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Abstract

Low-dimensional yet rich dynamics often emerge in the brain. Examples include oscillations and chaotic
dynamics during sleep, epilepsy, and voluntary movement. However, a general mechanism for the emergence
of low dimensional dynamics remains elusive. Here, we consider Wilson-Cowan networks and demonstrate
through numerical and analytical work that a type of homeostatic regulation of the network firing rates can
paradoxically lead to a rich dynamical repertoire. The dynamics include mixed-mode oscillations, mixed-mode
chaos, and chaotic synchronization. This is true for single recurrently coupled node, pairs of reciprocally
coupled nodes without self-coupling, and networks coupled through experimentally determined weights derived
from functional magnetic resonance imaging data. In all cases, the stability of the homeostatic set point is
analytically determined or approximated. The dynamics at the network level are directly determined by the
behavior of a single node system through synchronization in both oscillatory and non-oscillatory states. Our
results demonstrate that rich dynamics can be preserved under homeostatic regulation or even be caused by
homeostatic regulation.

1 Introduction

The human brain contains billions of neurons each receiving potentially thousands of connections from their
neighbours. Despite this complexity, low-dimensional dynamics often appear in the brain in different regions
and contexts. Examples include oscillations such as the theta and gamma oscillations in the hippocampus
[Buzsáki, 2002, Buzsáki and Wang, 2012, Buzsáki et al., 2012], low dimensional oscillatory dynamics during
grasping and other motions [Churchland et al., 2012], or even low dimensional chaotic dynamics during epileptic
seizures and different sleep phases [Babloyantz and Destexhe, 1986]. These dynamics are sometimes pathologi-
cal, such as during epileptic seizures while other times they are functional, such as during sleep states. Despite
the low-dimensionality, the dynamics these systems display are often complex [Babloyantz and Destexhe, 1986].
However, a general mechanism as to how these dynamical regimes might initially emerge remains elusive.

If these dynamical regimes are indeed learned and not inherited, plasticity in the synaptic weights that
couple neurons together is necessary. For many neural circuits, strong evidence exists for a form of homeostatic
plasticity [Froemke et al., 2007, Frank et al., 2006, Bacci et al., 2001, Turrigiano and Nelson, 2004]. The func-
tion of homeostatic plasticity is to prevent run-away excitation in the circuit and thus pathological states such
as epileptic seizures. Additionally, homeostatic plasticity prevents a catastrophic loss of neuronal activity which
results in network quiescence. In other words, homeostatic plasticity serves to maintain a stable background
firing rate.

Recent modeling work has demonstrated a novel inhibitory homeostatic plasticity mechanism designed
to regulate activity [Vogels et al., 2011]. This mechanism works by applying slow variations in the synaptic
weights from the inhibitory neurons to the excitatory neurons [Vogels et al., 2011]. As the excitatory neurons
start firing in excess of their homeostatic set points, the synaptic weights from the inhibitory neurons increase
in strength to prevent run-away excitation. If the excitation in the network is too low, the inhibitory weights
decrease in strength to disinhibit the excitatory neurons. The homeostatic mechanism can drive initially
synchronized activity into the asynchronous irregular regime defined by variable spiking but with a constant
time averaged firing rate [Vogels et al., 2011, Brunel, 2000].

These homeostatic mechanisms fundamentally exist to stabilize network dynamics to an equilibrium point
[Turrigiano and Nelson, 2004]. Indeed, they exist as a counter mechanism to offset the often destabilizing
effects of Hebbian plasticity [Turrigiano and Nelson, 2004]. Thus, it is surprising to consider homeostasis to be
the potential source of complex dynamical systems. However, recent work has suggested that these homeostatic
mechanisms yield rich dynamics in large networks [Hellyer et al., 2016]. For example a, coupled Wilson-Cowan
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(or mean-field) system with inhibitory homeostatic synaptic plasticity and excitatory weights estimated from
functional Magnetic Resonance Imaging (fMRI) data showed rich spontaneous dynamics such as neuronal
avalanches [Hellyer et al., 2016]. However, it is difficult to determine what the source of the rich dynamical
repertoire of these systems is as the underlying networks contain neuronal noise, synaptic transmission delays,
non-smooth dynamics, and complex coupling. All four components may be the source of complex dynamics.

In this work, we attempt to disentangle what effect the homeostatic dynamics have by analyzing a smooth
Wilson-Cowan ([Wilson and Cowan, 1972]) system similar to the system numerically analyzed in [Hellyer et al., 2016]
without delays or noise. We show that the rich dynamical repertoire of these macroscopic networks is an in-
trinsic component of homeostasis and thus not dependent on any other network conditions such as noise or
transmission delays. Indeed, complex dynamics arise in a single node with recurrent excitation and homeostat-
ically regulated inhibition. For example, the single node system displays a period doubling cascade to chaos,
mixed-mode oscillations, and mixed-mode chaos. Furthermore, we demonstrate that these results also occur in
coupled dual node systems, and in large coupled node systems. The coupling in the large network is identical
to the connectivity considered in [Hellyer et al., 2016] and derived from functional magnetic resonance imaging
data from [Hagmann et al., 2008, Honey et al., 2009]. For both cases, we find that the complex dynamics of
the single node carry over to higher dimensions. Finally, we consider node and connection deletion in simula-
tions using the data derived coupling matrices. We find that the homeostatic effect on firing rate stability is
substantially boosted by the deletion of very specific nodes or connections in the network.

2 Materials and Methods

The system of equations we consider phenomenologically model the average activity of a population of neu-
rons [Wilson and Cowan, 1972]. The population consists of a subpopulations of excitatory neurons, E, and
inhibitory neurons, I. Each population corresponds to a single equation governed by the following dynamical
system:

τEE
′ = −E + φ

(
WEEE −WEII

)
(1)

τII
′ = −I + φ

(
W IEE

)
(2)

The coupling terms WEE ,WEI ,W IE are all assumed to be positive while the self-inhibition term is assumed
to be zero, for simplicity. The function φ(x) is a sigmoidal transfer function that transforms the net current
arriving at a population into the population activity. The time constants τE and τI denote time scales of
the excitatory and inhibitory populations, respectively. The equations (1)-(2) are more commonly referred to
as the Wilson-Cowan system [Wilson and Cowan, 1972]. Here, we also consider the homeostatic modification
from [Vogels et al., 2011, Hellyer et al., 2016]:

τWW
EI ′ = I(E − p) (3)

where p is the homeostatic set point for the networks excitatory activity. Equation (3) alters the dynamics of
the EI inhibitory synaptic weight in order to drive the excitatory population toward p, the homeostatic set
point of the network. Equations (1)-(3) together define the dynamics of a single, recurrently coupled node. As
we will see in Section 3, analyzing the single node system is vital towards understanding the dynamics of the
large network.

The network equations are given by the following:

τEE
′
k = −Ek + φ

(
N∑
i=1

WEE
ik Ei −WEI

k Ik

)
(4)

τII
′
k = −Ik + φ(W IE

k Ek) (5)

τWW
EI
k
′

= Ik(Ek − p) (6)

The excitatory activity of population k is given by Ek while the inhibitory activity is given by Ik for k =
1, 2, . . . N . These nodes are coupled by the potentially long range weight projection matrix WEE while a
node inhibits itself through the diagonal weight matrix WEI . We assume that no long-range inhibition is
possible, hence the diagonal nature of WEI . The time constants for the excitatory, inhibitory, and inhibitory
homeostatic synaptic weight are given by τE , τI , and τW , respectively. Furthermore, we will assume that a
node can only excite its own inhibitory population. and thus W IE is also diagonal.
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The transfer function φ(x) is a smooth sigmoid function which we will constrain to satisfy the following
properties:

φ′(x) > 0, ∀x (7)

lim
x→∞

φ(x) = 1 (8)

lim
x→−∞

φ(x) = 0 (9)

While our derivations and analysis are general for sigmoid functions that satisfy (7)-(9), we consider the logistic
function:

φ(x) =
1

1 + exp(−ax)
, φ′(x) = aφ(x)(1− φ(x)) (10)

for numerical applications. The parameter a determines the steepness of the sigmoid. While φ(x) is a smooth
sigmoid function, other transfer functions are also possible. In particular, various non-smooth variants of φ(x)
can also be considered with differing effects on the final dynamics of the network [Harris and Ermentrout, 2015,
Nicola and Campbell, 2016]. We leave this for future work.

To simplify the notation further, we will rescale time with t̂ = τIt. For the single node, this yields the
following system:

τ1E
′ = −E + φ(WEE −W II) (11)

I ′ = −I + φ(θE) (12)

τ2W
I ′ = I(E − p). (13)

with τ1 = τE/τI , τ2 = τW /τI . For simplicity, we will relabel the scalar parameters in the single and dual node
cases with WE and W I for EE and EI synaptic weights and θ for the IE synaptic weight. Finally, the coupling
matrix for the large network, WEE , is derived from functional neural imaging data (see [Hellyer et al., 2016,
Hagmann et al., 2008, Honey et al., 2009] for further details). These data-derived coupling matrices have no
self-coupling between nodes (WEE

ii = 0). This would seem to imply that analysis of the single system driven
by self coupling given by equations (1)-(3) does not help in understanding the dynamics of the full network
where WEE

ii = 0,∀i. However, as we will see the symmetric double-node system without self-coupling has
largely identical dynamics to the single-node system:

τ1E
′
1 = −E1 + φ(WEE2 −W I

1 I1) (14)

I ′1 = −I1 + φ(θE1) (15)

τ2W
I
1
′

= I1(E1 − p) (16)

τ1E
′
2 = −E2 + φ(WEE1 −W I

2 I2) (17)

I ′2 = −I2 + φ(θE2) (18)

τ2W
I
2
′

= I2(E2 − p) (19)

and in fact synchronizes to solutions of the single-node system.
The parameter values we consider for all systems are shown in Table 1, unless otherwise specified as a

bifurcation parameter or the Figures.
We structure the paper as follows: In Section 3 we analyze the single-node system and demonstrate that

the majority of the rich dynamics we see for both the dual node and the full network are present for the single
node. In Section 4 we numerically demonstrate that the dual node system without self-coupling synchronizes
to the single node system analyzed in Section 4. Finally, in Section 5, we simulate and analyze the full network
equations demonstrating a direct inheritance of their dynamics from the single node system.

3 Single Node Analysis

3.1 Local Analysis

Due to the homeostatic mechanism in equation (3), only one equilibrium exists and is determined by the
following equations:

E = p, I = φ(θp), W I =
WEp− φ−1(p)

φ(θp)
(20)
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which is valid for p ∈ (0, 1). We will subsequently refer to this equilibrium as x̄ = (E, I,W I). As W I > 0 we
require:

WEp > φ−1(p).

This sets a range on the admissable values of WE allowed as a function of p, in addition to the constraint that
WE > 0. Note that these two inequalities coincide when φ−1(p) = 0. For our sigmoid, this implies that we
can consider p < 0.5 and thus all WE > 0.

After some simplification, the Jacobian of this system is given by

J =

− 1
τ1

+ φ′(φ−1(p))WE

τ1
−W Iφ′(φ−1(p))

τ1
− Iφ′(φ−1(p))

τ1
φ′(θp)θ −1 0

I
τ2

0 0

 . (21)

Which yields the following characteristic polynomial for the single node system:

CSN (λ) = λ3 + λ2

(
1−WEφ′(φ−1(p))

τ1
+ 1

)
+ λ

(
1−WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)

+
I

2
φ′(φ−1(p))

τ1τ2
. (22)

The determinant of the Jacobian is given by

det J = λ1λ2λ3 = −I
2
φ′(φ−1(p))

τ1τ2
= −φ(θp)2φ′(φ−1(p))

τ1τ2
< 0. (23)

This would seem to immediately limit the dynamical repertoire of this system and is at the root of core
functionality of the homeostatic variable. Indeed, due to the dynamics of W I ′, aside from (E, I,W I), no other
equilibria exist and thus local bifurcations that create or destroy equilibria via λ = 0 crossings are not possible.
This implies that no bistability in equilibria is possible, as in other classical Wilson-Cowan systems. Thus,
we can attempt to look for Hopf bifurcations. Furthermore, as the system is cubic and the determinant is
negative, one of the eigenvalues is always negative. This corresponds to the existence of a stable manifold for
the equilibrium globally in the parameter space. The other eigenvalues must both be real and of the same sign,
or complex.

To determine the potential loss of stability due to Hopf-bifurcations, substitution of λ = iω into the
characteristic polynomial yields the following:

0 = −iω3 − ω2

(
1−WEφ′(φ−1(p))

τ1
+ 1

)
+ iω

(
1−WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)

+
I

2
φ′(φ−1(p))

τ1τ2
,

which after equating real and imaginary parts yields

0 = ω3 − ω

(
1−WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)
(24)

0 = ω2

(
1−WEφ′(φ−1(p))

τ1
+ 1

)
− I

2
φ′(φ−1(p))

τ1τ2
. (25)

Solving for ω as a function of the network parameters yields:

ω =

√
1−WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2
. (26)

The Hopf bifurcation curve is implicitly defined by

0 =

(
1−WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)(
1−WEφ′(φ−1(p))

τ1
+ 1

)
− I

2
φ′(φ−1(p))

τ1τ2

4



Defining the following quantities

µ =
1−WEφ′(φ−1(p))

τ1
(27)

F (θ) =
1− p−1φ−1(p)φ′(φ−1(p))

τ1
(28)

κ(θ) =
pφ′(θp)θ

φ(θp)
(29)

D(θ) =
I

2
φ′(φ−1(p))

τ1τ2
, (30)

then the Hopf bifurcation condition can be written as a quadratic equation in µ. Solving for µ yields

µ± =
−(D(θ) + F (θ)κ(θ) + 1− κ(θ))±

√
(F (θ)κ(θ) +D(θ) + 1− κ(θ))2 − 4κ(θ)F (θ)(1− κ(θ)

2(1− κ(θ))
. (31)

Only the positive branch of µ yields a definite Hopf-bifurcation as we require ω2 = µ±(1− κ(θ)) + F (θ)κ(θ) +
D(θ) > 0

ω2
± =

−(1− κ(θ)− κ(θ)F (θ)−D(θ))2 ±
√

(1− κ(θ)− κ(θ)F (θ)−D(θ))2 + 4(1− κ(θ))D(θ)

2
> 0 (32)

which implies that µ− < 0 is thus an inadmissable solution for a Hopf-bifurcation while µ+ is an admissable
under the sufficient condition

κ(θ) =
pφ′(θp)θ

φ(θp)
< 1 (33)

By considering the properties of the sigmoid function φ(x), a routine derivation shows that the inequality (33)

holds when a <
(
p2(1− φ(θp)

)−1
or more colloquially, when the sigmoid is not too sharp. The final Hopf

bifurcation curve is given by:

WE
Hopf (θ) =

1

φ′(φ−1(p))
(1− τ1µ+(θ)) . (34)

in the (θ,WE) parameter space.
Given the fact that we can explicitly solve for the Hopf-bifurcation curve, we can simulate in its vicinity

to determine the resulting behavior of the single-node system. Direct numerical simulation in addition to
numerical continuation using XPPAUT (not shown) indicate that the Hopf bifurcation is likely supercritical,
as stable limit cycles emerge for WE > WE

Hopf (θ) (Figure 1, 1A). Computing the first Lyapunov coefficient is
cumbersome for the full-3D system as it requires a center manifold reduction. However, for θ = 0 case, one
can prove that the Lyapunov coefficient is strictly negative (see Supplementary Section S1). Thus, we should
expect that the first Lyapunov exponent is negative for small θ which suggests a supercritical Hopf bifurcation
(see Supplementary Material S2).

Finally, taking the limits θ → 0 or θ →∞ yields

WE
Hopf (0) = WE

Hopf (∞) =
1

φ′(φ−1(p))
(35)

with WE
Hopf (θ) ≥ WE

Hopf (0). The inequality can be proven by considering that F (θ) ≥ 0, µ+(θ) ≤ 0 where

equality only occurs in the asymptotic limits considered in (35). The value WE
Hopf (0) is the critical value

after which synaptic homeostasis can no longer guarantee stability of the equilibrium x̄. After this value,
depending on the strength of the excitatory to inhibitory coupling θ, stability is lost through a supercritical
Hopf bifurcation. This is however not a catastrophic bifurcation, and thus near the onset of the Hopf bifurcation
we are still confined to a neighbourhood around x̄. Note that for the sigmoid we consider, WE

Hopf = 1
ap(1−p) ,

which implies that smoother sigmoids (small a) yield a larger parameter region of homeostatic control.
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3.2 Period Doubling Cascade to Chaos Followed by a Pinching of the Tent Map

For larger values of WE , the system displays chaotic activity which was verified by computing the maximum
Lyapunov exponent numerically (Figure 1B). This chaotic attractor contains small excursions from x̄. Again,
in this region the homeostatic mechanism is still operating within some degree of tolerance as the chaotic
attractor is contained within small neighbourhood of the equilibrium. Mixed mode oscillations are also present
past the Hopf-bifurcation (Figure 1C). Surprisingly, for large enough values of WE , the chaotic attractor can
also contains components that operate on two separate time scales (Figure 1D). This is referred to as “mixed
mode chaos” [Desroches et al., 2012, Koper, 1995]

Given the exotic nature of the mixed mode-chaos in this system, we investigated how chaos emerges in this
system. First, we fixed θ and steadily increased WE and observed a classical period doubling cascade (Figure
2A,2B) to chaos. Numerically computing the maximal Lyapunov exponent ([Sprott and Sprott, 2003]) over
the two parameter (θ,WE) region reveals a contiguous region of chaotic solutions above the Hopf bifurcation
curve (Figure 2C).

For smaller values of WE > WE
Hopf , the chaotic solutions are classical in nature. For example, by plotting

the kth maxima of the E variable, E∗k as a function of E∗k−1, we find a stereotypical unimodal peak-to-peak or

tent map [Lorenz, 1963, Strogatz, 2014]. However, as we increase WE further, a pseudo-singularity or “pinch”
emerges in the tent map at the location of the former maximum. This is not a true singularity of this map as
the set E ∈ (0, 1) is invariant. The emergence of this singularity in the tent map corresponds to the emergence
of mixed-mode chaos. Mixed mode chaos however occurs over a narrower parameter regime for the single node.
For larger values of WE �WE

Hopf (θ), the system only displays large relaxation limit cycle solutions.

3.3 Canards and Mixed Mode Oscillations

Next, we investigated how mixed-mode oscillations emerge in the three-dimensional, single-node case. In
particular, recent analytical work has demonstrated several cases through which long and short time scale
oscillations can emerge in a three-dimensional system exhibiting a separation of time scales. Examples include
the existence folded-node case involving one fast variable and two slow variables, or the “tourbillion” case
involving two fast variables and one slow dynamical variable [Wechselberger, 2005, Desroches et al., 2012].
Both systems give rise to mixed-mode oscillations however through different mechanisms.

We hypothesized that the most likely mechanism for the emergence of mixed-mode oscillations for our
network equations was the so called tourbillion case [Desroches et al., 2012]. This is due to the presence of two
fast variables (E, I) in addition to the slow weight W I . However, the mixed-mode oscillations cannot arise
from the tourbillion case in our system. Indeed, this requires that the fast variables, given by:

τ1E
′ = −E + φ

(
WEE −W II

)
(36)

I ′ = −I + φ (θE) (37)

undergo a Hopf bifurcation [Desroches et al., 2012]. This is not possible in any parameter set for any potential
equilibrium of the system (36)-(37) as the system is incapable of having complex eigenvalues. In particular,
the requirement for complex eigenvalues is 1

4tr(J)2−det(J) < 0. However after evaluating and simplifying this
condition for (36)-(37), we arrive at:(

1− 1 +WEφ′(WE −W II)

τE

)2

+
W Iθφ′(θE)φ′(WE −W II)

τE
> 0 (38)

and thus no complex eigenvalues for any equilibria are possible. This immediately implies that no Hopf-
bifurcation is possible and eliminates the tourbillion case from consideration. This is a striking result as this
implies that the oscillatory dynamics that emerge in the network are due to homeostasis.

With the tourbillion case removed as a possible cause of mixed-mode oscillations, we are left with several
other possibilities. The time scales in our network are given by τE/τI = 1, τW /τI = 5. Mixed mode oscillations
arising from a folded-node occur when the system has one fast variable and two slow variables. An alternate
hypothesis to the tourbillion case (two fast variables and one slow variable) is that the mixed-mode oscillations
occur due to the folded-node where the folded-node singularity arises when τE/τI � 1, τW /τI = 5 and the qual-
itative features of the phase portrait merely persist until τE/τI = 1 for (1)-(3). This latter case is the parameter
range for our networks. The folded-node case as analyzed in [Wechselberger, 2005] demonstrates canards for
the subsystem consisting of one-fast and one-slow variable, and a folded null-surface in the three-dimensions
with two attracting branches and one repelling branch. Indeed, we find a similar result in our system (Figure
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3). Canards exist over a exponentially small parameter regime in the reduced E,W I system with I either set to
φ(θE) (Figure 3A) or I = 1

2 (not shown). Finally, the null-surfaces for the excitatory “fast” variable are folded
and contain two attracting regions and a repelling region. The dynamics for large amplitude oscillations follow
the attracting components of the null-surface. This numerical analysis suggest that the mixed-mode oscilla-
tions arise from the folded-node mechanism. Interestingly, the prototypical folded-node system also contains
mixed-mode chaos when higher order terms are included in the normal-form [Desroches et al., 2012].

4 The Dual-Node Case: Synchronous Solutions to the Single Node

As the large network equations contain no self coupling in the WEE weight matrix (diag(WEE) = 0), the
single-node analysis that we have conducted is not necessarily informative of the large network dynamics. Thus,
analysis must be conducted on the simplest possible system without self-coupling, the dual-node reciprocally
coupled system given by equations (14)-(19). In this system, the local homeostatic mechanism attempts to
stabilize the excitatory activity while the opposing node functions to stimulate its neighbour.

First, we conducted numerical simulations of the dual-node system to determine what dynamical behaviors
are possible. Surprisingly, we found that over all parameter regimes tested, the dual-node system without self-
coupling synchronizes to solutions of the single-node, recurrently coupled system (Figure 4A,B). For example,
the dual-node system asymptotically tends towards the same chaotic attractors, limit cycles, and mixed mode
solutions as the single node system (Figure 4A). For oscillatory solutions, this is not surprising as a simple
derivation shows that any stable solution of the single-node system potentially corresponds to a synchronous
solution in the dual-node system. For chaotic attractors, the dual-node system exhibits a case of synchronized
chaos when the parameters for both nodes are identical [Pecora and Carroll, 1990].

4.1 Local Stability Analysis of Equilibria

Again, due to the homeostatic nature of the dual-node system, the only equilibrium that exists is given by
equation

E1 = E2 = p, I1 = I2 = φ(θp), W I
1 = W I

2 =
WEp− φ−1(p)

φ(θp)
. (39)

Furthermore, using the Jacobian to solve for the characteristic polynomial yields the following:

CDN (λ) = CSN (λ)Q(λ) (40)

Q(λ) = λ3 + λ2

(
1 +WEφ′(φ−1(p))

τ1
+ 1

)
+ λ

(
1 +WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)

+
I

2
φ′(φ−1(p))

τ1τ2
. (41)

Thus, instability in CSN (λ) implies instability in the dual-node system for any equilibria. Furthermore, by the
Routh-Hurwitz criterion [Wiggins, 2003], all roots of Q(λ) lie in the left complex plane if:(

1 +WEφ′(φ−1(p))

τ1
+ 1

)(
1 +WEφ′(φ−1(p))

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)
>
I

2
φ′(φ−1(p))

τ1τ2
.

For all physical solutions, the inequality is satisfied as the term Ī2φ′(φ−1(p))
τ1τ2

can be subtracted from both sides
of (42) with all the remaining terms on the right hand side being strictly positive. However, roots on the
right-complex plane may occur for non-physical values of these coefficients, for example when the weights are
negative. This analysis implies that for all permissible (physical) equilibria, the stability of the dual node system
is directly inherited from the stability of the single node. In other words, for symmetrically coupled systems,
the local homeostasis rule loses no robustness in regulating network dynamics up to the Hopf-bifurcation and
the recurrent inhibition can counteract non-local excitation just as well as local excitation.

4.2 Stability Analysis of Limit Cycles

If we consider any limit cycle for the single node-system x(t) = (E(t), I(t),W I(t)) such that x(t) = x(t + T )
for some T > 0, ∀t, then the following is an admissable limit cycle solution to the dual-node system:

z(t) =

(
x(t)
x(t)

)
(42)
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with an identical period T , for all t > 0. Furthermore, if we consider the monodromy matrix system

ε̇ = A(x(t))ε (43)

derived by linearizing equations (1)-(3) around x(t) then linearization for equations (14)-(19) can be written
as

ε̇ = A(x(t))ε+WEφ′(WEE(t)− I(t)W I(t))(ν1(t)− ε1(t)) (44)

ν̇ = A(x(t))ν +WEφ′(WEE(t)− I(t)W I(t))(ε1(t)− ν1(t)). (45)

In order to analyze the stability of limit cycles, we require a fundamental solution set to equations (44)-(45).
First, if we consider Υ(t) = [ε1(t), ε2(t)ε3(t)], then three fundamental solutions are immediately given by
[εk(t), εk(t)] for k = 1, 2, 3. This implies that if the limit cycle is unstable in the single node system, (1)-(3),
then it is unstable in the dual node system. We leave the stability analysis of these limit cycles and other
trajectories for future work.

5 The Fully Coupled N -Node System

As we have previously demonstrated, the dual-node system without self coupling has identical dynamics to the
single-node, self coupled system and even exhibits chaotic synchronization to identical attractors as the single-
node. Thus, the single node is largely predictive of the qualitative dynamics of the coupled system despite
the removal of self-coupling. Thus, we investigated if a similar result would apply to the large uncoupled
system given by equations (4)-(6). First we analyzed a pair of analytically resolvable cases for matrices that
satisfied specific assumptions. Then, we numerically explored the system (4)-(6) coupled by the weight matrix
considered in [Hellyer et al., 2016].

5.1 Exactly Resolvable Cases

First, we considered a pair of analytically resolvable cases. If we consider the all-to-all coupled matrix:

WEE
ij =

{
WE

NE−1 i 6= j

0 i = j
(46)

then the characteristic polynomial reduces to:

CNE
(λ) = Q̂(λ)NE−1CSN (λ) (47)

where Q̂(λ) and CSN (λ) are the polynomials resolved in the dual node (equation (41)) and single node case (See
Supplementary Materials Section S2). The polynomial Q̂(λ) however has W̄E in place of WE . Our previous
analysis immediately applies and shows that with the coupling matrix (46), the system (4)-(6) has identical
local stability to the single node. We refer to equation (46) as the “mean-field” assumption. Self-coupling
need not be removed in this case, however the results will differ slightly from the single node if self-coupling is
considered.

Finally, we remark that there is one other case where the stability of the system can be determined
analytically, when the row sum of the coupling weight matrix is constant:

NE∑
j=1

WEE
ij = WE , i = 1, 2, . . . NE (48)

We decompose the weight matrix WEE = WE ·LEE where the row sum of LEE is equal to one. The scalar
term WE scales the magnitude of the components of the weight matrix, similar to WE in the single and dual
node cases. For this case, one can resolve the eigenvalue spectrum explicitly as the characteristic polynomial
factors readily:

C(λ) =

NE∏
i=1

(
Q̃(λ)− ri

λ(λ+ 1)φ′(φ−1(p))

τ1
WE

)
(49)
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where each ri is an eigenvalue of the weight matrix LEE . Each Q̃(λ) is a cubic polynomial given by:

Q̂(λ) = λ3 + λ2

(
1

τ1
+ 1

)
+ λ

(
1

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)
+
I

2
φ′(φ−1(p))

τ1τ2
.

(50)

The steady states W̄ I and Ī are given by identical formulas as in the single and dual node cases. Given the
structure of the polynomial Q(λ), this yields a Hopf-bifurcation immediately through an identical derivation
in the single node case. The curve will be of the form:

WE
Hopf,i(θ) =

1

riφ′(φ−1(p))
(1− τ1µ+(θ)) (51)

ri = max
i=1...NE

{ri} (52)

where µ+(θ) is redefined and ri is an eigenvalue of WEE (see Supplementary Materials). As WE is increased,
the first intersection of WE = WE

Hopf,i determines the Hopf bifurcation curve. For θ � 1 and θ � 1, this is

readily seen to be the curve corresponding to the largest positive eigenvalue of LEE .
Additionally, if the row-sum of the matrix WEE is non-constant, but narrowly distributed, one can still ap-

proximate the Hopf-bifurcation curve by using the mean-row sum (see Supplementary Materials). We validate
this approximation in the subsequent section as applied to the weight matrix considered in [Hellyer et al., 2016].

5.2 Numerical Exploration of the Experimentally Coupled System

The connectivity matrix, WEE = WLEE , is derived from functional neuroimaging data and is described in
greater detail in [Hellyer et al., 2016, Honey et al., 2009, Hagmann et al., 2008]. The matrix LEE is shown in
Figure 5A. The matrix couples 66 homesotatically regulated Wilson-Cowan nodes. Furthermore, LEEii = 0 for
all i and thus the nodes contain no self-coupling. As our single and dual node analyses indicate a branch of
Hopf bifurcations, we numerically computed the eigenvalues over the two parameter (W, θ) space and searched
for the first eigenvalue λi crossing Re(λi) = 0 as a function of θ for each value of W . This yielded a similar
potential Hopf-bifurcation curve as the single and dual node cases. The curve was again unimodal with identical
asymptotes as θ → 0 and θ → ∞. We conducted large scale numerical simulations to determine if the curve
indeed indicated a transition from steady state dynamics to oscillations. For W < WHopf (θ), we observe
decay to a steady state equilibrium and oscillations or chaos for W > WHopf (θ) (Figure 5B,5C). Finally,
we applied the analytical approximation derived in section 5.1 for comparison. The approximation has the
greatest accuracy near the asymptotes θ → 0 and θ →∞ and indicates that the common asymptotic behavior
for WHopf is:

WHopf (θ) ∼ 1

φ′(φ−1(p))rmaxi

, θ →∞, θ → 0 (53)

where rmaxi is the large positive eigenvalue of LEE . As in our analysis of the single node, this asymptotic
behavior corresponds to the region of guaranteed stability of the steady state for WE < WE

Hopf (0)
As in the single and dual node cases, the large network also displays mixed mode oscillations and mixed

mode chaos (Figure 5C,D). Interestingly, due to the heterogeneous coupling in the weight matrix, the nodes do
not all transition to chaotic dynamics in an identical fashion (Figure 5E). This is despite the connectivity in the
network only being moderately sparse (p = 0.2635). For example, some nodes can display a smaller attractor
without mixed mode elements, other nodes contain larger amplitude components while others are essentially
still stabilized around their equilibrium point with minimal interference from the rest of the network. Also
note that the attractors in Figure 5F occupy a similar region of the reduced phase space (E, I,W I) as the
single and dual node cases when we plot every node (Ek, Ik,W

I
k ) in the same reduced phase space.

Given the heterogeneity in the chaotic dynamics of the individual nodes in the coupled networks, we investi-
gated whether node and connection deletion might enhance the stability of the homeostatic mechanism. Indeed,
the homeostatic mechanism is inherently local and trying to stabilize the dynamics of the individual nodes
despite receiving external, potentially destabilizing inputs. To that end, we deleted a node and recomputed our
Hopf bifurcation curves for each node deletion yielding 66 different systems with 65 nodes. In every system,
the deletion either had minimal effect on the Hopf-bifurcation curve or it shifted the curve upward. Thus,
deleting either connections or nodes can only increase the stability of the homeostatically induced equilibrium.
The maximum change was a 14.69% shift upwards (as measured from the peak) given by deleting the 25th
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node. Deleting individuals connections in the weight matrix, WEE yielded at most a 4.01% shift upwards in
the Hopf bifurcation curve. Interestingly, the largest shift in the Hopf-bifurcation curve corresponds to WEE

21,4

and not node 25. Further work is required to determine if there are any properties of this node to the weight
matrix that grants it a disproportional effect on the network dynamics.

6 Discussion

Through a combination of numerical and analytical work, we studied a homeostatically regulated Wilson-
Cowan system in three separate cases: isolated single-nodes, reciprocally coupled dual-nodes, and large coupled
networks where the connection strength was derived from functional neuroimaging data [Hellyer et al., 2016,
Honey et al., 2009, Hagmann et al., 2008]. We found that the isolated single node displays a plethora of com-
plex dynamics such as mixed mode oscillations, chaos via a period-doubling cascade, and mixed-mode chaos.
The source of these rich dynamics is the folded node recently analyzed in [Wechselberger, 2005]. Two nodes
with no self coupling and symmetric reciprocal excitatory coupling acted essentially as a single, self-coupled
node and synchronized to the steady state attractors in the single node-case. We demonstrated analytically that
the stability of steady states in the single node case is directly inherited in the dual node case. Furthermore,
any unstable limit cycle in the single node is unstable in the dual node case. Finally, we numerically explored
the large coupled network and showed a similar transition to oscillatory behavior for strong enough excitatory
coupling. The individual nodes in the large network displayed similar dynamics to isolated recurrently coupled
nodes in different parameter regimes. Interestingly, node deletion and connection deletion yielded non-trivial
increases in the stability of the homeostatic set point for all values of excitatory to inhibitory coupling.

Past the Hopf-bifurcation, the network exhibits a rich dynamical repertoire consisting of oscillatory ac-
tivity, chaos, and mixed-mode elements of both. Whether these dynamical states are potentially functional
or pathological remains to be seen. Indeed, even for the experimentally determined chaotic attractors in
[Babloyantz and Destexhe, 1986], some correspond to functional states such as stages of sleep while others
correspond to pathological states such as epileptic seizures. In the former case, we have demonstrated that
synaptic homeostasis can support the emergence of complex dynamics. If however, these states are patho-
logical, then they represent a failure of homeostasis in regulating network dynamics. Our node-deletion and
connection deletion experiments demonstrate that the deletion of even single nodes or connections can increase
the stability of the entire network through a shift in the Hopf-bifurcation curve upwards.

Homeostasis is widely regarded as a mechanism for the maintenance of network dynamics, and more specif-
ically the maintenance of a steady-state average firing rate [Macleod and Zinsmaier, 2006, Frank et al., 2006,
Bacci et al., 2001] and is regarded as a stabilizing force in network dynamics [Turrigiano and Nelson, 2004].
This steady-state is regulated at slow time scales on the order of minutes [Frank et al., 2006] or hours [Turrigiano et al., 1998].
For example, the homeostatic model in [Vogels et al., 2011] was shown to maintain the asynchronous irregular
regime where neurons fire irregularly, but at a constant average rate. It is thus surprising that low dimensional
yet rich structures such as mixed-mode chaotic attractors emerge under the presence of homeostasis.

While mixed-mode chaos is a relatively understudied phenomenon, it has been previously documented in
the literature. For example, the following polynomial system:

εẋ = y − x2 − x3 (54)

ẏ = z − x (55)

ż = −ν − ax− by − cz (56)

also exhibits mixed-mode chaos, as demonstrate in [Desroches et al., 2012]. This model is also related to an
earlier chemical reaction model in [Koper, 1995] and was also derived as a generic reduction of a mixed-mode
oscillatory system in [Krupa et al., 2008]. Mixed-mode chaos was also observed in [Hauser and Olsen, 1996].
The authors analyze an enzymatic reaction scheme and show similar pinched/singular tent-maps for the mixed-
mode chaotic attractors they observe. Interestingly, the authors suggest a homoclinic limit cycle as their return
mechanism. The authors suggest a version of the classical Shilnikov bifurcation resulting in homoclinic chaos
[Kuznetsov, 2013].

Our results demonstrate that the rich dynamical states demonstrated in [Hellyer et al., 2016] are an intrinsic
property of synaptic homeostasis, which is capable of more than stabilizing average firing rates across a network.
With inhibitory synaptic homeostasis, stability can only be guaranteed up to a point in the parameter space.
This point is analytically determined and is related to the properties of the tuning curves, the homeostatic set
point, and the connectivity between excitatory populations. The resulting dynamics past this point displaying
a rich dynamical repertoire including oscillations and chaos, both of which can occur on two different time
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scales. This is an intrinsic consequence of the inhibitory synaptic homeostasis rule as the two-dimensional
Wilson-Cowan node that we consider is incapable of oscillating without inhibitory synaptic homeostasis. These
dynamical repertoires might have functional or pathological consequences for populations of neurons.
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Parameter Numerical Value

a 5

p 0.2

τE 1

τI 1

τW 5

WE (see Figure Captions, typically [0,3]

θ (see Figure Captions, typically [0,10]

Table 1: The parameter values for the system of equations (1)-(3) (single node), (14)-(19) (dual node), and
(4)-(6) (full network). Note that for the full network equations, W IE = θIN , where IN is the N dimensional
identity matrix, and N consists of the number of nodes.

Figures
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Figure Captions

Figure 1

(Top) The Hopf bifurcation curve for the single-node system can be derived explicitly. Analysis of the σ = 0 case
coupled with numerics demonstrates that the bifurcation is a supercritical bifurcation. As we vary the (θ,WE)
parameters, different behaviors emerge corresponding to (A) stability of the target activity, (B) chaotic loss of
stability (C) mixed mode oscillations, and (D) mixed mode chaos. The parameters were p = 0.2, τ1 = 1, τ2 = 5
with (θ,WE): (1,1.9), (1.6,2.1), (1.5,2.14), (1,2.115) for (A)-(D), respectively. All simulations were conducted
in MATLAB [?] using the ode45 integration suite to implement a Runge-Kutta 4th order integration scheme.

Figure 2

(A) The maxima of limit cycles are plotted as a function of the recurrent self coupling, WE for the single node
system. As WE increases past WE

Hopf (θ), a period doubling cascade to chaos occurs. (B) The limit cycles and

chaotic attractor plotted for increasing values of WE . (C) The maximum Lyapunov exponent is computed
over the two parameter (θ,WE) region showing patches of chaos that onset after the Hopf bifurcation curve.
(D) The chaotic attractor for sub-threshold and mixed mode chaotic solutions. (E) As WE is increased past
WE
Hopf (θ), the period doubling cascade produces a tent map similar to the classical Lorenz tent map. For

larger values of WE the tent map develops a pseudo-singularity at the maximum value. Note that this is not
strictly a singularity in the tent map as the dynamics of the E are restricted to E ∈ (0, 1). For all simulations
in (A),(B), and (E), θ = 1 was used.

Figure 3

(A) Canard limit cycles for the dual node system given by equations (36)-(37). The seven limit cycles show
a rapid increase in amplitude shortly after a supercritical Hopf bifurcation. The WE parameter for 6 limit
cycles agrees to four decimal places (WE = 7.5959). The final limit cycle is a large relaxation limit cycle
(WE = 7.6). The limit cycles were computed with direct simulation of the ordinary differential equations
(36)-(37) using a (4,5) order Runge-Kutta scheme. The θ parameter was fixed at θ = 1. (B) Shown above
is the period doubled limit cycle (teal) for the system (1)-(3) in addition to the I-nullcline (blue). Under the
assumption that both the inhibition and the homeostatic mechanism are operating as fast variables, we can
see the mixed-mode oscillations arising from the so-called “folded-node case”. The (θ,WE) parameters were
(2, 2.02) (C) A relaxation cycle emerges with increasing values of WE . For all simulations, θ = 1 was fixed.
The (θ,WE) parameters were (2.5, 2)

Figure 4

(A) Shown above is the time series for the symmetrically coupled dual node system without self-coupling. The
nodes synchronize with each other to a solution state for the single node system at steady-state, independent
of where in the parameter region we are or the characteristics of the steady state. The first node is showed in
sold lines with the excitation (black), inhibition (red), and homeostatic weight (magenta). The second node is
plotted as a dashed line. The parameter set in the (W, θ) space are (1.6, 2.1). (B) The steady state attractors
for the single node (left) and the dual node (right) are plotted in the (E, I) projection space. The parameters in
the (W, θ) space (1.6,2.1) (top) which corresponds to a chaotic attractor, (1.5, 2.14) (middle) which corresponds
to a mixed-mode oscillation, and (1, 2.115) (bottom) which corresponds to mixed-mode chaos. Note that in all
cases, the steady state attractors are identical for either the single recurrently coupled node or the dual-node
symmetrically coupled nodes. Only one node is plotted in the dual-node case, however due to synchrony, the
trajectory for the second node is identical.

Figure 5

(A) The coupling matrix used to connect the excitatory components of the nodes. Note that the matrix is
highly structured, and contains no elements on its diagonal (no self-coupling). The system consists of 66
nodes. (B) The Hopf bifurcation (blue) curve is determined manually by evaluating the eigenvalues over the
two parameter (θ,W ) space numerically and plotting the level set for the first eigenvalue crossing Re(λi) = 0.
This curve was verified by running a mesh of simulations over the (θ,W ) parameter space that consisted of
2× 104 time units each. The final half of the simulation was used to compute the log of the variance of E1(t)
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to determine if the equilibrium was stable. Blacker values correspond to either limit cycles or chaos and a
loss of stability as the dynamics no longer settle onto a steady state E1(t) = p. Additionally, the analytical
approximation (in orange) which assumes that the row-sum of the matrix WEE is approximately constant is
also plotted. The accuracy is highest at the asymptotes (θ � 1, θ � 1). The four parameter points (i)-(iv) are
shown in (C) in addition to their relationship with the Hopf-Bifurcation curve. The parameter values in the
(W, θ) plane are (5,3),(5.5,3),(7.1,1.2), and (7.05,1.2) for (i)-(iv), respectively. Note that the Hopf-bifurcation
curve has a similar shape and qualitative behavior to the curve in the single-node/dual-node case. (C) For the
parameter values shown, the large network also displays a decay to a static equilibrium for W < WHopf (θ),
stable oscillations for W > WHopf (θ), mixed mode oscillations, and mixed-mode chaos. (D) All nodes are
plotted in a 3D phase portrait for the parameter region (iv) demonstrating the chaotic attractor. (E) Three
nodes are plotted from the full 66-dimensional system in the same phase space. Some nodes in the full system
display mixed-mode chaos simultaneously to other nodes that display generic chaos or very small chaotic
deviations from the steady state equilibrium. (F) The same figure (E) only projected down to the (E, I) phase
space for comparison purposes with Figure 2D.
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Supplementary Material

S1: First Lyapunov Coefficient for the θ = 0 Case

We can compute the Lyapunov coefficient for the Hopf bifurcation point when θ = 0 quite easily without
having to resort to the center-manifold theorem. By setting θ = 0, we have the following system

τ1E
′ = −E + φ

(
WEE −W II

)
(57)

I ′ = −I + φ(0) (58)

τ2W
I ′ = I(E − p) (59)

and in essence I(t) has become decoupled from the other equations and can be set to its equilibrium value of
φ(0). This reduction yields

τ1E
′ = −E + φ

(
WEE −W I

)
(60)

τ2W
I ′ = (E − p) (61)

after rescaling τ2 and W I to absorb I = φ(0). To proceed, we shift the equilibrium to the origin

Ê = E − p (62)

Ŵ = W I −WEp+ φ−1(p) (63)

which yields the following

τ1Ê
′ = −Ê − p+ φ(WE(p+ Ê)− (Ŵ +WEp− φ−1(p))

= −Ê − p+ φ(WEÊ − Ŵ +WEp−WEp+ φ−1(p))

= −Ê − p+ φ(φ−1(p)) + φ′(φ−1(p))φ(WEÊ − Ŵ ) +
φ′′(φ−1(p))

2!
φ(WEÊ − Ŵ )2

+
φ′′′(φ−1(p))

3!
φ(WEÊ − Ŵ )3 +H.O.T.

= −Ê(1−WEφ′(φ−1(p)))− φ′(φ−1(p))Ŵ +
φ′′(φ−1(p))

2!
φ(WEÊ − Ŵ )2

+
φ′′′(φ−1(p))

3!
φ(WEÊ − Ŵ )3 +H.O.T.

τ2Ŵ
′ = Ê

where H.O.T. denotes Higher Order Terms. If we take the bifurcation condition

WE = φ′(φ−1p)−1 =
1

ap(1− p)

we obtain the following system

τ1Ê
′ = −ap(1− p))Ŵ +

φ′′(φ−1(p))

2!
φ(WEÊ − Ŵ )2 +

φ′′′(φ−1(p))

3!
φ(WEÊ − Ŵ )3 +H.O.T. (64)

Ŵ ′ =
Ê

τ2
(65)

This system can be transformed with Ê = KẼ into a system of the form

Ê = −ωŴ +
φ′′(φ−1(p))

2!KτE
φ(WEÊ − Ŵ )2 +

φ′′′(φ−1(p))

3!KτE
φ(WEÊ − Ŵ )3 +H.O.T. (66)

(67)

= −ωŴ + P (Ê, Ŵ ) (68)

Ŵ ′ = ωÊ (69)

where
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K =

√
τ2ap(1− p)

τ1
, ω =

√
ap(1− p)
τ2τ1

which is the standard form to compute the Lyapunov Coefficient for a two-dimensional function. The formula
for the Lypaunov coefficient can be found in [Guckenheimer and Holmes, 2013] The resulting computation
yields

l1(0) = −
√
a

(1 + ap τ1τ2 (1− p))
(τ1/τ2)3/2(1− p)

√
1− p

< 0

and thus the bifurcation is supercritical, for p ∈ (0, 1).

S2 Local Stability Analysis of Equilibria in N -node Coupled System

The Mean-Field Solution

Here, we will consider a simple-case where theN node system without self-coupling is also analytically resolvable
for the Hopf-bifurcation. In particular, consider the following conditions:

WE
ii = 0, WE

ij =
WE

NE − 1
= W̄E (70)

These solutions correspond to the mean-field of the NE nodes. Note that the equilibria of the system (4)-(5)
are unchanged, independent of the conditions (70). However, under the mean-field conditions (70), the stability
criterion are resolvable. In particular, suppose we reorder the 3NE equations such that the first NE equations
correspond to Ei, the next NE correspond to Ii, and the final NE correspond to W I

i . Then the Jacobian can
be written block matrix form:

J =

−
(

1
τ1

+ W̄Eφ′(φ−1(p))
τ1

)
INE

+ W̄Eφ′(φ−1(p))
τ1

1NE
−W

I
φ′(φ−1(p))
τ1

INE
− Iφ′(φ−1(p))

τ1
INE

φ′(θp)θINE
−INE

0NE

Ī
τ2
INE

0NE
0NE

 (71)

where INE
, 1NE

and 0NE
denote the NE identity matrix, and NE ×NE matrices where all elements are 1 or

0, respectively. The characteristic polynomial is given by the following:

C(λ) = det

−
(

1
τ1

+ W̄Eφ′(φ−1(p))
τ1

)
INE

+ W̄Eφ′(φ−1(p))
τ1

1NE
− INE

λ −W
I
φ′(φ−1(p))
τ1

INE
− Iφ′(φ−1(p))

τ1
INE

φ′(θp)θINE
−INE

(1 + λ) 0NE

Ī
τ2
INE

0NE
−INE

λ


= det

(
−
([

1

τ1
+
W̄Eφ′(φ−1(p))

τ1
+ λ

]
λ(λ+ 1) + λ

[
W̄ Iφ′(φ−1(p))φ(θp)θ

τ1

]
+ (λ+ 1)Ī2φ

′(φ−1(p))

τ1τ2

)
INE

+ λ(λ+ 1)
W̄Eφ′(φ−1(p))

τ1
1NE

)
(72)

= det

(
−Q̂(λ)INE

+ λ(λ+ 1)
W̄Eφ′(φ−1(p))

τ1
1NE

)
where we have arrived at (72) by applying the matrix determinant identity:

det

(
A B
C D

)
= det

(
A−BD−1C

)
detD (73)

To proceed, we will note the following:

W̄E1NE
= W̄EuuT , u =


1
1
...
1

 (74)
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which allows us to use the rank-1 update to the determinant:

det
(
A+ uvT

)
=
(
1 + uTA−1u

)
det(A) (75)

yields the following:

C(λ) = (−1)NE Q̂(λ)NE

(
1− W̄Eφ′(φ−1(p))

τ1
λ(λ+ 1)Q̂(λ)−1uTu

)
(76)

= (−1)NE Q̂(λ)NE−1

(
Q̂(λ)−NE

(
WE

NE − 1

)
φ′(φ−1(p))λ(λ+ 1)

τ1

)
(77)

= (−1)NE Q̂(λ)NE−1CSN (λ) (78)

where CSN (λ) is the characteristic polynomial for the single, recurrently coupled node. Our analysis of the
dual-node case applies here and the stability of the NE-node system under mean-field assumptions applies.
The NE node system under mean-field connectivity has identical solutions to the single node system.

The Normalized Excitatory Weight Solution

Finally, we will consider an arbitrary weight matrix, WE with the only constraint being that

NE∑
j=1

LEEij = 1, WEE = WELEE . (79)

Note that the mean-field example previously considered is a special case of assumption (79). The assumption is
required as it stabilizes the equilibria for W I

i to W I
i = W̄ I for all i = 1, 2, . . . NE where W̄ I is the single-node

equilibrium solution. Using a similar derivation procedure as before, the characteristic polynomial simplifies
to:

C(λ) = det

(
−Q̂(λ)INE

+ λ(λ+ 1)
φ′(φ−1(p))

τ1
WEE

)
(80)

Q̂(λ) = λ3 + λ2

(
1

τ1
+ 1

)
+ λ

(
1

τ1
+
W Iφ′(φ−1(p))φ′(θp)θ

τ1
+
I

2
φ′(φ−1(p))

τ1τ2

)
+
I

2
φ′(φ−1(p))

τ1τ2
.

This implies that

C(λ) = det

(
λ(λ+ 1)

φ′(φ−1(p))

τ1
WEE − Q̂(λ)INE

)
(81)

= det
(
q0(λ)LEE − Q̂(λ)INE

)
, q(λ) = (λ(λ+ 1)

φ′(φ−1(p))

τ1
WE (82)

= q0(λ)NE det

(
LEE − Q̃(λ)

q0(λ)
INE

)
(83)

= q0(λ)NE det
(
LEE − µINE

)
, µ =

Q̃(λ)

q(λ)
(84)

= q0(λ)NE

NE∏
i=1

(µ− ri) (85)

where ri are the eigenvalues ofLEE . Undoing the substitutions resolves the factorized characteristic polynomial:

C(λ) =

NE∏
i=1

(
Q̃(λ)− ri

λ(λ+ 1)φ′(φ−1(p))

τ1
WE

)
(86)

This factorization in C(λ) allows one to resolve the Hopf bifurcation curve almost as easily as in the single
node case. In particular, if all the eigenvalues are real (for example, if the matrix WEE is symmetric) then
the Hopf bifurcation curve occurs when a complex conjugate pair of roots of

Q̃(λ)− riλ(λ+ 1)φ′(φ−1(p))WE

τ1
(87)
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cross Re(λi) = 0. For the experimentally derived weight matrix we consider, all eigenvalues ofWEE are real due
to the near symmetric nature of the matrix ([Honey et al., 2009, Hellyer et al., 2016, Hagmann et al., 2008]).
Thus, the potential Hopf-bifurcation curves are:

WE
Hopf,i(θ) =

1

riφ′(φ−1(p))
(1− τ1µ+(θ))

µ± =
−(D(θ) + F (θ)κ(θ) + 1− κ(θ))±

√
(F (θ)κ(θ) +D(θ) + 1− κ(θ))2 − 4κ(θ)F (θ)(1− κ(θ)

2(1− κ(θ))

F (θ) =
1− rip−1φ−1(p)φ′(φ−1(p))

τ1

κ(θ) =
pφ′(θp)θ

φ(θp)ri

D(θ) =
I

2
φ′(φ−1(p))

τ1τ2
.

This implies that as we increase WE , the first transition through WE
Hopf,i(θ) yields a Hopf bifurcation. Due to

the form of (88), this is likely to correspond to the eigenvalue of WEE , rmaxi with the largest positive real part.
Finally, we remark that if the row sum of the weight matrix LEE is not constant but narrowly distributed
around a mean-value L̄, than one can readily derive the following approximation:

WE
Hopf,i(θ) ≈

1

riφ′(φ−1(p))
(1− τ1µ+(θ)) (88)

ri = max
i=1...NE

{ri} (89)

F (θ) =
(

1− ri
L̄
p−1φ−1(p)φ′(φ−1(p))

)
(90)

κ(θ) =
pφ′(θp)θL̄

φ(θp)ri
(91)

which we apply to the coupling matrix from [Hellyer et al., 2016] where L̄ = 0.2318 and ri = 0.3148.
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