Quantification of low Damköhler number turbulent premixed flames

F. Hampp^a, S. Shariatmadar^a, R. P. Lindstedt^{a,*}

^aDepartment of Mechanical Engineering, Imperial College, London, SW7 2AZ, UK

Abstract

Combustion under highly strained conditions or at low Damköhler numbers requires external enthalpy sources to ensure stability. Such flames deviate from the conventional bimodal flame structure and chemically active fluid states become statistically relevant. The current work utilises a multi-fluid analysis in order to quantify the impact of such conditions on a turbulent $(Re_t \approx 350)$ lean ($\Phi = 0.50$) premixed DME / air flame with $Da \approx 0.29$. The flames were aerodynamically stabilised in a back-to-burnt opposed jet configuration with the temperature of the external enthalpy support varied from 1200 \leq T_{HCP} (K) \leq 1600. Simultaneous Mie scattering, CH₂O and OH – PLIF and PIV were used to quantify the transition from spatially distributed chemical reactions to reaction zones that appear flamelet-like. The analysis shows that in the current configuration such structures are only present at high T_{HCP} . By contrast, the low temperature chemistry is continuously active with $CH₂O$ increasingly more spatially distributed with reducing support temperature. The current analysis provides novel insights into low Damköhler number combustion and burning mode transitions by means of

[∗]Corresponding author: Email address: p.lindstedt@imperial.ac.uk (R. P. Lindstedt)

(i) multi-fluid probability statistics, (ii) the structure of formaldehyde and hydroxyl layers and (iii) their cross–correlation as well as (iv) the underlying strain rate statistics on material surfaces.

Keywords:

Strain rate, Low Damköhler number combustion, Premixed DME flames, Multi-fluid statistics, Low temperature combustion

¹ Supplementary material is available (1 Figure, 1 Table).

² 1. Introduction

3 Increasingly stringent emission regulations (e.g. for NO_x and particulates) can be met by (partially-) premixed combustor operation under fuel lean con- $\frac{1}{5}$ ditions at reduced Damköhler (Da) numbers [1]. Related burning modes de- viate from bimodal flame structures by creating increasingly distributed pre- heat and reaction zones [2, 3]. The reaction progress can be controlled by an 18 external enthalpy source [4, 5], e.g. via exhaust gas recirculation (EGR) or re- actant preheating. Practical examples include flameless oxidation in gas tur-¹⁰ bine engines [6] and low NO_x furnaces [7]. High temperature EGR blending can yield complex competition between chain branching and quenching due to the presence of diluents [8]. Chemical and turbulent timescales of the same order of magnitude lead to complex turbulence-chemistry interactions and a ¹⁴ spatial distribution of reactive scalars $[9-12]$. The back-to-burnt (BTB) op- posed jet configuration sustains reaction beyond the conventional extinction point by the counter-flowing hot combustion products (HCP) stream [13–

 15]. The configuration is particularly advantageous for the investigation of ¹⁸ strained [16] low Da flames due to the aerodynamic flame stabilisation [17], individual and accurate control of chemical and turbulent timescales [13] and excellent optical access [18, 19]. Coriton et al. [14] evaluated the impact of temperature and rate of strain on reaction progress and local extinction. Lo- cal and intermittent flame extinction was observed for bulk strain rates that exceeded the conventional extinction limit. Hampp and Lindstedt [20, 21] used simultaneous Mie scattering, hydroxyl (OH) planar laser induced fluo- rescence (PLIF) and particle image velocimetry (PIV) in combination with a statistical multi-fluid analysis. Self-sustained flames were found detached from the stagnation plane and anchored in low strain regions with thermally supported burning characterised by high rates of strain and vorticity. The analysis provided statistical data on chemically active fluid states in addition to reactants and products. Thermally altered regions without the onset of 31 OH producing reactions were found to be statistically significant for $Da < 1$. A variation of the burnt gas state temperature from 1600 to 1800 K showed a distinct impact on turbulence-chemistry interactions in the reacting fluid states [22].

³⁵ Reaction progress in low Da flames in the BTB geometry is governed by turbulent transport of HCP across the stagnation plane [20], leading to preheating, low temperature chemistry and, potentially, auto-ignition. Formaldehyde (CH₂O) layers have been used as indicators of radical pool build up [23], with the spatially distributed low temperature chemistry regime of n-heptane investigated by Won et al. [24] using hot wire anemometry and 41 simultaneous CH_2O and $OH - PLIF$. The CH_2O and OH cross-correlation

 has been used to identify heat release layers from PLIF measurements [25] and it remains a valid marker for non-flamelet like structures in EGR type moderate or intense low-oxygen dilution combustion [2]. Gordon et al. [26] ⁴⁵ investigated transient auto-ignition using OH as a flame marker, CH_2O as a precursor for auto-ignition and their cross-correlation to identify heat re- lease. Simultaneous high speed CH₂O / OH – PLIF and tomographic PIV were performed by Osborne et al. [27, 28] with substantial broadening of the $_{49}$ CH₂O layer observed with increasing turbulence intensity, while the CH₂O $50 \times \text{OH}$ layers remained thin.

 μ ₅₁ The current study investigates low Damköhler number ($Da = 0.29$) com-⁵² bustion with a turbulent Reynolds number of $Re_t \simeq 350$ of lean ($\Phi = 0.50$) premixed DME / air flames in a BTB opposed jet configuration. The HCP $_{54}$ temperature was varied from 1200 – 1600 K. The results provide novel in- sights into low Da combustion and burning mode transitions by means of $_{56}$ (i) multi-fluid probability statistics, (ii) the structure of CH₂O and OH lay- ers and (iii) their cross–correlation as well as (iv) the underlying strain rate statistics on material surfaces.

2. Experimental Setup

 The cross fractal grid (CFG) opposed jet burner was operated in a BTB configuration. The facility was originally developed by Geyer et al. [18] and modified to provide multi-scale turbulence at elevated levels free of bulk in- stabilities [15, 19, 29, 30]. The present geometry is identical to our recent μ studies [20–22, 31] with the exception of the lower nozzle (LN) flame sta-bilising grid (see Sec. 2.2). A schematic is provided in the supplementary material. The premixed DME / air mixture was injected through the upper nozzle (UN) and stabilised against hot combustion products emerging the 68 LN. The nozzle separation (H) was set to one diameter $(=30 \text{ mm})$. The UN reactant flow is defined as negative and the LN counter-flow as positive.

⁷⁰ 2.1. Upper Nozzle Flow Conditions

 $_{71}$ Premixed DME / air ($\Phi = 0.50, T_0 = 320$ K) was injected through the UN ⁷² at a constant bulk velocity ($U_b = 11.2 \text{ m s}^{-1}$). The CFG was installed 50 mm ⁷³ upstream of the UN exit to provide well developed multi-scale turbulence at ⁷⁴ the nozzle exit. The grid exhibits a blockage ratio of 65 % with a maximum ⁷⁵ to minimum bar width ratio of 4. The $Re_t = L_I \cdot u_{rms} \cdot \nu_r^{-1} \simeq 350$ was deter-⁷⁶ mined by means of the integral length scale of turbulence $(L_I = 3.9 \pm 0.2 \text{ mm})$ ⁷⁷ and the velocity fluctuations ($u_{rms} = 1.6$ m s⁻¹) at the nozzle exit using hot ⁷⁸ wire anemometry data (sampling time 13 s at a rate of 20 kHz). Both prop-⁷⁹ erties, and thus the turbulent timescale (τ_I) , were maintained constant with ⁸⁰ a Kolmogorov length scale of $L_{\eta} = (\nu_r^3 \cdot \varepsilon_r^{-1})^{1/4} \simeq 48$ μm. The rate of dissi-⁸¹ pation in the reactants was estimated to $\varepsilon_r \simeq u_{rms}^3 \cdot L_I^{-1} = 955 \text{ m}^2 \text{ s}^{-3}$. The ϵ_{2} calculated kinematic viscosity in the reactants was $\nu_r = 17.1 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$. 83 The chemical timescale (τ_c) of the UN reactant flow was also maintained ⁸⁴ constant. The laminar burning velocity $(S_L = 0.096 \text{ m s}^{-1})$ and laminar ⁸⁵ flame thickness ($\delta_f = 0.82$ mm) based on the 5–95% fuel consumption layer ⁸⁶ (i.e. inner thickness [32]) were calculated in a strained $(a_b = 75 \text{ s}^{-1})$ laminar ⁸⁷ opposed jet twin flame using detailed chemistry [33]. The conditions occupy 88 a nominally identical point in a conventional regime diagram with $Da \simeq 0.29$ 89 and Karlovitz number (Ka) of 64, see Eq. (1).

$$
Da = \frac{L_I \cdot S_L}{u_{rms} \cdot \delta_f} , \quad Ka = \frac{\delta_f}{S_L} \left(\frac{\nu_r}{\varepsilon_r}\right)^{-1/2} \tag{1}
$$

⁹⁰ The extinction strain of the twin laminar flame $(a_q = 190 \text{ s}^{-1})$ was below ⁹¹ the bulk $(a_b = 2 \cdot U_b / H = 750 \text{ s}^{-1})$ and mean turbulent strain $(a_I =$ ⁹² 3200 s⁻¹) [20]. The extinction temperature (T_q) was 1380 K.

⁹³ 2.2. Lower Nozzle Flow Conditions

⁹⁴ The stabilising HCP were obtained using lean premixed H₂ / CH₄ / air ⁹⁵ flames (see Table 1). The temperature at the lower nozzle exit (T_{HCP}) was ⁹⁶ measured using a 50 μ m R-type thermocouple and controlled from 1200 to 97 1600 K (rms 4 K) by adjusting the equivalence ratio (Φ) and H₂ / CH₄ blend-⁹⁸ ing ratio. Temperature control via inert gas dilution at fixed stoichiometry ⁹⁹ and fuel composition [20, 21] does not facilitate the desired range including $_{\rm 100}$ $\,$ low support temperatures. The addition of CH₄ to H₂ / air flames broadens ¹⁰¹ the regime of stable flame anchoring on the perforated plate (PP) by elim-¹⁰² inating instabilities of the lower nozzle flame. The PP had a 50% blockage ¹⁰³ ratio with 1.0 mm diameter holes and was located 100 mm upstream of the ¹⁰⁴ lower nozzle exit. The HCP are in close-to thermochemical equilibrium at 105 the nozzle exit and the products consist primarily (> 99.8 %) of N₂, O₂, $_{106}$ H₂O and CO₂. This provides a well defined burnt gas state to the stagnation ¹⁰⁷ plane that is used as reference in Sec. 3. Flames could not be stabilised on 108 the perforated plate below 1200 K and this defines the lower T_{HCP} limit. 109 The upper limit of 1600 K was above the weakly strained (75 s^{-1}) adiabatic 110 flame temperature $(T_{ad} = 1536 \text{ K})$ of the upper nozzle reactants. Differences ¹¹¹ in the HCP density were compensated by modest adjustments of the HCP

Table 1: Lower nozzle conditions with the reactant mole fractions (X) (the missing percentile accounts for air), heat loss (HL) to the burner, equilibrium OH concentration at the nozzle exit $([\text{OH}]_T^{\ddagger})$ and HCP bulk velocity at the nozzle exit (U_{HCP}) and $T_0 = 310$ K.

$T_{HCP} \times 10^3$	ĸ	$1.20\,$	1.30	1.40	$1.50\,$	1.60
Φ		0.30	0.38	$\rm 0.43$	0.51	0.62
$X(H_2) \times 10^{-2}$	$\hspace{0.05cm}$	8.8	9.7	7.6	6.9	6.7
$X(\text{CH}_4) \times 10^{-2}$		0.61	1.1	2.2	3.1	4.1
HL.	$\sqrt[6]{0}$	7.2	8.7	9.2	9.3	8.9
$[OH]_{T}^{\ddagger} \times 10^{-3}$	\lfloor mol m ⁻³ \rfloor	7.38	8.40	8.89	9.72	10.8
U_{HCP}	$\rm [m\;s^{-1}]$	22.7	23.4	24.1	24.6	25.1

¹¹² bulk velocity (see Table 1) in order to position the stagnation plane in the ¹¹³ proximity of the burner centre, i.e. jet momentum matching.

¹¹⁴ 2.3. Measurement Setup

 115 Simultaneous Mie scattering, PIV, CH₂O and OH – PLIF measurements ¹¹⁶ were performed using the 2^{nd} harmonic of a Litron Nano LG 175-10 Nd:YAG ¹¹⁷ (Mie scattering and PIV) and a frequency tripled Spectra Physics Quanta-¹¹⁸ Ray Lab-150 Nd:YAG (CH₂O – PLIF) laser. The residual 2^{nd} harmonic of ¹¹⁹ the latter light source was used to pump a Sirah Cobra Stretch dye laser to 120 probe OH via the $Q_1(8)$ line. The three spatially overlapped light sheets (i.e. ¹²¹ Mie scattering and PIV at 532 nm, light sheet height $H_{LS} = 27$ mm, pulse 122 power $P_l \simeq 30 \text{ mJ}$; CH₂O – PLIF at 355 nm, $H_{LS} = 18 \text{ mm}$, $P_l \simeq 150 \text{ mJ}$; 123 OH – PLIF at 283.55 nm, $H_{LS} = 18$ mm, $P_l \approx 14$ mJ) were located sym-¹²⁴ metrically around the theoretical stagnation plane. The light sheet thickness 125 was estimated to ~100 μm in the centre of the interrogation region using ¹²⁶ burn marks. The first pulse of the Mie scattering was recorded 200 ns prior ¹²⁷ to the LIF signals in order to eliminate elastic scattering in the LIF detection ¹²⁸ systems. Dichroic filters were used to spatially and spectrally segregate the

 signals. The PIV camera (LaVision LX 8M) was equipped with a 180 mm f/2.8 Sigma lens and a narrow width bandpass filter centred at 532 nm. Two LaVision intensifier relay optic units and imager intense cameras were used $_{132}$ to the record the CH₂O and OH – PLIF signals. The former was equipped 133 with a 85 mm $(f/1.2)$ lens and a 400 nm long-pass filter due to the absence of polycyclic aromatic hydrocarbons (PAH) interference [34]. The OH – PLIF 135 was recorded using a 105 mm UV lens $(f/2.8)$ and a filter combination that featured an optical density above 5 for all laser lines and a transmissivity in excess of 85% from 300–320 nm. An intensifier gate time of 50 ns and a low gain level of 60% minimised flame luminescence and noise. The detection system was calibrated using a multi-frequency target.

140 Aluminium oxide particles with $d_{p,90} < 1.66$ µm were used as velocity tracers. The Stokes number was below unity and the frequency response was sufficient for the smallest scales [20, 21]. Cross-correlation PIV with decreas-143 ing window size $(256 \times 256 \text{ to } 32 \times 32 \text{ with } 50\%$ overlap) was performed. The adaptive shape modulation of the interrogation windows incorporated the local flow field acceleration and provided a spatial resolution and vec-146 tor spacing of $\lambda_{PIV} = 135.2 \text{ }\mu\text{m}$ [20]. The resolution $(3 \cdot L_{\eta})$ and laser sheet thickness suggest that most (in-plane) fine scale flow structures were resolved. Out-of-plane contributions were insignificant [21].

3. Data Analysis

 Bimodal two-fluid descriptions of turbulent reacting flows become in- $_{151}$ adequate at low Da [3]. Multi-fluid descriptions [20, 35] provide a more comprehensive delineation of chemically reacting flows where intermediate

Figure 1: Sample images for DME / air, $\Phi = 0.50$, $T_{HCP} = 1600$ K. CH₂O–PLIF (left), OH–PLIF (2^{nd}) and multi-fluid (3^{rd}) image with iso-contours and PIV vectors overlaid (every sixth vector shown). The pink iso-contour encloses the reactants, yellow all OH signal, red the low temperature reacting fluid (i.e. $CH₂O$) and green the high temperature reacting fluid. Right image: Superimposed OH (orange – red), CH₂O (green), heat release layer (blue) and reactants (grey). The black arrow indicates the x_s coordinate system.

¹⁵³ fluid states are statistically relevant. In previous work [13, 20, 21, 31], self-¹⁵⁴ sustained flames were segregated from thermally supported burning by means ¹⁵⁵ of the thermochemical state at extinction. The bulk $(a_b \simeq 750 \text{ s}^{-1})$ and mean ¹⁵⁶ turbulent strains ($a_I \simeq 3200 \text{ s}^{-1}$) were significantly higher than the extinction ¹⁵⁷ strain ($a_q \simeq 190$ s⁻¹) of the corresponding laminar flames and self-sustained ¹⁵⁸ flames detached from the stagnation plane were not observed. A purpose ¹⁵⁹ written algorithm detected four iso-contours in each instantaneous image set ¹⁶⁰ (2000 images per condition) to distinguish between the different fluid states. $_{161}$ Sample images (CH₂O, OH – PLIF and multi-fluid field) are shown in Fig. 1.

 $_{162}$ Reactant (R) Fluid: Fresh reactants emerging from the upper nozzle that ¹⁶³ have not undergone any thermal alteration were identified via a PIV particle ¹⁶⁴ seeding density segregation technique [20, 36].

- ¹⁶⁵ Low Temperature Reactive (LTR) Fluid: Regions with a distinct CH_2O ¹⁶⁶ – PLIF signal in the absence of detectable OH levels [23].
- $_{167}$ Heat Release (HR) Fluid: Cross-correlation of CH₂O and OH PLIF ¹⁶⁸ signals mark exothermic zones [2, 26].
- $_{169}$ High Temperature Reactive (HTR) Fluid: Regions with an OH PLIF $_{170}$ signal ≥ 2 times the HCP OH intensity were used to delineate high tem-¹⁷¹ perature DME oxidation [20].
- 172 Hot Combustion Products: The OH PLIF signal close to the lower nozzle exit (I^{\dagger}) was used to identify the HCP [20]. The detected iso-contour ¹⁷⁴ is related to the gas mixing layer interface [14].

¹⁷⁵ 3.1. Image Superposition and Spatial Resolution

 Images of the multi-frequency calibration target from each camera system were used to create a common coordinate system and eliminate any residual spatial misalignment. This allows an accurate image superposition and is critical for the detection of the heat release layer ($CH₂O \times OH$). The spatial resolution of the detection system was measured using a NBS 1963A target and was ∼2⋅L_n. Smoothing filter operations on the individual images resulted 182 in a spatial multi-fluid resolution of $\lambda_{MF} = 250 \text{ }\mu\text{m}$. The image dimensions 183 were $-14.6 < x < 12.9$ and $-9.0 < y < 8.2$ mm resolved by 798×501 pixels. In comparison, the laminar flame thickness was 812 μ m, the mean scalar 185 dissipation layer thickness [37] $\lambda_D = 461 \text{ }\mu\text{m}$ and the Batchelor scale [38] $\lambda_B \simeq 82.3 \text{ }\mu\text{m}.$

¹⁸⁷ 4. Results and Discussion

¹⁸⁸ The investigated conditions occupy a nominally identical point in a clas-189 sical combustion regime diagram (e.g. Borghi [39]) with $Re_t \simeq 350$, $Da \simeq$ 190 0.29 and $Ka \simeq 64$. The burning mode changes were induced by variations 191 in the thermal support with $1200 < T_{HCP}$ (K) < 1600 . The data in Secs. 4.1 ¹⁹² and 4.2 was conditioned on the theoretical stagnation point streamline (SPS) ¹⁹³ and aligned on the reaction onset iso-contour $x_s = 0$, see Fig. 1. The lat-¹⁹⁴ ter was detected by means of the density segregation technique or the first 195 occurrence of either CH_2O or OH – LIF signals.

¹⁹⁶ 4.1. Multi–Fluid Flow Analysis

¹⁹⁷ The reactant fluid probability drops (by definition) from unity to nil at 198 the reaction onset $x_s = 0$ [20]. The low temperature reactive (LTR) fluid 199 is depicted in the top of Fig. 2. The UN is at $x_s < 0$ and vice versa. The ²⁰⁰ peak probability of the presence of formaldehyde directly adjacent to the ²⁰¹ reactants is 92\% for $T_{HCP} = 1600$ K and reduces gradually to 48\% for T_{HCP} $_{202}$ = 1200 K. The probability is gradually reduced away from the origin with ₂₀₃ increasing T_{HCP} as more reactive fluid states are favoured. The spatial extent $_{204}$ of the low temperature reactive fluid at high T_{HCP} is effectively limited by ₂₀₅ the integral length scale of turbulence (L_I) as formaldehyde is consumed ₂₀₆ by high temperature reactions (e.g. $CH_2O \times OH$). By contrast, the tail of ₂₀₇ the LTR probability extends to $2 \cdot L_I$ for low T_{HCP} . This can be attributed ²⁰⁸ to turbulent transport away from the reaction onset as the thermochemical 209 state favours a persistent CH_2O concentration.

Figure 2: Multi-fluid probability statistics along the SPS and aligned at $x_s = 0$. Low temperature reactive (top), heat release (middle) and high temperature reactive fluid (bottom). Legend: T_{HCP} in [K].

²¹¹ is depicted in the middle of Fig. 2. Peak probabilities of 11 and 34% were ²¹² determined for $T_{HCP} = 1500$ and 1600 K, respectively, with a peak value 213 around 5% for lower T_{HCP} . The latter suggests that high temperature chain $_{214}$ branching reactions are not triggered effectively. The peak location at T_{HCP} $_{215}$ = 1600 K was $x_s/L_I \simeq 0.25$ and shifted away from the reaction onset to ²¹⁶ $x_s/L_I \simeq 1.0$ at $T_{HCP} = 1500$ K. The second can be attributed to turbulent ²¹⁷ mixing of the LTR fluid with the OH containing HCP resulting in a spatially ²¹⁸ distributed heat release zone. By contrast, the former case exhibits relatively ²¹⁹ thin formaldehyde layers that are quickly consumed by OH in exothermic re-220 actions. The high temperature reactive fluid is only evident for T_{HCP} = 221 1600 K with a peak probability of ~7.3% at $x_s/L_I \simeq 0.5$. The spatial extent $_{222}$ was limited to 1.5 L_I , which can be attributed to dilatation. By contrast, ²²³ Hampp and Lindstedt [20, 21] showed the presence of high temperature reac-²²⁴ tive fluids (i.e. distinct [OH] levels) in an ultra-lean ($\Phi = 0.20$) DME/air flame 225 supported at $T_{HCP} = 1700$ K. The comparison illustrates the importance of ²²⁶ the external enthalpy source to the burning mode and reaction progress at $_{227}$ low $Da.$

²²⁸ 4.2. Scalar Profiles and Gradients

229 Mean normalised CH₂O and OH – PLIF (I/I^{\ddagger}) intensity profiles aligned 230 at $x_s = 0$ are shown in the left column of Fig. 3. The OH contained in the ²³¹ HCP stream provides a constant and well-defined reference state (see Sec. 2.2) as and the corresponding signal intensity close to the LN exit (I^{\ddagger}) was used ²³³ for the normalisation. However, the current setup does not feature a similar 234 reference state for the CH₂O concentration. Thus I^{\ddagger} for the CH₂O signal was ²³⁵ set to 1 count for a non-dimensional analysis. The statistics were compiled ²³⁶ from at least 980 profiles and more than 1550 for $T_{HCP} \ge 1400$ K. The shape ²³⁷ of the CH2O distribution is relatively consistent with the peak located at ²³⁸ ∼ L_I . However, the peak intensity increases sixfold with increasing T_{HCP} . $_{239}$ This compares well with the sevenfold increase of the $CH₂O$ concentration 240 obtained from corresponding laminar flames at a low rate of strain $(a =$ $_{241}$ 75 s⁻¹), see Table 2. The mean normalised OH intensities are close to unity ²⁴² for $x_s > 0$ at $T_{HCP} \le 1400$ K. The absolute OH concentrations increase with ²⁴³ temperature, see Table 1. High temperature chain branching is increasingly ²⁴⁴ favoured for $T_{HCP} \ge 1500$ K and a distinct OH peak evolves. The latter is 245 particularly prominent at $T_{HCP} = 1600$ K with a spatial extent similar to ²⁴⁶ the HTR fluid peak in Fig. 2.

The maximum CH₂O and OH gradients (∇I_k) from the reactants to prod-

Figure 3: Mean CH_2O (top left) and $OH - PLIF$ (bottom left) signal along with the PDF of the maximum normalised $CH₂O$ (top right) and OH signal gradient (bottom right). The CH₂O gradients were scaled by $1/50$ for visualisation on a shared axis. Legend: T_{HCP} in [K].

ucts were calculated using Eq. (2), where δ_x is the pixel spacing.

$$
\nabla I_k = \max\left(\frac{I_{k,i+1} - I_{k,i-1}}{I^{\ddagger} \cdot 2\delta_x}\right) \; ; \; \; \mathbf{k} = \text{CH}_2\text{O}, \text{OH} \tag{2}
$$

²⁴⁷ The mean resolution of the instantaneous 5–95% CH₂O peak at T_{HCP}

Table 2: Gradient of the normalised CH_2O and OH signal along with the $5 - 95\%$ CH₂O layer thickness for 1200 < T_{HCP} (K) < 1600. The first and second three lines are the mean and mode of the PDFs in Figs. $3 - 4$. The laminar δ_{CH2O} and normalised peak concentration ($\Lambda = [\text{CH}_2\text{O}]_{BTB}$ / $[\text{CH}_2\text{O}]_{twin}$) at $a = 75 \text{ s}^{-1}$ are also shown.

		$1 - 1 - 1$	1000000				
	$T_{HCP} \times 10^3$	Κ	1.20	1.30	1.40	1.50	1.60
Mean	∇I_{CH2O}	mm	24	34	58	91	144
	∇I_{OH}	mm	0.31	0.65	0.79	1.4	3.0
	δ CH _{2O}	mm	4.5	3.7	3.3	3.5	2.4
Mode	∇I_{CH2O}	mm	8.3	18	28	33	131
	∇I_{OH}	mm^{-1}	0.21	0.61	0.81	$1.3\,$	2.7
	δ CH _{2O}	mm	3.1	2.4	1.5	1.4	1.3
$\rm Lam$			0.86	0.85	0.71	0.36	0.11
	OCH2O	mm	2.2	1.8	1.1	0.91	0.87

Figure 4: PDF of δ_{CH2O} . Legend: T_{HCP} in [K].

 $_{248}$ = 1600 K (narrowest peak) was resolved by 68 \pm 37 pixels. High frequency ²⁴⁹ fluctuations of ∇I_k were removed using a low pass filter (length $\approx \lambda_{MF}$). The 250 mean of the PDF(∇I_{CH_2O}) increases sixfold, see top right of Fig. 3, while ₂₅₁ the mode shifts from 8.3 to 131 mm⁻¹ with increasing T_{HCP} . The mean of ²⁵² the PDF(∇I_{OH}) increases an order of magnitude with T_{HCP} , while the mode ²⁵³ shifts from 0.21 to 2.7 mm⁻¹ from $1200 < T_{HCP}$ (K) <1600 K, see Table 2. ²⁵⁴ The PDF of the CH₂O layer thickness (δ_{CH2O} , 5 – 95% of the instanta- $_{255}$ neous maximum) illustrates a distinct broadening with decreasing T_{HCP} as 256 depicted in Fig. 4. The mean of δ_{CH2O} decreases from 4.5 to 2.4 mm with ²⁵⁷ increasing T_{HCP} . The mode of the PDF(δ_{CH2O}) at $T_{HCP} = 1200$ K is $\sim L_I$ 258 and approaches δ_{CH2O} of the laminar flame calculations at higher T_{HCP} , see ²⁵⁹ Table 2. The spatial distribution of the low temperature reactive zones with 260 relatively narrow PDFs(∇I_k) for $T_{HCP} \leq 1300$ K can be attributed to turbu-²⁶¹ lent mixing of HCP and reactants across the stagnation plane. The reaction ²⁶² progress is dominated by the thermochemical state of the burnt gases. By $_{263}$ contrast, at higher T_{HCP} the flame assumes a flamelet–like structure with $_{264}$ significantly increased intensity and gradients and reduced δ_{CH2O} .

²⁶⁵ 4.3. Conditional Strain on Material Surfaces

266 The instantaneous planar rate of strain $(e_{ij} = 0.5(\partial u_i/\partial x_j + \partial u_j/\partial x_i))$ ²⁶⁷ and vorticity $(\omega_{ij} = \partial u_i/\partial x_j - \partial u_j/\partial x_i)$ tensors were calculated from the 268 PIV data [21]. The normal $(a_n = f_{11})$ and tangential $(a_t = f_{22})$ strain 269 components were determined by $f = \mathbf{R} \cdot e$, where **R** is the rotation matrix 270 and Θ is the angle between the iso-contour normal and the SPS. The data was ²⁷¹ subsequently conditioned upon the multi-fluid iso-contours (β), where $\beta \equiv 1$ ²⁷² at the iso-contour and nil elsewhere. The total rate of strain was defined as ²⁷³ $a_d = e_{11} + e_{22}$. The analysis includes the movement of the stagnation point ₂₇₄ in the radial limit \pm 0.5 L_I away from the SPS [19].

²⁷⁵ The rate of strain along the reactant fluid iso-contour is only modestly af-276 fected by the T_{HCP} variation. The mean normal compressive $(a_n|R)$, tangen-²⁷⁷ tial $(a_t|R)$ and total $(a_d|R)$ strain and vorticity $(\omega|R)$ were -1070 \pm 158 s⁻¹, $_{278}$ 419 \pm 34 s⁻¹, -681 \pm 100 s⁻¹ and -668 \pm 114 s⁻¹, respectively, with the PDF ²⁷⁹ shapes maintained. The supplementary material contains a data summary.

²⁸⁰ 4.3.1. Strain at the Low Temperature Reacting Surface

²⁸¹ The conditional strain and vorticity along the low temperature reacting ²⁸² fluid material surface is depicted in Fig. 5. The means of $PDF(a_n | LTR)$ and PDF($a_t | LTR$) increase more than twofold from -568 < $a_n | LTR$ (s⁻¹) $_{284}$ < -1451 and 205 < $a_t|LTR$ (s⁻¹) < 484 for 1200 < T_{HCP} (K) < 1600. The 285 skewness of the PDFs $(a_n | LTR)$ towards reduced compressive strain increases 286 with decreasing T_{HCP} with a mode shift from -1280 to -440. The spread was ²⁸⁷ reduced by 22% from 1804 to 1410 s⁻¹. The PDFs(a_t |*LTR*) are less skewed ²⁸⁸ towards reduced extensive strains. The mean vorticity increases significantly $_{289}$ with T_{HCP} . The elevated skewness towards reduced normal and tangential

Figure 5: Rate of strain and vorticity evaluated along the low temperature reacting fluid surface: Normal (top left), tangential (right) and total (bottom left) strain and vorticity (right). Legend: T_{HCP} in [K].

290 strain with lower T_{HCP} can be attributed to the quenching of CH_2O in higher $_{291}$ strain regions. At $T_{HCP} = 1600$ K formaldehyde is quickly consumed and ²⁹² appears in relatively thin layers.

²⁹³ 4.3.2. Strain at the Heat Release Surface

²⁹⁴ The rate of strain on the heat release surface is depicted in Fig. 6. The ²⁹⁵ mean PDF($a_n|HR$) increases twofold from -975 $a_n|HR$ (s⁻¹) a_n -1635 with 296 increasing T_{HCP} and exhibits a mode shift from -900 to -1560 s⁻¹. The rms 297 increases by $\sim 20\%$ with T_{HCP} . The mean tangential strain increases at 298 a similar rate to the PDFs $(a_t | LTR)$, while absolute values are on average ²⁹⁹ ∼20% higher. The latter can be attributed to the enhanced dilatation. For 300 $T_{HCP} \leq 1400$ K the heat release fluid was found in low strain pockets within $_{301}$ the mixing layer of the stagnation plane. The vorticity levels were $>30\%$ ³⁰² below corresponding reactant values. By contrast, at $T_{HCP} \geq 1500$ K the

Figure 6: Rate of strain and vorticity evaluated along the heat release material surface: Normal (top left), tangential (right) and total (bottom left) strain and vorticity (right). Legend: T_{HCP} in [K].

 heat release may occur in flamelet–like layers that survived elevated rates of strain. The high temperature reactive fluid was statistically relevant only for $T_{HCP} = 1600$ K. The mean normal compressive and tangential strains were $_{306}$ -1975 \pm 2150 s⁻¹ and 593 \pm 1390 s⁻¹, respectively.

5. Conclusions

 The present work utilises a back-to-burnt opposed jet configuration for 309 the aerodynamic stabilisation of lean ($\Phi = 0.50$) premixed DME/air flames 310 with $Re_t \simeq 350$ and $Da = 0.29$ against hot combustion products. The HCP temperature was varied from 1200 to 1600 K. The results show that increas- ing thermal support temperatures close to or higher than the adiabatic flame temperature (1536 K) gradually favours flamelet–like structures. The lat- $_{314}$ ter were characterised by steep scalar gradients, thin CH₂O layers and a sequential occurrence of preheat, heat release and high temperature flame

 zones. Such reaction zones survived relatively high rates of strain. However, the overall likelihood remained comparatively low (i.e. ∼30%). By contrast, lower T_{HCP} lead to a spatial distribution of low temperature reactive zones with significantly reduced species gradients and peak levels. Significant high temperature chain branching (i.e. distinct OH levels) was not observed for $T_{HCP} \leq 1400$ K. The spatially distributed heat release (CH₂O \times OH) of the thermally supported burning occurred within the HCP. In comparison to the low temperature reactive fluid, the underlying normal strain increased due to the proximity to the stagnation plane, while the increase in exten- sive tangential strain was attributed to dilatation. The burning mode and the reaction progress of low Da reacting flows is strongly dependent on the thermochemical state of the external enthalpy source. The current data set provides an excellent challenge for existing turbulent combustion models and supports the development of new models that are applicable in regimes that are not covered by conventional combustion regime diagrams.

Acknowledgements

 The authors would like to acknowledge the support of the AFOSR and EOARD under Grant FA9550-17-1-0021 and the encouragement by Dr. Chip- ing Li and Dr. Russ Cummings. The US Government is authorised to repro- duce and distribute reprints for Governmental purpose notwithstanding any copyright notation thereon. Mr Hamed Shariatmadar wishes to gratefully acknowledge the receipt of an Imperial College President's PhD Scholar- ship Award for outstanding students. The authors would also like to thank Dr. Robert Barlow.

References

- [1] V. D. Milosavljevic, R. P. Lindstedt, M. D. Cornwell, E. J. Gutmark, 342 E. M. Váos, in G. Roy, K. H. Yu, J. H. Whitelaw, J. J. Witton (Eds.), Advances in Combustion and Noise Control, Cranfield University Press,
- 2006, pp. 149–165.
- [2] Y. Minamoto, N. Swaminathan, Combust. Flame 161 (2014) 1063–1075.
- [3] Y. Minamoto, N. Swaminathan, R. S. Cant, T. Leung, Combust. Sci. Technol. 186 (2014) 1075–1096.
- [4] F. J. Weinberg, Nature 233 (1971) 239–241.
- [5] E. Mastorakos, A. Taylor, J. Whitelaw, Combust. Flame 102 (1995) $101-114$.
- [6] R. L¨uckerath, W. Meier, M. Aigner, J. Eng. Gas Turb. Power 130 (2008) 011505.
- [7] J. A. W¨unning, J. G. W¨unning, Prog. Energ. Combust. 23 (1997) 81–94.
- [8] P. Sabia, M. de Joannon, A. Picarelli, R. Raguccia, Combust. Flame 160 (2013) 47-55.
- 356 [9] B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, X.-S. Bai, Combust. Flame 162 (2015) 2937–2953.
- 358 [10] B. Zhou, C. Brackmann, Z. Li, M. Aldén, X.-S. Bai, Proc. Combust. Inst. 35 (2015) 1409–1416.
- [11] B. Zhou, Q. Li, Y. He, P. Petersson, Z. Li, M. Ald´en, X.-S. Bai, Combust. Flame 162 (2015) 2954–2958.
- 362 [12] B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Aldén, X.-S. Bai, Combust. Flame 175 (2016) 220–236.
- [13] F. Hampp, PhD thesis, Imperial College, May 2016, url: http://hdl.handle.net/10044/1/32582.
- [14] B. Coriton, J. H. Frank, A. Gomez, Combust. Flame 160 (2013) 2442– 2456.
- [15] K. H. H. Goh, P. Geipel, F. Hampp, R. P. Lindstedt, Proc. Combust. Inst. 34 (2013) 3311–3318.
- 370 [16] B. Böhm, C. Heeger, I. Boxx, W. Meier, A. Dreizler, Proc. Combust. Inst. 32 (2009) 1647–1654.
- [17] K. H. H. Goh, P. Geipel, F. Hampp, R. P. Lindstedt, Fluid Dyn. Res. 45 (2013) 061403.
- [18] D. Geyer, A. Kempf, A. Dreizler, J. Janicka, Combust. Flame 143 (2005) $524 - 548$.
- [19] P. Geipel, K. H. H. Goh, R. P. Lindstedt, Flow Turbul. Combust. 85 (2010) 397–419.
- [20] F. Hampp, R. P. Lindstedt, Combust. Flame 182 (2017) 248–268.
- [21] F. Hampp, R. P. Lindstedt, Proc. Combust. Inst. 36 (2017) 1911-1918.
- [22] F. Hampp, R. P. Lindstedt, in A. Runchal, A. Gupta, A. Kushari, A. De (eds.) Energy for Propulsion, Springer-Verlag, To Appear.
- [23] R. L. Gordon, A. R. Masri, E. Mastorakos, Combust. Flame 155 (2008) 181–195.
- [24] S. H. Won, B. Windom, B. Jiang. Y. Ju, Combust. Flame 161 (2014) 475–483.
- [25] B. O. Ayoola, R. Balachandran, J. H. Frank, E. Mastorakos, C. F. Kaminski, Combust. Flame 144 (2006) 1–16.
- [26] R. L. Gordon, A. R. Masri, E. Mastorakos, Combust. Theor. Model. 13 (2009) 645–670.
- [27] J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltie, S. Hammack, T. Lee, A. M. Steinberg, Exp Fluids 57 (2016) 65.
- [28] J. R. Osborne, S. A. Ramji, C. D. Carter, A. M. Steinberg, Proc. Com-bust. Inst. 36 (2017) 1835–1841.
- [29] K. H. H. Goh, P. Geipel, R. P. Lindstedt, Combust. Flame 161 (2014) 2419–2434.
- [30] K. H. H. Goh, P. Geipel, R. P. Lindstedt, Proc. Combust. Inst. 35 (2015) 1469–1476.
- [31] F. Hampp, R. P. Lindstedt, In Y. Sakai and C. Vassilicos (eds.) Fractal Flow Design: How to Design Bespoke Turbulence and why, Springer-Verlag, CISM Int. Mech. Sci. 568, 2016, 75–102.
- [32] N. Peters, in: W. A. Sirignano, A. G. Merzhanov, L. De Luca (eds.), Advances in Combustion Science: In Honor of Y. B. Zel'dovich, AIAA, Prog. Astronaut. Aeron. 173 (1997) 73–91.
- [33] S.-W. Park, PhD thesis, Imperial College, March 2012, url: http://hdl.handle.net/10044/1/9599.
- [34] S. A. Skeen, J. Manin, L. M. Pickett, Proc. Combust. Inst. 35 (2015) 3167–3174.
- $_{408}$ [35] D.B. Spalding, Proc. $7th$ Biennial Conf. on Comp. Techn. Appl. (CTAC 95), World Scientific Publishing Co Ltd, (1996) 59–81.
- [36] A. M. Steinberg, J. F. Driscoll, S. L. Ceccio, Exp. Fluids 44 (2008) 985–999.
- [37] K. A. Buch, W. J. A. Dahm, J. Fluid Mech. 364 (1998) 1–29.
- [38] G. K. Batchelor, J. Fluid Mech. 5 (1959) 113–133.
- [39] N. Peters, J. Fluid Mech. 384 (1999) 107–132.

List of Tables

List of Figures

⁴⁴¹ List of Supplementary Material

 $_{442}$ Figure S1 Schematic of the experimental configuration. SP – stagnation ⁴⁴³ plane; DSI – density segregation iso-contour; HCP – hot combustion $_{444}$ products; CFG – cross fractal grid; PP – Perforated plate; x,y – Coor-⁴⁴⁵ dinate system.

446 Table S1 Summary of the normal (a_n) , tangential (a_t) and total (a_d) strain 447 and vorticity (ω) conditioned upon the material surfaces (β) for DME/air ⁴⁴⁸ mixtures at $\Phi = 0.5$, $Re_t = 350$ and $Da = 0.29$ for a HCP temperature variation in the range $1200 < T_{HCP}$ (K) < 1600. Listed are the ⁴⁵⁰ mode, mean and spread of the respective PDFs. R – reactants; LTR $_{451}$ – low temperature reactive; HR – heat release (i.e. CH_2O-OH cross-⁴⁵² correlation); HTR – high temperature reactive; HCP – hot combustion ⁴⁵³ product fluid iso-contour.