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In this Perspective, we outline the progress and potential of machine learning for the 
physical sciences. We envisage a future where the design, synthesis, characterisation, and 
application of molecules and materials is accelerated by artificial intelligence. 

A powerful structure-property relationship for molecules and materials is provided by the 
Schrödinger equation. For a given spatial arrangement of chemical elements, the 
distribution of electrons and a wide range of physical responses can be described. The 
development of quantum mechanics provided a rigorous theoretical foundation for the 
chemical bond. In 1929, Paul Dirac famously proclaimed that the underlying physical laws 
for the whole of chemistry are “completely known”.1 John Pople, realising the importance of 
rapidly developing computer technologies, created a program called Gaussian 70 that could 
do what scientists call ab initio calculations: predicting the behaviour, for molecules of 
modest size, purely from the fundamental laws of physics.2 In the 1960s, the Quantum 
Chemistry Program Exchange brought quantum chemistry to the masses in the form of 
useful practical tools.3 Suddenly, experimentalists with little or no theoretical training could 
perform quantum calculations too. Using modern algorithms and supercomputers, systems 
containing thousands of interacting ions and electrons can be described today using 
approximations to the physical laws that govern the world on the atomic scale.4–6 

The field of computational chemistry has become increasingly predictive in the 21st Century, 
with activity in applications ranging from developing catalysts for greenhouse gas 
conversion, discovering materials for energy harvesting and storage, to computer-assisted 
drug design7. The modern chemical simulation toolkit allows the properties of a compound 
to be anticipated (with reasonable accuracy) even before it has been made in the laboratory. 
High-throughput computational screening has become routine, giving scientists the ability 
to calculate the properties of thousands of compounds as part of a single study. In particular, 
Density Functional Theory (DFT)8,9 is now a mature technique for calculating the structure 
and behaviour of solids,10 which has enabled the development of extensive databases 
covering the calculated properties of known and hypothetical systems including organic and 
inorganic crystals, single molecules, and metal alloys.11–13  
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The emergence of contemporary artificial intelligence (AI) methods has the potential to 
significantly alter, and enhance, the role of computers in science and engineering. The 
combination of big data and AI has been referred to as both the fourth paradigm of 
science14 and the fourth industrial revolution,15 and the number of applications in the 
chemical domain is growing at an astounding rate. A subfield of AI that has evolved rapidly 
in recent years is machine learning (ML). At the heart of ML applications lie statistical 
algorithms whose performance, much like that of a novice chemical researcher, improves 
with experience. There is a growing infrastructure of machine learning tools for generating, 
testing, and refining scientific models. Such techniques are suitable for addressing complex 
problems involving massive combinatorial spaces or nonlinear processes, which 
conventional procedures either cannot solve or can only tackle at great computational cost.  

As the machinery for AI and ML matures, significant advances are being made not only by 
those in mainstream AI research, but also by experts in other fields (domain experts) who 
have the vision and the drive to adopt these approaches for their purposes. As we detail in 
the Learning to learn box, the resources and tools that facilitate the application of ML 
techniques by non-computer scientists mean that the barrier to entry is lower than ever.  

In the rest of this Perspective, we discuss progress in the application of machine learning to 
meet challenges in molecular and materials research. We review the basics of machine 
learning approaches, identify areas where existing methods have the potential to accelerate 
research, and consider the developments required to enable more wide-ranging impacts.  

1. Nuts and Bolts of Machine Learning  

Given enough data, could a computer determine all known physical laws (and potentially 
also those that are currently unknown) without human input? Yes, given a rule-discovery 
algorithm. In traditional computational approaches, the computer is little more than a 
calculator, employing an algorithm provided by a human expert. By contrast, ML 
approaches learn the rules that underlie a dataset through assessment of a portion of that 
data. We consider in turn the basic steps involved in the construction of a model, as 
illustrated in Fig. 1; this constitutes a blueprint of the generic workflow required for 
successful application of ML in a materials discovery process.  
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Figure 1 Illustration of a generic machine learning workflow applied to interpret real world 
observations. It consists from four basics steps: (i) data collection – acquisition of data from 
experiment, simulations or other sources; (ii) data representation – processing of data to 
ensure its correctness, integrity and transformation into a form suitable for ML; (iii) choice 
of learner – selection of the types of ML model used to represent the problem; (iv) model 
optimisation – rigorous testing of the resultant model(s) to minimise error and choose the 
optimal representation.  

 
Data collection 

Machine learning comprises models that learn from existing (training) data. Data may 
require initial pre-processing, during which missing or spurious elements are identified and 
handled. For example, the inorganic crystal structure database (ICSD) currently contains 
188,000 entries, which have been checked for technical mistakes, but are still subject to 
human and measurement errors. Identifying and removing such errors is essential if ML 
algorithms are not to be misled by their presence. There is a growing public concern about 
the lack of reproducibility and error propagation of experimental data published in peer-
reviewed scientific literature. In certain fields like cheminformatics, best practices and 
guidelines are established to address these problems.16  

The training of an ML model may be supervised, semi-supervised or unsupervised, 
depending upon the type and amount of available data. In supervised learning, the training 
data consist of sets of input and associated output values. The goal of the algorithm is to 
derive a function that, given a specific set of input values, predicts the output values to an 
acceptable degree of fidelity. If the available data set consists of only input values, 
unsupervised learning can be used in an attempt to identify trends, patterns or clustering in 
the data. Semi-supervised learning may be of value if there is a large amount of input data, 
but only a limited amount of corresponding output values.  

Supervised learning is the most mature and powerful of these approaches, and is used in 
most ML studies in the physical sciences, for example, in the mapping of chemical 
composition to a property of interest. Unsupervised learning is less common, but can be 
used for more general analysis and classification of data or to identify previously 
unrecognised patterns in large datasets17. 
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Data representation 

Even though raw scientific data are usually numerical, the form in which data are presented 
often affects learning. In many types of spectroscopy, the signal is acquired in time-domain 
but for interpretation it is converted to a frequency-domain with the Fourier transform. Just 
like scientists, a ML algorithm may learn more effectively using one format rather than the 
other. The process of converting raw data into something more suitable for an algorithm is 
called featurisation or feature engineering.  

The more suitable the representation of the input data, the more accurately can an 
algorithm map it to the output data. Selecting how best to represent the data may require 
insight into both the underlying scientific problem and the operation of the learning 
algorithm, since it is not always obvious which choice of representation will give the best 
performance; this is an active topic of research for chemical systems.18  

Many representations are available to encode structures and properties. For example, the 
Coulomb matrix19 contains information on atomic nuclear repulsion, as well as the potential 
energy of free atoms; the matrix is invariant to molecular translations and rotations. 
Molecular systems also lend themselves to description as graphs.20 In the solid-state, the 
conventional description of crystal structures by translation vectors and fractional 
coordinates of the atoms is not appropriate for ML, since a lattice can be represented in an 
infinite number of ways by choosing a different coordinate system. Representations based 
on radial distribution functions,21 Voronoi tessellations,22 and property-labelled materials 
fragments23 are amongst the new ways in which this problem is being tackled.  

Choice of learner 

When the data set has been collected and represented appropriately, it is time to choose a 
model to represent it. A wide range of model types (or learners) exists for model building 
and prediction. Supervised learning models may predict output values within a discrete set 
(e.g. the categorisation of a material as a metal or an insulator) or a continuous set (e.g. 
polarisability). Building a model for the former requires classification, while the latter 
requires regression. A range of different learning algorithms can be applied (see Fig. 2), 
depending on the type of data and the question posed. It may be helpful to use an 
ensemble of different algorithms, or of similar algorithms with different values for their 
internal parameters, (“bagging” or “stacking”) to create a more robust overall model.  
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Figure 2 Classes of machine learning techniques (following Ref. 24) and examples of 
problems that can be posed to them by a curious scientist.  Whilst evolutionary algorithms 
are often integrated into machine learning procedures, they form part of a wider class of 
stochastic search algorithms.   
 
Common algorithms (learners) include:  

Naïve Bayes25 is a collection of classification algorithms based on Bayes’ theorem that 
identify the most probable hypothesis, given the data as our prior knowledge about the 
problem. Bayes’ theorem provides a formal way to calculate the probability that a 
hypothesis is correct, given a set of existing data. New hypotheses can then be tested and 
the prior knowledge updated. In this way one can select the hypothesis (or model) with the 
highest probability of correctly representing the data. 

In nearest neighbour (k-NN)26 methods the distances between samples and training data in 
a descriptor hyperspace are calculated. k-NN methods are so-called because the output 
value for a prediction relies on the values of the k nearest neighbours, where k is an integer. 
k-NN models can be used in both classification and regression models; in classification the 
prediction is determined by the class of the majority of the k nearest points, while in a 
regressor the value is the average of the k nearest points.  

Decision trees27 are flowchart-like diagrams used to determine a course of action or 
outcomes. Each branch of the tree represents a possible decision, occurrence or reaction. 
The tree is structured to show how and why one choice may lead to the next, with branches 
indicating that each option is mutually exclusive. Decision trees comprise a root node, leaf 
nodes, and branches. The root node is the starting point of the tree. Both root and leaf 
nodes contain questions or criteria to be answered. Branches are arrows connecting nodes, 
showing the flow from question to answer. Decision trees are often used in ensemble 
methods (meta-algorithms) that combine multiple trees into one predictive model in order 
to improve performance. 

Kernel methods are a class of algorithms; whose best known members are the support 
vector machine (SVM) and kernel ridge regression (KRR).28 The name “kernel” comes from 
use of the kernel function, a “trick” that transforms input data into a high-dimensional 
representation, where the problem is easier to solve. In a sense, a kernel is a similarity 



 
 
 
 

 

6 

function provided by the domain expert. It takes two inputs and, from them, creates an 
output that quantifies how similar they are. 

Artificial neural networks (ANNs) and deep neural networks (DNNs)29 loosely mimic the 
operation of the brain, with artificial neurons (the processing unit) arranged in input, output 
and hidden layers. In the hidden layers, each neuron receives input signals from other 
neurons, integrates those signals, and then uses the result in a straightforward computation. 
Connections between neurons have weights, the values of which represent the network’s 
stored knowledge. Learning is the process of adjusting the weights so that the training data 
are reproduced as accurately as possible. 

Whatever the model, most learners are not fully autonomous, requiring at least some 
guidance. The values of internal variables (hyperparameters) are estimated beforehand 
using systematic and random searches, or heuristics. Even modest changes in the values of 
hyperparameters may substantially improve or impair learning, and the selection of optimal 
values is often problematic. Consequently, the development of automatic optimisation 
algorithms is an area of active investigation, as is their incorporation into accessible 
packages for non-expert users (see Table 1).  

Model optimisation  

When the learner (or set of learners) has been chosen and predictions are being made, a 
trial model must be evaluated to allow for optimisation and ultimate selection of the best 
model. Three principal sources of error arise and must be taken into account: model bias, 
model variance, and irreducible errors. 

Total Error = Bias + Variance + Irreducible Errors 

Bias is the error from incorrect assumptions in the algorithm and can result in the model 
missing underlying relationships. Variance on the other hand is sensitivity to small 
fluctuations in the training set. Even well-trained ML models may contain errors arising from 
noise in the training data, measurement limitations, calculation uncertainties, or simply 
outliers or missing data. Poor model performance usually indicates a high bias or a high 
variance, as illustrated in Fig. 3.  

High bias (underfitting) occurs when the model is not flexible enough to adequately 
describe the relationship between inputs and predicted outputs, or when the data are 
insufficiently detailed to allow the discovery of suitable rules. High variance (overfitting) 
occurs when a model becomes too complex; typically this occurs as the number of 
parameters is increased. The diagnostic test for overfitting is that the accuracy of a model in 
representing training data continues to improve, whilst the performance in estimating test 
data plateaus or declines.  
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Figure 3 Errors that arise in machine learning approaches, both during the training of a new 
model (blue line) and the application of a built model (red line). A simple model may suffer 
from high bias (underfitting), while a complex model may suffer from high variance 
(overfitting) leading to a bias-variance trade-off. The model shown here is built on an 
example from kaggle.com, available at https://keeeto.github.io/blog/bias_variance/. 
 
The key test for the accuracy of a machine learning model is its successful application to 
unseen data. A widely-used method to determine the quality of a model is to withhold a 
randomly-selected portion of data during training. This withheld data set, known as a test 
set, is shown to the model once training is complete (Figure 3). The extent to which the 
output data in the validation set is accurately predicted then provides a measure of the 
effectiveness of training. Cross-validation is reliable only when the samples used for training 
and validation are representative of the whole population, which may present problems if 
the sample size is small, or if the model is applied to data from compounds that are very 
different to those in the original dataset. A careful selection of methods to evaluate the 
transferability and applicability of a model are required in such cases.  

 

Learning to Learn 

One of the most exciting aspects of machine learning techniques is their promise to 
democratise molecular and materials modelling, by reducing the computer power and prior 
knowledge required for entry. Just as Pople’s Gaussian software made quantum chemistry 
more accessible to a generation of experimental chemists, ML approaches, if developed and 
implemented correctly, can broaden routine application of computer models by non-
specialists. The accessibility of ML technology relies critically on three factors: open data, 
open software and open education. There is an increasing drive to open data within the 
physical sciences and the best practice has been outlined in recent articles.30,31 Some of the 
open software being developed is listed in Table 1. There are also many excellent open 
education resources, such as massive open online courses (MOOCs) available.  

http://www.fast.ai is a course that aims to “make neural nets uncool again”! One of the 
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great advantages of fast.ai is that the novice user starts to build working machine learning 
models almost immediately. The course, however, is not for absolute beginners, and 
requires a working knowledge of computer programming and high-school level 
mathematics. 

https://www.datacamp.com offers an excellent introduction to coding for data-driven 
science, and covers many practical analysis tools relevant to chemical datasets. This course 
features extremely useful interactive environments to develop and test code and is suitable 
for non-coders, as it teaches the student Python at the same time as ML. 

Academic MOOCs are the best locations for those who wish to get more involved with the 
theory and principles of AI and ML, as well as the practice. The Stanford MOOC 
(https://www.coursera.org/learn/machine-learning) is popular, with excellent alternatives 
available from sources such as https://www.edx.org (Learning from Data) and 
https://www.udemy.com (Machine Learning A-Z). The underlying mathematics is the topic 
of a course from Imperial College (https://www.coursera.org/specializations/mathematics-
machine-learning). 

Data blogs and podcasts. Many ML professionals run informative blogs and podcasts dealing 
with specific aspects of ML practice. These are useful resources for general interest as well 
as broadening and deepening knowledge. There are too many to provide an exhaustive list 
here, but we do recommend https://machinelearningmastery.com and 
http://lineardigressions.com to get started. 

 

2. Accelerating the Scientific Method 

Whether through the enumeration and analysis of experimental data, or the codification of 
chemical intuition, the application of informatics to guide laboratory chemists is advancing 
rapidly. In this section, we explore how ML is helping to progress, and reduce the barriers 
between, the areas of chemical/materials design, synthesis, characterisation and modelling.  
We finally describe some of the important developments in the field of AI for data-mining 
existing literature. 

Guiding chemical synthesis   

Organic chemists were amongst the first scientists to recognise the potential of 
computational methods in laboratory practice. E.J. Corey's OCSS program,33 developed 
more than 50 years ago, was an attempt to automate retrosynthetic analysis. In a synthetic 
chemistry route, the number of possible transformations per step can range from around 80 
to several thousand,34 which compares to the order of tens of potential moves at each game 
position in chess.35 In chemical synthesis, human experts are required to specify conditional 
and contextual rules, which exclude large sets of potential reagents at a given step, thus 
limiting the number of choices available to the algorithm. The contextual rules (typically 
many thousands of them) are of the utmost importance if a machine relying on a traditional 
algorithm is to compete with an expert. Recent breakthroughs in the Chematica program 
have shown that computers can be more efficient than humans in these tasks.32  

The combination of extremely complex systems and huge numbers of potential solutions, 
arising from competing objective functions (cost, purity, time, toxicity etc.) make synthetic 
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chemistry ill-suited to the application of traditional algorithmic approaches. However, 
because of this complexity, synthesis is one area of research that can benefit most from the 
application of artificial intelligence.  

Deep learning approaches, which most commonly rely on many-layered ANNs or a 
combination of ANNs with other learning techniques such as Boltzmann machines, are 
showing particular promise for predicting chemical synthesis routes by combining rules-
based expert systems with neural networks that rank the candidates,36 or rank the 
likelihood of a predicted product by applying the rules.37 One ANN that learned from 
chemical literature examples was able to achieve a level of sophistication such that trained 
chemists could not distinguish between computer and human expert designed routes.34 
However, a severe drawback of rules-based systems is that they have difficulty operating 
outside their knowledge base. 

Alternatives to rules-based synthesis prediction have also been proposed, based on so-
called ‘sequence-to-sequence’ approaches, rooted in the relationships between organic 
chemistry and linguistics. By casting molecules as text strings, these relationships have been 
applied in several chemical design studies.38,39 In sequence-to-sequence approaches a 
model is fed an input of products and then outputs reactants as a SMILES string.40 A similar 
approach has also been applied to retrosynthesis.41 Future developments in areas such as 
one-shot learning (as recently applied to drug discovery)42 could lead to wider application in 
fields like natural product synthesis, where training data are scarce. 

Beyond the synthesis of a target molecule, ML models can been applied to assess the 
likelihood that a product will crystallise. By applying feature selection techniques, Wicker 
and Cooper developed a two-parameter model, capable of predicting the propensity of a 
given molecule to crystallise with an accuracy of ~ 80%.43 Crucially this model had access to 
a training set of more than 20,000 crystalline and non-crystalline compounds. The 
availability of such open-access databases is pivotal for the further development of similar 
predictive models.44 Another study trained a model to predict the reaction conditions for 
new organically templated inorganic product formation with a success rate of 89%.45 

A less explored avenue of ML is how to best sample the set of possible experimental set-ups. 
Active learning predicts the optimal future experiments required to better understand a 
given problem. It was recently applied to understand the conditions for the synthesis and 
crystallisation of complex polyoxometalate clusters.46 Starting from initial data on failed and 
successful experiments, the ML approach then directed future experiments and was shown 
to be capable of covering six times as much crystallisation space as a human researcher in 
the same number of experiments.  

Computational assistance for the planning and direction of chemical synthesis has come a 
long way since the early days of hand-coded expert systems. Much of this progress has been 
achieved in the past five years. Incorporation of AI-based chemical planners, with great 
advances in robotic synthesis46 promises a rich new frontier in the production of new 
compounds. 

Assisting multi-dimensional characterisation  

The structure of molecules and materials is typically deduced by a combination of 
experimental methods, such as X-ray and neutron diffraction, magnetic and spin resonance, 
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and vibrational spectroscopy. Each approach has a certain sensitivity and length-scale, and 
information from each method is complementary. Unfortunately, it is rare that data are 
fully assimilated into a coherent description of atomic structure. Analyses of individual 
streams often result in conflicting descriptions of the same compound.47 A solution would 
be to incorporate real-time data into the modelling with results that are then returned to 
the experiment, forming a feedback loop.48 ML offers the promise of a unifying framework 
allowing synergy of synthesis, imaging, theory and simulations.  

The power of ML methods for enhancing the link between modelling and experiment has 
been demonstrated in the field of surface science. Combining ab initio simulations with 
multi-stage pattern recognition systems that use convolutional neural networks Ziatdinov 
and co-workers were able to characterize complex surface reconstructions.49 ML methods 
have also shown recent promise in areas such as microstructural characterisation50 and the 
identification of interesting regions in large complex neutron scattering 3D volumetric 
datasets.51 A different example of ML opening new avenues in an area of complicated 
characterisation is phase transitions of highly-correlated systems; neural networks have 
been trained to encode phases of matter and thus identify transitions.52  

Enhancing theoretical chemistry  

Modelling is now commonly considered as an equally important component to synthesis 
and characterisation for successful programmes of research. Using atomistic simulations, 
the properties of a molecule or material can, in principle, be calculated for any chemical 
composition and atomic structure. In practice, the computations rapidly grow in complexity 
as the size of the system increases, so considerable effort is devoted to finding short-cuts 
and approximations that might allow one to calculate properties to an acceptable degree of 
fidelity, without the need for unreasonable amounts of computer time.  

Approaches based on DFT have been successful in predicting properties of many classes of 
compounds, offering generally high accuracy at reasonable cost. However, the Achilles heel 
of DFT remains the exchange-correlation functional that describes non-classical interactions 
between electrons. There are notable limitations of current approximations for weak 
chemical interactions (e.g. layered materials), highly correlated (d and f electron) systems, 
and the latest generation of quantum materials (e.g. iron pnictide superconductors), which 
often require a more expensive many-body Hamiltonian. Drawing from the growing number 
of structure-property databases (Table 2), accurate universal density functionals can be 
learned from data.53,54 Early examples include the Bayesian error estimation functional 
(BEEF)55 as well as combinatorially-optimised DFT functionals.56 Going beyond the standard 
approach to DFT, the need to solve the Kohn-Sham equations is by-passed by learning 
density-to-energy and density-to-potential maps directly from training systems.57 

Equally challenging is the description of chemical processes across length and time scales, 
for example, the ubiquitous corrosion of metals in the presence of oxygen and water. The 
description of realistic chemical interactions (bond forming and breaking) including solvents, 
interfaces, and disorder is still limited by the computational cost of quantum mechanical 
approaches. The task of developing transferrable analytic forcefields is a well-defined 
problem for machine learning.58,59 It has been demonstrated that, in simple materials, 
approximate potential energy surfaces learned from quantum mechanical data can save 
orders of magnitude in processing cost.60,61 Whilst the combination of methods with varying 
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levels of approximation is promising, much work is needed in the quantification and 
minimisation of error propagation across methods. In this context, initiatives for error 
estimation such as the DAKOTA package62 are critically important. 

Targeting discovery of new compounds  

Until now we have considered how ML can be used to enhance and integrate the areas of 
synthesis, characterisation and modelling. However, ML can be used to reveal new ways to 
discover compounds. Models that relate system descriptors to desirable properties are 
already used to reveal structure-property relationships.63,64 So far, the fields of molecular 
(primarily pharmaceutical/medicinal) and materials chemistry have experienced different 
degrees of uptake of ML approaches to the design of new compounds, in part due to the 
challenges of representing the crystal structure and morphology of extended solids.  

Crystalline solids   

The application of ML to the discovery of functional materials is an emerging field. An early 
report in 1998 applied ML to the prediction of new magnetic and optoelectronic materials,65 
but the number of studies has only risen significantly since 2010.66–68 The complexity of 
games like “Go” is reminiscent of certain problems in materials science,69,70 for example the 
description of on-lattice interactions that govern chemical disorder, magnetism, and 
ferroelectricity. Even for small unit cell representations, the number of configurations of a 
disordered crystal can quickly exceed the limitations of conventional approaches. An 
inverse-design procedure illustrated how such a combinatorial space for an alloy could be 
harnessed to realise specific electronic structure features.71 Similar inverse design 
approaches have also been applied in molecular chemistry to tailor ground and excited state 
properties.72 

Prediction of the likelihood of a composition to adopt a given crystal structure is a good 
example of a supervised classification problem in ML. Some recent examples involve the 
prediction of how likely a given composition is to adopt the so-called Heusler and half-
Heusler crystal structures. One method predicts the likelihood a given composition will 
adopt the Heusler structure and is trained on experimental data.73 This approach was 
applied to screen hypothetical compositions and successfully identified 12 new gallide 
compounds, which were subsequently experimentally verified. Similarly, a random forest 
model was trained on experimental data to learn the probability that a given ABC 
stoichiometry would adopt the half-Heusler structure.74  

As an alternative to learning from experimental data, calculated properties can be used as a 
training set for ML. Moot and co-workers showed how assessing the degree of similarity 
between electronic band structures could yield improved photocathodes for dye-sensitised 
solar cells.75 A ML model, trained to reproduce energies for the elpasolite crystal structure 
(ABC2D6), was applied to screen all 2×106 possible combinations of elements that satisfy the 
formula, revealing chemical trends and identifying 128 new materials.76 Such models are 
expected to become a central feature in the next generation of high-throughput virtual 
screening procedures.  

It is notable that the majority of crystal solid ML studies to date have concentrated on a 
particular crystal structure type. This is because of the difficulty of representing crystalline 
solids in a format which can easily be fed to a statistical learning procedure. By 
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concentrating on a single structure type, the representation is inherently built into the 
model. Developing flexible, transferrable representations is one of the critical areas in ML 
for crystalline solids (see section 2 subsection “Data representation”). As we will see below, 
the use of ML in molecular chemistry is more advanced than in the solid state, to a large 
extent this is due to greater ease with which molecules can be described in a manner 
amenable to algorithmic interpretation. 

Molecular science  

The QSAR (Quantitative Structure-Activity Relationship) approach is now a firmly 
established tool for drug discovery and molecular design. With the development of massive 
databases of assayed and virtual molecules,77,78 methods for rapid, reliable virtual screening 
of these molecules for pharmacological (or other) activity are required to unlock their 
potential. QSARs can be described as the application of statistical methods to the problem 
of finding empirical relationships of the type Pi = k’(D1,D2, …, Dn), where Pi is the property of 
interest, k’ is a (most commonly linear) mathematical transformation and the D i are 
calculated or measured structural properties.79 ML has a long history in the development of 
QSARs, stretching back over half a century.80  

Molecular science is benefitting from cutting edge algorithmic developments in ML such as 
generative adversarial networks (GANs)81 and reinforcement learning for the computational 
design of novel putative biologically active compounds. In a GAN, two models are trained 
simultaneously: a generative model G captures the distribution of data, and a discriminative 
model D estimates the probability that a sample came from the training set rather than G. 
The training procedure for G is to maximize the probability of D making an error (Fig. 4). The 
ORGAN (Objective-Reinforced Generative Adversarial Networks)82 model is capable of 
generating novel organic molecules from scratch. Such a model can be trained to produce 
diverse molecules that contain specific chemical features and physical responses, through a 
reward mechanism that resembles classical conditioning in psychology. Using reinforcement 
learning, one could bias newly generated chemical structures towards those with desired 
physical and biological properties (de novo design). 

 

 
 

Figure 4 The Generative Adversarial Networks (GAN)81 approach to molecular discovery. 
Two models G (generator) and D (discriminator) play a continuous “game”, where the 
generator is learning to produce more and more realistic samples, which can vary in 
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structure and composition, and the discriminator is learning to get better and better at 
distinguishing fake data from real data. 
 
Reclaiming the literature 

A final area for which we consider the recent progress of ML (across all disciplines) is 
tapping into the vast wealth of knowledge that already exists. While the scientific literature 
provides a wealth of information to researchers, it is increasingly difficult to navigate due to 
the proliferation of journals, articles, and databases. Text mining has become a popular 
approach to identify and extract information from unstructured text sources. This approach 
can be used to extract facts and relationships in a structured form to create specialised 
databases, to transfer knowledge between domains, and more generally to support 
research decision-making.83 Text mining is applied to answer many different research 
questions, ranging from the discovery of novel drug–protein target associations, or analysis 
of high throughput experiments, to developing systematic materials databases.84 Due to the 
heterogeneous nature of written resources, the automated extraction of relevant 
information is far from trivial. To address this, text mining has evolved into a sophisticated 
and specialised field where text processing and machine learning techniques are combined.  

In the cases where supplemental data is provided with a publication, it is made available in 
various formats and databases, often without validated or standardised metadata. The issue 
of data and metadata interoperability is key. There are some leading examples of forward 
looking initiatives that are pushing accessible, reusable data in scientific research, such as 
The Molecular Sciences Software Institute (http://molssi.org) and the Open Science Monitor 
(https://ec.europa.eu/research/openscience). 

3. Frontiers in Machine Learning  

Many opportunities exist for further breakthroughs in ML to provide even greater advances 
in the automated design and discovery of molecules and materials. Here we highlight some 
frontiers in the field. 

1. More knowledge from smaller data sets. ML approaches typically require large 
amounts of data for learning to be effective. While this is rarely an issue in fields such as 
image recognition, in which millions of input data sets are available, in chemistry or 
materials science. We are often limited to hundreds or thousands, if not fewer, high-
quality data points. We researchers need to become better at making the data 
associated with our publications accessible in computer readable form. Another 
promising solution to the problem of limited datasets is meta-learning, where 
knowledge is learned within and across problems.85 New developments such as neural 
Turing machines86 or imitation learning87 are enabling the realisation of this process. A 
Bayesian framework has recently been reported to achieve human-level performance on 
one-shot learning problems with limited data88, which has consequences for molecular 
and materials science where data is sparse and generally expensive and slow to obtain.  

2. Efficient chemical representations. The standard description of chemical reactions, in 
terms of composition, structure and properties has been optimised for human learning. 
Most machine learning approaches for chemical reactions or properties use molecular 
or atomic descriptors to build models, the success of which is determined by the validity 

http://molssi.org/
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and relevance of these descriptors. A good descriptor must be simpler to obtain than 
the target property and of as low dimensionality as possible.89 In the context of 
materials, useful descriptors90 and new approaches for adapting simple existing 
heuristics for machine learning have been outlined;91 however, much work remains to 
develop powerful new descriptions. In the field of molecular reactions exciting advances, 
such as the use of neural networks to create fingerprints for molecules in reactions are 
leading to advances in synthesis prediction.92 As has been demonstrated by the 
successful adoption of the concept of molecular fragments,23 the field of crystalline 
materials design can learn much from advances in molecular nomenclature and 
representation. Chemists have a lot to learn from a field of representation learning i.e., 
learning representations of the data that make it easier to extract new information and 
knowledge.  

3. Quantum learning. While classical computing processes bits that are either 1 or 0, 
quantum computers use the quantum superposition of states to process qubits that are 
both 1 and 0 at the same time.93 This parallelisation leads to an exponential speedup in 
computational efficiency as the number of (qu)bits used increases.94 Quantum chemistry 
is a strong candidate to benefit, because solving Schrödinger’s equation on a quantum 
computer has a natural fit.95 One of the challenges for quantum computing is knowing 
how to detect and correct errors that may occur in the data. Despite significant efforts in 
industry and academia, no error-corrected qubits has been built so far. Quantum 
machine learning explores the application of ML approaches to quantum problems, and 
vice versa, the application of quantum computing to ML problems. The possibility of 
exponential speedups in optimisation problems means that quantum machine learning 
has enormous potential. In problems such as optimising synthetic routes96 or improving 
a given metric (e.g. optical absorption for solar energy materials) where multiple 
acceptable solutions exist, loss of qubit fidelity is less serious than when certainty is 
required. The physical sciences could prove a particularly rich field for quantum learning 
applications.97,98 

4. Establishing new principles. Automatic discovery of scientific laws and principles99-100 by 
inspection of the weights of trained ML systems is a potentially transformational 
development in science. Although models developed from machine learning are 
predictive, they are not necessarily (or even usually) interpretable; there are several 
reasons for this. First, the way in which a ML model represents knowledge rarely maps 
directly onto forms that scientists are familiar with. Given suitable data, an ANN might 
discover the Ideal Gas Law, pV=nRT, but the translation of connection weights to a 
formula, typically through statistical learning, is not trivial, even for a law this simple. A 
more subtle issue exists: the laws that underlie the behaviour of a material might 
depend upon knowledge that scientists do not yet possess, e.g. a many-body interaction 
giving rise to a new type of superconductivity. If an advanced ML system was able to 
learn key aspects of quantum mechanics, it is hard to envisage how its connection 
weights could be turned into a comprehensible theory if the scientist lacked 
understanding of a fundamental component of it. Finally, there may be scientific laws 
which at heart are so complex that, were they to be discovered by a ML system, would 
be too challenging for even a knowledgeable scientist to understand. A ML system that 
could discern and use such laws would truly be a computational black box. 
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As scientists embrace the inclusion of machine learning with statistically driven design in 
their research programmes, the number of applications is growing at an extraordinary rate. 
This new generation of computational science, supported by a platform of open source 
tools and data sharing, has the potential to revolutionise the molecular and materials 
discovery process. 
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NAME DESCRIPTION URL 

GENERAL PURPOSE MACHINE LEARNING FRAMEWORKS 

CARET Package for machine learning in R topepo.github.io/caret 
DEEPLEARNING4J Distributed deep learning for Java deeplearning4j.org 

H2O.AI Machine learning platform written in Java 
that can be imported as a Python or R 

library 

h2o.ai 

KERAS High-level neural networks API written in 
Python 

keras.io 

MLPACK Scalable machine learning library written 
in C++ 

mlpack.org 

SCIKIT-LEARN Machine learning and data mining 
member of the ‘scikit’ family of toolboxes 

built around the SciPy Python library 

scikit-learn.org 

STATISTICS AND 
MACHINE LEARNING 

TOOLBOX 

Machine learning library for MATLAB mathworks.com/machinelearning 

WEKA Collection of machine learning algorithms 
and tasks that can be applied directly or 

from Java code 

cs.waikato.ac.nz/ml/weka 

   

MACHINE LEARNING TOOLS FOR MOLECULES AND MATERIALS 

AMP Package to facilitate machine-learning for 
atomistic calculations 

bitbucket.org/andrewpeterson/a
mp 

ANI Neural network potentials for organic 
molecules with python interface  

github.com/isayev/ASE_ANI  

COMBO Python library with emphasis on scalability 
and efficiency 

github.com/tsudalab/combo 

DEEPCHEM Python library for deep learning of 
chemical systems 

deepchem.io 

GAP Gaussian Approximation Potentials libatoms.org/Home/Software 

MATMINER Python library for assisting machine 
learning in materials science 

hackingmaterials.github.io/matmi
ner 

NOMAD Collection of tools to explore correlations 
in materials datasets    

analytics-toolkit.nomad-coe.eu 

PROPHET Code to integrate machine learning 
techniques with quantum chemistry 

approaches 

github.com/biklooost/PROPhet 

TENSORMOL Neural network chemistry package github.com/jparkhill/TensorMol 

 
 
Table 1. A collection of publically-accessible learning resources and tools relating to 
machine learning.  
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NAME DESCRIPTION URL 

COMPUTED STRUCTURES AND PROPERTIES 

AFLOWLIB Distributed properties repository from high-
throughput ab initio calculations of inorganic 

materials 

aflowlib.org 

COMPUTATIONAL MATERIALS 
REPOSITORY 

Infrastructure to enable collection, storage, 
retrieval and analysis of data from electronic 

structure codes 

cmr.fysik.dtu.dk 

GDB Databases of hypothetical small organic 
molecules  

gdb.unibe.ch 

HARVARD CLEAN ENERGY 
PROJECT 

Computed properties of candidate organic solar 
absorber materials 

cepdb.molecularspace.org 

MATERIALS PROJECT Computed properties of known and hypothetical 
materials carried out using a standard calculation 

scheme 

materialsproject.org 

NOMAD Input and output files from calculations using a 
wide variety of electronic structure codes 

nomad-repository.eu 

   
OPEN QUANTUM MATERIALS 

DATABASE 
Computed properties of mostly hypothetical 

structures carried out using a standard 
calculation scheme 

oqmd.org 

NREL MATERIALS DATABASE Computed properties of materials for renewable 
energy applications 

materials.nrel.gov 

TEDESIGNLAB Experimental and computed properties to aid the 
design of new thermoelectric materials 

tedesignlab.org 

ZINC Commercially available organic molecules in 2D 
and 3D formats 

zinc15.docking.org 

   

EXPERIMENTAL STRUCTURES AND PROPERTIES 
CHEMBL Bioactive molecules with drug-like properties ebi.ac.uk/chembl 

CHEMSPIDER Royal Society of Chemistry’s structure database 
featuring calculated and experimental properties 

from a range of sources 

chemspider.com 

CITRINATION Computed and experimental properties of 
materials 

citrination.com 

CRYSTALLOGRAPHY OPEN 
DATABASE 

Structures of organic, inorganic, metal-organic 
compounds and minerals 

crystallography.net 

CSD Repository for small-molecule organic and metal-
organic crystal structures 

www.ccdc.cam.ac.uk 

ICSD Inorganic Crystal Structure Database icsd.fiz-karlsruhe.de 

MATNAVI Multiple databases targeting properties such as 
superconductivity and thermal conductance 

mits.nims.go.jp 

MATWEB Datasheets for various engineering materials 
including thermoplastics, semiconductors and 

fibres 

matweb.com 

NIST CHEMISTRY WEBBOOK High accuracy gas-phase, thermochemistry and 
spectroscopic data 

webbook.nist.gov/chemistry/ 

NIST MATERIALS DATA 
REPOSITORY 

Repository to upload materials data associated 
with specific publications 

materialsdata.nist.gov 

PUBCHEM Biological activities of small molecules pubchem.ncbi.nlm.nih.gov 
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Table 2. A representative collection of publically-accessible structure and property 
databases for molecules and solids that can be used to feed machine learning approaches.  
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