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Abstract 47 

The genomic complexity of profound copy-number aberration has prevented effective molecular 48 

stratification of ovarian cancers. To decode this complexity, we derived copy-number signatures 49 

from shallow whole genome sequencing of 117 high-grade serous ovarian cancer (HGSOC) 50 

cases, which were validated on 527 independent cases. We show that HGSOC comprises a 51 

continuum of genomes shaped by multiple mutational processes that result in known patterns of 52 

genomic aberration. Copy-number signature exposures at diagnosis predict both overall survival 53 

and the probability of platinum-resistant relapse. Measuring signature exposures provides a 54 

rational framework to choose combination treatments that target multiple mutational processes. 55 
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Introduction 64 

The discrete mutational processes that drive copy-number change in human cancers are not 65 

readily identifiable from genome-wide sequence data. This presents a major challenge for the 66 

development of precision medicine for cancers that are strongly dominated by copy-number 67 

changes, including high-grade serous ovarian (HGSOC), esophageal, non-small-cell lung and 68 

triple negative breast cancers1. These tumors have low frequency of recurrent oncogenic 69 

mutations, few recurrent copy number alterations, and highly complex genomic profiles2. 70 

HGSOCs are poor prognosis carcinomas with ubiquitous TP53 mutation3. Despite efforts to 71 

discover new molecular subtypes and targeted therapies, overall survival has not improved over 72 

two decades4. Current genomic stratification is limited to defining homologous recombination-73 

deficient (HRD) tumors5-7 with approximately 20% HGSOC cases having a germline or somatic 74 

mutation in BRCA1/2 with smaller contributions from mutation or epigenetic silencing of other HR 75 

genes8. Classification using gene expression predominantly reflects the tumor microenvironment 76 

and is reliable in only a subset of patients9-11. Detailed genomic analysis using whole genome 77 

sequencing has shown frequent loss of RB1, NF1 and PTEN by gene breakage events12 and 78 

enrichment of amplification associated fold-back inversions in non-HRD tumors13. However, none 79 

of these approaches has provided a broad mechanistic understanding of HGSOC, reflecting the 80 

challenges of detecting classifiers in extreme genomic complexity. 81 

Recent algorithmic advances have enabled interpretation of complex genomic changes by 82 

identifying mutational signatures — genomic patterns that are the imprint of mutagenic processes 83 

accumulated over the lifetime of a cancer cell14. For example, UV exposure or mismatch repair 84 

defects induce distinct, detectable single nucleotide variant (SNV) signatures14. The clinical utility 85 

of these signatures has recently been demonstrated through a combination of structural variant 86 

(SV) and SNV signatures to improve the prediction of HRD15. Importantly, these studies show that 87 

tumor genomes are shaped by multiple mutational processes and novel computational approaches 88 

are needed to identify coexistent signatures. We hypothesized that specific features of copy-89 

number abnormalities could represent the imprints of distinct mutational processes, and developed 90 

methods to identify signatures from copy-number features in HGSOC. 91 

  92 

  93 

  94 
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Results 95 

Experimental design and data collection 96 

We generated absolute copy number profiles from 253 primary and relapsed HGSOC samples 97 

from 132 patients in the BriTROC-1 cohort16 using low-cost shallow whole-genome sequencing 98 

(sWGS; 0.1×) and targeted amplicon sequencing of TP53 (Supplementary Figure 1). These 99 

samples formed the basis of our copy-number signature identification. A subset of 56 of these 100 

cases had deep whole-genome sequencing (dWGS) performed for mutation analysis and 101 

comparison with sWGS data. Independent data sets for validation included 112 dWGS HGSOC 102 

cases from PCAWG17 and 415 HGSOC cases with SNP array and whole exome sequence from 103 

TCGA8. Supplementary Figure 1a shows the REMARK diagram for selection of BriTROC-1 104 

patients. Supplementary Figure 1b outlines which samples were used in each analysis across the 105 

three cohorts. Clinical data for the BriTROC-1 cohort are summarized in Supplementary Table 1 106 

and Supplementary Figure 2. Detailed information on experimental design is provided in the Life 107 

Sciences Reporting Summary. 108 

 109 

Identification and validation of copy-number signatures 110 

To identify copy-number (CN) signatures, we computed the genome-wide distributions of six 111 

fundamental CN features for each sample: the breakpoint count per 10MB, the copy-number of 112 

segments, the difference in CN between adjacent segments, the breakpoint count per 113 

chromosome arm, the lengths of oscillating CN segment chains and the size of segments. These 114 

features were selected as hallmarks of previously reported genomic aberrations, including 115 

breakage-fusion-bridge cycles18, chromothripsis19 and tandem duplication20,21.  116 

We applied mixture modelling to separate the copy-number feature distributions from 91 BriTROC-117 

1 samples with high quality CN profiles into mixtures of Poisson or Gaussian distributions. This 118 

resulted in a total of 36 mixture components (Figure 1a). For each sample, the posterior probability 119 

of copy-number events arising from these components was computed and summed. These sum-120 

of-posterior vectors were then combined to form a sample-by-component sum-of-posteriors matrix. 121 

To identify copy-number signatures, this matrix was subjected to non-negative matrix factorization 122 

(NMF)22, a method previously used for deriving SNV signatures14.  123 

NMF identified seven CN signatures (Figure 1a), as well as their defining features and exposures 124 

in each sample. The optimal number of signatures was chosen using a consensus from 1000 125 

initializations of the algorithm and 1000 random permutations of the data combining four model 126 

selection measures (Supplementary Figure 3). We found highly similar component weights for the 127 

signatures in the two independent cohorts (PCAWG-OV and TCGA), demonstrating the robustness 128 
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of both the methodology and the copy-number features (Figure 1b, P<9e-05, median r=0.86. 129 

Supplementary Table 2), despite a significant difference in exposures to CN signatures 2, 3, 4 and 130 

5 between the cohorts (P<0.05, two-sided Wilcoxon rank sum test, Supplementary Figure 4).  131 

Mutational processes underlying copy-number signatures 132 

The majority of cases analysed exhibited multiple signature exposures suggesting that HGSOC 133 

genomes are shaped by more than one mutational process. As our signature analysis reduced this 134 

genomic complexity into its constituent components, we were able to link the individual copy-135 

number signatures to their underlying mutational processes. To do this, we used the component 136 

weights identified by NMF to determine which pattern of global or local copy-number change 137 

defined each signature. For example, for CN signature 1, the highest weights were observed for 138 

components representing low numbers of breakpoints per 10MB, long genomic segments and two 139 

breaks occurring per chromosome arm (Figure 2a, Supplementary Figure 5). Two breaks per 140 

chromosome arm suggested that the mutational process underlying this signature might be 141 

breakage-fusion-bridge (BFB) events18.  142 

To test this hypothesis, we correlated CN signature 1 exposures with mutation data, SNV 143 

signatures, and other measures derived from deep WGS and exome sequencing (Figure 2b-e, 144 

Supplementary Figures 6, 7, 8 and 9, Supplementary Tables 3, 4, 5, 6, 7 and 8). CN signature 1 145 

was anti-correlated with sequencing estimates of telomere length (r=-0.32, P=0.009), consistent 146 

with BFB events. In addition, CN signature 1 was positively correlated with amplification-147 

associated fold-back inversion structural variants (r=0.36, P=0.02), which have been strongly 148 

implicated in BFB events23 and have also been associated with inferior survival in HGSOC13. CN 149 

signature 1 was also enriched in cases with oncogenic RAS signaling, including NF1 loss and 150 

mutated KRAS (p=5e-06, Mann-Whitney test), which has previously been shown to induce 151 

chromosomal instability as a result of aberrant G2 and mitotic checkpoint controls and 152 

missegregation24,25. Taken together, these data provide independent evidence for BFB arising as a 153 

result of oncogenic RAS signaling and telomere shortening as the underlying mechanism for CN 154 

signature 1. 155 

We applied these approaches to the remaining signatures to identify statistically significant 156 

genomic associations using a false discovery rate <0.05 (Figure 2b-e, Figure 3, Supplementary 157 

Figures 5, 6, 7, 8 and 9, Supplementary Tables 3, 4, 5, 6, 7 and 8).  158 

CN signature 2 showed frequent breakpoints per 10MB, single changes in copy-number (resulting 159 

in 3 copies), chains of oscillating copy-number, and was significantly correlated with tandem 160 

duplicator phenotype scores (r=0.3, P=0.004) and SNV signature 5 (r=0.26, P=0.02). In addition, 161 

this signature was enriched in patients with mutations in CDK12 (P=0.02, Mann-Whitney test, 162 

Supplementary Table 6), in keeping with previous studies that have demonstrated large tandem 163 

duplication in cases with inactivating CDK12 mutations26.  164 
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CN signature 4 was characterised by high copy-number states (4-8 copies) and predominant copy-165 

number change-points of size 2. This pattern indicates a mutational process of late whole-genome 166 

duplication (WGD)27. Significantly increased signature 4 exposure in cases with aberrant PI3K/AKT 167 

signaling provided further support for late WGD as oncogenic PIK3CA induces tolerance to 168 

genome doubling28 (P=2e-22, Mann-Whitney test, mutation of PIK3CA or amplification of AKT, 169 

EGFR, MET, FGFR3 and ERBB2). Signature 4 was also seen at higher levels in cases with 170 

mutations in genes encoding proteins from Toll-like receptor signaling cascades (P=2e-07), 171 

interleukin signaling pathways (P=3e-24) and CDK12 (P=0.0009), as well as those with amplified 172 

CCNE1 (P=2e-10) and MYC (P=9e-12). It was also significantly correlated with telomere length 173 

(r=0.46, P=4e-05).   174 

CN signature 6 showed extremely high copy-number states and high copy-number change-points 175 

for small segments interspersed among larger, lower-copy segments. This suggests a mutational 176 

process resulting in focal amplification. Increased signature 6 exposure was associated with 177 

mutations in genes encoding proteins across diverse pathways, including aberrant G1/S cell cycle 178 

checkpoint control (through either amplification of CCNE1, CCND1, CDK2, CDK4 or MYC, 179 

deletion/inactivation of RB1 or mutation in CDK12), Toll-like receptor signaling cascades and 180 

PI3K/AKT signaling (P<0.05). However, as many of these statistical associations are marked by 181 

gene amplification, it is difficult to determine whether the copy number states represent causal 182 

events or are simply a consequence of focal amplification. Exposure to CN signature 6 was also 183 

positively correlated with age at diagnosis (r=0.31, P=6e-12) and age-related SNV signature 114 184 

(r=0.43, P=3e-06).  185 

CN signature 5 was significantly associated with predicted chromothriptic-like events using the 186 

Shatterproof algorithm29 (r=0.44, P=2e-03). Chromothripsis is considered rare in HGSOC12,27,30. 187 

However, the key component of this signature—the presence of copy-number change points 188 

centered at 0.5 copies—suggests that the events are subclonal. This implies that chromothripsis 189 

may be an underestimated oncogenic mechanism in HGSOC that could reflect ongoing formation 190 

and rupture of micronuclei31.  191 

CN signature 3 was characterized by an even distribution of breaks across all chromosomes, and 192 

copy number changes from diploid to single copy (LOH). CN signature 3 was significantly enriched 193 

in cases with mutations in BRCA1 and BRCA2, and other HR genes including BARD1, PALB2 and 194 

ATR (P=0.002, Mann-Whitney test). It was also correlated with the HRD-related SNV signature 3 195 

(r=0.32, P=0.002) and anti-correlated with age at diagnosis and age-related SNV signature 1 196 

(P<0.05). CN signature 3 was also enriched in cases with loss of function mutations in PTEN 197 

(P=0.002, Mann-Whitney test). Taken together, these data suggest that CN signature 3 is driven 198 

by BRCA1/2-related HRD mechanisms.  199 

CN signature 7, like CN signature 3, also demonstrated an even distribution of breaks across all 200 

chromosomes. By contrast with CN signature 3, single copy-number changes were observed from 201 



 

7 

a tetraploid rather than a diploid state (Figure 3). Although there was correlation with the HRD-202 

related SNV signature 3, there was no enrichment with BRCA1/2 mutation, suggesting alternative 203 

HRD mechanisms as potential mutational processes.  204 

We also investigated relationships between CN signatures. BRCA1 dysfunction and CCNE1 205 

amplification have been shown to be mutually exclusive in HGSOC32, and we observed that CN 206 

signature 3 (BRCA1/2 HRD) and CN signature 6 (marked by aberrant G1/S cell cycle checkpoint 207 

control) showed mutually exclusive associations (Figure 2b-e). Loss of BRCA1 and BRCA2 are 208 

early driver events in HGSOC, and to investigate acquisition of additional mutational processes, 209 

we studied four BriTROC-1 cases with deleterious germline BRCA2 mutations and confirmed 210 

somatic loss of heterozygosity at BRCA2 (Figure 4). A diverse and variable number of CN 211 

signatures was seen in these cases, including substantial exposures to CN signature 1 (RAS 212 

signaling) in three of the four cases.  213 

Copy-number signatures predict overall survival 214 

We next explored the association between individual CN signature exposures and overall survival 215 

using a combined dataset of 575 diagnostic samples with clinical outcomes. We trained a 216 

multivariate Cox proportional hazards model on 417 cases and tested this on the remaining 158 217 

cases (Figure 5, Supplementary Table 9). CN signature exposure was significantly predictive of 218 

survival (Training: P=0.002, log-rank test; stratified by age and cohort; Test: P=0.05, C-index=0.56, 219 

95% CI:0.50-0.62; Entire cohort: P=0.002, log-rank test; stratified by age and cohort). Across the 220 

entire cohort, poor outcome was significantly predicted by CN signature 1 (P=0.0008) and CN 221 

signature 2 exposures (P=0.03), whilst good outcome was significantly predicted by exposures to 222 

CN signatures 3 (P=0.05) and 7 (P=0.006). 223 

Unsupervised hierarchical clustering of samples by signature exposures identified three clusters 224 

(Figure 5). Despite showing significant survival differences (P=0.004, log-rank test; stratified by 225 

age and cohort), these clusters did not provide any prognostic information in addition to that 226 

identified from the Cox proportional hazards model; cluster 2 was dominated by patients with high 227 

signature 1 exposures (poor prognosis), cluster 3 showed high signature 3 exposures (good 228 

prognosis) and cluster 1 had mixed signature exposures (Supplementary Figure 10).   229 

Copy-number signatures indicate relapse following chemotherapy 230 

Using a generalised linear model, we investigated whether copy-number signatures could be used 231 

to predict outcome following chemotherapy across 36 patients from the BriTROC-1 study with 232 

paired diagnostic and relapse samples16. The model showed CN signature 1 exposures at the time 233 

of diagnosis to be significantly predictive of platinum-resistant relapse (P=0.02, z-test, 234 

Supplementary Table 10).  235 
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Using the same 36 sample pairs, we also investigated whether chemotherapy treatment changed 236 

CN signature exposures. No significant effects on exposures were observed following 237 

chemotherapy treatment using a linear model that accounted for signature exposure at time of 238 

diagnosis, number of lines of chemotherapy and patient age (P>0.05, F-test, Supplementary Table 239 

10). The only variable showing a significant association with exposure at relapse was signature 240 

exposure at diagnosis (P<0.01, F-test, Supplementary Table 11).    241 
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Discussion 242 

Copy-number signatures provide a framework that is able to rederive the major defining elements 243 

of HGSOC genomes, including defective HR8, amplification of CCNE19 and amplification-244 

associated fold-back inversions13. In addition, the CN signatures show significant associations with 245 

known driver gene mutations in HGSOC and provide the ability to detect novel associations with 246 

gene mutations. We derived signatures using inexpensive shallow whole genome sequencing of 247 

DNA from core biopsies. These approaches are rapid and cost effective, thus providing a clear 248 

path to clinical implementation. Copy-number signatures open new avenues for clinical trial design 249 

by highlighting contributions from underlying mutational processes that depend on oncogenic RAS 250 

and PI3K/AKT signaling. 251 

We found that almost all patients with HGSOC demonstrated a mixture of signatures indicative of 252 

combinations of mutational processes. These results suggest that early TP53 mutation, the 253 

ubiquitous initiating event in HGSOC, may permit multiple mutational processes to co-evolve, 254 

potentially simultaneously. Although further work is needed to define the precise timing of 255 

signature exposures, early driver events such as BRCA2 mutation still permit a diverse and 256 

variable number of CN signatures in addition to an HRD signature (Figure 4). These additional 257 

signature exposures may alter the risk of developing therapeutic resistance, particularly when only 258 

a single mutational process such as HRD is targeted. 259 

High exposure to CN signature 3, characterised by BRCA1/2-related HRD, is associated with 260 

improved overall survival, confirming prior data showing that BRCA1/2 mutation is associated with 261 

long survival in HGSOC33,34. Conversely, high exposure to signature 1, which is characterised by 262 

oncogenic RAS signaling (including NF1, KRAS and NRAS mutation), predicts subsequent 263 

platinum-resistant relapse and poor survival. This suggests that powerful intrinsic resistance 264 

mechanisms are present at the time of diagnosis and can be readily identified using CN signature 265 

analysis. This hypothesis is supported by the presence of exposure to CN signature 1 in germline 266 

BRCA2-mutated cases (Figure 4) as well as our previous work demonstrating the expansion of a 267 

resistant subclonal NF1-deleted population following chemotherapy treatment in HGSOC35 and 268 

poor outcomes in Nf1-deleted murine models of HGSOC36. Our CN signature analysis of BRCA2-269 

mutated cases also concurs with PCAWG/ICGC data showing that over half (9/16) of NF1-mutated 270 

cases also harboured mutations in BRCA1 or BRCA212. These data suggest a complex interplay 271 

between RAS signaling and HRD. Thus, RAS signaling may be an important target, especially in 272 

first line treatment, to prevent emergence of platinum-resistant disease. 273 

We found that CN signature exposures were not significantly altered between diagnosis and 274 

disease relapse in 36 sample pairs with a median interval of 30.6 months16. This suggests that the 275 

underlying mutational processes in HGSOC are relatively stable and that genome-wide patterns of 276 

copy-number change mainly reflect historic alterations to the genome acquired during 277 
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tumorigenesis37. Relative invariant genomic changes were also observed in the ARIEL2 trial, 278 

where genome-wide loss-of-heterozygosity was used to predict HRD, and only 14.5% (17/117) 279 

cases changed LOH status between diagnosis and relapse7.  280 

Larger association studies will be required to further refine CN signature definitions and 281 

interpretation. The application of our approach to other tumour types is likely to extend the set of 282 

signatures beyond the robust core set identified here. Basal-like breast cancers, squamous cell 283 

and small cell lung carcinoma, which all have high rates of TP53 mutation and genomic instability2, 284 

are promising next targets. Although it is likely that the strong associations have identified the 285 

driver mutational processes for CN signatures 1 and 3, functional studies will be required to 286 

establish causal links for the remaining signatures. For example, CN signature 6 was significantly 287 

associated with multiple mutated pathways, and this association was primarily driven by 288 

amplification of target genes. As this signature represented focal amplification events, it is difficult 289 

to determine whether amplification of specific genes drives the underlying mutational process or 290 

the amplifications emerge as a consequence of strong selection of advantageous phenotypes. Our 291 

data does not provide timing information for exposures and there is the real possibility that one 292 

mutational process may well drive the emergence of other mutational processes. For example, the 293 

association between signature 6 and PI3K signalling is also shared with signature 4. 294 

Other limitations of this work are technical: we integrated data from three sources, using three 295 

different pre-processing pipelines, and the ploidy determined by different pipelines can have a 296 

significant effect on the derived signatures. For example, high-ploidy CN signature 4 was 297 

predominantly found in the sequenced samples that underwent careful manual curation to identify 298 

whole-genome duplication events. When extending to larger sample sets, a unified processing 299 

strategy with correct ploidy determination is likely to produce improved signature definitions. 300 

Another technical limitation is the resolution of copy-number calling from sWGS (limited to 30kb 301 

bins) and future application to large cohorts of deeply sequenced samples will be needed to 302 

improve the resolution of the CN signatures.  303 

 304 

Efforts to identify discrete, clinically relevant subtypes of disease have been successful in many 305 

cancer types38-40. However, HGSOC lacks clinically-relevant patient stratification, which is reflected 306 

in continued poor survival. We show that HGSOC genomes are shaped by multiple mutational 307 

processes that preclude simple subtyping. Thus, our results suggest that HGSOC is a continuum 308 

of genomes. By dissecting the mutational forces shaping HGSOC genomes, our study paves the 309 

way to understanding extreme genomic complexity, as well as revealing the evolution of tumors as 310 

they relapse and acquire resistance to chemotherapy.   311 
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Figure Legends 438 

Figure 1 | Copy-number signature identification from shallow whole genome sequence data 439 

and validation in independent cohorts 440 

a. Step 1: Absolute copy-numbers are derived from sWGS data; Step 2: genome-wide distributions 441 

of six fundamental copy-number features are computed; Step 3: Gaussian or Poisson mixture 442 

models (depending on data type) are fitted to each distribution and the optimal number of 443 

components is determined (ranging from 3–10) ; Step 4: the data are represented as a matrix with 444 

36 mixture component counts per tumor. Step 5: Non-negative matrix factorization is applied to the 445 

components-by-tumor matrix to derive the tumor-by-signature matrix and the signature-by-446 

components matrix. 447 

b. Heat maps show component weights for copy number signatures in two independent cohorts of 448 

HGSOC samples profiled using WGS and SNP array. Correlation coefficients are provided in 449 

Supplementary Table 2. 450 

Figure 2 | Linking copy-number signatures with mutational processes 451 

a Component weights for copy number signature 1. Barplots (upper panel) are grouped by copy 452 

number feature and show weights for each of the 36 components. The middle panel shows the 453 

mixture model distributions which are shaded by the component weight - solid colours have a high 454 

weight and transparent have low weight (contrasting colours are randomly assigned). Lower panel 455 

shows genome-wide distribution (histogram or density) of each copy number feature, across the 456 

BriTROC-1 cohort, with coloured plots indicating important distributions (> 0.1 component weight). 457 

(Note: similar plots for other CN signatures are shown in Figure 3 and Supplementary Figure 5). 458 

b Associations between CN signature exposures and other features. Purple indicates positive 459 

correlation and orange negative correlation (see also Supplementary Figure 6). Numbers at the 460 

right of the panel indicate cases included in each analysis. Only significant correlations are shown 461 

(P<0.05). 462 

c Associations between CN signature exposures and SNV signatures. Purple indicates positive 463 

correlation and orange negative correlation (see also Supplementary Figure 6). The number at the 464 

right of the panel indicates cases included in the analysis. 465 

d and e Difference in CN signature exposures between cases with mutations in specific genes (d) 466 

and mutated/wildtype reactome pathways (e). The absolute difference in mean signature 467 

exposures was calculated for cases with and without mutations. Colors in filled circles indicate 468 

extent of difference. Only differences with FDR P<0.05 (Mann-Whitney test) are shown (see also 469 

Supplementary Figure 7).  470 

Numbers at the right of the panel indicate cases with mutations (SNVs, amplifications or deletions) 471 

in each gene/pathway. 472 
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Figure 3 | The seven copy-number signatures in HGSOC  473 

Description of the defining component weights, key associations and proposed mechanisms for the 474 

seven copy number signatures.  475 

*only the top three mutated genes for each of the pathways associated with CN signatures 4, 6 476 

and 7 are shown (the list of all significant genes is provided in Supplementary Tables 7 and 8). 477 

Figure 4 | CN signature exposures of four BriTROC-1 patients with germline BRCA2 478 

mutations and somatic loss of heterozygosity 479 

Stacked bar plots show copy-number signature exposures for four BriTROC-1 cases with 480 

pathogenic germline BRCA2 mutations and confirmed somatic loss of heterozygosity (LOH) at the 481 

BRCA2 locus. 482 

Figure 5 | Association of survival with copy-number signatures 483 

Upper panel: Stacked barplots show CN signature exposures for each patient. Patients were 484 

ranked by risk of death estimated by a multivariate Cox proportional hazards model stratified by 485 

age and cohort, with CN signature exposures as covariates.  486 

Middle panel: The matrix indicates group for each patient assigned by unsupervised clustering of 487 

CN signature 1, 2, 3 and 7 exposures (see also Supplementary Figure 10).  488 

Lower panel: Linear fit of signature exposures ordered by risk predicted by the Cox proportional 489 

hazards model. 490 

 491 
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Online Methods 514 

Patients and samples 515 

The BriTROC-1 study has been described previously16. Characteristics of the 142 patients 516 

included in this study are given in Supplementary Table 1. The study is sponsored by NHS Greater 517 

Glasgow and Clyde and ethics/IRB approval was given by Cambridge Central Research Ethics 518 

Committee (Reference 12/EE/0349). The study enrolled patients with recurrent ovarian high-grade 519 

serous or grade 3 endometrioid carcinoma who had relapsed following at least one line of 520 

platinum-based chemotherapy and whose disease was amenable either to image-guided biopsy or 521 

secondary debulking surgery. At study entry, patients were classified as having either platinum-522 

sensitive relapse (i.e. relapse six months or more following last platinum chemotherapy) or 523 

platinum-resistant relapse (i.e. relapse less than six months following prior platinum chemotherapy) 524 

(Supplementary Figure 2). All patients provided written informed consent. Access to archival 525 

diagnostic formalin-fixed tumor was also required. Survival was calculated from the date of 526 

enrolment to the date of death or the last clinical assessment, with data cutoff at 1 December 527 

2016. At subsequent relapse or progression after chemotherapy following study entry, patients 528 

could optionally have a second biopsy under separate consent. 529 

DNA was extracted from 300 samples of 142 patients - 158 methanol-fixed relapse biopsies and 530 

142 FFPE archival diagnostic tissues. Germline DNA was extracted from blood samples of 137 531 

patients.   532 

Tagged-amplicon sequencing 533 

Mutation screening of TP53, PTEN, EGFR, PIK3CA, KRAS and BRAF was performed on all 300 534 

samples using tagged-amplicon sequencing as previously described16. DNA extracted from blood 535 

was analyzed by tagged-amplicon sequencing for BRCA1 and BRCA2 germline mutations. 536 

Shallow whole genome sequencing (sWGS) 537 

Libraries for sWGS were prepared from 100ng DNA using modified TruSeq Nano DNA LT Sample 538 

Prep Kit (Illumina) protocol41. Quality and quantity of the libraries were assessed with DNA-7500 kit 539 

on 2100 Bioanalyzer (Agilent Technologies) and with Kapa Library Quantification kit (Kapa 540 

Biosystems) according to the manufacturer's protocols. Sixteen to twenty barcoded libraries were 541 

pooled together in equimolar amounts and each pool was sequenced on HiSeq4000 in SE-50bp 542 

mode.  543 

Prior to sequencing we estimated the required sequencing depth by adapting calculations made in 544 

previous work that explored the relationship between sequencing depth (reads per sample) and 545 

copy number calling accuracy42. Based on these analyses, we devised a power calculator for 546 

sWGS copy number analysis (see URL 1, described in 43). We estimated that with an average 547 
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ploidy of 3 and purity of 0.65, a sequencing depth of at least 2.7 million reads is required to detect 548 

single, clonal copy-number changes (minimum 60kb) at 90% power and alpha 0.05. After analysis 549 

we determined that BritROC 3-star samples had an average purity of 0.66, ploidy of 2.7, and were 550 

sequenced to an average depth of 8.6 million reads. This allowed us to detect single copy-number 551 

changes with 90% power, and alpha 0.05 down to subclonal frequencies of 55%. 552 

Deep whole genome sequencing 553 

Deep whole-genome sequencing was performed on 56 tumors with confirmed TP53 mutations and 554 

matched normal samples, of which 48 passed quality control. Libraries were constructed with 555 

~350-bp insert length using the TruSeq Nano DNA Library prep kit (Illumina) and sequenced on an 556 

Illumina HiSeq X Ten System in paired-end 150-bp reads mode. The average depth was 60× 557 

(range 40-101×) in tumors and 40× (range 24-73×) in matched blood samples. 558 

Variant calling 559 

Read alignment and variant calling of tagged-amplicon sequencing data were processed as 560 

described41. Deep WGS samples were processed with bcbio-nextgen44 using Ensemble somatic 561 

variants called by two methods out of VarDict45, Varscan46 and FreeBayes47. Somatic SNV calls 562 

were further filtered based on mapping quality, base quality, position in read, and strand bias as 563 

described40. In addition, the blacklisted SNVs from the Sanger Cancer Genomics Project pipeline 564 

derived from a panel of unmatched normal samples were used for filtering48. 565 

Data download 566 

PCAWG-OV: Consensus SNVs and INDELs (October 2016 release), consensus structural variants 567 

(v 1.6), consensus copy-number calls (January 2017 release), donor clinical (August 2016 v7-2) 568 

and donor histology information (August 2016 v7) for 112 ovarian cancer samples were 569 

downloaded from the PCAWG data portal. ABSOLUTE49 copy-number calls were used for 570 

analysis. 571 

TCGA: ABSOLUTE49 copy-number profiles from Zack et al27 for 415 ovarian cancer TCGA 572 

samples were downloaded from Synapse50. SNVs for these samples were downloaded from the 573 

Broad Institute TCGA Genome Data Analysis Center (Broad Institute TCGA Genome Data 574 

Analysis Center: Firehose stddata__2016_01_28 run. doi:10.7908/C11G0KM9, Broad Institute of 575 

MIT and Harvard). Donor clinical data were downloaded from the TCGA data portal. 576 

Absolute copy-number calling from sWGS 577 

Segmentation: sWGS reads were aligned and relative copy-number called as described41. After 578 

inspection of the TP53 mutation status and relative copy-number profiles of the 300 sequenced 579 

BriTROC-1 samples, 47 were excluded from downstream analysis for the following reasons: low 580 
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purity (24), mislabeled (7), pathology re-review revealed sample was not HGSOC (3), no 581 

detectable TP53 mutation (13). Of the 253 BriTROC-1 samples analysed, 111 were FFPE-fixed. 582 

Fifty seven out of 253 showed an over segmentation artefact (likely due to fixation). A more strict 583 

segmentation was subsequently applied to these samples to yield a usable copy-number profile.  584 

 585 

Absolute copy number: We combined relative copy-number profiles generated by QDNAseq42 with 586 

mutant allele frequency identified using tagged amplicon sequencing in a probabilistic graphical 587 

modelling approach to infer absolute copy-number profiles. Using Expectation-Maximisation, the 588 

model generated a posterior over a range of TP53 copy-number states, using the TP53 mutant 589 

allele frequency to estimate purity for each state. The TP53 copy-number state that provided the 590 

highest likelihood of generating a clonal absolute copy-number profile was used to determine the 591 

final absolute copy-number profile. To test the validity of this approach, we compared purity and 592 

ploidy estimates derived from sWGS to those derived from 60× WGS using the Battenberg 593 

algorithm for copy-number calling51. Pearson correlation coefficients were computed for both ploidy 594 

and purity estimates using 34 3-star (see Quality rating ) BriTROC-1 samples with matched sWGS 595 

and WGS (Supplementary Figure 11).  596 

 597 

Quality rating: Following absolute copy-number fitting, samples were rated using a 1-3 star system. 598 

1-star samples (n=54) showed a noisy copy-number profile and were considered likely to have 599 

incorrect segments and missing calls. These were excluded from further analysis. 2-star samples 600 

(n=52) showed a reasonable copy-number profile with only a small number of miscalled segments. 601 

These samples were used (with caution) for some subsequent analyses. 3-star samples (n=147) 602 

showed a high-quality copy-number profile that was used in all downstream analyses. The 603 

maximum star rating observed per patient was 1-star in 15 patients, 2-star in 26, and 3-star in 91 604 

patients. Seventy-two out of 111 FFPE-fixed samples (64%) were amenable to signature analysis. 605 

This is consistent with typical sequencing success rates for archival material52. 606 

Copy-number signature identification 607 

Preprocessing: 91 3-star BriTROC-1 absolute copy-number profiles were summarized using the 608 

genome-wide distribution of six different features (outlined in Figure 1):  609 

1. Segment size - the length of each genome segment;  610 

2. Breakpoint count per 10MB - the number of genome breaks appearing in 10MB sliding 611 

windows across the genome;  612 

3. Change-point copy-number - the absolute difference in CN between adjacent segments 613 

across the genome;  614 

4. Segment copy-number - the observed absolute copy-number state of each segment;  615 

5. Breakpoint count per chromosome arm - the number of breaks occurring per chromosome 616 

arm;  617 
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6. Length of segments with oscillating copy-number - a traversal of the genome counting the 618 

number of contiguous CN segments alternating between two copy-number states, rounded to 619 

the nearest integer copy-number state.  620 

 621 

Mixture modelling: For each of the feature density distributions, we applied mixture modelling to 622 

identify its distinct components. For distributions representing segment-size, change-point copy-623 

number, and segment copy-number we employed mixtures of Gaussians. For distributions 624 

representing breakpoint count per 10MB, length of segments with oscillating copy-number, and 625 

breakpoint count per chromosome arm we employed mixtures of Poissons. Mixture modelling was 626 

performed using the FlexMix V2 package in R53. The algorithm was run for each distribution with 627 

the number of components ranging from 2-10. The optimal number of components was selected as 628 

the run showing the lowest Bayesian Information Criterion, resulting in a total of 36 components 629 

(see Figure 1 and Supplementary Table 3 for breakdown). Next, for each copy-number event, we 630 

computed the posterior probability of belonging to a component. For each sample, these posterior 631 

event vectors were summed resulting in a sum-of-posterior probabilities vector.  All sum-of-632 

posterior vectors were combined in a patient-by-component sum-of-posterior probabilities matrix.    633 

 634 

Signature identification: The NMF Package in R54, with the Brunet algorithm specification55 was 635 

used to deconvolute the patient-by-component sum-of-posteriors matrix into a patient-by-signature 636 

matrix and a signature-by-component matrix. A signature search interval of 3-12 was used, running 637 

the NMF 1000 times with different random seeds for each signature number. As provided by the 638 

NMF Package54, the cophenetic, dispersion, silhouette, and sparseness coefficients were 639 

computed for the signature-by-component matrix (basis), patient-by-signature matrix (coefficients) 640 

and connectivity matrix (consensus, representing patients clustered by their dominant signature 641 

across the 1000 runs). 1000 random shuffles of the input matrix were performed to get a null 642 

estimate of each of the scores (Supplementary Figure 3). We sought the minimum signature 643 

number that yielded stability in the cophenetic, dispersion and silhouette coefficients, and that 644 

yielded the maximum sparsity which could be achieved without exceeding that which was 645 

observed in the randomly permuted matrices. As a result, 7 signatures were deemed optimal under 646 

these constraints and were chosen for the remaining analysis. 647 

  648 

Signature assignment: For the remaining 26 2-star patient samples, and the 82 secondary patient 649 

samples (from patients with 2- or 3-star profiles from additional tumor samples), the LCD function 650 

in the YAPSA package in Bioconductor56 was used to assign signature exposures. 651 

Copy-number signature validation 652 

The signature identification procedure described above was applied to copy-number profiles from 653 

two independent datasets: 112 whole-genome sequenced (approximately 40×) HGSOC samples 654 
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processed as part of ICGC Pan-Cancer Analysis of Whole Genomes Project17, (denoted here as 655 

PCAWG-OV) and 415 SNParray profiling of HGSOC cases as part of TCGA27. The number of 656 

signatures was fixed at 7 for matrix decomposition with NMF. Pearson correlation was computed 657 

between the BriTROC-1 signature-by-component weight matrix and each of the PCAWG-OV and 658 

TCGA signature-by-component matrices, signature by signature (Supplementary Table 2). 659 

Association of copy-number signature exposures with other features 660 

Association of signature exposures with other features was performed using one of two 661 

procedures: for a continuous association variable, correlation was performed; for a binary 662 

association variable, patients were divided into two groups and a Mann-Whitney test was 663 

performed to test for differences in signature exposure medians between the two groups. A more 664 

detailed explanation of each of these association calculations is given below. (Note: of the 48 deep 665 

WGS BriTROC-1 samples that passed QC, only 44 had matched 2- and 3-star sWGS copy-666 

number profiles. As signature exposures from sWGS were used for BriTROC-1 sample 667 

associations, only these 44 samples could be used). 668 

  669 

Age at diagnosis. Patient age at diagnosis for 112 PCAWG-OV samples and 415 TCGA samples 670 

was used to compute Pearson correlation with signature exposures. 671 

 672 

Amplification associated fold-back inversions. For 111 PCAWG-OV samples, the fraction of 673 

amplification associated fold-back inversion events per sample was calculated as the proportion of 674 

head-to-head inversions (h2hINVs) within a 100kb window amplified region (copy number ≥5) 675 

relative to the total number of SV calls per sample. 94 samples had at least 1 h2hINV event out of 676 

which 58 had h2hINV events in amplified regions. On average they accounted for 4% of SV calls. 677 

As these are rare events, only samples showing a non-zero fraction of fold-back inversions (n=67) 678 

were used to compute Pearson correlation with signature exposures. 679 

 680 

Telomere length. Telomere lengths of 44 deep WGS tumor samples from the BriTROC-1 cohort 681 

were estimated using the Telomerecat algorithm57. Telomere length estimates ranged from 1.5kb - 682 

11kb with an average of 4kb. Correlation between telomere length and copy-number signature 683 

exposures was calculated with age and tumor purity as covariates using the ppcor package in R58. 684 

 685 

Chromothripsis. Copy-number and translocation information from 111 PCAWG-OV samples were 686 

used to detect chromothripsis-like events using the Shatterproof software with default 687 
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parameters29. Shatterproof, a state-of-the-art software, incorporates a wide range of hallmarks of 688 

chromothripsis in its detection algorithm as a precise definition of chromothripsis remains elusive. 689 

Govind et al. recommend a threshold of 0.37 based on their observations that normal samples 690 

produced a low number of calls with low scores (maximum 0.37) while prostate, colorectal and 691 

small cell lung cancer samples that were known to have chromothriptic events, produced the 692 

highest scores 29. Previous studies have reported a low incidence of chromothriptic events in 693 

HGSOC 12,27,30. The number of calls per sample in the PCAWG-OV samples ranged from 5 to 47 694 

with an average of 23. The score per call ranged from 0.15-0.62 with a median of 0.38. Therefore, 695 

a conservative threshold was set at the 95th percentile of our distribution of scores to minimise 696 

false positives and calls with scores greater than 0.48 were used to obtain a count of 697 

chromothriptic events per sample. As chromothriptic events are rare in HGSOC, only samples 698 

showing a non-zero number of events (n=61) were used to compute Pearson correlation with 699 

signature exposures. Of 61 samples with scores above the threshold, 49 (80.3%) had 1-2 events, 700 

11 samples (18%) had 3-6 events and 1 sample (1.6%) had 10 events.  701 

  702 

Tandem duplicator phenotypes. Tandem duplicator phenotype (TDP) scores were calculated for 703 

111 PCAWG-OV samples using the method described in Menghi et al21. The number of duplication 704 

events per chromosome normalized by chromosome length per sample was used to calculate a 705 

score relative to the expected number of duplication events per chromosome per sample. The 706 

scores ranged from -1.11 to 0.53 with an average score of 0.02.  707 

  708 

Mutational signatures. Motif matrices were extracted using the SomaticSignatures R package59 709 

and the weights of all known COSMIC signatures were determined using the deconstructSigs R 710 

package60 for 44 deep WGS BriTROC-1 samples and 109 PCAWG-OV samples. SNV signatures 711 

showing an exposure >0 for at least one sample were retained. The rcorr function in the Hmisc R 712 

package61 was used to calculate the correlation matrix between the remaining SNV and CN 713 

signature exposures. 714 

 715 

The significance of all observed correlations was estimated from a t-distribution where the null 716 

hypothesis was that the true correlation was 0. All reported p-values have been adjusted for 717 

multiple testing with Benjamini & Hochberg (BH) method62. Comparison plots can be found in 718 

Supplementary Figure 6. 719 

 720 

Mutated pathways: A combined set of 479 samples (44 deep WGS BriTROC-1, 112 PCAWG-OV 721 

and 323 TCGA) showing at least one driver mutation was used for mutated pathway enrichment 722 

analysis. We focused on 765 driver genes reported by Cancer Genome Interpreter (CGI)63. SNVs, 723 

INDELs, amplifications (CN>5) or deletions (CN<0.4) affecting these genes were considered bona 724 

fide driver mutations if CGI predicted them as TIER1 or TIER2 (Supplementary Tables 4 and 5, 725 
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see URL 2, run date: 2018-01-13). 320 of the 765 genes were mutated in a least one case. These 726 

genes were used to test for enriched pathways in the Reactome database using the ReactomePA 727 

R package64 with a p-value cutoff of 0.05 and q-value cutoff of 0.05. Pathways mutated in at least 728 

5% of the cohort (n≥24) were retained. For each pathway, patients were split into two groups: 729 

those with mutated genes in the pathways, and those with wild-type genes in the pathways. A one-730 

sided Mann-Whitney was carried out for each signature to determine if the exposure was 731 

significantly higher in mutated cases versus wild-type cases. After multiple testing correction using 732 

the Benjamini & Hochberg method (thresholding the p-value <0.005 and the median difference in 733 

exposures ≥0.1), 186 pathways were significantly enriched. Visual inspection revealed significant 734 

redundancy in the list and 9 representative pathways were manually selected as a final output 735 

(Supplementary Table 6). 736 

 737 

Mutated genes:  A combined set of 479 samples (44 deep WGS BriTROC-1, 112 PCAWG-OV and 738 

323 TCGA) was used test if signature exposures were significantly higher in cases with mutated 739 

driver genes, including NF1, PTEN, BRCA1, BRCA2, PIK3CA, MYC and CDK12.  Patients were 740 

split into two groups: those with the mutated gene and those with wild-type genes. A one-sided 741 

Mann-Whitney was carried out for each signature to determine if the exposure was significantly 742 

higher in mutated cases versus wild-type cases. After multiple testing correction using the 743 

Benjamini & Hochberg method (thresholding the p-value <0.05 and the median difference in 744 

exposures ≥0.0.08), 10 gene/signature combinations were significantly enriched (Supplementary 745 

Table 6).  746 

Survival analysis 747 

Censoring and truncation: Overall survival in BriTROC-1 patients was calculated from the date of 748 

enrolment to the date of death or the last documented clinical assessment, with data cutoff at 1 749 

December 2016. As the BriTROC-1 study only enrolled patients with relapsed disease, left 750 

truncation was used in the survival analysis. In addition, cases where the patient was not 751 

deceased were right censored. Survival data for the PCAWG-OV and TCGA cohorts were right 752 

censored as required (left truncation was not necessary). The combined samples were split into 753 

training (100% BriTROC-1, 70% PCAWG-OV and 70% TCGA = 417) and test (30% PCAWG-OV 754 
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and 30% TCGA = 158) cohorts. All of the BriTROC-1 samples were used in the training set to 755 

avoid issues calculating prediction performance on left-truncated data.  756 

 757 

Cox regression: As the signature exposures for a given sample summed to 1, it was necessary to 758 

select one normalizing signature to perform regression. Signature 5 was chosen as it showed the 759 

lowest variability across the cohorts. To avoid division errors all 0 signature exposures were 760 

converted to 0.02. The remaining signature exposures were normalized taking the log ratio of their 761 

exposure to signature 5’s exposure. A Cox proportional hazards model was fitted on the training 762 

set, with the signature exposures as covariates, stratified by cohort (BriTROC-1, PCAWG-OV:AU, 763 

PCAWG-OV:US, TCGA) and age (<39; 40:44; 45:49; 50:54; 55:59; 60:64; 65:69; 70:74; 75:79; 764 

>80), using the survival package in Bioconductor65. After fitting, the model was used to predict risk 765 

in the test set and performance was assessed using the concordance index calculation in the 766 

survcomp package in Bioconductor47. A final Cox regression was performed using all data for 767 

reporting of hazard ratios and p-values.  768 

Unsupervised clustering of patients using signature exposures 769 

Hierarchical clustering of the exposure vectors of the 575 samples used in the survival analysis 770 

was performed using the NbClust66 package in R. The optimal number of clusters was 3 as 771 

determined by a consensus voting approach across 23 metrics for choosing the optimal numbers 772 

of clusters. 12/23 metrics reported 3 clusters as the optimal number. A Cox proportional hazards 773 

model was fitted using the cluster labels as covariates, stratified by cohort (BriTROC-1, PCAWG-774 

OV:AU, PCAWG-OV:US, TCGA) and age (<39; 40:44; 45:49; 50:54; 55:59; 60:64; 65:69; 70:74; 775 

75:79; >80), using the survival package in Bioconductor65.   776 

Analysis of copy-number signature changes during treatment 777 

Thirty-six BriTROC-1 cases with matched diagnosis and relapse samples were used to investigate 778 

the effects of treatment on signature exposures. A linear model was fitted to test for treatment 779 

effects with exposure at relapse as the dependent variable and exposure at diagnosis, age at 780 

diagnosis, number of lines of chemotherapy, and days between diagnosis and relapse as 781 

independent variables. Prior to fitting, age at diagnosis was centered and exposures transformed 782 

by log(x+0.1) to ensure normality. Fitting was done using the lm() function in R.  783 

 784 

To test whether signature exposures at diagnosis were predictive of platinum sensitivity, a 785 

generalized linear model with Binomial error was fitted using type of relapse (platinum-sensitive or 786 

platinum-resistant) as the dependent variable and exposure at diagnosis and age at diagnosis as 787 

independent variables.  788 
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Data Availability 789 

Sequence data that support the findings of this study have been deposited in the European 790 

Genome-phenome Archive with the accession code EGAS00001002557. All code required to 791 

reproduce the analysis outlined in this manuscript can be found in the following repository (see 792 

URL 3). 793 

 794 

URLs 795 

1. https://gmacintyre.shinyapps.io/sWGS_power/ 796 
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