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ABSTRACT   29 

Phages (i.e. viruses that infect bacteria) have been considered as good tracers for the hydrological 30 

transport of colloids and (pathogenic) viruses. Little, however, is known about interactions of phages 31 

with (fungal) mycelia as the prevalent soil microbial biomass. Forming extensive and dense networks, 32 

mycelia provide significant surfaces for phage-hyphal interactions. Here, we for the first time 33 

quantified the mycelial retention of phages in a microfluidic platform that allowed for defined fluid 34 

exchange around hyphae. Two common lytic tracer phages (Escherichia coli phage T4 and marine 35 

phage PSA-HS2) and two mycelia of differing surface properties (Coprionopsis cinerea, Pythium 36 

ultimum) were employed. Phage-hyphal interaction energies were approximated by the extended 37 

Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach of colloidal interaction. Our data show 38 

initial hyphal retention of phages of up to ≈ 4 × 107 PFU mm-2 (≈ 2550 PFU mm-2 s-1) with a retention 39 

efficiency depending on the hyphal and, to a lesser extent, the phage surface properties. Experimental 40 

data were supported by XDLVO calculations, which revealed the highest attractive forces for the 41 

interaction between hydrophobic T4 phages and hydrophobic C. cinerea surfaces. Our data suggest 42 

that mycelia may be relevant for the retention of phages in the subsurface and need to be considered 43 

in subsurface phage tracer studies. Mycelia-phage interactions may further be exploited for the 44 

development of novel strategies to reduce or hinder the transport of undesirable (bio-)colloidal entities in 45 

environmental filter-systems. 46 
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INTRODUCTION 66 

Previous work has highlighted the relevance of phages (i.e. viruses that infect bacteria)1,2 as promising 67 

tracers for fecal contamination or for the evaluation of colloidal and water transport.3,4,5 Although 68 

phage tracers have significantly improved our understanding of water and colloid movement in 69 

aquifers6, information on the transport of phage tracers in the complex soil subsurface is still limited, 70 

yet highly needed. For example, accurate descriptions of microbial (colloid) transport and soil-related 71 

transport drivers are needed to assess the risk of pathogen contamination to drinking water supplies or 72 

to develop control strategies and treatment options. Although still rarely applied, marine tracer phages 73 

hold much promise as tracers in subsurface ecosystems, as they and their hosts are absent in terrestrial 74 

ecosystems. Typically, up to 1015 phages (∼1 g) can be applied and phage concentrations of < 10 75 

phages mL-1 of recovered water can be detected7 by specific interactions with their host bacteria using 76 

plaque forming unit (PFU) assays.7,8,9,10 Subsurface transport of phages (and other viruses) is driven 77 

by environmental factors, phage type and phage interaction with autochthonous soil microorganisms.11 78 

Environmental factors included soil type and texture,12,13,14,15 electrolyte composition16,17 or the degree 79 

of water saturation in soil.11,18,19 Other research assessed the influence of virus characteristics such as 80 

the effect of the isoelectric point,20 combinations of size and isoelectric point21 or the morphology of 81 

phages and other viruses.22 While abiotic environmental drivers have been widely studied, insufficient 82 

knowledge exists concerning interactions of phages and viruses with non-host microbes (termed in the 83 

following as unspecific phage-microbe interactions). Such interactions may be of high importance for 84 

the transport and survival of pathogens in soil and the upper layer of the Earth’s Critical Zone (CZ)23, 85 

i.e. the thin, living and permeable layer that connects the atmosphere with the geosphere. Research on 86 

unspecific phage-microbe interactions mainly evaluated the influence of sterile vs. non-sterile 87 

conditions on the fate of phages.24 These studies suggest better survival of phages and other viruses in 88 

sterile rather than in non-sterile environments.24,25,26 Other studies have highlighted the role of fungi 89 

as mediators for the virulence of plant viruses.27,28,29 To our knowledge, however, no literature exists 90 
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on unspecific interactions of phages with hyphal surfaces or the effect of (fungal) mycelia on 91 

waterborne transport of phages.  92 

Fungi occur in nearly every aerobic habitat, being important drivers of biogeochemical cycles30,31 and 93 

fertility of soils. Being the major microbial biomass in soil, they typically develop a spatially extensive 94 

mycelium, which comprises up to 1000 m of hyphae per gram of dried soil.32,33 Mycelia also provide 95 

ideal ‘logistic networks’ for bacterial evolution34,35,36 as well as the transport of bacteria. Fungal growth 96 

is not restricted to saturated environments, as their hyphae are also able to breach air-water interfaces37 97 

and thereby connect different soil microenvironments.32 Of central importance for possible phage 98 

transport is the observation that hyphae may change the physico-chemical properties of their surface38 99 

and hence, alter the water infiltration properties of soils through the production of large amounts of 100 

hydrophobic compounds in the outer cell wall.39  101 

Here, we hypothesized that mycelia might retain phages, due to the physico-chemical interactions of 102 

phages with hyphal surfaces, and hence would influence waterborne phage transport. Using a well-103 

controlled microfluidic platform, we quantified the effects of mycelia on phage retention and transport 104 

at the micrometer scale. The microfluidic platform allowed single hyphae to be subjected to a defined 105 

concentration of phages and to quantify their interactions by comparing the in- and outflow 106 

concentrations of phages. Two lytic phages commonly used as tracers to follow pathogen 107 

contamination (E. coli T4 phage) or colloidal particle transport22 (marine phage PSA-HS2) were used 108 

as models. The phages belong to different virus families40,41 and vary in their morphology and physico-109 

chemical surface properties. Two filamentous soil organisms (Coprinopsis cinerea and Pythium 110 

ultimum) of varying surface hydrophobicity were also implemented. Experimental observations were 111 

accompanied by the extended Derjaguin-Landau-Verwey-Overbeek approach (XDLVO) of colloidal 112 

interaction that describes the forces between charged surfaces interacting in a liquid medium. Our 113 

findings suggest that the mycosphere may significantly influence the transport and fate of phages and 114 

phage tracers. 115 
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 116 

MATERIALS AND METHODS 117 

Organisms and culture conditions 118 

Two well-characterized lytic tracer phages were studied (Table 1). The T4 coliphage (T4)42 and its 119 

host E. coli (Migula 1895)43 were purchased from Deutsche Sammlung von Mikroorganismen und 120 

Zellkulturen GmbH (DSMZ, Germany), while the marine phage PSA-HS2 and its host strain 121 

Pseudoalteromonas H13-15 were kindly provided by Dr. B. M. Duhaime (University of Michigan, 122 

USA).44 The T4 coliphage (Myoviridae) and the PSA-HS2 (Siphoviridae) are of different morphology. 123 

Both phages were propagated, purified and counted as described previously.22 P. H13-15 and E. coli 124 

were grown at room temperature using dilute (50%) 2216E medium45 and Luria-Bertani (LB) 125 

medium46. Both phages were stored in SM buffer (100 mM NaCl, 8 mM MgSO4 7H2O, 50 mM Tris-126 

HCl. pH 7). Phages were quantified by a modified spotting plaque assay technique22 by incubating 127 

phage host pairs overnight either at room temperature (RT, 25oC) (PSA-HS2) or at 37°C (T4 128 

coliphage). The agaricomycete C. cinerea strain AmutBmut pMA412 (C. cinerea) and the oomycete 129 

P. ultimum32 exhibit hyphal surfaces of varying hydrophobicity.38 C. cinerea strain AmutBmut 130 

pMA412 constitutively expresses the red fluorescent protein dTomato.47 C. cinerea and P. ultimum 131 

were cultivated on yeast-malt extract-glucose medium solidified with agar (YMG, Table S2) and Luria 132 

Bertani (LB) agar for three days at 30 °C and RT, respectively.47,48 133 

Stability and viability of phage suspensions 134 

Conditioned (i.e., cell-free) media were prepared by cultivating C. cinerea and P. ultimum in glucose-135 

based liquid CCMM minimal47 (Table S2) and LB media using a shaker incubator (SM-30, Edmund 136 

Bühler GmbH, Bodelshausen, Germany) at 150 rpm, at 30 °C for 9 d. Conditioned media were 137 

obtained by vacuum filtration of the mycelial suspensions using a glass frit (Schott pore 40, DURAN® 138 

filter funnel, DWK Life Sciences, Wertheim, Germany) and subsequently stored at 4 °C. The stability 139 

(i.e. phage aggregation and infectivity) of phage suspensions was investigated in batch experiments at 140 
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RT in 10 mL glass vials49 containing 6 mL of phage suspensions (108-109 PFU mL−1) in conditioned 141 

media (Fig. S1). Experiments were performed in triplicate by exposing phages to the conditioned 142 

media for 0, 4 and 22 h and subsequently performing a PFU quantification (Fig. S1). The stability of 143 

the phage suspensions was calculated as the ratios of phage concentrations (Table 2). Similar 144 

experiments were performed using fresh media as controls (Fig. S2). 145 

 146 

Characterization of physico-chemical surface properties  147 

The contact angles of water θw, formamide θf, and methylene iodide θmi were measured using a DSA 148 

100 drop-shape analysis system (Krüss GmbH, Hamburg, Germany). Briefly, mycelia of the organisms 149 

were cultivated for 2 - 3 days on a 0.45 µm-filter (NC 45, Cellulose Nitrate Membrane Whatman, 150 

Maidstone, Kent, United Kingdom) placed on the surface of LB (P. ultimum) or YMG agar plate (C. 151 

cinerea). Filters covered with fungi were removed and mounted on a microscope slide and the contact 152 

angles measured as detailed elsewhere.38,50 The zeta-potential (ζ) for the mycelia of C. cinerea and P. 153 

ultimum were approximated from the electrophoretic mobility of hyphal elements measured by 154 

Doppler electrophoretic light scattering analysis (Zetamaster, Malvern Instruments, Malvern, UK). 155 

Mycelia of both organisms were cultivated for 3 days as described above. The biomass was then 156 

carefully scratched off the filter using a sterile spatula, suspended in 1 mL of SM buffer (100 mM, pH 157 

= 7) and homogenized using a micro-blender according to Potter-Elvehjem (Carl Roth GmbH + Co, 158 

Germany) prior to zeta potential measurement. The zeta potential of PSA-HS2 and T4 phage 159 

suspensions (SM buffer; 100 mM, pH = 7) was approximated as described earlier.22 160 

 161 

Phage transport experiments 162 

Microfluidic device design and preparation   163 
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Microfluidic devices were prepared as described in Stanley et al.47 based on a channel architecture51 164 

that enables laminar flow conditions as a result of  actively pumping solutions into the observation 165 

chamber (Figs. 1 & S3; cf. SI for detailed description).  166 

Incubation and visualization of mycelial growth structures 167 

Using a syringe (Injekt®Solo, 2 mL, B. Braun, Melsungen, Germany), the microfluidic devices were 168 

filled with either liquid LB medium for P. ultimum or glucose-based CCMM for C. cinerea. A small 169 

agar plug (≈ 6 mm2) containing the fungal inoculum was placed next to the opening of the microfluidic 170 

channel (Fig. 1). The microfluidic devices were incubated for 24 h (P. ultimum) and 48 h (C. cinerea) 171 

in a humid and dark environment to allow the mycelia to reach the end of the observation channel. 172 

Prior to the addition of the phages, the mycelial structure in the observation channel was determined 173 

using an AZ100M fluorescence microscope (Nikon, Düsseldorf, Germany) and Nikon NIS-Elements 174 

software. The surface area of the mycelia in the observation chamber (Amycelia) was approximated based 175 

on the total length of the mycelia in the observation chamber assuming hyphae to be tubes having a 176 

diameter of 7 ± 1 µm (C. cinerea)47 and 10 ± 3 µm (P. ultimum) using ImageJ software52 following a 177 

modified method described by Jenson et al. (Table 1). 53  178 

 179 

Quantification of phage Mass recovery  180 

The mass recovery (M) was calculated as the ratio of the total number of phages in the effluent and the 181 

influent in a given time period (∆t) as inferred from the difference of inlet (Co) and outlet (Ct) phage 182 

concentration as described by eq. 1 183 

𝑀 =
∑ Ct∆t

∑ C0∆t
∗ 100          (1) 184 

 185 

Quantification of phage retention  186 

Prior to addition of phage suspensions the microfluidic devices were carefully flushed with ≈ 100 µL 187 

of SM buffer (100 mM, Ionic strength Is ~ 360 mM) to replace the growth media. A syringe pump (KD 188 
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Scientific Inc., USA) loaded with Luer-lock syringes (Injekt®Solo, 2 mL, B. Braun, Melsungen, 189 

Germany) was used to administer the phage suspension (≈ 3 × 109 PFU mL-1) into the microfluidic 190 

channels at a volumetric flow rate of 5 µL h-1 (average velocity: 1.4 × 10−4 m s−1; time for fluid to 191 

reach outflow: 43 s (cf. SI)).. After 4 and 22 h at RT, samples from the inlet and the outlet (i.e. aliquots 192 

from the well-mixed effluents after 0-4h (20 µL) and 4-22 h (90 µL)) of triplicate microfluidic devices 193 

containing mycelia were collected and the phages enumerated. Quadruplicate experiments in mycelia-194 

free microfluidic devices (control) revealed insignificant (< 2 %) losses of phages in the devices and 195 

the tubing material (Fig. 2 & Table 2). The retention of phages to the mycelial surface (RP) was 196 

calculated using eq. 2, with Ct,effluent and Ct,influent being the effluent and the influent phage 197 

concentrations respectively, Ct, effluent, control the effluent phage concentrations in mycelia-free controls, 198 

Vt,effluent the volume of effluent at sampling (20 µL and 90 µL after 4 h and 22 h, resp.) and Amycelia the 199 

estimated surface area of the mycelia in mm2. 200 

𝑅P =
((𝐶t,influent−𝐶t,effluent)−(𝐶t,influent−𝐶t,effluent,control)) ∗ 𝑉t,effluent

𝐴mycelia
   (2) 201 

The t-test (two-tailed distribution) was used to test for significance and to determine the level of 202 

marginal significance (p-value). 203 

 204 

Calculations of phage-hyphal surface interaction energies 205 

The total interaction energy (𝐺XDLVO) between phages and hyphal surfaces was predicted by the 206 

extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory of colloidal interactions.54 𝐺XDLVO 207 

is the sum of the electrostatic repulsion (𝐺EDL), the Lifshitz-van der Waals (𝐺LW) and the acid-base 208 

(𝐺AB) interaction energy. While 𝐺AB compares the energy status between attached and nonattached 209 

situations, 𝐺EDL and 𝐺LW are functions of the separation distance, h (nm), between two surfaces55,56 210 

(eq. 3): 211 

𝐺XDLVO(ℎ) = 𝐺AB+𝐺EDL(ℎ) + 𝐺LW(ℎ)       (3) 212 
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Sphere-plate geometry was applied as phages are far smaller than the hyphal surfaces.57 𝐺EDL, 𝐺LW 213 

and 𝐺AB were calculated as described previously.22 Surface free energy calculations were based on 214 

measured contact angles of phages and fungi using water, formamide and methylene iodide as liquids 215 

(as described above) and the Young equation.58 The Gibbs free energies (Table S1) and Hamaker 216 

constants were calculated using the surface free energies of studied phages and hyphal surfaces 217 

applying eq. S4 and eq. S11.  218 

 219 

RESULTS 220 

Phage transport in microfluidic devices  221 

Interactions of phages with hyphal surfaces were investigated using a microfluidic platform under 222 

continuous flow conditions typical for subsurface water flows (1.2 m d-1) 59 (Fig. 1) by comparing the 223 

in- and effluent phage concentrations (Fig. 2; Table 2). Control experiments in the absence of mycelia 224 

(Table 2, Fig S2) revealed negligible (<2 %) differences between in- and effluent phage concentrations 225 

(Table 2). Water contact angle measurements revealed that C. cinerea (θw = 131 ± 2o) and P. ultimum 226 

(θw = 62 ± 6o) were highly and moderately hydrophobic respectively. The T4 and PSA-HS2 phages 227 

were of similar size (≈ 200 nm) and surface charge (ζ ≈ -10 mV) yet differed in surface hydrophobicity 228 

(T4: θw = 95o; PSA-HS2: θw = 40o; Table 1).  229 

In the presence of P. ultimum, differences between the PFU counts of PSA-HS2 and T4 phages in the 230 

in- and effluents of the microfluidic devices were small (i.e., < 4 %) and statistically not significant (p 231 

> 0.05) at both time intervals (0 - 4 h and 4 - 22 h) (Fig. 2A & C and Table 2). The presence of highly 232 

hydrophobic C. cinerea hyphae, however, resulted in ≈ 25 % (PSA-HS2) and 90% (T4) reductions of 233 

the outflow concentration of the hydrophilic PSA-HS2 (Fig. 2B) and hydrophobic T4 phages (Fig. 2D) 234 

after 4h (p ≤ 0.05). This corresponds to a mass recovery of M = 7 % (T4) and M = 77 % (PSA-HS2) 235 

during the first 4 h of phage percolation (Table 2). Most likely due to blocking effects of the hyphal 236 

collector (i.e., hyphal surface became progressively occluded), the retention of T4 phages was 237 
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minimized as similar PFU counts for the effluents and controls were observed after 22 h. As the hyphal 238 

density and morphology of the two mycelia differed (cf. Fig. 1C & D), micrographs of the hyphal 239 

structures in the observation chambers were taken, and the hyphal surface areas exposed to the 240 

percolating phages were estimated (Table 1). After 4 h, the calculated apparent (yet statistically not 241 

significant) retention of phages to the mycelial surface (RP) of P. ultimum was ≈ 2.3 × 106 PFU mm-2 242 

for T4 and 4.3 × 106 PFU mm-2 for phage PSA-HS2 (Table 2). The presence of the hydrophobic surface 243 

of C. cinerea, however, significantly retained both phages with RP = 13.6 × 106 PFU mm-2 for PSA-244 

HS2 and RP = 36.7 × 106 PFU mm-2 for T4 phages (p ≤ 0.05; Fig. 3). This results in estimated time-245 

averaged deposition rates of 941 and 2550 PFU mm-2 s-1 for PSA-HS2 and T4, respectively (Table 2). 246 

Better phage retention by more hydrophobic mycelia of C. cinerea was also evidenced by smaller mass 247 

recovery of T4 and PSA-HS2 phages (Table 2).  248 

 249 

Effect of mycelial conditioned media on phage infectivity and colloidal stability 250 

As mycelial products may influence the stability and infectivity of phages, the effect of P. ultimum 251 

and C. cinerea conditioned media on the PFU counts of T4 and PSA-HS2 was quantified after exposing 252 

the phages to the conditioned media for 0, 4, and 22 h. After 4 h no statistically significant reduction 253 

on PSA-HS2 and T4 phage concentrations was observed (Table 2, Fig. S1). Similarly, no effects of 254 

the conditioned media on PSA-HS2 phage counts were observed after 22 h of exposure. By contrast, 255 

the highly hydrophobic T4 phages exhibited a slight, yet statistically significant (p ≤ 0.05) decrease of 256 

≈ 14 % PFU counts in the conditioned medium of C. cinerea yet not of P. ultimum (≈ 6 % decrease). 257 

 258 

Approximation of phage-hyphal surface interaction energies  259 

Phage-hyphal surface interaction energy (GXDLVO) profiles were calculated using the XDLVO theory 260 

(cf. eq. 3 & eq. S2) based on the sphere-plate model (Fig. 4, Table 1).57 This model is well-accepted 261 

approach to estimate the interaction energies of a phage approaching a surface,57,60 although phages 262 
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are away from the uniform surfaces of colloidal particles. The GXDLVO is characterized by three 263 

different interaction energies: the primary minimum (Φmin1) as the deep energy at short separation 264 

distance h from the sorbent surface, the secondary minimum (Φmin2) as the shallow energy at larger 265 

distances allowing for reversible phage adhesion, and the maximum energy barrier (i.e. the energy the 266 

phages need to overcome to get irreversibly attached at the Φmin1) (Φmax1).
61,62 For the given 267 

experimental conditions, the GXDLVO profiles predicted either no (Φmax1: no to be calculated) or low 268 

(Φmax1 = 4.7 × 10-3 kBT at h ≈10 nm; PSA-HS2) maximum energy barriers for the interactions of P. 269 

ultimum with T4 and PSA-HS2 phages, respectively (Table 2, Fig. 4). This indicates that both phages, 270 

if retained by the hyphae of P. ultimum, would be attracted directly to the primary minimum Φmin1. 271 

However, no T4 phage) and a very weak secondary minimum (Φmin2 = -2.7 x 10-4 kBT at h ≈ 12 nm) 272 

for PSA-HS2 phage was calculated and, hence, poor reversible retention of both phages by P. ultimum 273 

surfaces predicted by the XDLVO approach.63,64 For interactions of the hyphal surface of C. cinerea, 274 

the XDLVO approach predicted the absence of Φmax1 for both phages and more negative primary 275 

minima than for P. ultimum (Table 2, Fig. 4). No secondary minima were found, yet attractive GXDLVO 276 

values, however, were calculated up to h ≈ 100 nm and h ≈ 40 nm above the C. cinerea hyphal surfaces 277 

for T4 and PSA-HS2 phages, respectively.  278 

 279 

DISCUSSION  280 

Effect of mycelia on phage transport and retention 281 

We studied the interactions between phages and mycelia at the micrometer scale using a bespoke 282 

microfluidic platform. The so-called “Soil-on-a-Chip” microfluidic technology for organismal studies 283 

is an emerging field,65 which allows for the precise control of the physico-chemical microenvironment, 284 

high-resolution imaging and the simulation of environmental complexity on the microscale.66 We 285 

assessed the interaction of phages with hyphae both in a quantitative manner and at the level of single 286 

hyphae. To our knowledge, this is the first study of its kind to analyze the role of hyphae on the 287 
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transport and retention of nano-sized particles (phages). For this purpose, two lytic phages of different 288 

morphology and physical-chemical properties were applied, i.e., the T4 coli-phage and the marine 289 

phage PSA-HS2. The phages were injected into microfluidic channels containing growing mycelia of 290 

known structure and differing hydrophobicity and the time-averaged retention of the phages was 291 

calculated. Mycelia of the oomycete P. ultimum and of the hydrophobic agaricomycete C. cinerea 292 

were employed. Phage decay due to experimental conditions in the absence of mycelia was negligible 293 

and accounted for in our experiments. . Our data suggest that passage through microfluidic devices in 294 

the presence of moderately hydrophobic mycelia (P. ultimum) didn’t lead to statistically verifiable 295 

phage retention (Table 2). The highly hydrophobic mycelia of C. cinerea, however, efficiently retained 296 

both phages (as reflected by increased RP values) and significantly (p ≤ 0.05) reduced mass recovery 297 

(T4: > 93 %; PSA-HS2: and > 23 %) relative to mycelia free controls (Table 2). Differences in the 298 

phage recovery also demonstrate higher retention of the hydrophobic phage T4 than of the more 299 

hydrophilic PSA-HS2 phage. Most likely due to saturation of possible sorption sites, T4 however, 300 

showed no significant additional retention by C. cinerea in the observation period up to 22 h (Fig. 2D) 301 

while apparent saturation of the hyphal surface for PSA-HS2 phages was not yet reached (Fig. 2C).  302 

Our findings are consistent with previous studies showing that hydrophobic phages (and other viruses) 303 

are more efficiently retained than hydrophilic phages67,68,22 They further reveal that sorption of viruses 304 

strongly depends on the surface properties of both the viruses and the sorbent; for instance, positively 305 

charged sorbents have been considered as ideal materials for the removal of viruses from aqueous 306 

systems.69,70 Our results likewise emphasize for the first time the role of hydrophobic interactions for 307 

the interaction between phages and hyphal surfaces.67  308 

As hyphal metabolites or extracellular products are known to foster coagulation71,39 and hence may 309 

reduce colloidal stability and possible infectivity of phages, we further studied the impact of mycelial 310 

conditioned media on the infectivity of T4 and PSA-HS2 phage suspensions. With the exception of a 311 

slight (14 %) reduction of T4 phage counts after 22 h, no influence of mycelial conditioned media on 312 
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total phage counts (i.e., phage infectivity) was observed (Fig. S1). Similar to the known effect of solid 313 

matrices,72,73 it even may be speculated that fungal surfaces may protect viruses from inactivation.72,73 314 

The reasons for the reduction of T4 phages in the presence of C. cinerea conditioned medium after 22 315 

h remain though unclear, yet are likely to be explained by the effect of extracellular mycelial products 316 

in the conditioned media (e.g., glycoprotein mucilages) that may influence colloidal stability rather 317 

than the infectivity of T4 phages. An additional effect on the reduced T4 phage stability may be caused 318 

by the CCMM medium, as mycelia-free controls also exhibited stability of 93 ± 4 % (Fig. S2). Our 319 

data hence suggest the absence of mycelial effects on the infectivity and colloidal stability of the 320 

phages in the microfluidic devices. They underpin the relevance of phage deposition as the main driver 321 

for the reduced mass recoveries observed in the presence of the hydrophobic surfaces of C. cinerea.  322 

 323 

Phage-hyphal surface interaction energies  324 

Phages are charged colloidal particles69 and believed to follow the principles of colloid chemistry 325 

despite of their morphological and structural variability.54 Applying the XDLVO approach, we 326 

calculated the surface interaction energies as a function of the surface-to-surface distance, h, for a 327 

phage approaching a mycelial surface (eq. 3, Fig. 4). The XDLVO interaction energy is characterized 328 

by the primary minimum (Φmin1), the secondary minimum (Φmin2) and the maximum energy barrier 329 

(Φmax1).
57 The XDLVO calculations predicted poor interactions of T4 and PSA-HS2 phages with 330 

hyphal surfaces of P. ultimum as evidenced by shallow Φmin2 (-3 × 10-4 kBT) for the PSA-HS2 phage64 331 

and poorly negative GXDLVO profiles (> ≈ -8 × 10-4 kBT) at distances h > 10 nm above the surfaces for 332 

the T4 phage (Fig 4). Only at close distances (h < ≈10 nm) to the hyphal surface, phages with a small 333 

kinetic energy57 would be able to overcome the very low maximum energy barriers and get 334 

(irreversibly) attached in the primary minimum. These predictions are in good agreement with our 335 

experimental results showing less phage retention by P. ultimum than by C. cinerea hyphal surfaces 336 

(Figs. 2 & 3). For the latter, the GXDLVO profiles of T4 and PSA-HS2 interactions exhibited clearly 337 
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negative GXDLVO values up to h ≈ 40 nm (PSA-HS2: -1.73 kBT at h = 10 nm to -0.06 kBT at h = 40 nm) 338 

and up to h ≈ 145 nm (T4: -3.62 kBT at h = 10 nm to -0.06 kBT at h = 145 nm) respectively and thus 339 

remain attractive up to longer separation distances than for hyphal surfaces of P. ultimum (Fig. 4). the 340 

XDLVO predictions reflect the experimentally observed differences of retention of T4 and PSA-HS2 341 

phages by mycelia of C. cinerea and P. ultimum respectively (Fig. 2 & 3) and supports the applicability 342 

of XDLVO approach to study the interactions of phages with surfaces.60 343 

 344 

Implications for phage transport  345 

The mobilization of colloids or bio-colloids such as bacteria and viruses in soil often is triggered by, 346 

snowmelts, or thunderstorms or high-intensity rain events that lead to high loads of the seepage water.74 347 

Rapid waterborne transport thereby may occur along macro-pores, cracks, or faults of the partly 348 

saturated soil, and hence in cavities where mycelia and their thread-like, adaptive and fractal 349 

networks75,76,35,36 may be typically found.77 Depending on the soil type, filamentous fungi may exhibit 350 

dry weight biomasses of up to 45 t per ha33 and corresponding hyphal lengths of up to 102 m g-1 (arable 351 

soil) - 104 m g-1 (forest soil). Given a retention of phages to the mycelial surface of RP = 107 PFU mm-352 

2 and a presumed hyphal diameter of 10-5 m, such fungal biomass would translate to a calculated 353 

mycelial surface of ≈ 0.0031 – 0.3140 m2 or a hypothetical phage retention potential of 3 × 1010 to 3 × 354 

1012 phages per gram of soil. This would correspond to 30 to 3000 times the reported average number 355 

of virus like particles per gram of soil,78,79 and, hence, be an important location for phage retention. 356 

Some hyphae are also known to become hydrophobic,50 when exposed to air in unsaturated soil 357 

conditions or during periods of soil drying. Hydrophobic mycelia may retain phages particularly well 358 

when exposed to conditions of soil water flow during major rain events. A recent 1-year time-series 359 

analysis of virus-like particle abundances in soils along a transect with different land-use practices, for 360 

instance, proposed rainfall-induced mobilization of viruses and correlations between rainfall and virus 361 

abundances in non-forest sites.79 Furthermore, the physico-chemical effects of phage and hyphal 362 
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surface properties on phage retention to mycelia can influence the structure of soil; for instance, some 363 

hyphae exert polysaccharides and glycoprotein mucilages39 that enable the aggregation of soil mineral 364 

particles and organic matter.71 These aggregates play a crucial role in the retention of viruses due to 365 

exclusion effects at the pore-scale.80 At the micrometer scale, fungi take advantage of the three-366 

dimensional space in the soil.48 Their small hyphal diameter, which is approximately 1/60th the 367 

thickness of roots, allows fungi to access tight spaces.30 This promotes the possible role that hyphae 368 

may play in the transport of colloidal particles, as bonding forces tend to be stronger at smaller size 369 

scales.39 Consequently, understanding phage-mycelial interactions may help in planning different 370 

environmental and health related applications. For instance, tracer phages, which exhibit less retention 371 

in the presence of fungal mycelia, will be better tracer phages for tracer studies in terrestrial 372 

ecosystems. On the other hand, fungal mycelia with high phage retention potential can be used in the 373 

design of filter systems to reduce or hinder the transport of undesirable entities, e.g., pathogenic 374 

viruses, bacteria or anthropogenic nanoparticles. Accordingly, investigations concerning the influence 375 

of mycelia on the retention of phages could be extended to nanoparticles, which will be of interest for 376 

different applications. Further, the retention of phages by mycelia may increase the phage accessibility 377 

to bacteria, influence the multifarious bacterial-fungal interactions ,81,34 and/or promote phage-induced 378 

gene mobility in microbiomes of the mycosphere. Future work will need to include studies under more 379 

complex environmental conditions. 380 
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FIGURE LEGENDS 400 

 401 

Figure 1. (A) Photograph of the microfluidic platform used to monitor phage-mycelial interactions. A 402 

mycelial inoculum was placed next to the lateral opening of the microfluidic device (made from 403 

poly(dimethylsiloxane) (PDMS) silicone elastomer), allowing hyphae to penetrate and grow into the 404 

observation channel via a constriction channel, as illustrated in the two-dimensional overview of the 405 

microchannel geometry (B). Hyphal growth was observed in the observation channel, as indicated by 406 

the red dotted frame in (B), using bright field or fluorescence microscopy. (C) A bright-field 407 

micrograph of P. ultimum hyphae (24 h post inoculation). (D) A fluorescence micrograph of C. cinerea 408 

hyphae (48 h post inoculation). The direction of hyphal growth was toward the outlet. 409 

 410 

Figure 2. PSA-HS2 and T4 phage concentrations in the influent (light grey bars) and the effluent of 411 

the microfluidic devices in the absence (black) and presence (grey) of hyphae after 4 and 22 h of 412 

continuous flow (5 µL h-1). Phages were enumerated by plaque forming units (PFU) depicted by total 413 

(primary y-axis on the left hand side of each panel). Data represent averages and standard deviations 414 

of triplicate experiments (except for duplicates for PSA-HS2 with C. cinerea). The asterisks on top of 415 

the columns refer to statistically significant differences (determined using two-tailed t-test) between 416 

the effluent concentration (in the presence of hyphae) and the corresponding controls (i.e. influent 417 

concentration and effluent concentration in the absence of hyphae): p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 418 

0.001 (***). 419 

 420 

Figure 3. Total number of T4 or PSA-HS2 phages retained per mm2 of the mycelial surface after 4 h 421 

of phage percolation through the microfluidic devices containing either hyphae of P. ultimum or C. 422 

cinerea. Data represent averages and standard deviations of triplicate experiments (except for 423 
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duplicates for PSA-HS2 & C. cinerea). Asterisks indicate significant differences, if present, between 424 

different phage and mycelia pairs: p ≤ 0.01 (**) and p ≤ 0.001 (***). 425 

 426 

Figure 4. XDLVO interaction energy profiles between phages and mycelia. The interaction energy 427 

profiles show the overall interaction energy (𝐺XDLVO; black solid line), the acid-base interaction 428 

energy (𝐺AB; orange long-dashed line), the electrostatic repulsion (𝐺EDL; blue short-dashed line), 429 

and the Lifshitz-van der Waals energy (𝐺LW; red dotted-dashed line) as a function of distance particle 430 

h (nm) between the phage and the mycelia surface.  431 
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Table 1. Overview of the names, classifications, size and physico-chemical surface properties of the 432 

phages and hyphal organisms used in this study.  433 
 434 

 435 

Name 
(Name of family or class)  

Phage host name Zeta potential 
ζ  

Water contact angle  
Θw  

Size 
(head/tail) 

Surface area 

      

  (mV) (degree) (µm) (mm2) 

      
PSA-HS2 
(Siphoviridae) 

Pseudoalteromonas H13-15  -10 ± 1  40 ± 5 a) 0.21 a) 
(0.06/0.15) a) 

 

-- 

T4 
(Myoviridae) 

E. coli  (Migula 1895) -10 ± 2 95 ± 5 a) 0.203 a)  
(0.09/0.113) a)  

 

-- 

      
Pythium ultimum 
(Oomycete) 
 

-- -11 ± 3  62 ± 6  10 ± 3 b) 1.2 ± 0.1 c) 

Coprionopsis cinerea  
strain AmutBmut pMA412 
(Agaricomycete) 
 

-- -13 ± 4 131 ± 2 7 ± 1 b) 0.9 ± 0.4 c) 

 436 
a) Data taken from Ghanem et al.22  b) Average and standard deviations (n ≥ 20) of hyphal diameters, c) Average and standard deviations of 437 
the surface area of mycelia (n > 5) after 24 h (P. ultimum) and 48 h (C. cinerea) of inoculation. 438 

 439 
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Table 2. Calculated retention (RP) of phages to mycelial surfaces (0 - 4 h) and mass recoveries (M) of transport experiments in microfluidic 440 

devices, as well as the stability and viability of phage suspensions in the presence of P. ultimum and C. cinerea conditioned media. The values of 441 

the maximum energy barrier (Φmax1), the primary minimum (Φmin1), and the secondary minimum (Φmin2) of phage-mycelia interaction energies 442 

were derived based on the XDLVO approach using a sphere-plate model. 443 

 444 

Phage 
name 

Name of hyphal 
organisms 
 

Retention of phages 
to mycelial surface 

(RP)  
after 0 - 4 h a, b) 

Phage mass recovery 
with  mycelia  
after 0 - 4 h 
(4 - 22 h) b) 

 
M  

Phage mass recovery  
without mycelia 

 after 0 - 4 h 
(4 - 22 h) b) 

 
M  

Phage stability  
after 4 h  

(after 22 h) c) 
 
 

Calculated 
maximum energy 

barrier d) 
 

 
Φ max1 

Calculated 
energy at primary 

minimum (d) 
 
 

Φ min1  

Calculated energy 
at secondary 
minimum d) 

 
 

Φ min2 
         
  (PFU mm-2 ×106) (%) (%) (%) (kBT ×10-3) (kBT ×104) (kBT ×10-3) 

         
         
PSA-HS2 
 

Pythium ultimum  4.26 ± 0.6  92 ± 3 
(108 ± 12) 

 

98 ± 5 
(94 ± 0) 

 

97 ± 23 
(98 ± 16) 

 

4.7  -1.1   -0.3  

 Coprinopsis cinerea 

 

13.6 ± 1.3 
 

77 ± 2 
(75 ± 6) 

 

99 ± 0.2 
(97 ± 0) 

 

102 ± 11 
(99 ± 16) 

 

na e) -1.9 na d) 

         

 T4 
 

Pythium ultimum  2.3 ± 0.8   98 ± 4 
(107 ± 15) 

99 ± 1 
(109 ± 7) 

 

108 ± 6 
(94 ± 3) 

na e) -14 na e) 

 Coprinopsis cinerea 
 

36.7 ± 0.61 
 

7 ± 1 
(86 ± 11) 

 

98 ± 5 
(92 ± 0.5) 

 
 

106 ± 5 
(86 ± 6)  

na e) -29 na e) 

 445 
a) Values are corrected for losses in the absence of mycelia (cf. eq. 2). b) Influent concentrations of phages (PFU mL-1): PSA-HS2 and P. ultimum: 1.7 × 109, PSA-HS2 and C. cinerea: 3.4 × 109, T4 and P. ultimum: 3.3 × 446 
109; T4 and C. cinerea: 2.6 × 109 PFU mL-1. c) Phage stability in the presence of cell-free conditioned media. d) As predicted by XDLVO interaction energy profiles (cf. eq. 3, Fig. 4). e) No value could be calculated. 447 

 448 

 449 
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MICROFLUIDIC DEVICE DESIGN AND PREPARATION   

Microfluidic devices were prepared as described in Stanley et al.
1
 In brief: A polyester film 

photolithography mask (Micro Lithography Services Ltd., UK) and a 100 mm silicon wafer 

(Silicon Materials, Germany), spin-coated with a 10 µm thick layer of SU-8 photoresist 

(MicroChem, USA), were used to create the master mold. The channel architecture was based on 

the fluid exchange device, detailed in Stanley et al.,
2
 and enables active pumping of solutions 

into the observation chamber (Fig. 1). Two versions of the design were made, one that allows a 

mycelium to occupy the observation chamber and one that does not (Fig. S3). The latter design 

enables control measurements to be performed (i.e., in the absence of a mycelium). 

Polydimethylsiloxane (PDMS) silicone elastomer was then prepared and poured onto the master 

mold. PDMS was prepared using a 10:1 ratio of base to curing agent (Sylgard 184, Dow 

Corning, USA) that was mixed thoroughly and degassed prior to pouring. After curing overnight 

at 70 °C, the PDMS was removed from the mold and diced into slabs. A precision cutter (Syneo, 

USA), having a cutting edge diameter of 1.02 mm, was used to punch the holes for the medium 

inlet and outlet as illustrated in Fig. 1 and Fig. S3. The PDMS slabs were washed in 0.5 M 

sodium hydroxide, 70 % v/v ethanol, and sterile double distilled water (ddH2O) and then dried at 

70 °C for 1 h. They were then bonded to glass-bottomed Petri dishes (World Precision 

Instruments) and sterilized for 20 minutes under ultraviolet light.  

Fluorinated ethylene polymer (FEP) tubing (inner diameter: 0.80 mm, outer diameter: 1.60 mm; 

Cole-Parmer, Germany), hollow steel pin connectors (20 ga; Instech Laboratories, USA) and 

connector pins fitted with a luer-lock adaptor (20 ga; Instech Laboratories, USA) were used to 

connect the syringe to the microfluidic device and subsequently allow a variety of test solutions 

to be introduced into the observation channel (in the presence or absence of a mycelium). Fig. 1 

shows an overview of the microfluidic setup for clarity. 

 

MICROFLUIDIC DEVICE:  CHARACTERIZATION OF FLOW CONDITIONS  

The microfluidic device (channel height:  10 µm; channel width: 1000 µm; channel length: 6 mm) 

operates at laminar flow conditions (i.e. is a laminar flow reactor) with a Reynold’s number (  ) 

equal to ca. 0.003 (eq. S1).  

   
   

  
  

                        

                     
             

             
           (S1) 

where: 

Q = volumetric flow rate (m3/s); i.e.: Q = 5 µL h-1 = 5 × 10-6 L h-1  = 1.4 × 10-12 (m3 s-1) 

DH = hydraulic diameter (m),    
                       

                
  

        

    

   

  
               

V = kinematic viscosity (m2/s); i.e. 1.0 × 10-6 m2/s (for water) 

A = cross sectional area (m2); i.e. 10,000 µm2 = 1.0 × 10-8 m2 
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A syringe pump ensured that the volumetric flow rate in the microchannels is controlled by 

adjusting the pressure needed to produce the required flow rate independent of channel 

geometry.
3
 As the microchannels within this microfluidic device have a rectangular profile (with 

a high width: height ratio, i.e. 1000/10 = 100), the velocity distribution profile across the 

microchannel is highly uniform.
4
 

Hence, taking the average velocity of the system to be 1.4 × 10
-4

 m s
-1

 (average velocity = 

volumetric flow rate / cross section area), we estimate that it would take ca. 43 seconds for the 

fluid to reach the outflow (i.e. to traverse the entire observation chamber) assuming a channel 

length of 6 × 10
-3

 m.  

 

CALCULATION OF THE XDLVO INTERACTION ENERGIES OF PHAGE DEPOSITION 

 

The phage-mycelia interaction energy (GXDLVO (h)) at a distance h (nm) between two surfaces 

was calculated using the extended DLVO (XDLVO) theory (cf. eq. S2) based on the sphere-plate 

model.
5
 The XDLVO theory thereby is an extension of the DLVO approach, which is the sum of 

    ,     and the Born repulsion energy      . In the XDLVO theory, the energy GXDLVO (h) is 

composed of the electrostatic repulsion (GEDL), the Lifshitz-van der Waals (GLW)
6
 and the 

acid−base (GAB) interaction energy (eq. S2).
5
  

      ( )           ( )     ( )                 (S2) 

The DLVO approach does not consider the polar forces that are supposed to be dominant forces 

between particles in polar media.
7
 Additionally, the acid-base (   ) interaction energy was 

reported in many studies to be essential in explaining the interaction behavior between 

approached particles.
5,8

 

 

Acid-base interaction energy (   )   

Eq. S3 was applied to calculate the acid-base interaction energy (   ):
9,5

 

   ( )              (
    

 
)                     (S3) 

Where aP is the radius of phages, and h is the separation distance between the phage and the 

mycelial surface. The λ is the characteristic decay length of AB interaction in water (estimated to 

be 0.6 nm).
10

 The acid-base interaction energy depends on the Gibbs free energy of the phage 

and the fungus as given by eq. S3.  G
AB 

is the acid-base component of the free energy 

interaction at contact given by eq. S4:
10,7

 

       (√  
  √  

 )(√  
  √  

  )  (√  
  √  

 )(√  
  √  

  )  (√  
  

√  
 )(√  

  √  
  )            (S4) 
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The surface Gibbs free energy of phage    and the fungal    surfaces (mJ m
-2

) were calculated 

based on the measured contact angles (θ) of phages, membrane filters and fungal surfaces using 

water, formamide and methylene iodide as liquids by applying the Young equation according to 

eq. S5: 

   (  )       
√  

    
  

  
       

√  
   

 

  
       

√  
   

 

  
            (S5) 

The total surface Gibbs free energy (γ
total

) is separated in a Lifshitz-van der Waals (γ
LW

) and an 

acid-base component (γ
AB

) and is represented by eq. S6. The electron acceptor and the electron 

donor components of acid-base surface energy γ
+
 and γ

-
 is shown in eq. S7.  

               (S6) 

  
    √  

   
  (S7) 

Following van Oss et al.
11

 we calculated the phage parameters γp, γp
LW

, γp
+
, γp

–
, while literature 

data was utilized for water, formamide and methyleneiodide.
12

  

 

Electrostatic repulsion energy (    ) 

Eq. S8 was applied to calculate the electrostatic repulsion energy between phages and the fungal 

surface:
13

 

                     [
     (   )

     (   )
]  (  

      
 )         (    )    (S8) 

where κ
-1

 is the thickness of the electrical double layer (EDL, nm) as calculated by the Guoy-

Chapman theory with C and z being the molar bulk concentration and the charge number of the 

electrolytes, respectively (eq. S9).  

                           (S9) 

For a 100 mM buffer solution a κ
-1

 of 0.65 nm was calculated.
12

      

    

Lifshitz-van der Waals interaction energy (   ) 

 Using the values of the effective Hamaker constant (eq. S11), the Lifshitz-van der Waals 

interaction energy can be approximated by eq. S10:
7,12

 

     
    

 
[
   (    )

 (    )
   (

     

 
)]             (S10) 

The Hamaker constant A132 is described by eq. S11:
14

 

       (√     √   )(√     √   )               (S11) 
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Here, Aii denotes the individual Hamaker constant for phages (A11), hyphae (A22,) and water 

(A33). A33 was taken from the literature,
14

 while A11 and A22 were calculated by eq. S12.  

2

06 LW

ii iA l            (S12) 

According to Fowkes,
15

 the value of 6πl0
2
 equals 1.44×10

-18
 m

2
, with l0 being the equilibrium 

separation distance between the phage and the fungus (0.157 nm).
11
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Table S1. Overview of the surface Gibbs free energy (γ) and the contact angles of water (θw), 

formamide (θf) and methylene iodide (θm) for the phages and hyphae studied. 

 

Name Contact angle (Θ) Surface free energy (mJ m
-2

)
1
 

  Θw Θf Θm ϒ
-
 ϒ

+
 ϒ

AB
 ϒ

LW
 ϒ

Tot
 

water  - - - 25.5* 25.50* 51.0* 21.8* 72.8* 

formamide  - - - 39.6* 2.30* 19.0* 39.0* 58.0* 

methylene iodide - - - < 0.1* < 0.1* ≈ 0* 50.8* 50.8* 

membrane filter Anodisc 25 23 - - - - - - - 

T4  95 61 40 0.1 0.30 0.2 39.5 39.7 

PSA-HS2  40 31 43 34.6 0.96 11.5 38.0 49.5 

Pythium ultimum 62 47 72 17.3 4.49 17.6 21.8 39.4 

Coprinopsis cinerea 131 106 131 0.0 4.47 0.2 1.5 1.7 

* 
Surface free energy data for water, formamide and methylene iodide taken from.

12 
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Table S2. Composition of the YMG and CCMM media use for C. cinerea.
1
 

 

Medium Composition 
 

Yeast‐malt extract‐glucose (YMG) medium 0.4 % w/v yeast extract, 1 % w/v malt extract, 0.4 % 
w/v glucose, 1.5 % w/v agar 
 

C. cinerea minimal medium (CCMM) 5 g L
-1

  glucose, 2 g L
-1

 asparagine, 50 mg L
-1

 adenine 
sulfate, 1 g L

-1
 KH2PO4 , 2.25 g L

-1
 Na2HPO4, 0.29 g L

-1
 

Na2SO4, 0.5 g L
-1

 2di-ammonium tartrate, 0.04 mg L
-1

 
thiamine hydrochloride, 0.25 g L

-1
 MgSO4 , 

5 mg L
-1

 p‐aminobenzoic acid (pABA).  
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Figure S1. Stability and viability of the PSA-HS2 and T4 phage suspensions after exposure to P. 

ultimum and C. cinerea conditioned media (at t = 0, 4 and 22 h). The results represent the average 

and standard deviations of triplicate experiments using phage quantification by PFU. T4 counts in the 

presence of C. cinerea conditioned medium at t = 22 h were statistically different to initial 

concentrations at t = 0 and t = 4 h, as indicated by the asterisk (p ≤ 0.05). 
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Figure S2. Stability and viability of the PSA-HS2 and T4 phage suspensions after exposure to fresh 

media i.e. LB and CCMM media for P. ultimum and C. cinerea, respectively at t = 0, 4 and 22 h. The 

results represent the average and standard deviations of triplicate experiments using phage 

quantification by PFU. T4 counts in the presence of C. cinerea conditioned medium at t = 22 h were 

statistically different to initial concentrations at t = 0 and t = 4 h, as indicated by the asterisk (p ≤ 

0.05). 
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Figure S3. Design and operation of the experimental setup. (A) Two-dimensional representation of 

the microfluidic platform with a mycelial inoculum that was placed next to the lateral opening of the 

microfluidic device, allowing hyphae to penetrate and grow into the observation channel via a 

constriction channel. (B) Two-dimensional representation of the microfluidic platform that enables 

control measurements to be performed (i.e. in the absence of a mycelium). (C) Photograph 

illustrating the experimental setup, where a syringe pump was used to drive phage suspensions into 

the microfluidic channels in the presence and absence of mycelia.   
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