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Interpreting Frame Transformations in AC Systems
as Diagonalization of Harmonic Transfer Functions
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Abstract—Analysis of ac electrical systems can be performed
via frame transformations in the time-domain or via harmonic
transfer functions (HTFs) in the frequency-domain. The two ap-
proaches each have unique advantages but are hard to reconcile
because the coupling effect in the frequency-domain leads to
infinite dimensional HTF matrices that need to be truncated. This
paper explores the relation between the two representations and
shows that applying a frame transformation on the input-output
signals creates a direct equivalence to a similarity transformation
to the HTF matrix of the system. Under certain conditions,
such similarity transformations have a diagonalizing effect which,
essentially, reduces the HTF matrix order from infinity to two
or one, making the matrix tractable mathematically without
truncation or approximation. This theory is applied to a droop-
controlled voltage source inverter as an illustrative example.
A stability criterion is derived in the frequency-domain which
agrees with the conventional state-space model but offers greater
insights into the mechanism of instability in terms of the negative
damping (non-passivity) under droop control. Therefore, the
paper not only establishes a unified view in theory but also offers
an effective practical tool for stability assessment.

Index Terms—Harmonic State Space, Harmonic Transfer
Function, Frame Transformation, Matrix Diagonalization, Droop
Control

I. INTRODUCTION

Frame transformations play a central role in modeling and
analysis of three-phase ac electrical systems. There are three
types of basic transformations: Clarke transformation [1], com-
plex transformation [2]–[4], and rotation transformation [5].
Other transformations (Ku transformation, symmetric com-
ponent transformation, and forward-backward transformation)
prove to be combinations of the basic ones [6]. The three
basic transformations each play an important yet different
role in simplifying the model of ac electrical systems. The
Clarke transformation separates the common-mode compo-
nents which does not affect power transmission; the complex
transformation reduces a vector model to a scalar model
(but only for symmetric systems); the rotation transformation
transforms an ac sinusoidal system to a dc equivalent one. Due
to these benefits, frame transformations have been successfully
used in power engineering for more than a century.

On the other hand, the practical benefits of such transfor-
mations is limited to three-phase balanced sinusoidal systems,
since unbalanced and non-sinusoidal systems induce time-
varying operating points in the rotating frame, which im-
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plies time-varying state equations after linearization. Unbal-
anced and non-sinusoidal systems are becoming increasingly
widespread in power systems because of the emergence of dis-
tributed generation interfaced by power electronic converters,
which is often single-phase and inevitably creates harmonic
distortions [7]–[10].

To solve this problem, an alternative approach based on
harmonic state space (HSS) theory has gained attention. This
theory was first proposed in the 1990s [11]–[13] and intro-
duced into the power engineering community in the 2000s [7],
[14], [15]. The HSS method models an ac system directly in
the stationary frame and represents the ac dynamics by the
frequency coupling in the corresponding harmonic transfer
function (HTF). It provides a general framework to address
unbalanced and non-sinusoidal ac systems since an HTF can
include higher-order harmonic extension beyond fundamental
positive-sequence operating points. However, it is difficult to
use HSS models to analysis a composite system with interac-
tion between multiple sub-systems, as this relates to algebraic
operations (summation, multiplication, and inversion) on HTF
matrices which is infinite-order and intractable mathematically.
Approximations have to be made to render it tractable, which
are often based on heuristics with no theoretic guarantee [16],
[17].

It is clear that the frame transformation method and the
HSS method each have their own advantages and disadvan-
tages. A unified view of the two could help circumvent the
difficulties of each on its own, and this is the intended the
contribution of this paper. In particular, we point out that
frame transformations in the time-domain are equivalent to
similarity transformations on an HTF matrix in the frequency-
domain. Under certain conditions, such similarity transforma-
tions have a diagonalizing effect on an HTF matrix, which
takes place in two steps: i) block diagonalization (via rotation
transformation) to eliminate the frequency coupling effect;
and ii) entry diagonalization (via complex transformation) to
reduce an HTF matrix to a scalar. These matrix diagonalization
essentially reduce the order of an HTF matrix from infinity
to two and then one, making the transfer function tractable
mathematically. The reduced HTF matrix is shown to be
exactly equivalent to conventional transfer functions derived
directly in the rotating and complex frames.

Following the theoretic discussion, a case study is presented
on a droop-controlled voltage source inverter (VSI). The HTF
model of the VSI is obtained in the stationary frame, and
then transformed to the synchronous frame according to the
proposed diagonalization law. It is discovered that the HTF of
the droop-controlled VSI contain two parts. The first part rep-
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resents the current dynamics in a simple inductance-resistance
format and can be entry-diagonalized. The second part repre-
sents the droop dynamics and is only block-diagonalizable,
but the interaction between the diagonal and off-diagonal
entries is very weak and proves to be negligible. These results
yield a frequency-domain stability criterion which agrees with
the results in [18], [19], but provides more insights into the
mechanism of instability in terms of the negative damping
(non-passivity) in droop control. All major conclusions of the
paper are verified by experiments.

The paper is organized as follows. The principle of HSS
and HTF in introduced briefly in Section II. The relationship
between frame transformation and the diagonalization of an
HTF matrix (and order-reduction achieved) is presented in
Section III. The case study on a droop-controlled VSI is given
in Section IV. The last section concludes the paper.

II. HARMONIC STATE SPACE AND HARMONIC TRANSFER
FUNCTION

Consider a general non-linear dynamic system with state x,
input u and output y (x, u, and y are all column vectors)

ẋ = f(x, u)

y = g(x, u).
(1)

In small-signal analysis, we linearize this system by taking the
partial derivative of f and g around the equilibrium operating
point xe(t) and ue(t). That is,

˙̂x = A(t)x̂+B(t)û

ŷ = C(t)x̂+D(t)û
(2)

where (
A(t) B(t)

C(t) D(t)

)
=

∂(f, g)

∂(x, u)

∣∣∣∣
xe(t),ue(t)

(3)

is the Jacobian matrix and ˆ denotes the small-signal varia-
tion. For a dc system, the operating point is defined by constant
values of xe(t) and ue(t) and so A(t), B(t), C(t) and D(t)
are also constant and the system defined in (2) is linear time
invariant (LTI). For an ac system, on the other hand, xe(t)
and ue(t) are periodically time-varying and so are A(t), B(t),
C(t) and D(t), which gives rise to a linear time periodic
(LTP) system [11], [12], [20], [21]. One important difference
between LTI and LTP is that a LTP system has a frequency-
coupling feature in which multiple terms of related frequencies
can be generated in the output y even when the input u
is a single-frequency signal. This effect can be represented
mathematically through an HSS and HTF model [11], [12].

Expanding A(t), B(t), C(t), and D(t) into Fourier series,
we can re-write (2) as

˙̂x =
∑
Ane

jnωptx̂+
∑
Bne

jnωptû

ŷ =
∑
Cne

jnωptx̂+
∑
Dne

jnωptû
(4)

in which An, Bn, Cn and Dn are the Fourier coefficients of
A(t), B(t), C(t) and D(t) respectively, ωp is the fundamental

frequency, and the summation,
∑

, sums from n = −∞ to
+∞. Taking a Laplace transform of (4), we have

sx̂(s) =
∑
Anx̂(s− jnωp) +

∑
Bnû(s− jnωp)

ŷ(s) =
∑
Cnx̂(s− jnωp) +

∑
Dnû(s− jnωp)

(5)

Replacing s by s+ jkωp with an arbitrary integer k, we can
get

skx̂(sk) =
∑
n
An+kx̂(s−n) +

∑
n
Bn+kû(s−n)

ŷ(sk) =
∑
n
Cn+kx̂(s−n) +

∑
n
Dn+kû(s−n)

(6)

Here we make use of the notation sn = s+ jnωp for brevity.
Let the integer k traverse from −∞ to +∞ and the resulted
equations can be written in the form of infinite matrices:

sX = (A−N )X + BU
Y = CX +DU

(7)

where

X =



...

x̂(s1)

x̂(s)

x̂(s−1)
...


, A=



. . . . .
.

A0 A1 A2

A−1 A0 A1

A−2 A−1 A0

. .
. . . .


. (8)

X is the harmonic extension of x̂(s), and A in such a form
is called an infinite Toeplitz matrix [11], [12]. U and Y are
defined in a similar way to X , and B, C and D are defined in
a similar way to A. N = blkdiag(jnωpI) is a block-diagonal
matrix with I being an identity matrix of the same dimension
an A. Equation (7) is called a harmonic state space (HSS)
model, from which follows the harmonic transfer function
(HTF)

Y = GU (9)

in which
G = C(sI +N −A)−1B +D. (10)

Equation (9) can also be written in an expanded form as
...

ŷ(s1)
ŷ(s)
ŷ(s−1)

...

=


. . . . .

.

G0(s1) G1(s1) G2(s1)
G−1(s) G0(s) G1(s)
G−2(s−1) G−1(s−1) G0(s−1)

. .
. . . .




...
û(s1)
û(s)
û(s−1)

...

 .

(11)
To reveal the frequency-coupling effect represented by the

HTF matrix, we find ŷ(s) from (11)

ŷ(s) =
∑

Gn(s)û(s−n). (12)

Letting s = jω, we get the frequency spectrum of ŷ

ŷ(jω) =
∑

Gn(jω)û(jω−n) (13)

where ωn = ω + nωp. Suppose the input û has a single
frequency ωu, that is, û = Uejωut where U is the amplitude
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vector. The corresponding spectrum is û(jω) = Uδ(ω − ωu)
and

ŷ(jω) =
∑

Gn(jω)Uδ(ω−n − ωu)

=
∑

Gn(jω)Uδ(ω − ωu − nωp)
(14)

where δ(ω) is the Dirac function. It is clear from (14) that
multiple frequencies ωu + nωp appear in the output spectrum
under single-frequency input, as illustrated in Fig. 1. This
frequency-coupling effect causes a fundamental difficulty. As
illustrated in Fig. 2, when two or more sub-systems are
connected in a closed loop (e.g. a voltage source converter
connected to a synchronous generator), the back-and-forth
interaction between them generates infinitely many harmonic
terms. Their interaction has to be analysed using the algebra
of infinite-order HTF matrices and this is intractable.

Fig. 1. The frequency coupling effect in a LTP system: a single-frequency
input generates multiple frequencies in the output through the multiple entries
in G.

Fig. 2. Illustration of infinite harmonic reflection in an interconnected
LTP system. G1 and G2 are interconnected such that the output of one is
applied as the input of the other and vice versa. Such an interconnection
is common in power system analysis: G1 could be a voltage source such
that it outputs a voltage and has current as an input (Thevenin format using
an impedance model) whereas G2 is a current sink such that it outputs a
current and has voltage as an input (Norton format using an admittance
model). Their harmonic interaction determines the small-signal stability of
the interconnected system.

Further consideration reveals that the frequency coupling is
caused by only the non-diagonal elements of the HTF. In the
light of this observation, the frequency-coupling effect could
be eliminated if the HTF matrix could be diagonalized and the
overall solution would be tractable. This diagonalization can
be realized by frame transformations in the time-domain, as
will be explained in the following sections.

III. FRAME TRANSFORMATION AND MATRIX
DIAGONALIZATION

Before describing the diagonalization in detail, we first
define two types of diagonal HTF matrix, as shown in Fig. 3.

The first type is block diagonal, for which the matrix is
made up of a diagonal series of dim(u) × dim(y) blocks.
In this form, there is no frequency coupling present but the
various elements of u and y are coupled representing a multi-
input-multi-output (MIMO) system. The second form, entry
diagonal, is completely diagonalized entry-wise and represents
a series of decoupled single-input-single-output (SISO) scalar
systems. The input u and output y are assumed to have the
same dimension here as is the case for most electrical circuits.

Fig. 3. Definition of two forms of diagonal HTF matrix: block diagonal and
entry diagonal.

We now demonstrate the relationship between a frame
transformation and HTF matrix diagonalization. Consider a
general frame transformation T (t) in the time-domain on u
and y. The vectors in the new frame are

u′(t) = T (t)u(t), y′(t) = T (t)y(t) (15)

where T (t) is a periodical transformation function. Represent-
ing T (t) as a Toeplitz matrix as in (8), we get

U ′ = T U , Y ′ = T Y (16)

where

T =



. . . . .
.

T0 T1 T2

T−1 T0 T1

T−2 T−1 T0

. .
. . . .


(17)

and Tn is T (t)’s Fourier coefficient. Combining (16) and (9),
we get the HTF G′ in the new frame

G′ = T GT −1. (18)

It is clear that (18) defines a similarity transformation between
G′ and G via T . That is, a frame transformation in the
time-domain is equivalent to a similarity transformation in an
HTF. If T (t) is properly selected, an HTF matrix may be
diagonalized with such a transformation.

A general scheme for finding a diagonalizing transformation
is given by the Floquet’s theorem [11]. In this paper, we focus
on two particular transformations widely used in three-phase
ac power system analysis: the rotation and complex transfor-
mations, which are summarized in Fig. 4 and in which αβ
and dq refer to the stationary and rotating frames respectively,
and αβ± and dq± are the corresponding complex frames.
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The rotation transformation Tr and complex transformation
Tj builds the relationships between these frames:(

uαβ+

uαβ−

)
= Tj

(
uα

uβ

)
,

(
ud

uq

)
= T−1j

(
udq+

udq−

)
,(

udq+

udq−

)
= Tr

(
uαβ+

uαβ−

) (19)

in which

Tj =

(
1 j

1 −j

)
, Tr =

(
e−jωpt 0

0 ejωpt

)
. (20)

Combining Tr and Tj gives the real-signal rotation transforma-
tion Tp which is commonly known as the Park transformation

Tp = T−1j TrTj =

(
cosωpt sinωpt

− sinωpt cosωpt

)
. (21)

Fig. 4. Summary of reference frames and transformations in between used
in three-phase ac power systems.

We further show that Tr has a block-diagonalizing effect on
HTF matrices. The Fourier series expansion of Tr is

Tr =

(
e−jωpt 0

0 ejωpt

)
=

(
0 0

0 1

)
︸ ︷︷ ︸

Tr1

ejωpt +

(
1 0

0 0

)
︸ ︷︷ ︸
Tr−1

e−jωpt.

(22)
In other words,

Tr1 =

(
0 0

0 1

)
, Tr−1 =

(
1 0

0 0

)
, and

Trn =

(
0 0

0 0

)
for n 6= ±1

(23)

from which follows the Toeplitz matrix Tr according to (17)

Tr =



. . .

0 0

. . . 0 1

1 0 0 0

0 0 0 1

1 0
. . .

0 0

. . .



(24)

where blanks indicate zeros. This matrix links the HTF in the
αβ± and dq± frame by

Gdq± = TrGαβ±T −1r , Gαβ± = T −1r Gdq±Tr. (25)

Notably, Tr is a permutation matrix, so the transformations
in (25) rearrange the positions of the HTF entries without
changing their values. Applying (25) to a three-phase balanced
ac system, we get the relationship in Fig. 5. It is clear that
the entries of Gdq± are the same as those of Gαβ±, but
are rearranged into a block-diagonal form. This means that
the rotation transformation has a block-diagonalizing effect
on the HTF matrix provided that the system is three-phase
balanced. The zero-axis signal can be readily included into
the diagonlization process as it is independent of both dq and
αβ. The corresponding transformation is similar to Fig. 5 but
not as concise, and is therefore not shown here for the sake
of brevity.

From Gαβ± in Fig. 5, we can readily obtain the entry-wise
expression

yαβ+(s1) = G11(s)uαβ+(s1) +G12(s)uαβ−(s−1)

yαβ−(s−1) = G21(s)uαβ+(s1) +G22(s)uαβ−(s−1)
(26)

which can be written as a 2× 2 matrix(
yαβ+(s1)

yαβ−(s−1)

)
=

(
G11(s) G12(s)

G21(s) G22(s)

)(
uαβ+(s1)

uαβ−(s−1)

)
. (27)

Equation (27) contains all essential information of Gαβ± since
the other entries can be obtained by shifting s to sn (n =
1,−1, 2,−2, · · · ). In particular, if we shift from s to s−1, we
get the same model as the one proposed in [10] which has
been recognized as a unified model in the stationary frame:(

yαβ+(s)

yαβ−(s−2)

)
=

(
G11(s−1) G12(s−1)

G21(s−1) G22(s−1)

)(
uαβ+(s)

uαβ−(s−2)

)
.

(28)
The shifted s in (27) and (28) also clearly show the frequency
coupling effect, which implies the LTP nature of the system
in the stationary reference frame.

Further to the rotation transformation Tr, the complex
transformation Tj (and its Toeplitz form Tj) define the linkage
between the real (αβ, dq) and complex (αβ±, dq±) frames

Gdq± = TjGdqT −1j , Gdq = T −1j Gdq±Tj
Gαβ± = TjGαβT −1j , Gαβ = T −1j Gαβ±Tj

. (29)

Since Tj is constant, its Fourier series only contains 0th

harmonics. According to (17), the corresponding Toeplitz
matrix is

Tj =


. . .

Tj

Tj
. . .

 (30)

This indicates that Tj is block-diagonal itself and does not
change the block arrangement of an HTF matrix, that is, an
HTF matrix is block-diagonal in a real frame if and only
if its complex-frame counterpart is block-diagonal as well.
Nonetheless, Tj has entry-diagonalizing effect on a block-
diagonal HTF matrix, as shown below. As Gdq , Gdq± and Tj
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Fig. 5. Block-diagonalization of HTF matrix through rotation transformation.

are all block-diagonal, we can evaluate their relationships just
using an arbitrary block(
G11 G12

G21 G22

)
︸ ︷︷ ︸
Gdq± block

=

(
1 j

1 −j

)
︸ ︷︷ ︸
Tj block

·

(
Gdd Gdq

Gqd Gqq

)
︸ ︷︷ ︸
Gdq block

· 1
2

(
1 1

−j j

)
︸ ︷︷ ︸
T −1
j block

.

(31)
If Gdq meets the following condition

Gdd = +Gqq, Gdq = −Gqd (32)

then (31) can be simplified as

G11 = Gdd − jGdq, G11 = Gdd + jGdq, G12 = G21 = 0
(33)

so Gdq± turns out to be entry-diagonal. This relationship is
illustrated in Fig. 6 and the condition in (32) is called the
symmetric condition, since it implies that the d and q axis are
exchangeable. In real systems, asymmetry is often induced by
the saliency of generators and the asymmetric outer control
loops (e.g. phase-locked loop, droop control loop, and dc-
link control loop) of power electronic converters [22], [23].
For such asymmetric systems, the symmetric condition is not
satisfied which hampers entry-diagonalization, but we shall
show later that quasi-symmetric can be defined where the
asymmetry does not effect stability and is therefore negligible.

After the HTF matrix is diagonalized, algebraic opera-
tion (summation, multiplication, inversion) can be performed
block-wise or entry-wise and through this computation is
greatly simplified. Moreover, each of the diagonal blocks or
entries contains the full information of the HTF matrix since
other blocks or entries are replications with a frequency shift
(Fig. 5) or complex conjugates (Fig. 6), which means that a
single block or entry can be used as a reduced-order but full-
information representation for the whole HTF matrix. In such a

Fig. 6. Entry-diagonalization of HTF matrix through complex transformation.

Fig. 7. Rotation and complex frame transformations form a pyramid of
diagonalization and order reduction on HTF matrix.

way, we give a frequency-domain interpretation of how frame
transformation helps to simplify the representation of an ac
system in the sense of HTF matrix diagonalization and order-
reduction. This is summarize as a pyramid diagram in Fig. 7.

It needs to be pointed out that there are strict conditions
for a system to be diagonalizable using basic transformations.
The block-diagonalization via rotation transformation is only
feasible for three-phase balanced sinusoidal systems, and not
feasible for unbalanced (e.g. single-phase) or non-sinusoidal
(e.g. diode rectifier) systems. The entry-diagonalization via
complex transformation is only feasible for symmetric sys-
tems, meaning the d and q (or α and β) axis have reciprocal
dynamics. However, it might be possible to find new trans-
formations for the diagonalization of asymmetric, unbalanced,
or non-sinusoidal systems, which opens up a new direction of
future works.

IV. STABILITY RELATIONSHIP

As explained in the preceding section, the rotation and com-
plex transformations lead to the diagonalization and therefore
order-reduction of the HTF matrix. This section explores the
stability relationships between the original and the diagonal-
ized reduced-order system.

We first investigate block-diagonalization. It is clear from
Fig. 5 that all dynamics of the system are captured by the
central block of Gdq± (marked in the dashed box in Fig. 5), and
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other elements in the HTF matrix are derived via frequency
shifting on the central elements (that is, replacing s by
sn = s + jnωp). Since the poles and zeros replicate with
an offset of s, we get the pole/zero relationship in Fig. 8 [11],
[12], [20], [21]. The poles/zeros in the fundamental strip of
the s-plane are associated with the reduced-order system, and
the ones in the complementary strips are associated with the
original system. The poles/zeros in the fundamental strip and
the ones in the complementary strips have the same real part,
and therefore carry the same information concerning stability.

Fig. 8. Pole/zero relationship of the original HTF matrix and the reduced-
order central block [12].

Now we look into entry-diagonalization. Equations (31) (33)
and Fig. 6 show that the diagonal entries of Gdq± are the linear
combination of the original entries of Gdq , so the poles are
unchanged in the transformation, but the zeros may not be.
Zeros do not affect open-loop stability directly but may affect
the stability in a closed-loop system since feedback interaction
may reflect zeros into poles. Therefore, we need to evaluate
the impact of entry-diagonalization in the stability a closed-
loop system. We assume two sub-systems G and H connected
via negative feedback, as illustrated in Fig. 9(a). This is a
two-input-two-output (TITO) system but can be reduced to
two single-input-single-output (SISO) systems if both G andH
meet the symmetric condition (entry-diagonalizable), as shown
in Fig. 9(b). The two SISO systems are in conjugation so
their poles have opposite imaginary parts and an identical real
part, indicating that either of them can be used to evaluate
the stability of the whole system. If G or H is not symmetric,
this order-reduction no longer holds and matrix determinant
or eigenvalues needs to be used to evaluate stability [22]–
[24]. Such methods use brute-force calculation and lose the
connection to the loop-structure of the system. To overcome
this problem, a different approach is proposed here which
decomposes the determinant of a TITO system into symmetric
and asymmetric loops.

The TITO feedback system in Fig. 9(a) can be equivalently

Fig. 9. Two systems interconnected via negative feedback. (a) Block-
diagnolization case, i.e., TITO system. (b) Entry-diagnolization case, i.e.,
SISO system (only the + loop is shown because the + and − loops are
complex conjugate and hold the same information on stability).

Fig. 10. Scalar block diagram for the closed-loop system.

Fig. 11. Signal flow diagram of the closed-loop system.

converted to the scalar block diagram in Fig. 10, and further
to the signal flow diagram in Fig. 11. From the signal flow
diagram, we identify six independent loops whose loop gains
are

l1 = −G11H11, l2 = −G22H22

l3 = −G21H12, l4 = −G12H21

l5 = G21H22G12H11

l6 = G11H21G22H12

(34)

According to the Mason’s gain formula [25], [26], the deter-
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minant (i.e., the characteristic equation) of the system equals

∆ = 1− (l1 + l2 + l3 + l4 + l5 + l6) + (l1l2 + l3l4) (35)

which can be rearranged as

∆ = (1− l1)(1− l2)︸ ︷︷ ︸
symmetric loop

[
1 +

(1− l3)(1− l4)− (1 + l5 + 16)

(1− l1)(1− l2)

]
︸ ︷︷ ︸

asymmetric loop
(36)

Hence, we decompose the determinant into three loops, whose
loop gains equal −l1, −l2, and (1−l3)(1−l4)−(1+l5+l6)

(1−l1)(1−l2) respec-
tively. The first two loops exactly coincides with the loops of
a symmetric system and are therefore called symmetric loops,
whereas the third loop appears only in asymmetric systems and
is called the asymmetric loop. If the asymmetric loop itself is
stable, the stability of the system is only determined by its
symmetric loops, and we call such a system quasi-symmetric.

In many practical cases, G is asymmetric butH is symmetric
(e.g., the case study given in next section), or vise versa. When
H is symmetric, H12 = H21 = 0 and loop gains l3 = l4 =
l6 = 0. Then (36) can be simplified as

∆ = (1− l1)(1− l2)︸ ︷︷ ︸
symmetric loop

[
1 +

−l5
(1− l1)(1− l2)

]
︸ ︷︷ ︸

asymmetric loop

(37)

It is clear that the asymmetric loop is simplified compared
to (36) and hence the quasi-symmetric condition is also
simplified. To give the reader a more intuitive illustration, (37)
is visualized via block transformation in Fig. 12.

Fig. 12. Scalar block diagram for the closed-loop system when H is
symmetric (i.e., when H12 = H21 = 0). The symmetric loops (a) and
asymmetric loop (b) are visualized in blue and red dashed boxes respectively.
Remarks: GS+ = H11

1+G11H11
; GS− = H22

1+G22H22
; + and − branches are

complex conjugate.

V. EXAMPLE: A DROOP-CONTROLLED VSI

In this section, we give an example of how to apply the
proposed theory in the modeling and analysis of a grid-
connected droop-controlled VSI, and verify the major results
by experiments.

The system under investigation is shown in Fig. 13(a)
and (b). The dynamics of the VSI contains three parts [18]:
filters (including inverter filters and grid impedance), inner

Fig. 13. Configuration of the system under investigation. (a) System layout.
(b) Equivalent representation in the mid-frequency range.

control loops (voltage, current, and virtual impedance), and
outer control loops (droop control). It has been demonstrated
in [27] that the filters and inner loops can be collectively
represented as an equivalent inductance-resistance in the mid-
frequency range below the voltage loop bandwidth (usually a
few hundred Hz). This leads to the simplified representation
in Fig. 13(b) with a droop-controlled voltage source in series
with L and R.

A. Model Formulation

Now we model the dynamics of the system directly in the
stationary frame. The state equation of the system in the αβ±
frame is

i̇αβ+L = −Riαβ+ − vαβ+ + vbαβ+

i̇αβ−L = −Riαβ− − vαβ− + vbαβ−

ω̇rτ = (ω0 − ωr)−m · p
θ̇ = ωr.

(38)

The first two equations are governed by the Kirchhoff’s
law and the the second two equations are governed by the
frequency droop control. The droop control measures output
power p = −(vαβ+iαβ− + vαβ−iαβ+)/2 and calculate the
internal frequency ωr and angle θ, which in turn governs the
VSI voltage by vαβ± = V0e

±jθ. m is the droop gain and τ is
the time constant of the low-pass filter in the droop control.
V0 and ω0 denote the rated values of voltage and frequency,
respectively.

Linearizing the state equation and applying Laplace trans-
form, we get

v̂bαβ+(s) = ZL(s)̂iαβ+(s) + jV0θ̂(s−1)

v̂bαβ−(s) = ZL(s)̂iαβ−(s)− jV0θ̂(s1)

θ̂(s) = M(s)(̂iαβ+(s1) + îαβ−(s−1))/V0

(39)

in which

M(s) =
mV 2

0

2
(τs2 + s−mV0I0sin(φ))−1, ZL(s) = sL+R

(40)
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Fig. 14. Equivalent feedback system for the tested system.

and φ is the phase angle of the VSI current at the operating
point. Substituting θ̂(s) into the voltages in (39) yields

v̂bαβ+(s) = [ZL(s) + jM(s−1)] îαβ+(s) + jM(s−1) îαβ−(s−2)

v̂bαβ−(s) = [ZL(s)− jM(s1)] îαβ−(s)− jM(s1) îαβ+(s2).
(41)

which is equivalent to(
v̂bαβ+(s1)

v̂bαβ−(s−1)

)
=(

ZL(s1) + jM(s) jM(s)

−jM(s) ZL(s−1)− jM(s)

)
︸ ︷︷ ︸

Z

(
îαβ+(s1)

îαβ−(s−1)

)
.

(42)
Equation (42) models the relationship between îαβ± and
v̂bαβ±, i.e., the port characteristics of the droop-controlled
VSI in the stationary reference frame. The frequency coupling
can be clearly seen from the frequency shifting in v̂αβ+(s1),
v̂αβ−(s−1), îαβ+(s1), and îαβ−(s−1).
Z in (42) defines the total impedance of the grid-connected

VSI system. It is of the same form as Fig. 5 from which
follows the HTF and block-diagonalization immediately. Z
can be re-written as

Z =

(
ZL(s1) 0

0 ZL(s−1)

)
︸ ︷︷ ︸

ZL

+M(s)

(
j j

−j −j

)
︸ ︷︷ ︸

ZD

(43)

which contains two parts. The first part ZL is entry-
diagonalized and takes the form of an inductance-resistance
ZL(s) = sL + R, which represents the dynamics of the
inner loops, filters, and grid impedance. The second part ZD
is block-diagonalized and is proportional to M(s), which
represents the dynamics of droop control according to (40).

B. Stability Analysis

The diagonalized impedance model in the preceding sub-
section enables very convenient stability analysis, as shown
below. Seen from the infinite bus of the grid, the stability of
the grid-connected VSI is determined by the total admittance
(the inversion of impedance):

Z−1 = (ZL + ZD)−1 = (1 + Z−1L ZD)−1Z−1L . (44)

Since Z−1L is stable, we only need to consider (1+Z−1L ZD)−1,
which could be formulated as an equivalent closed-loop system
as shown in Fig. 14. This feedback system is of the same form

Fig. 15. Bode plots of loop gains for the symmetric and asymmetric loops for
different values of droop gains. (a) Symmetric loop gain: jM(s)/ZL(s1);
only + branch is shown here since the + and − branches are complex
conjugate. (b) Asymmetric loop gain: −GS+GS−M

2(s), where GS+ =
1/Z(s1)

1+jM(s)/ZL(s1)
and GS− =

1/ZL(s−1)

1−jM(s)/ZL(s−1)
.

as Fig. 9, if setting G = ZD and H = Z−1L . ZD is asymmetric
and Z−1L is symmetric, so we can use the simplified Mason’s
gain formula (37) to evaluate stability.

The Bode plots of the symmetric and asymmetric loops
are embodied using the parameters in Table I and drawn
in Fig. 15. It is clear from Fig. 15 (b) that the loop gain
of the asymmetric loop is smaller than unity in almost all
frequencies. Only for a very small range of frequencies, the
loop gain is larger than unity but the corresponding phase
margins are positive. Therefore, the asymmetric loop is stable
and the quasi-symmetric condition described in Section IV is
met. This property allows us to focus on the symmetric loop,
which enables significant simplification of stability analysis
and control design.

The symmetric loop has higher gain and may indeed cause
instability, as shown in Fig. 15 (a). As the droop gain m
increases, the phase margin decreases, from which we get
the critical gain which agrees with the result in [18], [19].
Further observation on the symmetric loop shows that Z(s±1)
(entries of ZL) are passive yet ±jM(s) (entries of ZD)
are non passive. It is this non-passivity that induces the
> 180◦ phase shift in the loop gain and has a destabilizing
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TABLE I
PARAMETERS OF THE EXPERIMENT SYSTEM.

Rated frequency ω0 = 1 pu

VSI voltage V0 = 1 pu

VSI current I0 = 0.30 pu

Current Angle φ = 188◦

Net inductance L = 0.091 pu

Net resistance R = 0.015 pu

Rated droop gain mrated = 2%ωbase/Sbase

Low-pass filter time constant τ = 1/(2π · 2) s/rad

Voltage-loop bandwidth 300 Hz

Base values for per-unit (pu) system: Sbase = 10kVA, Vbase = 380V,
Ibase = Sbase/Vbase, ωbase = 2π × 50 rad/s, Zbase = Vbase/Ibase,
Lbase = Zbase/ωbase

Fig. 16. Photo of the droop-controlled VSI.

(negative damping) effect on the system when the droop gain is
excessively high [28], [29]. Thus we get a better understanding
than [18], [19] on the mechanism of instability of drooped-
controlled VSI systems.

C. Experiment Verification

A experimental platform was built to test the system in
Fig. 13(a), with the parameters listed in Table I. The detailed
control structure is same as the one used for a conventional
droop-controlled VSI [18], which is equivalently to Fig. 13(b)
in the investigated frequency range. The photo of the VSI
is shown in Fig. 16. The droop gain m is set to be below
and about the critical value and the corresponding dynamic
responses are recorded in Fig. 17. When the droop gain m
is set to the rated value (mrated = 2%ωbase/Sbase), the
system is stable. By contrast, when m is set to 10 times the
rated value (10mrated), the phase margin becomes negative
(see Fig. 15) and the system becomes unstable. This result
confirms the accuracy of the stability criterion derived from
the diagonalized HTF in the preceding subsection.

A Simulink model was also built to measure the total
admittance (Z−1T ) of the tested system via frequency sweeping,

Fig. 17. Experimental testing of VSI step response. (a) For droop gain of
m = mrated. (b) With droop gain increased to m = 10mrated

Fig. 18. Admittance spectrum of the droop-controlled VSI measured by
frequency sweeping. (a) Diagonal entry [Z−1

T (1, 1)]. (b) Off-diagonal entry
[Z−1

T (1, 2)].
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and the measured values are compared with theoretic models,
as shown in Fig. 18. The models are derived in the station-
ary frame using HTF diagonalization, and the measurement
is conducted in the synchronous frame. Again, very close
matching is observed in both the gain and phase including
all the key features of poles and zeros. There is a minor
discrepancy at ±102Hz and this is due to the sampling
delay and spectrum leakage in the admittance measurement
algorithm. The frequency sweeping results further verify the
accuracy of the proposed theory.

VI. CONCLUSIONS

A correspondence between frame transformations and har-
monic transfer functions (HTFs) has been established. Frame
transformations are proved to be equivalent to similarity trans-
formations on HTF matrices, which have a diagonalization
effect under certain conditions. The diagonalization takes place
in two steps: block-diagonalization via rotation transformation
for balanced sinusoidal systems, and entry-diagonalization via
complex transformation for symmetric systems. The diago-
nalization essentially reduced the order of an HTF matrix
from infinity to two or one and thereby makes the matrix
tractable mathematically without truncation or approximation.
A case study of a droop-controlled grid-connected voltage
source inverter (VSI) demonstrates the practical benefits of the
proposed theory. The droop-controlled VSI proves to be quasi-
symmetric (entry-diagonalizable) which leads to significant
simplification of stability analysis and sheds new light on
the mechanism of instability. Moreover, the proposed link-
age opens up new possibilities of looking for other frame
transformations beyond the basic transformations (rotating,
complex) to extend the diagonalization method to asymmetric,
unbalanced, and non-sinusoidal systems.
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