmitted bacterial disease, with an estimated
127 million acquired infections worldwide in 2016 [1] and as such
causes significant economic and social burden. It is an obligate
intracellular bacterium comprising of three biovars which in
humans exhibit an array of pathological conditions. Biovars of Ct
are further divided into serovars which are defined by the variable
domains of the surface protein major outer membrane protein
(MOMP), an important Ct antigen (Fig. 1) [2]. Serovars A-C, of the
trachoma biovar, is a major cause of blindness and visual impair-
ment, responsible for 0.4- and 1.6-million cases respectively in
2015 [3]. Serovars D-K cause disease in the genital tract and in
men are the major cause of non-gonococcal urethritis and epi-
didymitis [4]. In women, genital tract Ct causes severe complica-
tions including pelvic inflammatory disease which is a leading
cause of infertility, ectopic pregnancy and chronic pelvic pain. Gen-
ital tract Ct is also associated with a significant increase in the rate
of HIV contraction and transmission in women [5]. The lym-
phogranuloma venereum biovar, serovars L1-3, causes invasive
urogenital and anorectal infection and has become particularly
associated with HIV-infected men who have sex with men –
reviewed in detail here [6]. The potential severity of Ct pathology
highlights its importance as a major public health problem world-
wide and as such there is a great need for successful disease con-
trol and prophylaxis.

While antibiotic therapy (most commonly azithromycin) suc-
cessfully clears Ct infection from individuals with sexually trans-
mitted disease, its use is limited to those that seek clinical
treatment or are screened for infection [7]. In trachoma, wide-
spread antibiotic use – as part of the World Health Organisation
(WHO) GET2020 campaign to eliminate trachoma globally by
2020 has been largely successful in decreasing prevalence, how-
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ever there are remain many areas of endemic trachoma world-
wide [8]. The majority of Ct infection is asymptomatic (~80%)
[9] and therefore in areas that are not the target of mass antibi-
otic campaigns treatment is often not sought, and transmission
and prevalence remain high. In high-income countries, the cur-
rent solution to this issue is widespread screening in targeted
populations. Mass screening for urogenital infection however is
impractical and expensive (estimated cost of $2.4bn between
2016 and 2021 [10]) and does not prevent disease initiation. In
an attempt to control trachoma, the largest infectious disease sur-
vey undertaken, the Global Trachoma Mapping Project, was suc-
cessful at mapping regions of endemic trachoma. This project
identified regions to target for introduction of the ‘SAFE’ interven-
tion, the WHO package to tackle trachoma, precisely: ‘surgery for
trachoma trachomatous trichiasis’, ‘antibiotics to clear ocular
infection’, ‘facial cleanliness’ and ‘environmental improvement’
[11]. While SAFE has been successful at decreasing disease in
endemic regions, from 0.9 M cases of trachoma induced blindness
in 1990 to 0.4 M in 2015 [3], the prevalence of Ct as an important
urogenital and ocular infection remains. Further complications in
the use of antibiotic therapy arise from evidence suggesting that
antibiotic therapy for Ct may in fact blunt the development of a
lasting protective immune response to Ct, reducing the capacity
of non-human primates (NHP) to produce anti-Ct antibody [12]
and potentially leaving treated patients more vulnerable to rein-
fection [13,14]. This is an area of some contention, with evidence
that the antibody response to C. pecorum following antibiotic
treatment in vaccinated koalas was enhanced after treatment
[15]. The varied nature of Ct infection, from asymptomatic to sev-
ere pathological complications, is likely a result of the inherent
nuances of an individual’s immune response and the extent and
background of infection. Nevertheless, it is clear that those that
independently mount a successful immune response and ‘self-
cure’ from infection exhibit reduced reinfection and lasting
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immune protection [13], and therefore this is a key criteria for
success in alternative Ct control measures.

Prophylactic vaccination for Ct has been promoted as an inter-
vention that addresses the limitations of current therapeutics
[16]. Long-term protection against Ctmay prevent severe sequalae,
decrease transmission and inhibit reinfection. Vaccination for Ct
has long been pursued, with initial candidates explored in the early
1910s by Charles Nicolle at Pasteur Institute in Tunis [17] and later
several human vaccine trials in the 1960s looked to induce protec-
tion against trachoma [18]. However, several features of chlamy-
dial biology have hampered the discovery of a successful vaccine,
in particular, the challenging adaptations Ct has developed to
evade the immune system which will be further discussed in this
review. To successfully approach future vaccine design, it is impor-
tant to first understand the complexities of Ct cell biology and
immunity. Ct has a biphasic developmental cycle, with a metabol-
ically active phase of division within a protective intracellular vac-
uole and an infective extracellular phase. Adaptations of the
intracellular vacuole, termed the chlamydial ‘inclusion’, subvert
natural intracellular innate immune receptors and confer protec-
tion against cellular defence mechanisms [19]. Further alterations
between the intra- and extracellular phases of development pre-
vent successful pathogen clearance and enhance chlamydial sur-
vival. As a result of these adaptations, immunity to chlamydial
infection is complex and has been challenging to characterise. Cur-
rent understanding highlights the importance of IFNc production
from CD4+ T lymphocytes and neutralising antibody production
Fig. 2. The Chlamydia Trachomatis developmental cycle. 1) The EB (light blue) binds
to the surface of a host cell using a two-step mechanism. 2) The Type 3 Secretion
system permeates the cell and facilitates the release of proteins that induce actin
remodelling for Chlamydial uptake to the cell. 3) Within the inclusion, EBs
differentiate into RBs (Dark blue), which are metabolically and reproductively
active. 4) Depending on cellular conditions, RBs either 4a) replicate within the
inclusion or 4b) enter a reversible state of persistence. 5) RBs release Inclusion
proteins which act to inhibit cellular defence mechanisms; through inducing
nutrient sequestration through the endosomal pathway, inhibiting lysosomal
fusion with the inclusion, and inhibiting innate immune sensors such as TLR2,
NOD1 and STING pathways. 6) After sufficient division, RBs terminally differentiate
back into EBs and exit the cell through exocytosis-like (7a) or induced apoptosis
pathways (7b). EB = Elementary Body, RB = Reticular body, TLR = Toll-like receptor,
NOD = Nucleotide-binding oligomerisation domain, STING = Stimulator of inter-
feron genes. Image created in Biorender. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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from B cells [20], however, the precise correlates of protection
against infection are still unclear – and the importance of other
immune effectors such as CD8+ T cells has been questioned [21].
2. The C. trachomatis developmental cycle and its effect on
immunity.

2.1. Developmental cycle

The developmental cycle of Ct occupies a unique niche of intra-
cellular bacterial development [19]. It is biphasic, consisting of two
morphologically distinct forms, the extra-cellular elementary body
(EB) and the intra-cellular reticular body (RB). In short, the life
cycle follows the transmission of EBs from person to person
through sexual contact, through neonatal transmission and
through contact secretions from the eye [22]. Upon contact with
host epithelial cells, EBs gain entry to the cell using a collection
of machinery including the important Type III Secretion system
(T3SS) complex. Following entry, they differentiate into the intra-
cellular RB within a parisitophorous vacuole termed the inclusion.
Within the inclusion RBs hi-jack cellular machinery to promote
bacterial replication, or if cellular conditions are not optimal, they
enter a state of persistence within the inclusion. After replicating
RBs differentiate back into EBs and exit the cell (Fig. 2).

EBs are metabolically inert and adapted for survival in extracel-
lular environments and for host cell adhesion and entry. Unusually,
EBs maintain structural integrity through a web of disulphide
linked outer membrane proteins (Omp), relying on this rather than
peptidoglycan as with most other gram-negative bacteria [23].
Arranged within the Ompmatrix of EBs are needle-like projections,
identified as the chlamydial T3SS, which facilitates inclusion ligand
release and likely plays a role in cell adhesion and entry [24]. Upon
host cell contact, binding is a two-step process. The first is a rever-
sible, low-affinity electrostatic interaction of EB membrane pro-
teins with heparan sulphate containing glycosaminoglycans on
the host cell membrane [25]. This is followed by irreversible high
affinity binding of host cell receptors – such as MOMP binding to
mannose receptor and lipopolysaccharide (LPS) binding to cystic
fibrosis transmembrane conductance regulator [26]. On binding,
the T3SS penetrates the host cell membrane and releases translo-
cated actin-recruiting phosphoprotein (Tarp) which recruits and
remodels cellular actin and initiates rapid internalisation of the
EB into the inclusion [27]. The inclusion is an early-endosomal
pathway type vacuole that forms an intracellular niche for patho-
gen replication; it is non-lysosomal and determines interactions
with the host cell that benefit Ct survival [28].

Within the inclusion, EBs undergo differentiation into the lar-
ger, transcriptomically and metabolically active RB. This process
is marked by a shift in the transcriptional profile of Ct, resulting
in the expression of bacterial metabolic proteins [29]. The RB,
within the inclusion, is adapted in several ways to promote sur-
vival and replication. 1) selective fusion of vesicles - inhibition of
lysosome fusion and promotion of nutrient rich exocytic vesicles
[30]; 2) acquisition of essential nutrients, including eukaryotic
membrane lipids such as cholesterol and phosphatidylcholine,
through complex sequestration mechanisms; 3) modulation of
host cell innate immune and cellular survival pathways [19].
Depending on host cell conditions the RB undergoes cellular divi-
sion or, when deficient of metabolites, enters a state of persistence
within the inclusion.

In nutrient limited conditions RBs enter the ‘persistence’ phase
where replication and many transcriptional and metabolic pro-
cesses are halted [31]. A well-studied example of the conditions
inducing the persistence phase is in the presence of the cytokine
interferon-gamma (IFNc), which, while cytotoxic in high concen-
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tration, has been shown to induce persistence when exposed in
low-moderate concentration to chlamydial infected cell cultures
in vitro [32]. IFNc is thought to act indirectly on chlamydial cells,
by limiting the tryptophan required for chlamydial reproduction
by activating indoleamine 2,3-dioxygenase (IDO) to deplete intra-
cellular tryptophan pools [33]. Tryptophan is necessary for
chlamydial replication within the inclusion. Interestingly, the pres-
ence of tryptophan synthase genes may play an important role in
determining the tropism of Ct serovars; where serovars effecting
the genital tract have functioning tryptophan synthase, they may
be able to evade the IFNc response to infection and persist to
long-term infection (reviewed [34]). Other mechanisms have been
identified for inducing persistence including therapy with peni-
cillin, and starvation from lipids and micronutrients such as Iron
[31,35]. While there is strong evidence for the capacity of the RB
to enter a state of persistence in vitro, direct knowledge of in vivo
Ct persistence is less clear. Though, evidence of enlarged RBs,
indicative of interrupted RB to EB differentiation in persistence,
in human cervical Ct infection [36] and recent work demonstrating
the presence of a maintained single strain of genital tract Ct over
several years [37] in humans provides promising insight into the
in vivo presence of persistence.

Upon normalisation of physiological conditions RB growth is no
longer inhibited and they become metabolically active within the
inclusion. In this phase they express and secrete large amounts
of inclusion protein and undergo several rounds of division by bin-
ary fission [38]. Following rapid division, RBs undergo terminal dif-
ferentiation back into the infectious EB in an asynchronous and to
date largely unknown manner. Recent evidence suggests that dif-
ferentiation is dependent on RB size, as shown by serial block-
face scanning electron microscopy [39], and is prompted by the
expression of late-cycle gene expression [40]. Nevertheless, once
differentiated back into an EB, Ct moves to exit the host cell
through either induced host cell lysis, or inclusion extrusion. Host
cell lysis involves protease dependent lysis of the inclusion, fol-
lowed by calcium-cathepsin dependent plasma membrane lysis
and subsequent host-cell rupturing [41]. Inclusion extrusion is
mediated through an exocytosis-like mechanism, with budding
and pinching from the cell membrane – leaving the host-cell intact
and a membranous compartment for chlamydial survival [41].
Lytic release of Ct likely increases the release of apoptotic
damage-associated molecular patterns (DAMPS), increasing the
immunogenicity of the site of release [42]. Extrusion release, on
the other hand, may contribute to chlamydial persistence through
retention of Ct within the cell after release [43], improved Ct sur-
vival extracellularly and within macrophage [44], and alter the
dendritic cell (DC) cytokine response and induce DC apoptosis [45].

2.2. How the developmental cycle impacts immunity

The developmental cycle of Ct impacts the immune response to
infection in multiple ways. 1) Morphological adaptation: The EBs
have reduced levels of LPS on their surface, which is structurally
distinct and less immunogenic than other bacteria [46]. This is in
part due to the enhanced structural integrity afforded to them by
the di-sulphide bond cross-linked MOMP [47]. 2) The inclusion for-
mation process is adapted to subvert the immune system through
the release of inclusion proteins that interrupt usual cellular recog-
nition receptors [48]. Proteins released can alter the intracellular
pathogen detection mechanisms (TLR2, NOD1, cGAS/STING) of
the cell, blocking the production of protective inflammatory
cytokines and subsequent systemic immune response [48]. The
chlamydial protease-like activity factor (CPAF) protein has been
shown to directly suppress the release of pro-inflammatory cytoki-
nes, such as CXCL10 [49], and innate immune effectors such as the
NFjB subunit, p65 [50]. 3) Ct inhibits cell apoptosis and alters sur-
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vival signals within the cell to maintain an optimal reproductive
niche through factors such as CPAF, HIF1a and Pgp3 [51]. It induces
the degradation of the tumour suppressor p53, which acts as a DNA
damage sensor and plays a central role in inducing cellular apopto-
sis [52]. Additionally, Ct has been shown to inhibit apoptosis by
blocking caspase mediated cellular apoptosis through release of
the inclusion protein CPAF [53]. Together, these adaptations sub-
vert immune recognition of intracellular Ct, allowing it to grow
within the inclusion in a relatively secure environment.
3. The immune response to Chlamydia trachomatis

3.1. Intracellular innate immunity

Multiple pattern recognition receptors (PRRs) have been associ-
ated with the detection of Ct PAMPs [54]. The first, and best under-
stood, is toll-like receptor 2 (TLR2), whose activation has been
associated with several chlamydial proteins including MOMP and
HSP60 [55,56]. The exact C. trachomatis derived ligand of TLR2 is
unclear, but investigation of plasmid-cured Ct suggests that the
ligand is either plasmid encoded or edited in a plasmid dependent
manner [57]. Macrophage from TLR2 knockout (KO) mice produced
significantly less IL-6 and TNF-a in response to infection in vitro,
and in vivo TLR-2 KO mice produce less TNF-a and exhibit muted
immunopathology later in disease [58]. In human embryonic kid-
ney 293 (HEK293) cells, TLR2 and its adapter protein MyD88 were
required for IL-8 production and found to localise at the inclusion
[59]. Interestingly, IL-8 production was abrogated in cells inocu-
lated with UV-inactivated Ct, suggesting TLR2 activation is depen-
dent on productive infection and differentiation to RB [59].

Ct is also recognised by stimulator of interferon genes (STING)
which cause the production of type 1 IFNs. STING is activated by
dimerization upon recognition of cytosolic dsDNA or by recogni-
tion of bacterial cyclic di-AMP or di-GMP [60]. Cyclic di-AMP is a
nucleic acid metabolite produced by Ct, which has been shown to
activate STING and cause the production of IFN-b in infected cells
[61]. IFNc has been shown to play a central role in clearance and
protection against Ct [54], however, type-I IFNs seem to play a neg-
ative role in chlamydial infection and indeed may exacerbate dis-
ease. Initial evidence in IFNa receptor deficient (IFNAR-/-) mice,
lacking the ability to detect type-I IFNs, Chlamydia muridarum gen-
ital infection caused less chronic oviduct pathology, decreased
chlamydial shedding and reduced duration of infection in a man-
ner corresponding with increased CD4+ T cell activation [62]. This
is supported by association studies in women with cervical and
endometrial C. trachomatis infection where evaluation of cervical
secretion cytokines suggested that type-I IFNs are associated with
increased susceptibility to infection and increased risk of endome-
trial ascension – and therefore PID and infertility [63]. Earlier mod-
els investigating IFN-b in combination with TNF in Ct infection of
human cells however demonstrated a role of IFN-b in Ct growth
inhibition through increased tryptophan degradation [64]. Due to
the apparent increase in CD4+ T cell activation in IFNAR-/- mice,
it may therefore be suggested that type-I IFNs play a variable role
in Ct control intracellularly and when acting on immune effector
cells. Unfortunately, it is likely that complete knockout of IFNAR
across a mouse is likely to induce several changes on expected
immune responses due to the diverse effect type-1 IFNs have in
many cell types [65]. To clarify this role, effort must be placed on
defining the regulation and function of type-I IFNs in more accu-
rate models of Ct infection beyond association studies or in C.muri-
darum (Cm).Models utilising conditional and cell specific knockout
will be valuable in concluding the in vivo effect of type-1 IFNs in
host cells. An elegant in vitro model of bi-allelic IRF5 knockout in
macrophage derived from human induced pluripotent stem cells



S.M. Murray and P.F. McKay Vaccine 39 (2021) 2965–2975
led to a 45% increase in Ct bacterial load, highlighting both the use
of novel humanised infection models and the role of IFNs in Ct
clearance. As is seen in infection with Listeria monocytogenes
[66] it is likely that the timing and expression level of IFNs will
be vital in the control of infection, but clarity is needed on the pre-
cise mechanisms of type-I IFNs in Ct clearance before its role as a
protective/suppressive immune regulator is clear.
3.2. Cellular innate immunity

Antigen presenting cells, such as DCs, play a critical role in
priming the adaptive immune response to establish immune mem-
ory and thus vaccine success and are necessary for priming of both
CD4+ and CD8+ T cell responses to Ct [67]. TLR2, STING and NLRs
are activated upon Ct uptake within the DC, leading to the produc-
tion of pro-inflammatory cytokines such as IL-6, TNF-a, CCR7,
CXCL10, IL-1a and IL-12 which are key in inducing the maturation
and optimal presentation of antigen in DCs [68]. The preferential
production of IL-12 from DC upon antigen uptake drives the activa-
tion and differentiation of naïve CD4+ T lymphocytes into primar-
ily the Th1 subset, which provides primary protection against Ct
infection [69]. In models of infection, the importance of DCs is evi-
dent. DCs pulsed with UV inactivated EBs provoke a lower protec-
tive immune response than those with live EBs [70], clarifying the
importance of effective antigen processing in the presentation of Ct
antigen for protective immunity. DCs adoptively transferred with
recombinant MOMP and CPAF were able to elicit protective immu-
nity in murine challenge studies [71]. Exploration of extrusion-
released versus free Ct in DCs highlighted the importance of the
mechanism of Ct host-cell exit on DC inflammatory cytokine acti-
vation, indicating an increase in IFN-b, IL-12p40, IL-10 and PD-L1
transcription in extrusion-containing DCs [45]. In a murine model,
DCs were seen to harbour long-time surviving infectious Cm but
were still able to present antigen to T cells [72]. The role of DCs
as a link between innate and adaptive immunity in the control of
chlamydial infection is therefore likely a highly nuanced one, rely-
ing on the context of chlamydial uptake and subsequent survival. It
is clear that DCs have the capacity to induce protection when adop-
tively transferred in murine challenge studies, however it is inter-
esting to see the upregulation of conventionally immune
suppressing (IL-10, PD-L1) regulators when DCs uptake
extrusion-released Ct. Similarly, increase in production of IFN-b
by DCs, a suggested immuno-suppressive actor in Ct development,
highlights an interesting role for this cytokine in Ct clearance.
Exploration of the diverse serovars of Ct will likely further cloud
this intricate role, as growing evidence demonstrates their varied
responses to differing cytokines [73].

In addition to DCs, other innate immune effector cells are
important in clearing Ct infection, including macrophage and nat-
ural killer cells (reviewed in detail here [20]).
3.3. Adaptive immunity: T cells

The importance of T lymphocytes in clearance of Ct infection
was first demonstrated in athymic mice which were shown to
establish chronic Cm infection, opposed to the self-limiting infec-
tion of wild-type mice [74]. In humans, CD4+ and CD8+ T lympho-
cytes are clearly recruited to the site of infection during disease
and are upregulated during Ct infection [75]. Initial evidence from
murine models lacking MHC II indicated that CD4+ T cells are par-
ticularly important in clearing disease [76] and they, rather than
CD8+ T cells, are necessary for resolution of disease and reduction
of bacterial burden and shedding [77]. However, subsequent find-
ings highlight an important role for both CD4+ and CD8+ T cells in
both protection and in driving pathology [78].
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3.3.1. CD8+ T cells in Ct infection
In studies of MHC I KOmice lacking a CD8+ T cell response, mice

were still able to resolve Ct infection, despite exhibiting increased
bacterial burden and mortality [79]. While these data from early
murine models of Ct infection highlighted the importance of CD4
+ T cells rather than CD8+, it is important to note that Ct is not a
natural pathogen of mice and therefore conclusions made from
these studies are limited. Indeed, subsequent study of Ct infection
in NHP has since found evidence of the importance of CD8+ T cells
in protection. Olivares-Zavaleta et al., in investigating the live
attenuated vaccine, A2497P-, found that not only was the prolifer-
ative response of CD8+ T cells to secreted Ct virulence factors
(CPAF, Pgp3) significantly stronger than that of CD4+ T cells, but
depletion of CD8+ T cells from macaques abrogated protection
induced by vaccination [21]. A2497P- differs from WT Ct as it is
plasmid deficient – therefore lacking virulence factors responsible
for pathogenesis [80]. A potential conclusion that can be made
from this data therefore is that Ct avoids CD8+ T cell clearance in
natural infection through plasmid-derived effectors. Nevertheless,
this evidence for the role of CD8+ T cells highlights a need for fur-
ther investigation of T cell responses particularly in NHP and
humans.

3.3.2. CD4+ T cells in Ct infection
The role of CD4+ T cells in infection is better characterised than

that of CD8+. Evidence from DC studies, cytokine profiling and T
cell activation studies highlight the particular importance of Th1-
type CD4+ lymphocytes in Ct clearance [81]. However, distinguish-
ing the specific effector functions of Th1 in response to Ct infection
has proven complex and is multifaceted (Fig. 3). IFNc has consis-
tently been found to be important in controlling chlamydial repli-
cation and host susceptibility through induction mechanisms such
as IDO and inducible nitric oxide synthase (iNOS). Induction of IDO
by IFNc causes the degradation cellular tryptophan pools, which
are necessary for chlamydial growth and can inhibit growth, lead-
ing to Ct death or persistence [82]. In addition to IDO, IFNc induces
the upregulation of inducible nitric oxide synthase (iNOS) which
synthesises nitric oxide (NO). NO is a well-defined anti-bacterial
factor which damages bacterial DNA and is cytotoxic, [83] however
its role in chlamydial clearance is unclear. Ramsey et al. describe
exacerbated pathological outcome of genital tract Ct infection in
mice deficient of iNOS, and that Ct growth in murine lung fibrob-
lasts was decreased in iNOS KO/inhibited cells [84]. However, fur-
ther exploration of IFNc in human and mice cells finds differing
bactericidal responses in each [85] – potentially limiting our ability
to extrapolate data found in different species models. It is likely
therefore that further mechanistic evidence of its action will need
to come from more humanised models. Nevertheless, in both
mouse genital tract infection with Cm [86] and in vitro human cel-
lular infection with Ct [87] the role of iNOS and NO is evident.

3.3.3. T cells in human Ct infection
In human infection, accumulation of HLA-DR + CD4+ and CD8+

T cells primarily of a memory phenotype is seen in the endocervix
at the time of chlamydial infection, suggesting increased T cell
accumulation and activity [88]. This is supported by flow cytomet-
ric analysis of cervical secretions in infertile women with ongoing
C. trachomatis that also indicate increased T cell presence [75]. The
expression of IFNc is also increased in endocervical secretions of
women infected with Ct [89] as well as the cytokine IL-12p70
which is associated with Th1 differentiation, and CX3CL1, a T cell
chemoattractant [90]. Patients with C. trachomatis infection were
found to have higher levels of T cell recruiting cytokines than four
other common sexually transmitted infections, a factor associated
with higher risk of HIV coinfection [91]. In the first immunoepi-
demiological prospective cohort study of Ct infection in commer-



Fig. 3. Adaptive immunity to C. trachomatis. B cells have 3 primary roles in clearance of C. trachomatis: ADCC, which causes foreign antigen clearance by antibody tagging for
NK cell clearance, antibody binding and neutralisation against listed antigens and CD4+ T cell priming through antigen presentation. CD4+ T cells are also key in clearing
infection doing so through B cell class switching and IFNc dependent and independent mechanisms. ADCC = Antibody-dependent cell mediated cytotoxicity, MOMP = Major
outer membrane protein, Pmp = Polymorphic membrane protein, NK = Natural killer, IDO = Indoleamine 2,3-dioxygenase, iNOS = inducible nitric oxide synthase. Created with
BioRender.com.
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cial sex workers, it was demonstrated that ex vivo PBMC produc-
tion of IFNc in response to HSP60 (but not whole EB) was associ-
ated with protection against infection [92]. IL-10 production,
conversely, increased risk of infection. Similarly, a CD4+ IFNc
response was associated with decreased risk of reinfection after
azithromycin treatment for Ct infection, promoting the importance
of CD4+ Th1 type cytokine production in protection against infec-
tion [93]. Taken together, data from animal models and human
study suggest an important role for IFNc producing CD4+ T cells
in protection against infection. Despite this, the complexity of
the cytokine response to Ct, compounded by the variable nature
of the immune response to Ct variants and their diverse resistance
to IFNc control, means that still IFNc is an inconsistent biomarker
of protection in infection. Perhaps future vaccine studies, where
detailed immunophenotyping of infection can be done in tandem
with evidence of protection against Ct infection will provide the
necessary information to confirm the role of IFNc and CD4+ T cells,
as well as other factors, as correlates of protection against Ct.

3.4. Adaptive immunity: B cells

The role of humoral immunity in chlamydial protective immu-
nity is less apparent than that of the CD4+ T lymphocyte. A series of
seminal studies by Morrison and Morrison unveiled the impor-
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tance of B lymphocytes in clearance of secondary infection. Ini-
tially, they explored the synergistic interplay of B cells and CD4+
T lymphocytes in protection against secondary infection of Ct
[77]. In B cell KO mice, depletion of CD4+ T cells by monoclonal
antibody resulted in significantly delayed resolution of disease. A
follow up study found that mice with a properly formed B cell
response were able to resolve secondary infection even in the
absence of CD4+ or CD8+ T cells [94]. Since, it has been made clear
that several Ct proteins promote antibody production and many
immunodominant peptides have been identified using ELISA-
based antigenic profiling and proteomic microarrays [95,96]. Inter-
estingly, Follmann et al. demonstrated through analysis of 116 pro-
teins in 40 patients with confirmed genital Ct that B cell antigens
are compartmentally biased, being primarily found on the surface
of EBs rather than intracellularly – this is unlike T cell antigens,
which are not biased by location [97]. Through exploration of cel-
lular and humoral responses to Ct proteins, they found 5 T cell, 5B
cell and two T&B cell (CT443 and CT110) immunogens. Using
CELLO to predict the subcellular location of the antigens, they
found that significantly more B cell antigens were predicted to
be found on the Ct outer membrane than intracellular compart-
ments. The evidence suggested here may be useful in shaping
future vaccine design, as it provides initial evidence of the
potential importance of subcellular location in antigen recognition.
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Verification of the location of these proteins will be valuable in
confirming these predictions, and further evidence of the extra-
cellular accessibility of the epitopes would validate these findings
and provide insight into the effect of subcellular location on the
immune response.

With evidence that B cells play an important role in disease,
what specific mechanisms do they use to fulfil this role (Fig. 3)?
The involvement of antibody-mediated neutralisation in ocular Ct
infection was explored as early as 1974, where anti-Ct
immunoglobulin in the eye secretions of trachoma patients were
found to reduce infectivity on co-transfer to NHPs, but were not
protective in either [98]. Since, exploration of neutralising antibod-
ies through in vitro infectivity assays has been a useful tool in the
discovery of antibodies that are sufficient to block the function of a
pathogen. One study investigated the effect of the chlamydial sur-
face serine protease, HtrA, when expressed in outer membrane
vesicles (OMVs) of E. coli and used to immunise mice [99]. HtrA
bearing OMVs induced the production of neutralising antibodies
and blocked infectivity, indicating the ability of neutralising anti-
bodies to limit infection. It also demonstrates the capacity of an
uncommonly used vaccine platform to induce antibodies and pro-
tection against disease. In another vaccine study, the protective
capacity of the recombinant multivalent MOMP vaccine candidate
Hirep1 (heterologous immune-repeat 1) was explored. Hirep1
induced neutralising antibodies were shown to induce protection
against Ct when passively transferred to Rag1 KO mice, lacking T
and B cells [100]. Further evidence of this capacity is seen in stud-
ies exploring the chlamydial proteins Porin B and polymorphic
membrane protein D [101,102].

The importance of B cells in chlamydial clearance is also seen in
their ability to help T cell differentiation and activity. In murine
genital infection studies, Cm was used to determine the local
response of CD4+ T cells in genitalia of mice with and without B
cells [103]. Mice that lacked B cells demonstrated markedly
decreased activation and clonal expansion of CD4+ T cells in
response to Cm, and had coinciding systemic dissemination of
infection. Interestingly however, bacterial shedding was not
affected by the absence of B cells suggesting that CD4+ T cells with-
out B cells are sufficient to stop shedding. A follow-up study
recently sought to determine the means of B cell mediated protec-
tion in this model [104]. Here, Lin-Xi et al. described the impor-
tance of antibody in reducing systemic dissemination, showing
that passive sera transfer rescues systemic infection but antigen
presentation by B cells was unnecessary for protection. Earlier
Fig. 4. Timeline of C. trachomatis vaccination. Timeline to depict the first use of vacci
LPS = Lipopolysaccharide, MOMP = Major outer membrane protein, VD = Variable
rVC = Recombinant Vibrio cholerae. PorB = Porin B, CPAF = Chlamydial protease-like acti
Antigen, MVA = Modified vaccinia Ankara, saRNA = Self-amplifying RNA.
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work by Johnson et al., however, suggests that B cell antigen pre-
sentation to induce protective T memory cells was capable of com-
pletely preventing immunopathology when adoptively transferred
to mice [105]. These results provide evidence of a potentially com-
plex and location specific role for B cell antigen presentation in
Chlamydial clearance of infection. It may be that the function of
B cells in induced memory lymphocyte clusters, as in the work
by Johnson et al., provide a distinct antigen-presenting role that
is accessory to the importance of antibody prevention of systemic
disease.
4. Vaccine development for C. trachomatis

Following the early trials of Nicolle, initial human vaccine trials
focused on ocular inoculation of whole inactivated bacteria, pri-
marily for the treatment of trachoma rather than genital tract
infection (Fig. 4) [17,106-138]. These early trials showed some suc-
cess in induction of low-level immunogenicity, providing initial
evidence that vaccination to C. trachomatis was possible [111].
The proof of concept provided by these trials was marred however
by the significant discovery of inflammatory disease exacerbation
by vaccination in trial participants and in NHP studies where
increased inflammation after vaccination and reinfection was
observed [139]. With the benefit of modern chlamydial under-
standing, reinterpretation of data gathered in these trials suggests
that disease may not in fact be exacerbated, but that initial fears
were due to inaccurate assessment of disease markers and a focus
on identification of active disease, rather than induced protection
against scarring [16,18,111]. Thus, while the data from these initial
trials provided evidence that vaccination against Ct was possible,
they also prompted a move away from whole cell vaccination
toward subunit vaccination strategies.

Subunit vaccines exist in multiple forms, making use of many
individual antigen expressed through several differing vectors.
MOMP is the most highly expressed surface antigen of C. trachoma-
tis and is the most prominently explored vaccine antigen to date.
Early exploration of purified MOMP as an oral vaccine against Ct
in NHPs showed a limited immunogenic capacity with little protec-
tion against ocular challenge [113]. Since however, its capacity to
protect against genital infection in mice has been demonstrated
[140], and it has become recognised as having several potentially
immunodominant peptides capable of stimulating cellular and
humoral immunity [95,141]. Indeed, in 2019 a multivalent vaccine
ne platforms and antigens for Chlamydia trachomatis. Ct = Chlamydia trachomatis,
domain, CTP = Cytosine triphosphate, ISCOM = Immune stimulating complex,
vity factor, Pmp = Polymorphic membrane protein, HepB sAg = Hepatitis B Surface
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incorporating MOMP proteins, termed CTH522, became the first
vaccine candidate trialled in humans since the 1970s [137]. The
data gathered in this Phase I safety and efficacy trial demonstrated
vaccine-induced immunogenicity: significantly increasing the titre
of antigen-specific mucosal IgG and IgA, antibody neutralisation
and increasing antigen-specific cellular IFNc production. These
data provide promising insight into the functionality of MOMP as
a vaccine candidate and demonstrate its capacity to induce
antigen-specific immune responses in humans. Further in-human
trials will be necessary to not only advance immunogen character-
isation, but also to provide evidence of protection against infection
and importantly to develop tangible, quantifiable, evidence of
immune correlates of protection in humans. In addition to MOMP,
various other candidate immunogens have been explored for
immunogenicity in subunit vaccine pre-clinical models [142].

Development of vaccine delivery platforms that tailor the
immune response have been a key area of advance in chlamydial
vaccine development. Combination of adjuvant technologies and
specific molecular design allow for orchestrated immune
responses that are potent but with reduced off-target effects. The
most common method used to date for subunit vaccination is
recombinant protein, including fusion proteins with multiple Ct
epitopes have shown success in many studies [137,141]. Other vac-
cine modalities such as DNA plasmid, mRNA, viral, nanoparticle
and extracellular vesicle vectors have also been also utilised to
explore more cost-effective, scalable and immunogenic alterna-
tives for vaccine delivery. Difficulties in cheaply producing recom-
binant MOMP in its native form has prompted design of vaccines
fusing or integrating Ct specific MOMP epitopes with stable vectors
including Hepatitis B core antigen [143] and Neisseria lactamica
porin B [144]. Nucleic acid vaccines by-pass the need to synthesise
protein in vitro, are cheap to produce, highly adaptable and prompt
strong Th1 skewed immune responses, making them highly appro-
priate for Ct vaccination. While initial attempts to utilise DNA plas-
mid vaccination for Ct were disappointing and did not impart
protection in murine models [145], recent DNA vaccines incorpo-
rating additional immunogenic epitopes have shown some capac-
ity for inducing protection against Ct in mice [146]. Their
capacity to be optimised for the presentation of effective CD8,
CD4 or B cell epitopes highlights them as interesting candidates
for future vaccine work [147]. Self-adjuvanting nanoparticle
encapsulated MOMP peptide has been shown in murine models
of Cm infection to significantly decrease bacterial load upon chal-
lenge [148] and promote a novel way for adjuvant delivery. mRNA
vaccines are a little explored modality for Ct vaccination that have
shown great capacity to induce IFNc and neutralising antibody
responses to other intracellular pathogens [149]. In complex with
cationic adjuvant formulations, self-amplifying RNA incorporating
MOMP (Venezuelan equine encephalitis virus backbone with
MOMP insert) induced a self-adjuvanted MOMP-specific IFNc
dominated cellular and humoral immune response in mice [138].
It is likely that implementation of increasingly intricate delivery
platforms that orchestrate an appropriate immune response
through incorporation of adjuvants and through molecular design
will be essential in advancing the development of successful vacci-
nes for Ct infection [138].
5. Challenges and future avenues for Chlamydia trachomatis
vaccines

In spite of the numerous successes of vaccine research thus far,
there remain several issues that impact our ability to translate
immunological and biological understanding into vaccine
advances. More work must be done to identify novel immunogen
candidates and platforms for delivery that are safe, sufficiently
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immunogenic and induce appropriate protective immunity. While
the greatly explored MOMP has been effective at demonstrating
some immunogenicity in models and in human trials – discovery
of alternative candidates that are pan-serovar neutralising and
cheap to produce will be key in providing a broadly effective vac-
cine. PmpD is a potential example of one such candidate [102],
which may benefit from the alternative vaccine design strategies
highlighted above. It will be important in the future to explore
new and robust delivery modalities that tailor immunogenicity,
cost-effectiveness, environmental sustainability and scalability
and overcome issues of native protein folding [150]. The combina-
tion of these approaches will be critical in the effort to establish
protection against chlamydial infection in a global setting and in
orchestrating a suitable immune response that effectively prevents
disease transmission and pathology.
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