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Abstract—Seizure prediction can warn patients to take effective
measurement in time before the oncoming onset, which is critical
to protecting their lives. Compared to seizure detection that
identifies the inter-ictal state and the ictal state, there are far
fewer researches on seizure prediction because high similarity
makes it challenging to distinguish between the pre-ictal state
and the inter-ictal state. In this paper, a novel algorithm to
predict seizure is proposed using common spatial patterns (CSP)
and convolutional neural network (CNN). Firstly, we generate
additional artificial EEG signals by combining segmented pre-
ictal signals to solve the trial imbalance problem between the two
states. Secondly, an extractor we designed for feature extraction
in both time domain and frequency domain employing wavelet
packet decomposition and CSP to decrease training time while
increasing overall accuracy. Finally, a shallow CNN uses the
extracted feature matrix as input to facilitate discriminating
between the pre-ictal state and the inter-ictal state. Our proposed
algorithm is evaluated on 23 patients from Boston Children’s
Hospital-MIT scalp EEG dataset employing a leave-one-out
cross-validation approach and achieves a sensitivity of 92.2% and
false prediction rate (FPR) of 0.11/h. Experimental results verify
the particularly good performance compared to other state-of-
the-art methods.

Index Terms—seizure prediction, EEG, common spatial pat-
terns, convolutional neural network

I. INTRODUCTION

EPILEPSY is a common chronic brain disease with ap-
proximately 50 million patients worldwide, the premature

death rate of whom is 2 to 3 times that of disease-free
individuals, and it poses a heavy burden on the patients,
their families and society [1], [2]. Accordingly, the study
of seizure prediction has always played an important role
in the field of biomedicine to offer hope of orthobiosis and
proper functioning to those patients who cannot be cured
by surgery [3]. However, accurate and generalized seizure
prediction algorithm is critically difficult to develop due to
two important factors [4], [5]. Firstly, EEG signal itself is
highly complex and varies irregularly over time. Secondly,
the pre-ictal and the inter-ictal EEG states across individuals
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vary entirely. For these reasons, an automated patient-specific
seizure prediction approach which can reduce the serious
consequences of seizure by obtaining the oncoming onset
alarm is both highly challenging and desired.

In the early stages, classification between the ictal state and
the inter-ictal state for seizure detection was most popular [6]–
[9]. Automatic seizure detection can quickly and accurately
estimate an approximate period of seizure, greatly reducing the
time for doctors to view EEG records. In one of our previous
works, we utilize extended correlation-based feature selection
and logistic model trees to classify the ictal state, the inter-
ictal state and the normal state, with the highest accuracy of
97.6% [10]. Although it can detect the seizures occurred, it
is powerless to obtain the information on upcoming epilepsy
which does not make sense for clinical emergency treatment.
Unfortunately, only limited attention has been paid to seizure
prediction due to lack of the unified assessment criteria,
until Maiwald unequivocally defined the term for prediction
methods and predict the oncoming onset using dynamical
similarity index and threshold crossing [11]. Thereafter, more
research on seizure prediction has emerged on different dataset
[12]–[14].

Nowadays, machine learning is the most advanced technique
to predict seizure. Among them, dynamical similarity index,
mean phase coherence, phase locking value, zero-crossings
are effective algorithms to extract features, and Gaussian
mixture models, Adaboost, SVM and convolutional neural
network (CNN) are utilized widely to obtain the output of
prediction. However these methods cannot achieve high sen-
sitivity and low false prediction rate (FPR) simultaneously.
In addition, most methods ignore the data imbalance problem
that the pre-ictal signals are far less than the inter-ictal signals.
Therefore, we adopt data augmentation to balance data and
utilize common spatial patterns (CSP) together with CNN to
forecast the oncoming seizure. As an effective spatial filtering
algorithm CSP can search the component signal which best
transduces the cerebral activity in seizure prediction. CNN
has already been successfully used including but not limited
to face recognition, natural language processing and emotion
recognition, with few development in EEG data analysis.
Moreover, to the best of our knowledge, the combined model
of CSP and CNN is for the first time applied to EEG data
classification.

The main contributions of our work are as follows: (1)
We design a novel algorithm comprising of two consecutive
components. The first part is an extractor to extract feature
vectors obtained by CSP from raw EEG signals and their

bennylo
Inserted Text
provide timely

bennylo
Inserted Text
ing for

bennylo
Cross-Out

bennylo
Inserted Text
intervention

bennylo
Cross-Out

bennylo
Inserted Text
seizure

bennylo
Cross-Out

bennylo
Inserted Text
could

bennylo
Cross-Out

bennylo
Cross-Out

bennylo
Inserted Text
less research

bennylo
Cross-Out

bennylo
Cross-Out

bennylo
Cross-Out

bennylo
Inserted Text
show the proposed method outperform

bennylo
Cross-Out
based on the captured EEG signals, additional

bennylo
Inserted Text
are generated

bennylo
Inserted Text
 with the aim

bennylo
Cross-Out

bennylo
Inserted Text
Then,

bennylo
Cross-Out

bennylo
Inserted Text
a feature extractor is designed to extract relevant information

bennylo
Inserted Text
which would

bennylo
Cross-Out

bennylo
Inserted Text
reduce

bennylo
Cross-Out

bennylo
Inserted Text
improve

bennylo
Cross-Out

bennylo
Inserted Text
is applied to

bennylo
Cross-Out

bennylo
Inserted Text
e

bennylo
Inserted Text
 data

bennylo
Inserted Text
The 

bennylo
Inserted Text
the

bennylo
Cross-Out

bennylo
Inserted Text
very

bennylo
Cross-Out

bennylo
Inserted Text
achieve

bennylo
Cross-Out

bennylo
Cross-Out

bennylo
Inserted Text
significantly

bennylo
Cross-Out

bennylo
Inserted Text
could

bennylo
Cross-Out

bennylo
Inserted Text
detecting the onset and raising an alarm

bennylo
Cross-Out
a

bennylo
Inserted Text
 approach

bennylo
Cross-Out

bennylo
Inserted Text
d an

bennylo
Cross-Out

bennylo
Cross-Out

bennylo
Cross-Out

bennylo
Cross-Out

bennylo
Inserted Text
cannot predict

bennylo
Cross-Out

bennylo
Inserted Text
cannot be used

bennylo
Inserted Text
the 

bennylo
Cross-Out

bennylo
Cross-Out

bennylo
Inserted Text
much

bennylo
Inserted Text
based

bennylo
Cross-Out

bennylo
Inserted Text
an

bennylo
Cross-Out

bennylo
Inserted Text
used

bennylo
Cross-Out

bennylo
Inserted Text
for seizure 

bennylo
Inserted Text
,

bennylo
Inserted Text
that of 

bennylo
Cross-Out

bennylo
Inserted Text
overlooked

bennylo
Cross-Out

bennylo
Inserted Text
To address these issues in developing a reliable seizure prediction algorithm,

bennylo
Cross-Out

bennylo
Inserted Text
predict the occurence of

bennylo
Inserted Text
s

bennylo
Cross-Out

bennylo
Inserted Text
widely

bennylo
Cross-Out
A

bennylo
Inserted Text
 is designed



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

several frequency band. Then, a shallow CNN with 2 blocks
is constructed to predict the oncoming seizure. The designed
extractor can extract temporal, spatial and frequency character-
istics of each class from multi-channel EEG signals, while the
CNN can be trained for seizure prediction. (2) We implement
signal segmentation and recombination in the time domain
to augment the amount of pre-ictal EEG signals, to prevent
the model from suffering from the trial imbalance problem.
(3) The balanced data are applied to our architecture. The
average prediction accuracy reaches 92.2% meanwhile the
average FPR is 0.11/h, outperforming most state-of-the-art
seizure prediction methods in recent literature.

The remainder of the paper is organized as follows. Section
II introduces typical works using machine learning. Section
III provides the details of our proposed method. In Section IV,
the results of this method are presented. Section V presents a
discussion on the results, and comparisons with related work.
Finally, the paper is concluded in Section VI.

II. RELATED WORK

Studies on seizure prediction can be divided into two
categories according to the type of classifier employed. In
the first category, one or two kinetic indicators and threshold
crossing are used to forecast an impending seizure onset. The
seizure is expected to come when the indicator is apparently
above or below the calculated threshold [15], [16]. Once
the increasing or decreasing tendency in the value over time
appears, an alarm is triggered to warn an approaching onset.
Among them, Iasemidis studies the T-index of the largest
exponent [17], found that the largest Lyapunov curve for the
pivotal channels in temporal lobe present a dynamical change
before the onset. In the second category, the entire EEG signals
from patients are divided into segments (several seconds in
general as a trial), and then labeled as inter-ictal, pre-ictal,
and ictal [18]. Among them, ictal signals have no contribution
to seizure prediction and are discarded prior to classification.
In this approach, training a binary machine learning classifier
to effectively distinguish between the two states is the most
important component for success. An unsolvable disadvantage
of the first approach over the second one, is that no single or
two features simultaneously have remarkable changes for all-
patients when the seizure come. The feature extraction and
classification is the most important procedure for the second
approach, and suitable choice and design can produce superior
performance [19].

Zandi proposed a novel method that applied zero-crossing
interval histogram and variational Bayesian Gaussian mixture
model to predict the oncoming onset of 20 patients from the
Vancouver General Hospital database [20]. Turky used CSP to
extract a feature set which was fed into LDA classifier to dis-
tinguish between the pre-ictal EEG segments and the inter-ictal
EEG segments [21]. Mayer used phase/amplitude lock values
(PLV/ALV) to calculate the phase and amplitude difference
between EEG electrodes local and remote to the epileptic event
[22]. Dongrae used EEG signals of 21 patients from CHB-MIT
and applied phase locking value to the gamma frequency band
decomposed by EMD, NEMD and NA-MEMD algorithms

[23]. Recent research efforts have focused on developing a
method to extract features that can effectively predict seizures
for patients.

With the rapid advancement of deep learning, CNN becomes
the most headline-grabbing method for seizure prediction.
Truong utilized the short-time fourier transform (STFT) on
30s EEG windows without overlap to extract time-frequency
information as an input of classifier [24]. After standard-
ization, a CNN structure with 3 convolution layers, each
layer including a batch normalization unit, a convolution unit
and a max pooling unit, is trained to separate the pre-ictal
trials from the inter-ictal trials. They used 13 patients from
the same database to test the proposed methodology. The
average seizure prediction sensitivity reached 81.2% with a
FPR being 0.16/h. Khan designed a CNN architecture with 6
convolutional layers to extract features which have the ability
to differentiate pre-ictal from inter-ictal EEG segments [25].
The detail coefficients obtained by the wavelet transform of
each EEG channel at assorted scale was fed as input to CNN.
They used 15 patients from the CHB-MIT dataset to test
the proposed methodology and achieved an average FPR of
0.142/h.

We note that all previous researches ignore that the length
of the pre-ictal signals is much less than the inter-ictal
signals to prediction seizure. We balance the data firstly by
generating extra pre-ictal states and discard some inter-ictal
states. Moreover, CSP as a feature extraction method with
superior performance in the brain computer interface filed
lacks of attention in seizure prediction. Only [21] used CSP as
an extractor for binary classification, nevertheless the results
for binary classification were unsatisfactory. We observe that
extracting features in different frequency and temporal bands
simultaneously is an ideal method for improving the classi-
fication precision. In addition, due to EEG data with multi-
channel signals, as a special two-dimensional signal, whose
number of channel and samples extreme dissimilarity. Raw
signals after simple pre-processing such as cutting or flipping
is still unfeasible for direct use as inputs. EEG signals after
time-frequency transform can be fed into deep CNN, it takes
too much time in training which is undesirable in clinic. The
CNN with multilayer is easy to overfitting in terms of small
dataset, which is unfortunately aligned with light seizure of
only several hundred EEG trials. To solve these challenges,
we design a lightweight CNN to identify the pre-ictal state
and the inter-ictal state.

III. MATERIAL AND METHODOLOGY

A. EEG DATA

The EEG data used in this paper is acquired from the CHB-
MIT EEG dataset including scalp EEG (sEEG) recordings of
23 patients suffering from medically intractable focal epilepsy.
In order to assess whether patients can be alleviated by surgical
intervention, the EEG data is collected by the Neurofile NT
digital video EEG system. Each case refers to EEG signals
of a patient, containing between 9 to 24 continuous EDF files
(EDF is a proprietary format for storing EEG signals and EEG
signals in an EDF are referred to as a sample in this paper.) and
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TABLE I: The detailed description of the CHB-MIT EEG dataset. Gender: Female (F) and Male (M). Seizure type: Simple
partial seizure (SP), Complex partial seizure (CP) and Generalized tonic-clonic seizure (GTC). Brain Location: Frontal,
Temporal, Occipital and Parietal. No. of seizures: The number of seizures.

Patient ID Gender Age Seizure type Brain location No. of seizures

01 F 11 SP, CP Frontal 7
02 M 11 SP, CP, GTC Temporal 3
03 F 14 SP, CP Frontal 7
04 M 22 SP, CP, GTC Temporal 4
05 F 7 CP, GTC Frontal 5
06 F 1.5 CP, GTC Temporal/Occipital 10
07 F 14.5 SP, CP, GTC Temporal 3
08 M 3.5 SP, CP, GTC Frontal 5
09 F 10 CP, GTC Temporal/Occipital 4
10 M 3 SP, CP, GTC Temporal 7
11 F 12 SP, CP, GTC Parietal 3
12 F 2 SP, CP, GTC Temporal 40
13 F 3 SP, CP, GTC Temporal/Occipital 12
14 F 9 CP, GTC Frontal/Temporal 8
15 M 16 SP, CP, GTC Temporal 20
16 F 7 SP, CP, GTC Temporal 10
17 F 12 SP, CP, GTC Temporal 3
18 F 18 SP, CP Frontal 6
19 F 19 SP, CP, GTC Frontal 3
20 F 6 SP, CP, GTC Temporal/Parietal 8
21 F 13 SP, CP Temporal/Parietal 4
22 F 9 - Temporal 3
23 F 6 - Temporal 7

an annotation document clearly states the electrode utilized
and the time of seizure start and seizure end in each EDF file.
Each recording of case 10 lasts for 2 hours, the recordings of
case 4, case 6, case 7, case 9 and case 23 last for 4 hours, and
each recording of other cases lasts for 1 hour.

The valid EEG recordings sum up to 664 samples and
approximately 983 hours. The start and end time of seizure
is recorded in the annotation by clinical experts after visual
inspection. Each recording is named as Chb n, where i
denotes patient ID and n indicates the nth sample for patient
i. All the detailed information of the 23 cases is listed in Table
I.

B. Pre-processing

Since most of the EEG recordings were contaminated by
the power interference at 50 Hz while abnormal discharge of
seizure mainly occurs in the frequency ranging from 5Hz to
50Hz, a fifth-order Butterworth filter was applied to truncate
the 5-50Hz frequency band. Consequently, the filtered data
mentioned hereafter all refer to the EEG signals in the fre-
quency ranges of 5-50Hz. Because the electrode utilized for
each patient in multiple experiments is somehow different, it is
difficult to analyze without selecting their common channels.
Therefore, we have picked 18 channels that all patients have,
including FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-
P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8,

T8-P8, P8-O2, FZ-CZ and CZ-PZ. Epilepsy seizure EEG
recordings contain inter-ictal, pre-ictal and ictal durations (as
shown in Fig. 1). The seizure prediction horizon (SPH) needs
to be defined before algorithm implementation. However, the
pre-ictal horizon prescribed is still controversial. In our work,
we follow the SPH defined by Maiwald. They believe that 30
minutes as the pre-ictal horizon is an appropriate range which
can effectively remind the patient without causing over term
tension [11]. As explained above the epilepsy prediction only
performs recognition between the pre-ictal state and the ictal
state, hence the ictal data are discarded and the rest of data
are wielded as the inter-ictal period.

We encounter the following issues on truncating the pre-
ictal period. Firstly, seizures for most samples often start
before 30 minutes, however, the SPHs do not satisfy the 30-
minute required. In such circumstance, we have to fill the
part less than 30 minutes with the latter part of a previous
consecutive sample to get close 30 minutes. Secondly, some

Fig. 1: Definition of the seizure inter-ictal period (SIH), seizure
pre-ictal period (SPH) and seizure occurrence period (SOP).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

EDF recordings are lost, resulting in interruption between
two adjacent samples. For example, chb13 62 starts record
at 04:20:55 and seizure at the 851th s (about 14 minutes),
however, the previous record chb13 60 ends at 03:20:41.
Accordingly the duration of only 14 minutes is segmented
as a pre-ictal state of this seizure. Each truncated recording
includes pre-ictal and inter-ictal state and is divided into
5s EEG signals as trials for binary classification. The data
segmentation method is illustrated in Fig. 2. Fig. 3 shows two
sample trial segments of the inter-ictal state and the pre-ictal
state, which clearly indicates the difference between these two
types of signals.

C. Data augmentation

The trial imbalance problem is not unique but could be knot-
tier for seizure prediction when machine learning is concerned.
As for the CHB-MIT dataset, the percentage of pre-ictal trials
to the inter-ictal trials can be less than 1:15 in most cases.
In general, undersampling and oversampling methods are used
together to generate a balanced dataset from imbalance dataset.
To balance the two types of data, undersampling reduces
the size of the majority class, and oversampling generates
extra artificial data, respectively. Compared to undersampling,
oversampling is more difficult to achieve due to too many
sampling points in an EEG signal. Traditional data augumen-
tation methods such as Bootstrapping [26] and SMOTE [27],
cannot generate an authentic artificial sample that is difficult
to extricate from real samples. In this step we explore two
schemes through extensive experiments in generating the pre-
ictal trials. The first one is to recombine EEG signals by means
of multi-segment cutting and splicing [28] and the second one
is to generate EEG data by generative adversarial networks
(GAN) [29]. Both the algorithm complexity and the training
time needs to be taken into consideration. In addition, the
artificial EEG data generated by GAN lack channel correlation
because the EEG signals are generated from separate single
channel. For these reasons, the former scheme is finally
adopted to generate extra pre-ictal EEG signals.

The idea of our pre-ictal trial augmentation is to first split
each training EEG trial into 3 segments, and then generate
new artificial trials as a concatenation of segments coming
from diverse and randomly selected training trials of the pre-
ictal state (as shown in Fig. 4). We randomly discard some of
the inter-ictal signals from a training set to make the ratio of
the inter-ictal trial to the pre-ictal trial reach 2. Meanwhile,
we generate additional pre-ictal signals and put them in the

Fig. 2: Data segemention without overlapped.

(a) Inter-ictal

(b) Pre-ictal

Fig. 3: Two example trials segemented from the inter-ictal state
and the pre-ictal state.

training set to make the ratio of the inter-ictal trial to the pre-
ictal trial reach 3/2. This scheme facilitates generating a large
number of new trials, which are different from the original
ones but are closely relevant and may be similar to other trial,
since they are part of the real trials and have the same temporal
structure. By adding these new data to the original training set
to enrich the feature space in a correlative way can ease the
training of the subsequent machine learning algorithms.

D. Feature extraction

1) Common spatial pattern: As an extension to PCA, CSP
could find a projection matrix composing of several pairs
of space filtering vector. The multi-channel EEG signals are
projected into a new space through the projection matrix [30]
so that the variance of one class is maximized and the other
is minimized by the following function:

J(ω) =
ωTC1ω

ωTC2ω
(1)

The detailed process of CSP is as follows.
The covariance of each trial of the two kinds of EEG signals

is calculated by equation (7),

C =
EN∗TE

T
N∗T

trace(EN∗TET
N∗T )

(2)

where EN∗T denotes the trail’s original EEG signal, N is the
number of channels, T is the number of points, and trace(X)
is the sum of diagonal elements of matrix X . The sum of
covariance matrices for both classes’ EEG signals is calculated
as follows:

C = C1 + C2 (3)

The covariance matrix C is decomposed by eigenvalue
decomposition as:

Cc = UcAcU
T
c (4)

where U is the N ∗N diagonal matrix of eigenvector, and
Ac is the N ∗N matrix of eigenvalue. To remove channel-to-
channel correlation, the whitening matrix P is calculated by
equation (5).

P = A−1/2
c UT

c (5)
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Fig. 4: The flow diagram of data augumentation.

Fig. 5: The flow diagram of the extractor.

Using the characteristics of the same eigenvector after
whitening, Sc can be obtained as:

Sc = PCcP
T (6)

Sc = BAcB
T (7)

The spatial filter W is obtained by equation (8).

W =
(
BTP

)T
(8)

Z can be calculated by spatial filtering using equation (9).

ZN∗T = WN∗NEN∗T (9)

Features can be obtained by extracting the first m and the
last m line of Z by equation (9).

2) Feature matrix: CSP can effectively extract discrimina-
tive patterns from EEG signals. In [21] the authors utilize CSP
to extract features from raw EEG signals. Nevertheless, the
performance of this spatial filter depends on the operational
frequency band of the EEG and there exists difference in the
operational frequency between individuals. It is unfeasible to
manually select a specific frequency range for each subject.
Therefore, different from [21], we extracted the features from
9 frequency bands. The wavelet packet decomposition, as a
superior time-frequency analysis tool, divides EEG signals into

8 sub-bands with the same frequency span. The classifier used
in Section III.E assigns different weight to each frequency
band to automatically select the suitable ones for all the
patients. We obtain the 9*18 feature matrix from 8 sub-
bands and 1 original data including EEG 1, EEG 1 1,..., and
EEG 1 8 as shown in Fig. 5. In addition, to make full use
of the temporal correlation in the feature matrix, we divide
the EEG trial into 2 segments of 2.5s (such as EEG 1 and
EEG 2 as shown in Fig. 5), and extract features to finally
obtain a feature matrix with size of 18∗18. The features after
normlization is fed into classifier. The overall implenmentation
process of the extractor is depicted in Fig. 5.

E. Classification and evaluation

CNN is a classical deep neural network most commonly
applied in computer vision and natural language processing.
In our work, the feature matrix after normlization is fed into
a shallow CNN as input with 2 blocks (as shown in Fig. 3).
Each block consists of a convolution unit (C1, C2) with a
leaky rectified linear unit (Leaky Relu) activation function, a
max pooling unit (S1, S2) and a dropout unit with rate of 0.5
(the dropout layer of the first block is not shown in Fig. 3).

3*3 kernel with the stride of 1*1 is applied to C1 and C2.
Leaky Relu activation is applied to the convolution results
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Fig. 6: 2-Layer CNN architecture for seizure prediction.

before the max pooling layer. The first block and the sec-
ond block have 6 and 16 convolution kernels, respectively.
Features extracted further by the two blocks are flattened
and connected to two fully connected layers with output
sizes of 84 and 2, respectively. The former fully connected
layer and the latter use a sigmoid activation function and
a soft-max activation function, respectively. Because of the
limited available datasets, we design a shallow CNN to prevent
overfitting. In addition, we randomly pick one of the seizure
samples from the training set as a validation set to further
overcome overfitting. After each training epoch, the accuracy
is calculated with respect to the validation set to check if the
network starts to overfit.

Although the output of the classifier represents the state of
a 5s EEG trial, each trial is analyzed independently without
considering the association between the previous and latter
states. A good predictor depends on several trials to forecast
the oncoming state, however, a prediction result relying on
only one trial will result in high false alarm rate. In order
to eliminate the possibility of such case, Kalman filtering is
used to reduce mispredictions. The Kalman filtering equation
is described as follows.

fout [n] =

∑n
k=n−T O [k]

T
(10)

where O [k] denotes the output of classifier. The O [k] equals
0 when output is inter-ictal state and the O [k] equals 1 when
the output is pre-ictal state. T denotes the necessary time for
continuous monitoring and is set to 30 in our experiment.
fout [n] is the output after filtering. When it reaches 1, the
alarm is triggered.

Cross-validation is a technique used to evaluate whether
the results of a statistical analysis can be generalized to a
separate data set. In order to obtain reliable output, we choose
the leave-one-out cross-validation to verify the model in real
scenarios. Suppose there are N seizures data for a certain
patient. Each seizure data is adopted as a single test set,
and the remaining N − 1 samples are used as training set
to obtain N prediction results for each seizure. The average
of the classification accuracy of the N results is defined as
the performance of the classifier. Comparing with k-fold cross
validation, leave-one-out cross-validation is deterministic in

that there could be no random factors happening and the whole
process is repeatable.

Two evaluation metrics to measure algorithm performance
are applied in our work: sensitivity and FPR. Sensitivity is
defined as the percentage of seizure correctly predicted in the
total number of seizures, which can measure the ability of
correct seizure identification. FPR represents the ratio per hour
of inter-ictal trials which are currently misclassified as pre-ictal
trials to all the pre-ictal trials. It is the index to calculate the
possibility of misdiagnosis.

IV. RESULTS

In this work, we evaluate the proposed algorithm on CHB-
MIT sEEG dataset using leave-one-out cross-validation. Table
I presents the results of the proposed method on 23 patients.
An average sensitivity of 92.2% and an average FPR of 0.11/h
is achieved. The proposed predictor reaches 100% sensitivity
except for patient 2, patient 6, patient 9, patient 14 and
patient17. Among them, the patients with low sensitivity and
higher FPR, such as patient 3, 13 and 17, have common
characteristics that the number of seizures detected is too less
so that the pre-ictal trials in the trainning set are much less
comparing with other patients.

The visualization of the 18*18 feature matrix of the pre-ictal
state and inter-ictal state for patient 1 is presented in Fig. 7.
The larger the feature value, the darker the corresponding point
will appear in Fig. 7. On the contrary, lighter color indicates
corresponding smaller features. It is evident that the two types
of features have clear distinction. The maximum of feature
values in each column always lie in the end row for the inter-
ictal state in Fig.7 (a), however for the pre-ictal state in Fig.7
(b), it is on the contrary that their maximum value lies in the
first row. Thus, it fully verifies that our extractor has strong
ability to learn their differences.

In order to evaluate the performance of our designed CNN,
we feed the features of each round obtained from patient 1 into
linear discriminant analysis (LDA) and support vector machine
(SVM). Patient 1 has a total of 7 seizures, therefore 7 rounds
experiment need to be implemented if we utilize leave-one-
out cross-validation. Fig. 8 shows the accuracy of SVM, LDA
and CNN for 7 rounds on patient 1. The poly function and
12 are selected as kernel function and the degree of kernel
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function, respectively. The two selected parameter produce
good accuracy in most rounds. It can be observed from Fig.
8 that CNN offers the best performance in all rounds. The
superior performance in terms of accuracy clearly indicates
that our CNN is powerful in seizure prediction.

TABLE II: The performance of the proposed algorithm on 23
patients.

Case
ID

Number of
Seizure

Number of
channels used

SEN
(%)

FPR
(/h)

01 7 18 100 0.001
02 3 18 67.7 0.2
03 7 18 100 0.05
04 4 18 100 0.005
05 5 18 100 0.091
06 10 18 80 0.04
07 3 18 100 0.07
08 5 18 100 0.05
09 4 18 100 0.115
10 7 18 100 0.14
11 2(3∗) 18 100 0.01
12 21(40∗) 18 100 0.11
13 11(12∗) 18 67.7 0.17
14 8 18 75 0.19
15 17(20∗) 18 100 0.13
16 9(10∗) 18 100 0.16
17 3 18 67.7 0.14
18 6 18 100 0
19 3 18 100 0.1
20 8 18 100 0.06
21 4 18 100 0.14
22 3 18 67.7 0.45
23 7 18 100 0.012

Total 157 - 92.2 0.11
∗ Two seizures are combined when the second one is in
the postseizure interval of the first one.

V. DISCUSSION

Threshold crossing and machine learning classifier are two
popular directions for seizure prediction, some of which have

high sensitivity or low FPR. Our results with highly sensitivity
and low FPR are compared with the-state-of-art methods using
the same CHB-MIT dataset and Freiburg Hospital EEG dataset
(FH dataset). Table III summarizes some key information of
these works in chronological order.

The two datasets used in Table III are CHB-MIT dataset
and FH dataset which belong to sEEG and intracranial EEG
(iEEG), respectively. The iEEG signals have higher signal-to-
noise ratio and spatial resolution compared to sEEG signals.
Because the sEEG is less proximity to neural electrical activity,
hence, it’s highly susceptible to power frequency interference,
baseline drift and other noises from the external environment
compared with the iEEG. This leads the fact that the same
algorithm has lower sensitivity and higher FPR rate for sEEG.
Nevertheless, iEEG data collection is prone to infection and
may introduce other complications during craniotomy. Conse-
quently, seizure prediction based on sEEG is more suitable
to promote in a real-life scenario. This trend can also be
recognized from Table III that CHB-MIT, a popular EEG
dataset collected from the scalp is increasingly acknowledged
by researchers in this field.

The research endeavors on epilepsy prediction, from thresh-
olding crossing to conventional machine learning and then to
deep learning, are roughly outlined in Table III. [11], [31],
[32], [33] and [34] adopt threshold crossing to predict seizure,
but has been unable to realize the satisfactory performance.
Hence, people gradually give up this scheme. Some conven-
tional machine learning classifiers did a good job [2], [22],
[35]. Among them, [2] used univariate spectral power and
SVM classifer to achieve a high sensitivity of 98.3% and
FPR of 0.29/h, and [35] achieved a sensitivity of 95.4%
and FPR of 0.36/h using Phase-match error, deviation and
LS-SVM classifer. Both of them were are tested on iEEG
dataset. Another interesting point lies in that, although [35]
is not so good as [2] in terms of sensitivity and FPR, it were
tested on more patient cases for better potential clinical usage.
Comparing with them, we use sEEG with more patient cases
in the experiments, realizing lower FPR.

Compared to those methods tested on the CHB-MIT dataset,
the highest sensitivity is reached by our method. Comparing
with [36], they used CNN with 6 blocks whose layers are
apparently more than ours, however their result is even slightly
weaker. These facts discussed above demonstrate that good

(a) Inter-ictal (b) Pre-ictal

Fig. 7: Two features extracted from the inter-ictal state and the pre-ictal state.
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Fig. 8: The comparison between using different classifiers.
Among them, the black color, gray color and white color
represent LDA, CNN and SVM as the classifier, respectively.

performance can be obtained by the proposed method for
seizure prediction.

VI. CONCLUSION

In this paper, we propose a novel approach for seizure
prediction based on data augumentation, CSP and CNN to
perform data equalization, feature extraction and classification
on 23 patients from CHB-MIT dataset. In order to solve
the trial imbalance problem, we generate the pre-ictal trials
and discard some inter-ictal trials. According to the temporal-
frequency characteristics of EEG, an extractor using CSP in 9
frequency bands and 2 temporal bands is designed. A 2-layer
shallow CNN as a classifier is designed for seizure prediction.
Extensive experimental results demonstrate that the proposed
algorithm outperforms other state-of-the-art methods in terms
of sensitivity and FPR. The present study on seizure prediction
provides an effective option based on sEEG signals in clinical
diagnosis.
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