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Abstract 

In spite of current influenza vaccines being immunogenic, evolution of the influenza virus can reduce 

efficacy and so influenza remains a major threat to public health. One approach to improve influenza 

vaccines is to include adjuvants; substances that boost the immune response. Adjuvants are 

particularly beneficial for influenza vaccines administered during a pandemic when a rapid response 

is required or for use in patients with impaired immune responses, such as infants and the elderly. 

This review outlines the current use of adjuvants in human influenza vaccines, including what they 

are, why they are used and what is known of their mechanism of action. To date, six adjuvants have 

been used in licensed human vaccines: Alum, MF59, AS03, AF03, virosomes and heat labile 

enterotoxin (LT). In general these adjuvants are safe and well tolerated, but there have been some 

rare adverse events when adjuvanted vaccines are used at a population level that may discourage 

the inclusion of adjuvants in influenza vaccines, for example the association of LT with Bell’s Palsy. 

Improved understanding about the mechanisms of the immune response to vaccination and 

infection has led to advances in adjuvant technology and we describe the experimental adjuvants 

that have been tested in clinical trials for influenza but have not yet progressed to licensure. 

Adjuvants alone are not sufficient to improve influenza vaccine efficacy because they do not address 

the underlying problem of mismatches between circulating virus and the vaccine. However, they 
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may contribute to improved efficacy of next-generation influenza vaccines and will most likely play a 

role in the development of effective universal influenza vaccines, though what that role will be 

remains to be seen.  
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Introduction 

Very broadly, adjuvants are substances added to vaccines to boost immune response to the antigen. 

The first adjuvant used was an aluminium salt, Potassium Aluminium Sulphate (KAl(SO4)2.12H2O) 

often called Alum 1. When it was used in guinea pigs in 1926, it led to higher antibody titres to 

diphtheria toxoid; interestingly the beneficial effects were unexpected – Alum was used to 

precipitate the diphtheria toxoid component. Since the first use of Alum as an adjuvant, a huge array 

of substances have been tested as potential adjuvants; a small number of these have progressed 

into clinical trials and an even smaller number (six) have been included as part of licensed influenza 

vaccines. An important point to note is that adjuvants themselves are not licensed, but are licensed 

as part of the vaccine formulation. 

In this review we cover which influenza vaccines include adjuvants, why they are included, their 

mechanisms of action and their effects on vaccine immunogenicity and safety; focussing on clinical 

studies. We also evaluate some experimental adjuvants that have been tested in clinical trials but 

have not yet progressed to licensure. 

Influenza the basics 

Before focussing on adjuvants, we will quickly recap some basics about influenza virus and disease as 

they pertain to vaccination. In spite of a vaccine being available, influenza is a significant cause of 

morbidity and mortality worldwide; the WHO estimates that there are 3 – 5 million severe influenza 

cases every year, leading to 250,000 – 500,000 deaths globally 2. There is also a considerable 

economic burden associated with influenza epidemics, which can cost the European economy 

approximately €6 to €14 billion and the US economy $87.1 billion annually 3, 4. Infections follow a 

seasonal pattern, with separate waves in the northern and southern hemispheres. 

There are four types of influenza virus: A, B, C and D. Of these, the majority of human infections 

come from types A and B. Type A can be divided into 18 antigenic subtypes based on the 

haemagglutinin molecule, though of these only H1, H2, H3, H5 and H7 can infect humans and H5 and 

H7 do not currently transmit between humans. The subtypes themselves can be further subdivided 

into strains based on whether they are recognised by antibodies. These strains evolve over time, 

with small changes (antigenic drift) leading to epidemic spread and major changes (antigenic shift) 

leading to pandemic spread. These strain changes have an impact on influenza vaccines. Firstly, to 

cover the different concurrently circulating strains, influenza vaccines do not just contain a single flu 

strain they are either trivalent with two A strains and a B strain, or quadrivalent with two A strains 

and two B strains. Secondly, viral coat changes necessitate new influenza vaccines each season and 

though there are standardised processes by which the viruses in the vaccine are selected, there are 
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sometimes mismatches. Finally and most seriously, new strains of influenza with little antigenic 

overlap to existing strains emerge with extremely rapid global transmission. 

Vaccines for influenza 

Currently there are 26 licensed inactivated vaccines for influenza, of which 13 are routinely 

manufactured for each influenza season (Table 1). The vaccine manufacturers reflect a range of big 

pharma (GSK, Sanofi, Pfizer and Abbott) and smaller product focussed companies (Protein Sciences, 

Mylan, Microgen, Sinovac, Seqirus). The majority of the licensed vaccines are egg derived, and there 

are three manufacturing processes to recover and inactivate the virus: whole virus, split (where the 

virus has been disrupted by a detergent) and subunit (where the haemagglutinin and neuraminidase 

proteins have been further purified, removing other viral proteins). One manufacturer (Protein 

sciences) uses recombinant protein technology, expressing only the haemagglutinin protein from an 

insect cell line. Strikingly meta-analyses reveal very little difference in the safety or efficacy of these 

different approaches 5. In addition to the inactivated vaccines there are also three live attenuated 

vaccines with slightly different backbones: Fluenz/Flumist (AstraZeneca) uses the Ann-Arbor 

backbone whilst Ultravac (Microgen) and Nasovac (Serum institute of India) use the Leningrad 

backbone.. 

Problems with the current licensed influenza vaccines 

There are two important considerations for an influenza vaccine, immunogenicity – its ability to 

induce an immune response and efficacy – its ability to reduce influenza disease in vaccinated 

individuals. In healthy adults, inactivated influenza vaccines are mostly immunogenic (for example 6-

9). Indeed until 2015, in the EU, influenza vaccines were evaluated by serological tests alone and 

licensed on >70% of individuals achieving a haemagglutination-inhibition (HAI) titre of >1:40 and a 

four-fold increase in HAI titre in >40% of individuals. The haemagglutination-inhibition (HAI) titre is a 

functional assay which assesses the ability of the antibody to prevent the haemagglutinin protein 

from binding sialic acid. HAI>40 is a surrogate of protection defined in the 1970’s by a series of 

human influenza challenge studies 10. 

However, the ability of a vaccine to induce HAI titres against a specific virus does not necessarily lead 

to protection against the circulating strain in the subsequent flu season. Influenza vaccines have 

highly variable rates of efficacy, ranging from 10% in 2004-5 11 to 60% in 2010-11 12; the biggest 

factor being the match or mismatch between the vaccine strains and the circulating strains 13. 

Between 2000 and 2011, influenza B vaccine strains did not match circulating strains in six influenza 

seasons 14. In the autumn of 2014 increased rates of influenza activity were observed in the United 

States and this was attributed to poor vaccine effectiveness as a result of a mismatch of the H3 
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component of the current influenza vaccine to circulating strains 13. The overall effectiveness of the 

2014-15 influenza vaccine for preventing medically attended laboratory confirmed influenza virus 

was 23% 15. Early studies of influenza infections during the 2014/2015 season found that 100% of lab 

confirmed influenza A infections were A/H3N2 and of those 67% were antigenically drifted from 

A/Texas/50/2012, the reference strain used for the 2014/2015 vaccine in the northern hemisphere 

and more closely related to A/Switzerland/9715293/2013, the reference strain used for the southern 

hemisphere 15. A similar report from Canada found that of the laboratory confirmed cases of 

influenza, the majority were influenza A infections (95%), and where subtype information was 

available, 99% were found to be A/H3N2. Sequencing data available showed that 91% of the isolates 

were found to be genetically and antigenically distinct from the A/Texas/50/2012 vaccine strain 16.  

Why Adjuvants 

One potential approach to improve influenza vaccines is to include adjuvants. There are a number of 

reasons adjuvants might be included in a vaccine: 

1. Populations with poor immune responses 

Adjuvants are used to boost responses in populations with poor immune responses; this includes 

patients who are immunosuppressed due to either primary immunodeficiencies, transplant 

treatment or infection – particularly HIV. For example, the inclusion of the adjuvant AS03 improves 

the anti-influenza antibody quality in HIV positive patients 17. Likewise, the inclusion of AS03 

improved influenza vaccine responses in haemodialysis patients 18. Vaccination is also less effective 

in individuals at the extremes of age – the very young and the very old 19 – and adjuvants can help in 

these situations. Influenza causes the most severe disease in these age groups; infants (under 2 

years) and elderly patients (≥65 years) have higher influenza attack rates, more frequent influenza 

related hospitalisations and greater rates of influenza related mortality 4. Globally, influenza 

infection results in approximately 374,000 hospitalisations in 1 year old children 20. The addition of 

MF59 to an influenza vaccine induced substantially faster and higher antibody titres in children than 

a non-adjuvanted vaccine 21. There is no global estimate for influenza infection in the elderly, but 

estimates from the USA put the rate of influenza hospitalisation in elderly patients (≥65 years) at 

nearly twice that of infants 22. The addition of AS03 improved responses in young and elderly adults 

23, the addition of MF59 improved responses in subjects older than 65 24 and virosomes increased 

the response in geriatric patients 25. 

2. Boosting the immunogenicity of an antigen 
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As well as some individuals being poor at making immune responses, some antigens are less 

immunogenic than others. Many of the longstanding vaccine antigens are pathogen derived, for 

example diphtheria toxoid, tetanus toxoid and haemagglutinin. Newer vaccines often contain 

recombinant proteins and these can be less immunogenic than pathogen derived antigens. This is 

probably because the pathogen derived antigens contain trace levels of inflammatory material from 

the pathogen and some of the classical vaccine antigens may also have some inherent self-

adjuvanting property. It is of note that Flublok – the only licensed recombinant influenza vaccine –

does not contain an adjuvant, but it does contain three times as much of each haemagglutinin 

(45μg) as Aggripal (15μg) which is the Seqirus (formerly CSL/Novartis) unadjuvanted egg-derived 

inactivated virus influenza vaccine. 

3. Accelerating responses to a vaccine 

Another advantage is that adjuvants can accelerate responses to the vaccine, for example during a 

pandemic. Most vaccines require more than one administration to reach protective levels in 

recipients; the addition of an adjuvant can elevate the response to the first dose and push it over the 

protective threshold. For example HAI titres to an H1N1 vaccine were above the US and European 

licensure criteria after a single dose only when MF59 was included in both pre-clinical 26 and clinical 

studies 27. For an experimental H9N2 vaccine, antibody titres after the administration of a single 

dose of MF59 adjuvanted vaccine were similar to those after two doses of nonadjuvanted vaccine 28. 

Whilst accelerating the response may not lead to enduring immunity, it may be sufficient to protect 

individuals during the main wave of a pandemic. 

4. Dose sparing 

The inclusion of adjuvants can enable dose sparing, both for routine and pandemic vaccines. Vaccine 

antigens are expensive to manufacture and there are limited manufacturing facilities for making 

vaccines to the required good manufacturing practice (GMP) standards. The addition of AS03 led to 

a similar response to a lower dose of H5N1 antigen (3.75μg) compared to the standard 15μg dose 29. 

When alum was included as an adjuvant, equivalent responses were seen when doses of influenza 

antigen were reduced from 15μg to 6μg in both young and elderly adults 30. In a phase I study 

investigating the unlicensed adjuvant Advax (a polysaccharide particulate adjuvant derived from 

inulin) responses were equivalent between the adjuvant group that used a third of the antigen 

(15μg) and the unadjuvanted group that received 45μg influenza antigen 31. 

5. Immunomodulation 

Adjuvants can also change the quality of the immune response to antigen. The use of different 

adjuvants can change the pattern of cytokines and chemokines released, leading to the recruitment 

D
ow

nl
oa

de
d 

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

] 
at

 0
3:

42
 0

8 
Ja

nu
ar

y 
20

18
 



7 
 

of different cells 32. This is particularly noticeable with T cell responses where the combination of 

different adjuvants with the same antigen can lead to very different outcomes. In a recent study the 

combination of influenza antigen with MF59 or Alum gave a strong IgG1 antibody responses 

associated with IL-5 producing T cells, whilst combination of haemagglutinin with the cationic 

liposomal adjuvant CAF01 led to a more Th1 and Th17 biased cellular response 33. Since current 

influenza vaccines primarily confer immunity through antibody, shaping the CD4 T helper response 

may not be necessary to improve protective efficacy. However, the addition of adjuvant can also 

potentially improve the quality of the B cell response and CD8 T cell responses both of which may be 

important for the development of a universal flu vaccine. Additionally, there may be subtle effects if 

the adjuvant leads to a switch in antibody subtype, when non-neutralising antibody functions, such 

as antibody dependent cell-mediated cytotoxicity (ADCC) or antibody-dependent cellular 

phagocytosis (ADCP), are important.  

6. Mucosal Vaccine delivery 

A final use is to enable mucosal delivery of vaccines. Through the induction of local immunity at sites 

of infection, mucosal vaccination may be more appropriate than systemic vaccination. However, 

mucosal surfaces are much harder to vaccinate for a number of reasons – they are broadly 

tolerogenic and they also have mechanical (cilia, gap junctions), chemical (mucus) and biochemical 

(proteolytic enzymes) barriers to antigen. Specific adjuvants may be required to protect the antigen 

in this environment and to induce a local immune response. One adjuvant that was licensed for this 

purpose was the heat labile enterotoxin (LT) of Escherichia coli, which was included in Nasalflu 34. 

How adjuvants work 

Before describing what is known of the mechanism of the specific adjuvants included in licensed 

influenza vaccines, it is necessary to give a brief overview of their general mechanism of action 

(reviewed in depth elsewhere 35). Fundamentally, adjuvants improve the ability of the host immune 

system to recognise the administered antigen as foreign and respond to it; beyond this simple 

description they are extremely diverse in their molecular and cellular mechanisms of action.  

The first requirement is for the vaccine antigen to be seen by the immune system. One problem is 

that soluble antigen is quickly cleared by the lymphatics and therefore is never seen by the immune 

system. Adsorbing (sticking) the antigen onto an insoluble complex (Alum) or in an oil-in-water 

emulsion (MF59/ AS03/ AF03) leads to the retention of antigen at the injection site. In theory, the 

antigen/adjuvant depot can then be sampled by antigen presenting cells, which then take antigen to 

the lymph nodes. However, recent studies in mice have shown that removing the site of the depot 
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even as early as two hours after immunisation had no negative effect on the immune response, 

suggesting that formation of a depot at the injection site is not essential 36.  

Adjuvants can also increase antigen visibility by increasing the recruitment of cells to the site of 

injection 37. The adjuvant can either recruit cells directly38 or indirectly by inducing local sentinel cells 

to release cytokines and chemokines 39. Another method of increasing antigen visibility to the 

immune system is to increase uptake by antigen presenting cells. This can also occur directly by 

acting on antigen presenting cells 40 or indirectly by inducing antigen shuttling to lymph nodes by 

other cell types 41. 

However, seeing the antigen is not sufficient to induce an adaptive immune response, cells also need 

to be licensed to respond. Some adjuvants promote dendritic cell (DC) maturation, via increased 

expression of MHCII and the co-activation markers CD80 and CD86 42. This effect is not limited only 

to DCs, as Alum and MF59 have both been shown to upregulate MHCII and CD86 expression on 

other antigen presenting cells including monocytes and macrophages 43. 

Underpinning the recruitment and activation of antigen presenting cells is the ability of adjuvants to 

stimulate the innate response, with a particular focus on triggering pattern recognition receptors 

(PRR). PRRs are expressed by innate cells and enable them to recognise infections. It covers a broad 

range of families including the Toll like receptors (TLR), Rig-like receptors (RLR) and the 

inflammasomes. Some adjuvants act directly by engaging these receptors, for example the TLR5 

ligand flagellin 44. However other adjuvants, particularly particulate adjuvants, act more indirectly by 

inducing local damage which is in turn detected by inflammasome complexes 45, though the exact 

pathway by which this occurs is not fully characterised. 

For the effective induction of an antibody response, there needs to be an interaction between T and 

B cells. B cells do not directly interact with antigen presenting cells, but they do respond to some of 

the same signals 46, so it may be that adjuvants activate them in this way. Alternatively, improving 

the T cell quality with adjuvant, for example increasing the number of T follicular helper cells 47, may 

lead to improvement in the antibody response.  

Whilst many of the adjuvants that are used have been developed empirically, greater insight about 

the induction of the innate immune response and how that shapes the adaptive immune response 

has led to immunologically designed adjuvants, for example MPLA targeting TLR4 which is 

incorporated into AS04. However, for many of the adjuvants in wide use, mechanistic knowledge is 

incomplete, but this doesn’t prevent vaccine licensure; provided a vaccine works and is safe, the 

mechanism of action is a secondary consideration. 
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Adjuvants in licensed influenza vaccines: characterisation and mechanism 

Alum is the most commonly included adjuvant in influenza vaccines, but even then is only included 

in five vaccines. The other adjuvants used are virosomes (Inflexal V), MF59 (FluAd), AS03 

(Pandemrix). AF03 was licensed for as part of Humenza, but this product was never marketed. Heat 

labile enterotoxin (LT) was licensed as part of Nasalflu, but this has been withdrawn. 

 Alum 

Alum is the oldest and most widely used adjuvant. Though it should be noted that the description 

Alum, which strictly refers to KAl(SO4)2 only, often covers a broad range of Aluminium salts, including 

aluminium phosphate and aluminium hydroxide. Strikingly the immunological mechanism of action 

of Alum is still not entirely understood 48-50. Recent studies have suggested that the formation of an 

antigen depot is not sufficient to explain the mechanism of alum36. Sensing of alum appears to be 

inflammasome mediated via uric acid crystals leading to the release of interleukin-1β (IL-1β) 45, this 

was supported by studies where treatment with uricase reduced alum induced inflammation 51. 

However patients receiving the anti-IL-1β monoclonal antibody Canakinumab had no difference in 

their response to adjuvanted influenza vaccination, suggesting that the effect of Alum is partially IL-

1β independent 52. Other studies have identified a role for DNA release following alum induced 

necrosis of local cells, this DNA is then sensed by the STING pathway 53. However it is sensed, alum 

leads to local inflammation of neutrophils via the chemokines CXCL2 and CXCL1 51 and macrophages 

via CCL2 and CCL4 54. The cells that reach the vaccination site either shuttle antigen to antigen 

presenting cells or are capable of acting as antigen presenting cells in their own right, with in vitro 

data suggesting that Alum improves antigen uptake 55. Alum activated antigen presenting cells tend 

to shift the response towards a T helper 2 phenotype 56, though it is not clear how. 

 MF59 

MF59 is an oil-in-water emulsion which was originally designed by Chiron to meet the need for an 

adjuvant which could induce good immunogenicity to purified antigen vaccines 57. At the time of 

MF59 development, Alum remained the gold standard adjuvant, but it was ineffective as an adjuvant 

for new recombinant technologies. MF59 was designed using the principles of Freund’s incomplete 

adjuvant, a mineral oil–in-water emulsion which although tested in human influenza vaccination 58, 

was deemed too reactogenic for regular use 59. MF59 contains squalene, polysorbate 80 and 

sorbitan trioleate. Squalene was chosen as the oil component as it is a naturally occurring oil found 

in large quantities in human tissues.  

The mechanism of MF59 action has been well studied 60. Whilst antigen can form complexes with 

MF59, there is no evidence that depot formation is required for MF59 function as it is quickly cleared 
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from the site of immunisation 61. As with alum, the innate sensing pathways involved in the 

detection of MF59 have not been fully identified: it appears to act independently of NLRP3 62, 63, 

though MyD88 62 and CARD 63 appear to play a role. At a molecular level, MF59 induces a specific 

gene signature that is distinct to Alum, with enrichment in four KEGG categories: cytokine-cytokine 

receptor interaction, host–pathogen interaction, defense immunity protein activity and the type I 

IFN response 37. MF59 induces a distinctive pattern of cytokines after immunisation 64 including the 

monocyte chemoattractant CCL2, and the neutrophil chemoattractants CCL3 and CXCL8 43. These are 

associated with the recruitment of neutrophils to the site of immunisation that transport the antigen 

to the lymph nodes 41. Interestingly, the mechanism of action of MF59 requires the whole 

formulation; none of the individual components induce an adjuvant effect 65. MF59 has also been 

shown to activate DCs 55, 66 and other antigen presenting cells including monocytes and macrophages 

43. MF59 also induces a shift in the T cell response towards Th2. Both IL-4 and STAT-6 signalling are 

required for its mechanism and there is a shift towards IL-5, evident even after infection of MF-59 

immunised animals 64. How MF59 administration leads to the release of these specific chemokines 

and cytokines is not known. 

 AS03 

AS03 is an oil-in-water adjuvant, developed by GSK as part of a broader Adjuvant System which has 

multiple members 67. AS03 contains squalene, DL-α-tocopherol and polysorbate 80. Variants of AS03 

have been produced, based on the amounts of squalene, DL-α-tocopherol and polysorbate 80: AS03A 

has 0.86 mg polysorbate 80, 10.69 mg squalene and 11.86 mg α-tocopherol, whilst AS03B has half 

the quantities of these components. The inclusion of α-tocopherol, a bioavailable form of vitamin E, 

has been argued to boost the immunogenicity of AS03. In order to exert an adjuvant effect, AS03 

needs to be administered at the same time as the antigen 68. AS03 works in a similar fashion to 

MF59, by engaging the innate immune system leading to cellular recruitment and antigen uptake at 

the site of immunisation 69. At a molecular level AS03 administration led to the upregulation of MX1 

and STAT1 gene expression 70. Following AS03 delivery, both neutrophil and monocyte 

chemoattractants are induced 68. The administration of AS03 leads to the upregulation of CD4 T cell 

responses and IFNγ release 71. 

 AF03 

AF03 (Sanofi Pasteur) is an oil-in-water adjuvant containing squalene, montane 80 and eumulgin b1 

ph. The manufacture of AF03 is slightly different to MF59 and AS03, using phase inversion 

temperature emulsification process 72. But since it is also an oil-in-water adjuvant it is likely to have a 
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similar mechanism of action to other oil-in-water adjuvants. It is included in the Humenza vaccine 

but this has never been marketed. The mechanism of AF03 has not been characterised.  

 Virosomes 

Inflexal V uses virosomes in its formulation. Virosomes, sometimes referred to as liposomes, are 

based on lipid droplets 73, most commonly using phospholipids. Lipids in aqueous solution can 

spontaneously form bilayers generating a vesicle that encapsulates a volume of aqueous solution 

inside. Influenza virosomes incorporate influenza antigen onto the surface of the vesicle and so 

mimic a virus; as such virosomes can be considered as a type of viral like particle (VLP). The physical 

properties of these particles are critical in their efficacy 74. By mimicking a virus, virosomes can assist 

with antigen uptake into antigen presenting cells, cell activation and trafficking within the lymph 

system. Virosomes with surface exposed antigen can also boost antibody responses by improving 

the 3D structure of the antigen, increasing antigen density, which leads to greater cross linking of B 

cell receptors. Whilst the virosomes used do not have influenza genetic material incorporated, there 

is scope to incorporate this or other PAMPs and therefore deliver immune activators directly to the 

B cells 46. 

Impact of adjuvants on the immune response to flu 

The inclusion of an adjuvant increases anti-influenza antibody responses. When compared against 

unadjuvanted vaccines, virosome adjuvanted vaccines were more immunogenic in both children 75 

and the elderly 25. In children, the addition of MF59 induced greater antibody 76 and cellular 77 

responses than vaccine without adjuvant. MF59 also induced a better response in immune naïve 

individuals 78 to a potential pandemic antigen. Likewise the inclusion of the AF03 adjuvant boosted 

responses compared to unadjuvanted vaccine in 6-35 month old children 79. H5N1 influenza vaccine 

formulated with AS03 induces stronger B and T-cell responses than vaccine alone 80. When MF59 

was compared directly against virosomes, it led to a significantly greater number of elderly patients 

seroconverting (fourfold increase in antibody titre) 24, but both have been shown to have efficacy 

against influenza infection in the elderly 81. Comparisons have also been performed between AS03, 

MF59 and unadjuvanted H7N9 antigen; both the adjuvants induced seroconversion in significantly 

more patients than no adjuvant 82, in this study AS03 inclusion led to a higher antibody titre. A 

couple of meta-analyses indicated that inclusion of MF59 increased Haemagglutination inhibition 

(HI) titres by 1.14-1.4 fold 5, 83, but it was argued that this would not have a big impact on efficacy, as 

based on human challenge studies 10, this difference in HI titre is not large enough to have an effect. 

Safety/ Tolerability of adjuvanted flu vaccines 
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In general adjuvants are well tolerated, though they may increase some local site symptoms, 

particularly injection site pain. Two Phase III studies of AS03 adjuvanted H5N1 have been performed 

covering 10,000 adults 84, 85. In these studies, the adjuvanted vaccine solicited local and general 

symptoms more frequently, including pain, fatigue, headache and myalgia. Immunisation of children 

with an AS03 adjuvanted vaccine was also associated with transient injection site pain 86. Similar 

results were seen with an AS03 adjuvanted H1N1 vaccine, the most frequently reported symptom 

was injection site pain 87, and local and general symptoms were reported more frequently for AS03-

adjuvanted H1N1 vaccine recipients than for controls 88, 89. In children, the incidence of some 

reactions, especially fever (axillary temperature ≥37.5°C), increased after the second dose 90. A 

meta-analysis of MF59 usage in clinical trials in elderly adults suggested that local reactions were 

slightly more common for vaccine with adjuvant, but fever was very uncommon in either group 91. A 

retrospective review over the lifespan of the virosome adjuvanted vaccine, 92 Inflexal V 93, suggest 

that virosomes are well tolerated. 

When adjuvants didn’t work:  

However, there have been notable cases where adjuvanted influenza vaccines have had to be 

withdrawn (Nasalflu) or the recommended usage altered (Pandemrix). Separating the specific 

contribution of adjuvant to the adverse effect is complicated as they are always administered in 

combination with the antigen. However, it is likely that the adjuvant played a role in the adverse 

effects seen. There are a range of possible mechanisms  by which the inclusion of an adjuvant might 

have increased the incidence of severe adverse effects including increased inflammation caused by 

the adjuvant, as seen with LT adjuvanted Nasalflu, or altered responses to the antigen including 

increased immunogenicity of sub-dominant epitopes, as possibly seen with AS03 and narcolepsy. 

AS03 adjuvanted H1N1 vaccine and narcolepsy. 

One of the vaccines produced in response to the emergence of the 2009 H1N1 pandemic virus was 

an AS03 adjuvanted H1N1 vaccine, marketed by GSK as Pandemrix. Approximately 90 million doses 

of AS03-adjuvanted H1N1 vaccine were administered worldwide during the 2009–2010 H1N1 

pandemic. After the vaccination campaign had been completed, cases of the rare sleeping disorder, 

narcolepsy, were reported in Sweden and Finland 94; this was particularly seen in individuals with the 

HLA-DQB1*0602 haplotype. A retrospective study in the UK also reported an increased risk of 

narcolepsy in ASO3 adjuvanted pandemic A/H1N1 2009 immunised children 95. The cause of vaccine 

associated narcolepsy is uncertain, but one suggestion is that there was an increased frequency of 

antibodies to hypocretin receptor 2 in the sera of immunised patients 96. Since the antibodies were 

cross reactive with a fragment of the influenza nucleoprotein, one suggestion that it was a 
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combination of HLA haplotype and nucleoprotein rather than AS03 per se 97. Subsequently the use of 

Pandemrix has been restricted to people over 20 years of age. 

Heat labile enterotoxin adjuvanted vaccine and Bell’s Palsy 

Nasalflu (Berna Biotech) was an intranasally delivered virosomal influenza vaccine adjuvanted with 

the heat labile enterotoxin of E. coli. In the pre-licensure trials covering 1,218 volunteers no adverse 

effects were reported. However, in the first seven months after licensure, 46 cases of Bell’s Palsy 

were reported. In a subsequent matched case-control study, the risk of Bell’s Palsy was 19 times the 

risk of controls, or 13 excess cases per 10,000 vaccinees 98. This appears to have been driven by the 

inclusion of heat-labile enterotoxin as an adjuvant; a study using a genetically detoxified mutant also 

led to transient Bell’s Palsy 99. One suggested mechanism is that LT undergoes retrograde neuronal 

uptake 100 via the olfactory nerve leading to uptake of the adjuvant and possibly the vaccine by the 

nerve cell 101, which may then lead to inflammation of the nerve. 

Future of flu vaccines and adjuvants  

Clinical trials of adjuvanted flu vaccine studies in humans have a long history, with one of the earliest 

studies being performed by one of the founders of modern vaccinology, Maurice Hilleman, who used 

a stabilised water-in-oil formulation in 1967 102. The appetite for new adjuvants has ebbed and 

flowed, at times they are heralded as the next big thing that will change vaccinology, but at other 

times they are seen as a red herring. The number of experimental adjuvants that have been used 

pre-clinically is too large for the scope of this review. Whilst there is a huge range of pre-clinical 

vaccine adjuvants in development, a smaller number have made it into clinical trials (Table 2). There 

are a number of reasons why the pre-clinical adjuvants have not moved forwards: some of them 

simply do not work, some have limited efficacy in animal models that fails to translate into human 

responses, some would be too expensive to manufacture for a mass market and some are just too 

weird and wonderful to have a pathway to commercial and clinical development. There have been 

cycles of development of the substances used, from empirical approaches to immunological design 

based on better understanding of immune sensing. The adjuvants that have been tested clinically fall 

into four broad categories: toll like receptors (TLR) ligands, formulation, cytokines and 

immunostimulators with unknown mechanism. Where results are reported, experimental adjuvants 

have mostly increased the antibody response to influenza, though in some cases the increases have 

been marginal. 

TLR Ligands 

Increased understanding of the events initiating the immune response have led to more targeted 

adjuvant approaches 103. The TLRs are a family of evolutionarily conserved pattern recognition 
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receptors that recognise conserved biochemical motifs that are common in pathogens. Over recent 

years, the TLRs have been the focus of immunopotentiator development for use as both 

prophylactic and therapeutic vaccine adjuvants 104, 105. The most widely studied Toll like receptor, 

TLR4, recognises lipopolysaccharide (LPS), a major component of the outer membrane of gram 

negative bacteria. In its native form LPS is too inflammatory to be used as part of a vaccine, but a 

number of modified versions have been used, including monophosphoryl lipid A (MPLA) and 

Glucopyranosyl Lipid Adjuvant (GLA). MPLA is present in two adjuvants that are part of licensed 

vaccines (AS01 and AS04). GLA has been successfully tested in a clinical trial for a potentially 

pandemic H5 strain of influenza 106. Many of the other TLRs have also been targeted for adjuvants to 

boost influenza responses, for example, topical application of imiquimod, a TLR7 agonist 107 which 

has already been licensed for the treatment of genital warts. Likewise, agonists of TLR3 

(rintatolimod) 108 and TLR9 (CpG oligodeoxynucleotides) 109 have also been tried. Fusions of antigens 

and the TLR5 agonist flagellin have also been developed 44, 110. 

Formulation 

The second class of adjuvants in development are those that broadly effect vaccine formulation. 

They are either oil-in-water variants, with similarities to MF59/AS03 or liposomal, with similarities to 

virosomes. Formulations adjuvants work in part by delivering the vaccine antigen to the correct cell 

types and in part by causing some local inflammation. Often the formulation incorporates directly 

inflammatory material. 

Cytokines 

Cytokines are cell signalling molecules used by the immune system to program the response of other 

cells. Cytokine induction is a key mechanism of action of many adjuvants and so some studies have 

looked at directly incorporating cytokines into vaccines to improve responses. These have included 

the T cell activator IL-2 111, the dendritic cell activator GM-CSF 112 or type I interferon 113. These 

approaches only had a modest effect and the cost of generating a second protein for inclusion in a 

vaccine makes these unlikely candidates for any onward development. One interesting variant on 

this is DNA vaccines, where DNA encoding antigen is used as the immunogen 114. In these vaccines, 

DNA encoding cytokines has been included to boost the immune response for example IL-12 115 and 

GMCSF 116. A number of clinical trials of DNA encoded influenza vaccines have been performed, but 

the immune response to them has been modest. An alternative nucleic acid based approach is to 

deliver the immunogen as RNA. Both DNA and RNA vaccines will have some inherent adjuvant 

qualities, which will boost the immune response to the expressed antigen, but may limit antigen 

expression in the first place. 

D
ow

nl
oa

de
d 

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

] 
at

 0
3:

42
 0

8 
Ja

nu
ar

y 
20

18
 



15 
 

Immunostimulators with unknown mechanism 

This covers a diverse range of substances that can boost the immune response to antigen, but 

without a clear understanding of the immunological mechanism. The likelihood is that they cause 

some local disruption of cell membranes leading to the release of ‘danger signals’ triggering a local 

innate immune response. The clinical studies for these compounds have reported limited increases 

in immune response. 

Of the adjuvants in development, we would speculate that the most likely to progress forward are 

the TLR based adjuvants. This is because the mechanistic understanding here is the greatest, they 

are relatively cheap to manufacture and the research on them is the most mature. Indeed a TLR4 

ligand (MPLA) has already been included in licensed vaccine adjuvants – AS01 and AS04. 

Adjuvants in licensed vaccines other than influenza 

In addition to those that have been tested in early phase clinical trials, there are adjuvants that have 

been included in licensed vaccines that may be included in influenza vaccines in the future. GSK has 

two other adjuvant formulations that are used in licensed vaccines. AS01 is a liposomal adjuvant 

containing the TLR4 ligand monophosphoryl lipid A (MPLA) and the saponin QS-21 and is part of the 

anti-malaria vaccine Mosquirix. AS01 was designed specifically to boost cell-mediated immunity, 

with a particular focus on CD8 T cells 117. A vaccine containing this adjuvant has now completed 

phase III clinical trials 118, 119, conferring medium-term moderate protection to malarial disease. AS04, 

which contains Alum and MPLA, is used in Cervarix (human papilloma virus) and Fendrix (Hepatitis 

B). AS04 was first used in Fendrix in 2005 and is currently licensed in Europe 120.  

Future of adjuvanted flu vaccines 

The biggest question is whether any of the adjuvants in development will be included in a licensed 

commercial product. There are two hurdles to overcome – the cost of manufacturing the adjuvant to 

GMP standard at a scale required for influenza vaccine and the risk of an unforeseeable adverse 

effect occurring when the vaccine is deployed at a population level. Realistically for the current 

generation of influenza vaccines, particularly in the face of existing adjuvants from the major vaccine 

manufacturers, in our opinion it is unlikely that a new adjuvant will be included in a seasonal 

influenza vaccine. However, there is still scope for research into adjuvants to support the next 

generation of influenza vaccines. Speculatively this could focus on the following areas: 

1. Stabilising the haemagglutinin stem region. The holy grail of influenza vaccine research is 

the ‘universal flu vaccine’. This would be one vaccine that covers all current and future strain 

variations. One speculative approach to achieve this extremely difficult goal has been to 
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target the stem region of the haemagglutinin antigen 121. Very approximately speaking, 

haemagglutinin is shaped like a mushroom, with a head and a stem. The head is 

immunologically dominant, but is also the region that changes the most, the stem is more 

conserved across different flu stains 122. Potentially antibodies raised against this region may 

be able to cross neutralise different strains of virus. Whilst natural infection does raise some 

anti-stem antibodies 123, raising them with a vaccine has proved tricky. One application of 

adjuvants could be to stabilise structures that expose the stem region without the head 

domain. 

2. Universal T cell vaccines. Whilst most influenza vaccine research has focussed on vaccines 

that can induce antibody, an alternative might be to induce T cells. Adjuvants that stimulate 

T cell responses e.g. CAF09 124 or IC31 125 may potentiate stronger CD8 responses which may 

be beneficial. Because they often recognise conserved regions of influenza, T cells can 

possibly offer better cross neutralisation 126, 127. There is a history of pre-clinical studies 

indicating that cross protection can be achieved with CD8 T cells 128 and in human challenge 

studies T cells correlated with viral shedding 129. More recently, studies have shown that 

individuals with elevated T cell responses experienced less severe disease on exposure to 

pandemic influenza 130. Interestingly CD4 T cells have also been shown to correlate with 

protection against challenge 131. 

3. Mucosal protection. It is becoming clear that local, mucosal immune responses may be 

more protective than systemic responses. For example, we have recently shown that local 

IgA is a correlate of protection against influenza challenge 132. Likewise lung resident T cells 

(Trm) correlate with protection against challenge in both mouse 133 and human infection 

studies 134. However, mucosal vaccination has to date been sub-optimal, the addition of an 

adjuvant may improve mucosal responses. The addition of an adjuvant to a mucosal 

influenza vaccine is challenging as the only licensed mucosal vaccine containing an adjuvant 

(LT/ NasalFlu) had to be withdrawn due to the association with Bell’s Palsy 98. 

4. Protection in diverse age groups. One of the major priorities for an adjuvanted influenza 

vaccine is the ability to induce a strong response in individuals who are most susceptible to 

infection – the elderly and the very young 19. It is likely that since the reasons vaccines are 

less effective in these age groups are different, different approaches will be required. The 

use of GLA with an RSV antigen improved anti-RSV responses in adults over the age of 60, 

suggesting that it may also be effective with influenza 135, 136. Studies in children are more 

complex to perform, with a greater risk of unforeseen complications, but this doesn’t stop 
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there being a need for infant specific adjuvants. AS02 has been tested in infants (under 1 

year of age) in the context of a malaria vaccine, increasing T cell responses 137.  

5. Pandemic protection. Of all the viruses, influenza remains one of the most likely to cause a 

pandemic. This has occurred multiple times, most recently with the emergence of the 2009 

H1N1 strain. Under these circumstances, the addition of an adjuvant would enable faster 

responses and dose sparing to achieve greater coverage. Any of the adjuvants described in 

this review could potentially perform this function and a number of clinical trials have been 

performed to pre-test adjuvanted vaccines in this capacity. There are also a number of 

pandemic vaccines that are pre-licensed to cover the emergence of new strains.  

6. Boosting recombinant and neoantigens. The majority of the current influenza vaccines are 

egg derived and therefore contain some degree of other viral material which may boost the 

immune response to the antigens. However, recombinant antigens, especially those that 

have been specifically designed using structural vaccinology approaches, may need boosting 

by adjuvant 138. This is particularly important for neoantigens from newly emerged pandemic 

influenza strains for which there is no pre-existing adaptive immunity, notably avian derived 

antigens have lower immunogenicity in humans. 

7. Resetting original antigenic sin. An individual’s influenza exposure history over life is 

complex with a mixture of vaccination and natural infection. This repeated exposure shapes 

the antibody and T cell responses, often focussing the response on immunodominant 

regions 139. The concern is that original antigenic sin may reduce the ability to generate 

responses to novel antigens. It is possible that an adjuvant could reset the B cell response or 

present new antigens in such a way that B cell memory is altered. 

8. Altering isotype for maternal vaccination. One usage of influenza vaccines is maternal 

immunisation, this protects both the mother and the offspring in early life by passive 

antibody transfer. During pregnancy, maternally derived antibodies are actively transported 

through placenta from the mother to the foetus, which can provide passive immunity for 

infants up to 6 months against infection 140. There are four subclasses of human IgG (IgG1-4). 

Placental transfer of IgG depends on the subclass, IgG1 is best followed by IgG4, IgG3 and 

IgG2 141. Since adjuvants can alter the IgG subclass 33, potentially the inclusion of a minimally 

inflammatory adjuvant that preferentially boosts the IgG1 response could boost the amount 

of antibody transferred to the foetus. 

Conclusion 
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In general, adjuvanted influenza vaccines have a good safety profile and improve the immune 

response to vaccine antigens. However the addition of an adjuvant may not address the problems 

with the current generation of influenza vaccines. The problem with these influenza vaccines is not 

immunogenicity, for the majority of healthy adults influenza vaccination is sufficiently immunogenic. 

The problem is that the influenza virus evolves away from the vaccine antigen and the induced 

response is protective against the wrong virus. Changing the magnitude of the response with 

adjuvant would not necessarily address the problem. Indeed, there are costs that argue against the 

routine incorporation of adjuvants in seasonal influenza vaccines. This includes the manufacturing 

cost of an extra component to the required good manufacturing practice (GMP) standard, the 

elevated frequency of low severity adverse effects after adjuvanted vaccination and finally the small 

risk of low frequency unexpected severe adverse effects, such as Bell’s Palsy after LT adjuvanted 

vaccination or narcolepsy after AS03 adjuvanted vaccination. However, there are two current usages 

that warrant the addition of an adjuvant, firstly vaccination of elderly patients with sub-optimal 

immune responses and secondly pandemic vaccination where fast responses to smaller doses of a 

previously unseen antigen are required to maximise coverage. Looking forwards, novel adjuvants 

may also help in the drive for a universal influenza vaccine by stabilising antigens, boosting 

responses to recombinant antigens, or redirecting the immune response towards either a local or a 

cellular response.  
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Table 1. Licensed vaccines for influenza. Trivalent vaccines contain three strains, usually two 

influenza A (currently a representative H1N1 and H3N2 strain) and an influenza B strain (either a 

Yamagata lineage or Victoria lineage depending on what is currently circulating). Quadrivalent 

vaccines contain four strains two A and two B. Pandemic vaccines are pre-licensed in anticipation of 

that strain becoming more prevalent. Apart from Flublok which is recombinant protein, the majority 

of vaccines are egg derived and either whole virion, split (where the virus has been disrupted by a 

detergent) and subunit (where the haemagglutinin and neuraminidase proteins have been further 

purified, removing other viral proteins). 

Product Name Vaccine type Manufacturer Adjuvant Currently in Use? Age given 

Influvac Subunit, inactivated, 
Trivalent 

Abbot Biologicals 
(Distributor Mylan) 

None Still in Use ≥6 months, higher doses 
for those over 3 years 

Fluenz live attenuated virus, 
Quadrivalent 

AstraZeneca None Still in Use ≥24 months  

Nasalfu Subunit, inactivated 
Trivalent 

Berna Biotech Virosome 
Heat Labile 
enterotoxin (LT) 

Not in use   

Inflexal V Subunit, inactivated 
Trivalent 

Crucell (formerly Berna 
Biotech) 

Virosome Unclear ≥6 months, higher doses 
for those over 3 years 

Panvax/ Panvax Junior Split virion, inactivated 
Pandemic H1N1 

CSL Ltd None Not in use ≥6 months  

Fluvax/ Fluvax Junior Split virion, inactivated CSL Ltd Non Still in use ≥5 years 
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Trivalent 

Pandemrix Split virion, inactivated, 
Pandemic H1N1 

GSK AS03 Not in use ≥6 months, higher doses 
for those over 10 years 

Daronrix Whole virion, inactivated, 
Pandemic H5N1 

GSK AlPO4 & Al(OH)3 Not in use ≥18 years 

Prepandrix Split virion, inactivated, 
Pandemic H5N1 

GSK AS03 Still in Use  ≥18 years and double dose 
for >80 years 

Arepanrix Split virion, inactivated, 
Pandemic H1N1 

GSK AS03 Not in use ≥6 months  

Fluarix Split virion, inactivated, 
Quadrivalent 

GSK None Still in use ≥3 years 

Q-Pan H5N1 Split virion, inactivated, 
Pandemic H5N1 

GSK  AS03 Still in use ≥6 months  

Orniflu Subunit, inactivated, 
Pandemic H5N1 

Microgen Russia Al(OH)3 Still in use  ≥18 years 

Imuvac Subunit, inactivated, 
Trivalent 

Mylan None Still in Use ≥6 months  

      

Celtura Subunit, inactivated, 
Pandemic H1N1 

Novartis MF59 Pandemic only ≥6 months  

Focetria Subunit, inactivated, 
Pandemic H1N1 

Novartis MF59C.1 Not in use ≥6 months  

Fluval-AB/Fluval-P/Fluval-K Whole virion, inactivated, 
Trivalent 

Omnivest AlPO4 gel Still in Use ≥6 months  

Enzira Split virion, inactivated, 
Trivalent 

Pfizer None Still in Use ≥5 years 

Flublok Recombinant protein, 
Trivalent 

Protein Sciences None Still in Use ≥18 years 

Emerflu Split virion, inactivated, 
Pandemic H5N1 

Sanofi Pasteur AlPO4 Not in use ≥18 years when pandemic 
flu declared 

Humenza Split virion, inactivated, 
Pandemic H1N1 

Sanofi Pasteur AFO3 Not in use ≥6 months  

Fluzone Quadrivalent Split virion, inactivated, 
Quadrivalent 

Sanofi Pasteur None Still in Use ≥3 years 

Intanza Split virion, inactivated, 
Trivalent 

Sanofi Pasteur None Still in Use ≥60 years 

Agrippal Subunit, inactivated, 
Trivalent 

Seqirus None Still in Use ≥6 months  

Optaflu Subunit, inactivated, 
Trivalent 

Seqirus None Not in use ≥6 months  

FluAd Subunit, inactivated, 
Trivalent 

Seqirus MF59C.1 Still in Use ≥65 yrs 

Panflu Whole virion, inactivated, 
Pandemic H5N1 

Sinovac Al(OH)3 Still in Use  ≥18 years 

 
Table 2. Human clinical trials with experimental adjuvants (Pubmed influenza vaccine adjuvant: 
Clinicaltrials.gov condition influenza, other terms adjuvant) 

Adjuvant Name Adjuvant Class Adjuvant Description Associated 
CT.gov ref 

Sponsor/ Associated Study 
Date 

Efficacy? Related 
Paper 

GLA TLR TLR4 ligand NCT01147068. IDRI 2012 GLA improved serum 106 
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 antibody response 

Imiquimod 
ointment 

TLR TLR7 agonist NCT02103023 University of Hong Kong 2014 Increased antibody 107 

Aldara/ 
Imiquimod 

TLR TLR7 topical agonist NCT02960815 University of Lausanne 2016 None reported  

Rintatolimod TLR TLR3 agonist (plus LAIV) N/A University Alabama/ 
Hemispherx 

2014 No comparator 108 

Vax128 TLR Haemagluttinin-flagellin 
fusion (TLR 5 agonist) 

NCT01172054 Vaxinnate  Reactogenic, no control for 
efficacy 

44 

VAX102 TLR Matrix protein-flagellin 
fusion 

N/A Vaxinnate 2011 Reactogenic 110 

CpG TLR TLR9 agonist N/A Coley Pharmaceutical 
Group 

2004 No effect 109 

IC31 TLR TLR9 agonist + uptake 
peptide 

N/A Intercell/ Novartis 2008 Data not published  

ISS TLR TLR9 agonist N/A Dynavax 2011 Data not published  

JVRS-100 Formulation Cationic lipid/ DNA 
complex 

NCT00662272, 
NCT00936468 

Colby Pharmaceutical 2008 None reported  

MAS-1 Formulation Nanoparticular, emulsion NCT02500680 
NCT01623232 

Nova 
Immunotherapeutics/ 
Mercia 

2015 None reported  

Vaxisome Formulation Cholesterol liposome NCT00915187 NasVax 2009 None reported  

PAL Formulation Papaya mosaic virus 
nanoparticle 

NCT02188810 Folia Biotech 2014 None reported  

Matrix-M1 Formulation Saponin, cholesterol and 
phospholipid (ISCOM) 

NCT01897701 
NCT01444482 

Novavax 2013 Increased antibody 142 

Montantide Formulation Water in oil NCT00877448 BiondVax Ltd 2009 Adjuvant increased 
response 

143 

Proteosome Formulation Bacterial hydrophobic 
outer membrane proteins 

NCT02522754 hVIVO 2015 No comparator 144 

W805EC Formulation Nanoemulsion delivered 
intranasally with Fluzone 

N/A NanoBio Corporation 2012 No difference with antigen 
alone 

145 

ISCOM Formulation Immune stimulating 
complexes 

N/A Erasmus 2000 More rapid antibody 
response 

146 

Liposome Formulation Oligolamellar 
phospholipid 

N/A St Louis University 1995 Improved CD8 response 147 

NanoStat, 
NB1008 

Formulation Emulsion NCT01333462/ 
NCT01354379 

NanoBio 2011 No results reported  

Type I 
Interferon 

Cytokine Cytokine delivered 
mucosally 

NCT00436046 Baylor College 2007 No effect 113 
 

IL-2 Cytokine Cytokine N/A Hebrew University, 
Jerusalem 

2003 Boosted antibody 
responses 

111 
 

GM-CSF Cytokine Cytokine N/A Emory University 2002 No effect 112 

LT Patch Immunostimulator Heat labile enterotoxin NCT00908687 Intercell 2009 Boosted primary response 148 
 

BCG Immunostimulator Nonspecific immunity, 
delivered 14 days before 
vaccine 

N/A Radboud Institute for 
Health Sciences 

2015 Increased response 149 
 

Advax Immunostimulator Polysaccharide/ delta 
Inulin 

ACTRN1261200
0709842 

Vaxine 2015 Increase in B cell response 150, 151 
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OM-85 BV Immunostimulator Mixed Bacterial lysate N/A Fondazione IRCCS 2014 No effect 152 

OMP-TIV Formulation/ 
Immunostimulator 

Meningococcal outer 
membrane proteins 

N/A GSK 2011 No antigen alone control 153 

Mimopath/ 
FluGEM 

Formulation/ 
Immunostimulator 

Bacterium Like Particles N/A Mucosis 2012 None reported  

Nasalflu/ LT Formulation/ 
Immunostimulator 

Virosomal-Subunit 
adjuvanted LT 

N/A Berna Biotech 2000 Effective but 46 cases Bell’s 
Palsey 

98 

sLAG-3 
(IMP321) 

Immunostimulator MHC II ligand N/A Immutep 2006 No effect on antibody, 
increased T cell response 

154 

QS21 Immunostimulator Saponin N/A Baylor 2006 No effect 155 

DHEAS Immunostimulator Dehydroepiandrosterone 
sulphate 

N/A Paradigm Biosciences 1997 No effect 156, 157 
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