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Abstract

In this article, we combine the large eddy simulation (LES) concept with the population balance equation (PBE)
for predicting, in a Eulerian fashion, the evolution of the soot particle size distribution in a turbulent non-premixed
hydrocarbon flame. In order to resolve the interaction between turbulence and chemical reactions/soot formation,
the transport equations for the gas phase scalars and the PBE are combined into a joint evolution equation for
the filtered pdf associated with a single realization of the gas phase composition and the soot number density
distribution. With view towards an efficient numerical solution procedure, we formulate Eulerian stochastic field
equations that are statistically equivalent to the joint scalar-number density pdf. By discretizing the stochastic
field equation for the particle number density using an explicit adaptive grid technique, we are able to accurately
resolve sharp features of evolving particle size distributions, while keeping the number of grid points in particle
size space small.

Compared to existing models, the main advantage of our approach is that the LES-filtered particle size
distribution is predicted at each location in the flow domain and every instant in time and that arbitrary chemical
reaction mechanisms and soot formation kinetics can be accommodated without approximation.

The combined LES-PBE-PDF model is applied to investigate soot formation in the turbulent non-premixed
Delft III flame. Here, the soot kinetics encompass acetylene-based rate expressions for nucleation and growth that
were previously employed in the context of laminar diffusion flames. In addition, both species consumption by soot
formation and radiation based on the assumption of optical thinness are accounted for. While the agreement of our
model predictions with experimental measurements is not perfect, we indicate the benefits of the LES-PBE-PDF
model and demonstrate its computational viability.
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1 Introduction

Soot particles form in hydrocarbon combustion devices and are typically created in fuel-rich regions
of high temperature. From an engineering perspective, soot particles contribute a heat sink through
thermal radiation, but may also pollute a combustor if deposited on its walls. On the other hand, soot
particles are known to be harmful to the environment, acting as greenhouse agents, and to the human
body as they may cause respiratory diseases [28] or act as carcinogens. By consequence, many of the
recent modelling efforts in the combustion community have targeted the prediction of soot formation in
hydrocarbon combustion, taking into account the effect of soot on the flame structure.

Typically, soot is considered as a particulate phase that is polydispersed with respect to particle size
and behaves non-inertially, that is, the individual soot particles are assumed to be small enough such
that they respond instantaneously to changes in the carrier flow field. From a Eulerian perspective, the
soot phase can be described by the population balance equation (PBE) which governs the evolution of
the soot particle size distribution throughout the flow domain and is formulated in terms of the number
density of soot particles per unit volume of mixture and unit of length in particle size space.

In this article, we present a comprehensive LES-PBE-PDF approach for predicting the evolution of
the soot particle size distribution in a turbulent flame. The main ingredient of our model is an evolution
equation for the LES-filtered one-point, one-time joint probability density function (pdf ) associated with
a single realization of the reactive gas phase scalars and the particle number density. Here, the physical
processes related to chemical reactions, soot particle inception, soot growth and coagulation appear in
closed form, while velocity and two-point correlations require modelling. For these, we adopt a stan-
dard gradient diffusion hypothesis as well as an IEM-based (interaction by exchange with the mean)
micromixing model.
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Originally, the PBE-PDF concept was introduced by Rigopoulos [65] who showed that, upon dis-
cretization in particle size space, the PBE reduces to a collection of particle phase scalars which may
be incorporated into a transported pdf approach in the same way as the reactive scalars describing the
gas phase [66]. This leads to a transport equation for the so-called joint scalar-discrete number density
pdf which naturally accounts for all one-point, one-time correlations of the gas phase composition and
the discrete number densities. In the context of RANS, Di Veroli and Rigopoulos [11, 12] showed that
a numerical solution of this transport equation based on a stochastic particle method is computation-
ally feasible for practical flow configurations and realistic nucleation/growth kinetics, albeit expensive.
Subsequently, Akridis and Rigopoulos [3] and Akridis [2] applied the RANS-PBE-PDF methodology to
investigate soot formation in two turbulent diffusion flames.

More recently, the PBE-PDF concept has also been combined with LES and, coincidentally, different
strategies have emerged for reducing the computational expense associated with conventional solution
schemes of the pdf transport equation. Neuber et al. [54], for instance, devised a sparse stochastic particle
solution scheme by invoking the generalized multiple mapping conditioning (MMC) method. From a
physical perspective, the MMC-LES approach is based on shifting micromixing locality from physical
space to the space spanned by the reactive scalars and discrete number densities. Sewerin and Rigopoulos
[69], on the other hand, revisited the PBE-PDF rationale and formulated a joint scalar-number density pdf
transport equation that is independent of a specific particle size discretization. An important consequence
is that particle size persists as an independent coordinate in a statistically equivalent stochastic particle
or field reformulation and that these stochastic systems may hence be discretized with respect to particle
size using both fixed and adaptive grid schemes.

In the present article, we generalize this approach to polydispersed particle formation in variable
density flows of gases at low Mach numbers. The joint scalar-number density pdf transport equation
which we obtain is solved numerically by the method of Eulerian stochastic fields [26, 67, 72] and, for
the discretization in particle size space of the stochastic field equation associated with the particle size
distribution, an explicit adaptive grid technique is applied [68].

By construction, the PBE-PDF approach achieves a direct resolution of the particle size distribution.
This is different from moment-based approaches [61] in which the particle size distribution is described
in terms of a small number of low order statistical moments such as the particle number or volume
density. Moment-based methods are well-established by now and are not only computationally very
economical, but also readily generalize to situations in which the particulate phase is characterized by
more than one characteristic property. However, the main challenge associated with these formulations
is that the moment equations are closed only for particular functional forms of the particle growth rate
and the coagulation kernel. Common closure schemes such as the quadrature method of moments involve
an assumption on the shape of the particle size distribution which allows for truncated moments to be
expressed in terms of the first few resolved moments.

The scientific contribution of our work is threefold: First, we develop an LES-based model for pre-
dicting the evolution of the soot particle size distribution in a turbulent combusting flow at low Mach
number. An integral part of our approach is the PBE-PDF closure of the interaction between turbulence
and chemical reactions/particle formation which allows for the incorporation of arbitrary gas phase and
soot kinetics without approximation. Second, we present a stochastic field formulation that reproduces,
in a statistical sense, the evolution of the joint scalar-number density pdf and can be combined with both
fixed and adaptive grid discretization schemes along the particle size coordinate. Finally, the computa-
tional viability and predictive capabilities of the combined LES-PBE-PDF approach are demonstrated in
the context of the Delft III turbulent diffusion flame. In particular, we show that a detailed resolution
of the soot particle size distribution hardly increases the computational cost and that the overall model
is computationally feasible on modern computing devices. Furthermore, to our awareness, the present
modelling effort constitutes the first attempt to directly predict soot particle size distributions within the
scope of LES.

This article is organized as follows: In Section 2, we first review existing modelling strategies for
predicting soot formation in turbulent non-premixed flames. Subsequently, in Section 3, the PBE and
the LES concept are formally introduced and an evolution equation for the joint scalar-number density pdf
is obtained. Here, we also discuss the micromixing closure and formulate the stochastic field equations.
This is followed by Section 4, where the gas phase and soot kinetics and the radiation model are detailed.
In Sections 5 and 6, we summarize details on the Delft III flame as well as the computer implementation
used in this work. Model predictions are compared with experimental measurements from the Delft
III database in Section 7 and discussed in the light of previous modelling attempts. Finally, we offer
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conclusions in Section 8 and provide a view towards further model enhancements.

2 Approaches for modelling soot formation in turbulent non-

premixed flames

In the present section, we briefly review existing approaches for modelling soot formation in turbulent
non-premixed flames. As an aid to the reader, the references discussed here are classified in Table 1.

From a modelling perspective, incorporating the formation of soot into models for turbulent reacting
flows has been challenging for several main reasons. On the one hand, soot particles contribute sig-
nificantly to radiative heat emission and, potentially, reabsorption, thus influencing the distribution of
temperature and density in the carrier gas. On the other hand, the synthesis of soot precursors, the
inception of soot and soot surface growth (both by PAH condensation and surface reactions) are charac-
terized by much longer time scales than the mixing of reactants [5, 8, 74]. Attili et al. [5] argued that,
as a consequence, the soot formation kinetics react only slowly to changes in the local turbulent mixing
(scalar dissipation) rate. Furthermore, soot particles are characterized by a very low mass diffusivity
and, contrary to light gas phase species, are mainly convected along by the ambient velocity field without
significant dispersion [8].

Since RANS-based conserved scalar/presumed pdf approaches are computationally very economical,
an early idea for accommodating the first challenge mentioned above was to introduce an indicator for
radiative heat losses into such a model. Following Gore et al. [20], Young and Moss [74] augmented a
steady-state flamelet representation of the gas composition by a heat loss parameter such that the reactive
scalars could formally be parameterized by a mixture fraction, the scalar dissipation rate and a heat loss
coefficient. As a criterion for determining the heat loss coefficient, Young and Moss [74] proposed the
condition that, locally, the Favre-averaged enthalpy computed from the extended flamelet library and the
presumed mixture fraction pdf coincides with the value obtained by solving a transport equation for the
Favre-averaged mixture enthalpy with radiative heat losses. For the description of the soot particulate
phase, Young and Moss [74] adopted the semi-empirical model of Moss et al. [46] based on two evolution
equations for the Favre-averaged soot number density and volume fraction.

Conceptually, this approach is based on the premise that the carbon content of the gas phase (repre-
sented by the conserved mixture fraction) and the carbon represented by the soot-related scalars evolve
independently. In heavily sooting flames, however, this may lead to an overprediction of the carbon
content near soot pockets and, thus, to increased soot nucleation/growth rates. Furthermore, researchers
have pointed out that the slow reaction rates associated with soot precursors entail a delayed response to
changes in the scalar dissipation rate such that concentrations of soot precursors cannot be uniquely pa-
rameterized by mixture fraction and scalar dissipation rate as in a steady-state flamelet [48, 74]. Despite
these concerns, the extended flamelet approach has been very influential in the past decades and moti-
vated both model enhancement as well as application to several turbulent non-premixed flames. Bressloff
et al. [9] incorporated the discrete transfer radiation model into the approach of Young and Moss [74]
and assessed predictions of soot volume fraction in a confined turbulent methane-air diffusion flame. Bai
et al. [7], on the other hand, adopted a one-equation semi-empirical soot model along with the hypothesis
of optical thinness in order to investigate soot formation in a turbulent ethylene diffusion flame. Further
to previous efforts, these authors considered the joint pdf of mixture fraction and scalar dissipation rate
and proposed a presumed pdf model based on the product of a β-pdf for mixture fraction and a log-
normal pdf for the scalar dissipation rate. The extended flamelet approach combined with a presumed
β-pdf method for mixture fraction was also adopted by Reddy et al. [64] who included non-gray radiation
effects and considered the semi-empirical model by Brookes and Moss [10] for describing the evolution of
the instantaneous soot number density and volume fraction. In order to obtain Favre-averages of these
two quantities, Reddy et al. [64] computed expectations with respect to an additional presumed pdf for
temperature.

Formally, the evolution of the soot particle size (or, more generally, soot particle property) distribution
through a flame can be described by the PBE which accounts for the physical processes by which soot
particles interact both with the ambient gas phase (nucleation, surface growth, oxidation) and among each
other (coagulation, aggregation). The semi-empirical one- and two-equation models referred to above are
based on a moment reduction of the PBE for a monodisperse particle size distribution and include kinetic
rate parameters that were estimated based on measurements in laminar flames [10, 74]. Conceptually,
moment transformations of the PBE remain valid independent of the assumption of monodispersity, and
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for some functional forms of the soot growth/oxidation and coagulation rates, the moment equations
are naturally closed at any order. For general kinetics, several approximate closure schemes have been
developed [41, 61] and tailored to the characteristics of soot formation [47]. Physically, these closures
represent an assumption on the shape of the particle size distribution, but maintain the kinetic details of
the PBE and generalize to any number of moments.

Zucca et al. [75] applied the direct quadrature method of moments (DQMOM) and combined chemical
equilibrium kinetics with a presumed β-pdf method for mixture fraction. Based on a moment reformula-
tion of the bivariate PBE, Mueller and Pitsch [48] recently presented an LES-presumed pdf model which
resolves the limitations of the original extended flamelet/presumed pdf approach, while maintaining its
computational efficiency. Specifically, these authors augmented the evolution equations for the gas phase
scalars by source terms for radiative heat losses and species/element absorption and accommodated the
slow chemistry of soot precursors by adding a separate transport equation for a ‘lumped’ PAH mass
fraction.

Considering the same representation of the gas composition and soot as Mueller and Pitsch [48],
Donde et al. [14] explored a transported pdf approach based on the IEM micromixing model to resolve
the turbulence-chemistry/particle formation interaction as compared to a presumed pdf closure. In
a subsequent investigation, Xuan and Blanquart [73] replaced the lumped PAH evolution equation in
the original LES-presumed pdf model of Mueller and Pitsch [48] by evolution equations for benzene
and naphtalene and proposed a relaxation model to close the associated source terms under the LES
viewpoint.

In transported pdf methods, the scalar source terms appear naturally closed, while turbulent transport
and molecular mixing of the gas phase and soot scalars require phenomenological closures [29]. In the
context of soot formation in turbulent flames, transported pdf methods seem to have first been introduced
by Metternich et al. [45] who formulated a joint scalar-soot volume fraction pdf transport equation based
on a constrained equilibrium model of the thermochemistry and a semi-empirical model for the evolution
of soot volume fraction. Subsequently, this approach was taken further by Lindstedt and Louloudi [39]
who developed a kinetically detailed model for soot formation based on a moment-reformulation of the
PBE and solved a transport equation for the joint scalar-moment pdf.

Intermediate in computational expense between presumed and transported pdf methods for the
turbulence-chemistry/soot formation interaction are multi-environment presumed pdf methods [15, 16].
Here, the joint scalar pdf is represented by a linear combination of the instantaneous pdfs associated with
several model flow realizations which exchange likelihood/volume fraction according to a particular mi-
cromixing prescription. In the so-called DQMOM-IEM approach, this micromixing model is determined
such that the evolution and interaction of the model flow representations preserve the first unmixed mo-
ments of the joint scalar pdf. In the context of RANS, Reddy and De [63] combined the DQMOM-IEM
approach for modelling the interaction of turbulence and gas phase chemistry with the semi-empirical
soot model of Brookes and Moss [10] and analyzed the influence of several radiation models on predictions
of soot volume fraction in two turbulent diffusion flames. Following their previous investigations [62, 64],
these authors introduced a separate presumed pdf for temperature and evaluated expectations of the
temperature-dependent soot source terms with respect to this pdf.

In turbulent flames which do not experience extinction or reignition, the conditional moment closure
approach (CMC) can be a computationally economical alternative to transported pdf methods. In the
context of soot formation, Kronenburg et al. [37] seemed to have been the first to incorporate a semi-
empirical soot model into a RANS-CMC approach. Commensurate with the third challenge mentioned
above, these authors demonstrated the importance of accounting for differential diffusion between the
gas- and soot-describing scalars. Combining the same soot model with an LES-CMC approach, Navarro-
Martinez and Rigopoulos [52] similarly concluded that differential diffusion between the gas phase scalars
and soot leads to more intermittent and locally intense soot volume fraction predictions.

Contrary to moment-based reductions of the PBE, only few researchers have attempted to resolve the
soot particle size distribution in turbulent flames. An impending challenge, in this regard, is that mature
primary soot particles tend to assemble in the form of chain-like aggregates. In order to describe these,
the particle size coordinate needs to be complemented by an additional particle property such as a fractal
dimension or the number of primary particles per aggregate. While a univariate description in terms of
particle size is well-suited for tracing the evolution of primary soot particles or of aggregates with a fixed
fractal shape, it is limited to shape-preserving particle formation and interaction processes.

In an a posteriori approach, soot particle size distributions are sometimes estimated by solving the
PBE along specific paths through the flame, taking into account mean field information from a calculation
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Representation of
the number
density

distribution

Turbulence-chemistry/particle formation interaction

Presumed pdf

Perfect β-/δ-/log- DQMOM-
CMC

Transported
micromixing normal-pdf IEM pdf

Semi-empirical [7, 9, 62, 64, 74] [63] [37] [52]⋆ [45]
XMOMY [75] [35, 48, 73]⋆ [39] [14]⋆

DPB [21, 53]
(Adaptive) FVM [2, 3] This work⋆

Table 1: Overview of different approaches for modelling soot formation in turbulent non-premixed flames
(DPB: Discretized Population Balance, FVM: Finite Volume Method, XMOMY: Quadrature based
Method of Moments, e.g., MOMIC, DQMOM, HMOM). The references marked by a superscript ⋆ indi-
cate LES-based modelling approaches, while unmarked references adopted the RANS turbulence model.
(In the classification, we associate approaches in which the soot size distribution was computed in a
post-processing step based on mean field information with the ‘perfect micromixing’ assumption.)

without soot formation or with a moment-based soot model. Grosschmidt et al. [21], for instance, com-
puted solutions to the PBE along streamlines of a reacting flow field obtained from a flamelet/presumed
pdf model of the gas phase combustion. A slightly different approach was followed by Netzell et al. [53]
who reformulated the PBE in mixture fraction space and solved a series of unsteady flamelet problems
for scalar dissipation rates sampled from the flame field predictions of Bai et al. [7].

The PBE-PDF concept which we adopt here achieves a direct resolution of the particle size distribu-
tion within the scope of a transported pdf closure for the turbulence-chemistry and particle formation
interaction [65]. In the context of RANS, this approach was recently applied to soot formation by Akridis
and Rigopoulos [3] and Akridis [2] who investigated turbulent, non-premixed flames at atmospheric and
elevated pressure. In the present article, the PBE-PDF paradigm is incorporated into an LES framework
for combusting variable density flows at low Mach number. Our developments are guided by the objec-
tive to devise an efficient numerical solution scheme based on the stochastic field method and an explicit
adaptive grid discretization in particle size space [68].

3 Physical model

3.1 Governing equations

In this section, we briefly review the conservation laws that are relevant to the continuum mechanical
description of a fluid flow with an immersed particulate phase. In view of a Eulerian formulation, we
introduce the instantaneous velocity u(x, t), the pressure p(x, t) and the fluid density ρ(x, t) at a location
x in a flow domain Ω and a point in time t ≥ t0. In Cartesian coordinates, the continuity and momentum
balance laws can be written in the following form

∂ρ

∂t
+

3∑

j=1

∂ρuj

∂xj

= 0, (1)

∂ρui

∂t
+

3∑

j=1

∂ρuiuj

∂xj

= − ∂p

∂xi

+

3∑

j=1

∂τij
∂xj

+ ρgi, i = 1, . . . , 3, (2)

(3)

where τij denotes the viscous stress tensor of a Newtonian fluid and g is the gravitational acceleration.
Commonly, the carrier fluid is described in terms of reactive scalars Y(x, t) which evolve according to

∂ρYi

∂t
+

3∑

j=1

∂ρujYi

∂xj

= −
3∑

j=1

∂Jij
∂xj

+ ρω̇i(Y, N), i = 1, . . . , ns, (4)
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where Jij(x, t) denotes the diffusive flux of scalar i along the jth coordinate direction,

Jij(x, t) = −ρ(x, t)D(Y(x, t))
∂Yi(x, t)

∂xj

, (5)

D(Y(x, t)) is the kinematic diffusivity of any scalar into the mixture and ω̇i(Y(x, t), N(·,x, t)) represent
the scalar production/destruction terms. The diffusivity D(Y(x, t)) can be related to the kinematic
viscosity ν(Y(x, t)) via a molecular Schmidt/Prandtl number Sc = 0.7, D(Y(x, t)) = ν(Y(x, t))/Sc
[30, 32]. Frequently, the reactive scalars are taken as species mass fractions complemented by a calorific
variable such as enthalpy. In the argument list of ω̇i, the dependency on N(·,x, t) indicates that the
scalar source terms may be functionals of the particle size distribution (see below), for instance, owing
to species consumption or release on account of particle formation.

In combusting flows at low Mach numbers, the mixture density ρ(x, t) is often computed in terms of
the reactive scalars Y(x, t),

ρ(x, t) = ρ̂(Y(x, t)). (6)

Physically, this implies that the impact of local pressure deviations from the nominal ambient pressure
on the density is comparably small. With regard to its constitutive relations, moreover, the carrier fluid
is considered as a multicomponent ideal gas.

For a particulate phase that is polydispersed with respect to a characteristic particle size l ∈ [0,∞),
we consider, as basis for a Eulerian continuum formulation, the number density of particles N(l,x, t) per
unit of mixture volume and per unit of length in particle size space. Following Hulburt and Katz [27],
the evolution of the number density N(l,x, t) both in physical and in particle size space is governed by
the population balance equation (PBE)

∂N

∂t
+

3∑

j=1

∂ujN

∂xj

+
∂G(l,Y)N

∂l
= −

3∑

j=1

∂Kj

∂xj

+ ṡ(l,Y, N), (7)

where Kj(l,x, t) represents the diffusive flux of number density along the jth coordinate direction in
physical space,

Kj(l,x, t) = −Dp(x, t)
∂N(l,x, t)

∂xj

, (8)

andDp(x, t) denotes the common kinematic diffusivity of all particles. In view of the soot particle kinetics
of Section 4.2, we consider l as the diameter of a spherical particle. In this case, G(l,Y(x, t)) denotes the
particle growth rate, while ṡ(l,Y(x, t), N(·,x, t)) encompasses the particle production and destruction
rates due to nucleation and coalescence.

Frequently, the release or depletion of gas phase species briefly mentioned above is quantified with
the aid of the moments of the particle size distribution N(·,x, t),

Mk(N(·,x, t)) =
∫

∞

0

lkN(l,x, t) dl. (9)

In view of subsequent developments, we restrict the semi-infinite particle size space [0,∞) to the finite
domain [ll, L], where ll and L represent, respectively, the minimum and maximum attainable particle
diameters.

In variable density flows, it is advantageous to switch to a mass-based definition of the number density
[5] and to consider the number of particlesNρ(l,x, t) per unit of mixture mass and unit of length in particle
size space,

Nρ(l,x, t) ≡
N(l,x, t)

ρ(x, t)
. (10)

For future reference, we record the initial conditions on the fluid composition and the mass-based
particle number density,

Y(x, t0) = Y0(x), (11)

Nρ(l,x, t0) = Nρ,0(l,x). (12)
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3.2 Large eddy simulation

Frequently, the LES-operator is introduced as a spatial filter acting on the governing fields. Since, for our
developments, the precise definition (or construction) of such a filter is immaterial, we first recall that
the LES-operator, ·, implements an expectation operation and can thus be formulated in the following
way [59]

Φ(u(x, t), p(x, t),Y(x, t), Nρ(·,x, t)) =
∫

Φ(v, q,y, n(·))fu,p,Y,Nρ
(v, q,y, n(·);x, t) dvdqdydn(·), (13)

where Φ(u(x, t), p(x, t),Y(x, t), Nρ(·,x, t)) denotes a general observable that appears, formally, as a func-
tion of the local velocity, pressure and fluid composition and as a functional of the particle size distribution
Nρ(·,x, t). fu,p,Y,Nρ

(v, q,y, n(·);x, t) is termed the LES-filtered pdf associated with a single realization
of the governing fields and may be related to a filter kernel G(x,x′) according to

fu,p,Y,Nρ
(v, q,y, n(·);x, t) = δ (v − u(x, t)) δ (q − p(x, t)) δ (y −Y(x, t)) δ (n(·)−Nρ(·,x, t))

=

∫

Ω

G(x,x′)δ (v − u(x′, t)) δ (q − p(x′, t)) δ (y −Y(x′, t))

× δ (n(·)−Nρ(·,x′, t)) dx′,

(14)

where δ(·) indicates the Dirac delta distribution and G(x, ·) ≥ 0 integrates to unity. In Eqs. (13) and
(14), v, q and y represent the sample space variables related to u(x, t), p(x, t) and Y(x, t), respectively,
while n(·) indicates the sample space function associated with the particle size distribution Nρ(·,x, t) at
(x, t). Specifically, n(·) indicates a particular function drawn from the space of admissible particle size
distributions. For notational clarity and to distinguish the nature of n(·) from that of the remaining
sample space variables, we maintain the parenthesis-notation n(·) in the following developments. The
integral in Eq. (13) is written over the combined sample space (v, q,y, n(·)).

Conceptually, the marginal number density pdf fNρ
(n(·);x, t) may be obtained as the limit functional

fNρ
(n(·);x, t) = lim

m→∞

m∏

i=0

δ (n(li)−Nρ(li,x, t)), (15)

where li = ll + i(L− ll)/m, i = 0, . . . ,m, represents an auxiliary grid in particle size space and n(li) are
auxiliary sample space variables associated with Nρ(li,x, t). Eq. (15) emphasizes that fNρ

can be viewed
as a multi-size, albeit one-point, one-time pdf [65].

For subsequent developments, we record the following commutation property of the LES-operator

∂u(x, t)

∂t
=

∂u(x, t)

∂t
, (16)

∂u(x, t)

∂xi

=
∂u(x, t)

∂xi

, i = 1, . . . , 3, (17)

and similarly for the remaining governing fields p(x, t), Y(x, t) and Nρ(l,x, t).
Based on Eqs. (6) and (13), the LES-filtered density field is given by

ρ(x, t) = ρ̂(Y(x, t)) =

∫
ρ̂(y)fY(y;x, t) dy, (18)

where fY(y;x, t) represents the marginal filtered pdf associated with a single realization of the reactive
scalar fields. With the aid of Eq. (18), we further introduce the density weighted Favre-filter

Φ̃(u(x, t), p(x, t),Y(x, t), Nρ(·,x, t)) =
ρ(x, t)Φ(u(x, t), p(x, t),Y(x, t), Nρ(·,x, t))

ρ(x, t)
. (19)

Applying the LES-operator · to the continuity and momentum equations (Eqs. (1) and (2)) and
taking into account Eq. (19) leads to the following governing LES equations [33]

∂ρ

∂t
+

3∑

j=1

∂ρũj

∂xj

= 0, (20)

∂ρũi

∂t
+

3∑

j=1

∂ρũiũj

∂xj

= − ∂p

∂xi

+

3∑

j=1

∂(τ̃ij − τ∗ij)

∂xj

+ ρgi, i = 1, . . . , 3, (21)
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where τ̃ij denotes the viscous stress tensor associated with the Favre-filtered velocity field ũ(x, t) and
τ∗ij = ρ(ũiuj − ũiũj) is the residual stress tensor. Following common practice, we adopt the standard
Smagorinsky model for the deviatoric component of τ∗ij [32], while its spherical component is absorbed
into the LES-filtered pressure p(x, t).

3.3 The joint scalar-number density pdf

As a basis for modelling the evolution of the gas phase composition and the particle size distribution in
the context of LES, we obtain, in this section, a transport equation for the joint scalar-number density
pdf,1

f(y, n(·);x, t) = g(y, n(·);x, t) = δ (y −Y(x, t)) δ (n(·)−Nρ(·,x, t)), (22)

in which the physical processes related to gas phase chemistry and particle formation appear naturally
closed. Here, g(y, n(·);x, t) = δ (y −Y(x, t)) δ (n(·)−Nρ(·,x, t)) represents the fine-grained density asso-

ciated with f(y, n(·);x, t). For future reference, we also introduce the density weighted pdf f̃(y, n(·);x, t),
ρ(x, t)f̃(y, n(·);x, t) ≡ ρ̂(y)f(y, n(·);x, t). (23)

By following a standard procedure, we obtain on account of Eqs. (1), (4), (7) and (10) the following
evolution equation for the density weighted fine-grained pdf ρg

∂ρg

∂t
+

3∑

j=1

∂ρujg

∂xj

= −
ns∑

i=1

∂g

∂yi


ρω̇i −

3∑

j=1

∂Jij
∂xj


− ∂g

∂n


ṡ− ∂G(·,Y)ρNρ

∂l
−

3∑

j=1

∂Kj

∂xj


 , (24)

where arguments have been omitted for brevity. Recall, at this point, that any scalar functional Ψ(u, p,
Y, Nρ, ∂Y/∂x, . . .) of u(x, t), p(x, t), Y(x, t), Nρ(·,x, t) and their spatial derivatives obeys the following
identity [69]

gΨ

(
u, p,Y, Nρ,

∂Y

∂x
, . . .

)
= f

(
Ψ

(
u, p,Y, Nρ,

∂Y

∂x
, . . .

)∣∣∣∣y, n(·)
)
, (25)

where the vertical bar indicates conditioning on the events Y(x, t) = y and Nρ(·,x, t) = n(·).
With the aid of Eq. (25), the LES-filtered value of (ρujg) can be reformulated according to

(ρujg) = ρ̂(y)(uj |y, n(·))f = ρ̂(y)ũjf − ρ̂(y)
(
ũj − (uj|y, n(·))

)
f. (26)

The turbulent transport term in Eq. (26) is commonly modelled by adopting a gradient diffusion hy-
pothesis

ρ̂(y)
(
ũj − (uj|y, n(·))

)
f = ρ(x, t)Γ(x, t)

∂f̃

∂xj

. (27)

Here, Γ(x, t) = Γ′(x, t)/Sc′ represents a scaled eddy viscosity, Γ′(x, t) denotes the eddy viscosity computed
from the standard Smagorinsky model [38] and Sc′ = 0.7 is a constant turbulent Schmidt/Prandtl number.

By applying the LES operator to Eq. (24) and taking into account Eqs. (20), (23), (25) and (27) as
well as the commutation property in Eqs. (16) and (17), we arrive at the following transport equation
for the joint scalar-number density pdf

ρ
∂f̃

∂t
+

3∑

j=1

ρũj

∂f̃

∂xj

=

3∑

j=1

∂

∂xj

(
ρΓ

∂f̃

∂xj

)
−

ns+1∑

i=1

∂

∂zi

(
ρsi(·, z)f̃ + ρMif̃

)
, (28)

where z = (yT , n(·))T represents the joint scalar-number density sample space vector, Mif̃ encompasses
the (unclosed) micromixing contribution

Mif̃ = − f̃

ρ̂(y)





∑3
j=1

(
∂Jij

∂xj

∣∣∣y, n(·)
)

for i = 1, . . . , ns

∑3
j=1

(
∂Kj

∂xj

∣∣∣y, n(·)
)

otherwise

, (29)

1If instead we based the definition of f(y, n(·);x, t) on the volumetric number density N(·,x, t), then the transport

equation for f̃ would include an additional unclosed term involving
(

∑

3

j=1

∂uj

∂xj

∣

∣

∣
y, n(·)

)

.
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and the vector-valued source term s(·, z) is given by

s(·, z) =
(

ω̇(y, n(·))
1

ρ̂(y)

(
ṡ(·,y, ρ̂(y)n(·)) − ∂(G(·,y)ρ̂(y)n(·))

∂l

)
)
. (30)

3.4 Micromixing model

In order to close the molecular mixing term in Eq. (29)1, we adopt the model proposed by McDermott
and Pope [42]. Specifically, these authors augmented the IEM micromixing model for relaxing a scalar
Yi(x, t), i = 1, . . . , ns, towards its Favre-filtered counterpart Ỹi(x, t) by a spatially diffusive transport of
Ỹi(x, t),

Mif̃ ≡ mi(x, t, z)f̃ =


κ(x, t)

(
Ỹi − yi

)
+

1

ρ

3∑

j=1

∂

∂xj

(
ρD̃

∂Ỹi

∂xj

)
 f̃ , (31)

where κ(x, t) represents a micromixing frequency common to all scalars,

κ(x, t) =
Cκ

2

Γ(x, t)

∆2
, (32)

and ∆ is obtained as the cubic root of the local cell volume for a finite volume based spatial discretization
scheme. The micromixing model in Eq. (31) may similarly be formulated for differential diffusion among
gas phase scalars and consistently reduces to a pure diffusion term in the limit as the LES operator
approaches the identity and a direct numerical simulation (DNS) is recovered. By adapting Eq. (31)
to the number density micromixing term in Eq. (29)2, we further obtain the following expression for
Mns+1f̃

Mns+1f̃ ≡ mns+1(x, t, z)f̃ =


κ(x, t)

(
Ñρ − n(·)

)
+

1

ρ

3∑

j=1

∂

∂xj

(
D̃p

∂ρÑρ

∂xj

)
 f̃ . (33)

Jointly, the final terms in Eqs. (31) and (33) account for differential diffusion between the gas and
particulate phases.

For the turbulent, non-premixed flame analyzed in Sections 5 through 7, the particle diffusivity Dp

is set to zero identically. Strictly, by Eq. (29)2, this implies Mns+1f̃ = 0 which is at variance with the
modelled micromixing term Mns+1f̃ = mns+1f̃ = κ(x, t)

(
Nρ(·,x, t)− n(·)

)
obtained from Eq. (33).

Thus, even in the absence of molecular particle diffusion, the present micromixing model accounts for
mixing of number density towards the mean at a rate that is proportional to the local scaled eddy viscosity
Γ(x, t). One possible approach to resolve this contradiction would be to choose different micromixing
frequencies (variants of Eq. (32)) for the scalars and number density and to express the individual
micromixing frequencies in terms of both Γ(x, t) and the respective molecular diffusivity such that the
right hand sides of Eqs. (31) and (33) consistently reduce to zero in the limit of vanishing molecular
diffusion. This extension may also yield differential micromixing frequencies among the gas phase scalars.
In view of the scope of this article, we defer such a model enhancement to future times, keeping, however,
the limitations of the present micromixing closure in mind.

3.5 The stochastic field equations

In Sections 3.3 and 3.4, we obtained the joint scalar-number density pdf transport equation (Eq. (28) and
Eqs. (31), (33)) as a model for the evolution of a fluid and an immersed particulate phase in a given flow
field ũ(x, t). Due to the large number of independent variables in Eq. (28), direct numerical discretization
techniques may entail a prohibitive computational expense. At the same time, from a physical viewpoint,
our objective is not to accurately compute f̃(z;x, t), but rather to approximate low order expectations
with respect to f̃(z;x, t) such as the Favre-filtered reactive scalars Ỹ(x, t) and the Favre-filtered particle
size distribution Ñρ(·,x, t), (

Ỹ(x, t)

Ñρ(·,x, t)

)
=

∫
zf̃(z;x, t) dz. (34)
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Within the combustion community, this has motivated the development of solution approaches based on
an independent stochastic process θ(t; l,x) which is constructed in such a way that the transition pdf
h(z, t|Y0(x), Nρ,0(·,x), t0;x) associated with θ(t; ·,x) obeys Eq. (28) subject to the initial condition

h(z, t0|Y0(x), Nρ,0(·,x), t0;x) = δ(y −Y0(x))δ(n(·) −Nρ,0(·,x)). (35)

Since both the initial time t0 and the initial fields Y0(x) and Nρ,0(·,x) are deterministic, we drop the
conditioning on (Y0(x), Nρ,0(·,x), t0) from the argument list of h for clarity and write h = h(z, t;x). In

a Monte Carlo-type solution method, several realizations (samples) θ(1)(t; l,x), . . . , θ(nf )(t; l,x) of such a
stochastic process θ(t; l,x) are computed and expectations are approximated by Monte Carlo estimates,

F̃ (Y(x, t), Nρ(·,x, t)) ≈
1

nf

nf∑

i=1

F (θ(i)(t; ·,x)), (36)

where F (Y, Nρ) represents an observable expressed in terms of Y(x, t) and Nρ(·,x, t). This approach
channels the computational effort towards the accurate computation of low order moments of h(z, t;x) =
f̃(z;x, t), while the statistical error is accumulated on higher order moments.

In the present article, we specifically invoke the method of Eulerian stochastic fields to construct the
stochastic process θ(t; l,x). This approach preserves the Eulerian nature of the physical model; it was
originally developed by Valiño [72], Hauke and Valiño [26] and Sabel’nikov and Soulard [67]. Formally,
the stochastic field equations are given by

ρ
∂θi
∂t

+

3∑

j=1

ρũj

∂θi
∂xj

=

3∑

j=1

∂

∂xj

(
ρΓ(x, t)

∂θi
∂xj

)
− ρ
√
2Γ(x, t)

3∑

j=1

Ẇj(t)
∂θi
∂xj

+ ρ (si(l, θ) +mi(x, t, θ)) , i = 1, . . . , ns + 1,

(37)

and correspond to continuous-time stochastic processes which are smoothly parameterized by (l,x). In
Eq. (37), W(t) denotes a three-dimensional temporal Wiener process with (formal) time derivative Ẇ(t).
Strictly, Eq. (37) is only formally valid, holding in a time-integral sense

∫ t

t0

dθi(t; l,x) =

∫ t

t0

∂θi
∂t

dt = −
3∑

j=1

∫ t

t0

ũj

∂θi
∂xj

dt+ . . .−
3∑

j=1

∫ t

t0

√
2Γ(x, t)

∂θi
∂xj

dWj(t) + . . . , (38)

where the stochastic integral with respect to W(t) is interpreted in Itô’s sense. In Appendix A we show
that if the stochastic fields θ(t; l,x) evolve according to Eq. (37) subject to the deterministic initial
condition θ(t0; l,x) = (Y0(x), Nρ,0(l,x)), then the transition pdf h(z, t;x) associated with the stochastic
fields evolves according to Eq. (28). (This proof generalizes the derivation of Sewerin and Rigopoulos
[69, Appendix B] to variable density flows at low Mach number.)

4 Gas phase and soot kinetics

4.1 Gas phase kinetics and radiation

The gas phase chemical kinetics for methane combustion are based on the GRI 1.2 reaction mechanism
[18, 19]. In order to model radiation, we adopt the hypothesis of optical thinness. Following Lindstedt
and Louloudi [39], the loss in enthalpy H(Y, N) due to radiation from gas phase H2O, CO2, CH4 and
CO as well as from soot can be computed according to

ω̇H(Y, N) = − 4σ

ρ̂(Y)

(
T (Y)4 − T 4

b

) 4∑

i=1

ap,i(T (Y))pi(Y) − 4σ

ρ̂(Y)
Csfv(N)

(
T (Y)5 − T 5

b

)
, (39)

where σ denotes the Stefan-Boltzmann constant, T (Y) indicates temperature, i = H2O,CO2,CH4,CO
represents an index running through the major radiating species, pi(Y) is the partial pressure of species
i (in [atm]) and ap,i(T ) denotes its corresponding Planck mean absorption coefficient. The latter is
computed in terms of temperature from polynomial curve fit expressions of the RADCAL model [1, 22].
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Furthermore, Tb ≡ 295K denotes the ambient background temperature, Cs ≡ 1307 /m−K [39] and
fv(N) = π/6M3(N) is the soot particle volume fraction.

One implication of the optical thinness hypothesis is that no reabsorption of thermal radiation occurs
within the flame. In heavily sooting flames this may lead to an overprediction of the radiative heat loss
and, by consequence, to a local underprediction of temperature [70]. The Delft III flame, however, is only
lightly sooting with measured soot volume fractions below 2.5 ppb.

4.2 Soot kinetics

In the present article, we focus on the kinetic processes of soot nucleation, growth and oxidation and
invoke kinetic rate expressions which have previously been employed in the context of laminar methane
and ethylene diffusion flames [4, 24, 40, 71]. Since the coalescent growth of a soot particle from two
parent particles may only be important in the initial stages of particle creation and since aggregation
preserves the number density of primary soot particles [40], we omit both coalescence and aggregation
and interpret N(l,x, t) as the primary soot particle number density. Formally, however, the univariate
PBE is able to accommodate coagulation.

Following Liu et al. [40], the nucleation rate is controlled by the molar concentration of acetylene and
can be computed from

sN (Y) =
2NA

Cmin
[C2H2]k1(T ), (40)

where NA denotes Avogadro’s number, Cmin = 700 is the number of carbon atoms in a soot nucleus,
k1(T ) = 1.7 exp(−7548K/T )(1/s) and square brackets indicate molar concentrations. The specific surface
growth rate (in [kg/m2 − s]) of primary soot particles, on the other hand, is given by

sC
2
H

2
(Y) = 2pC

2
H

2
(Y)k2(T ), (41)

where pC
2
H

2
(Y) represents the acetylene partial pressure (in [atm]) and k2(T ) = 470 exp(−16 004K/T )(s/m)

[24, 71]. The leading factor of 2 in Eq. (41) is purely empirical; it has been introduced by Smooke et al.
[71] in order to bring the growth rate which has originally been determined based on measurements in
a laminar premixed ethylene flame [25] closer to measurements taken in laminar diffusion flames. The
mean soot nuclei size amounts to lnuc = 2.5× 10−9m and the minimum and maximum attainable particle
sizes are set to ll = 2.5× 10−10m and L = 10−5m, respectively.

Additionally, primary soot particles may shrink on account of oxidative surface reactions with hydroxyl
or molecular oxygen [24, 51]. Expressed in terms of the primary particle mass, the respective specific
shrinkage rates (in [kg/m2 − s]) are computed according to

sOH(Y) = 167
pOH(Y)√

T
, (42)

sO
2
(Y) = 1200pO

2
(Y)

(
KA(T )χ

1 +Kz(T )pO
2

+KB(T )χ
′

)
, (43)

where pOH(Y) and pO
2
(Y) denote the partial pressures (in [atm]) of hydroxyl and molecular oxygen,

respectively, χ and χ′ represent fractions defined by

χ =

(
1 +

KT (T )

KB(T )pO
2

)
−1

, χ′ = 1− χ, (44)

and KA(T ), KB(T ), KT (T ) and Kz(T ) are the temperature dependent parameters introduced by Nagle
and Strickland-Constable [51, p. 162]. Finally, the cumulative primary particle growth/oxidation rate
G(Y) can be computed by summing Eqs. (41) through (43) and converting from a mass-based to a
diameter-based rate expression

G(Y) =
2

ρs

(
sC

2
H

2
(Y)− sOH(Y) − sO

2
(Y)

)
, (45)

where ρs = 1900kg/m3 denotes the density of soot [40].
If primary soot particles are created and grow or, conversely, shrink due to oxidation, then gas phase

species are consumed or released. This can be taken into account by augmenting the source terms due to
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chemical reactions by rate expressions based on the soot formation and oxidation stoichiometry as well
as Eqs. (40) through (43). For acetylene and molecular hydrogen, for instance, we have

1

MWC
2
H

2

ω̇⋆
C

2
H

2

(Y, N) = − 1

MWH
2

ω̇⋆
H

2

(Y, N) = −
sC

2
H

2
(Y)fa(N)

2ρ̂(Y)MWs

− sN (Y)Cmin

2ρ̂(Y)NA

, (46)

where the superscript ⋆ indicates that the respective scalar sink/source terms exclude contributions
from the gas phase reaction mechanism. MWi denotes the molecular weight of species i, MWs ≡
12.011kg/kmol represents the molecular weight of solid soot and fa(N) = πM2(N) denotes the local soot
particle surface fraction.

In view of the findings of References [5, 37, 52], we set the kinematic diffusivity of soot in Eq. (33) to
zero, Dp(x, t) ≡ 0 (also see Section 3.4).

5 Delft III flame configuration

The Delft III flame consists of a central fuel jet (Dutch natural gas) surrounded by two concentric co-flows
of air at atmospheric pressure and an ambient temperature of 295K [57]. The nozzle encompasses a wide
cylindrical ring with inner diameter d = 6mm and outer diameter 15mm featuring twelve equidistant
holes of diameter 0.5mm on a circle with diameter 7mm from which the pilot flames emanate. The
nozzle is embraced by an annulus of outer diameter 45mm for the primary air co-flow which is, in turn,
surrounded by a secondary air co-flow. The jet flows at a bulk velocity of 21.9m/s (Re ≈ 8370), while
the bulk velocities of the primary and secondary air co-flows amount to 4.4m/s and 0.3m/s, respectively.
The Delft III flame is characterized by strong extinction and reignition in the nearfield and possesses a
lightly sooting flame head. Figure 1 schematically illustrates the geometry of the Delft burner tip as well
as our computational domain.

Following Merci et al. [43, 44], we take the fuel composition as a mixture of methane and nitrogen with
the same calorific value as Dutch natural gas (85.3% CH4 and 14.7% N2 by volume). The pilot flames,
moreover, burn a mixture of hydrogen, acetylene and air with a H to C ratio of 4 and an equivalence
ratio of 1.4 (16.936% H2, 5.682% C2H2, 16.258% O2 and 61.124% N2 by volume). Here, air is assumed
to consist of 21% O2 and 79% N2 by volume. For simplicity, the twelve pilot flames are replaced by
a concentric inflow through an annulus in the nozzle rim with inner diameter 8mm and outer diameter
9mm at the experimental pilot flame mass flow rate of 2.3× 10−5 kg/s. Note that contrary to Ayache and
Mastorakos [6] and Dodoulas and Navarro-Martinez [13] the pilot stream is separated from the fuel jet by
a wall of 1mm thickness in order to avoid the pilot gases from diffusing into the fuel mixture upstream
of the nozzle exit plane. Although this representation of the pilot underestimates the experimental pilot
flames’ momentum flow rate, we found it to be sufficient to ignite the flame and lead to flame attachment
at the nozzle rim (as observed in the experiment). The pilot inflow composition is taken as the chemical
equilibrium composition corresponding to the unburned pilot pre-mixture at 295K and the pilot inflow
temperature is set to 1900K.

Experimentally, the Delft III flame was first investigated by Peeters et al. [57] who reported mea-
surements of velocity statistics, mean temperature as well as concentrations of OH and a passive scalar.
Subsequently, additional measurements of the velocity field, concentrations of the major species and
temperature statistics were obtained, see Nooren et al. [55] and references therein. Recently, Qamar
et al. [60] augmented the experimental database of the Delft III flame by measurements of mean soot
volume fraction, intermittency and centerline pdfs of instantaneous soot volume fraction. These measure-
ments were obtained in the downstream region of the flame (x/d & 50), where unfortunately no velocity,
temperature or scalar measurements are available. As Mueller and Raman [49] pointed out, this may
render drawing definitive conclusions from a comparison of model predictions with measured soot-related
quantities difficult.

6 Numerical solution scheme and implementational aspects

The combined LES-PBE-PDF model for a turbulent combusting flow with soot formation was imple-
mented in our in-house research software LES-BOFFIN [29]. The solution method is based on a second
order accurate finite volume scheme on a staggered grid encompassing a standard SIMPLE loop for the
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Figure 1: Schematic illustration of the Delft burner nozzle and the computational domain for the Delft
III flame calculation.

coupled mass and momentum LES conservation equations (Eqs. (20) and (21)). As is common, the trans-
port equations for the stochastic fields governing the gas composition (Eq. (37) for i = 1, . . . , ns) are
solved using a fractional steps method including in turns the processes of convection/diffusion, molecular
mixing and gas phase reaction. Formally, the fractional time stepping constitutes a first order approxi-
mation in time [58]; its main benefit is that the numerical solution schemes can be tailored to the physical
processes which they target.

The stochastic field equation associated with the particle number density, moreover, is discretized in
particle size space using the explicit adaptive grid method recently developed by Sewerin and Rigopoulos
[68] in combination with a high resolution finite volume method [36], also see Sewerin and Rigopoulos [69].
Here, the grid design is controlled by three parameters, the total number of nodes, the minimum node
density in the nucleation interval and the maximum grid stretching, which we set to 30, 4 nodes/4.75nm
and 2, respectively. Similar to the application of a fractional steps scheme to the stochastic equations
governing the gas phase scalars, the stochastic field equation for the (transformed) number density is
decomposed into a convection/diffusion, molecular mixing and PBE fractional step [68, 69].

In the convection/diffusion fractional step, the convective terms are discretized using a TVD stencil
based on van Leer’s limiter, while the remaining spatial derivatives are approximated by second order
accurate central differences. For the temporal integration of the deterministic terms, the second order
accurate Crank-Nicolson method is applied. The stochastic terms, by contrast, are integrated in time
using an Euler-Maruyama scheme [56, Section 5.2]. During the reaction fractional step we employ the first
order accurate implicit Euler method for temporally integrating the GRI 1.2 chemical kinetics, while the
explicit 5th order accurate Runge-Kutta method DOPRI5 [23] is used for integrating in time the particle
phase kinetics. For efficiency, the gas phase reaction fractional step is only executed for fluid cells whose
temperature exceeds 800K. The PBE fractional step, on the other hand, is solved for all fluid cells. In
order to further accelerate the solver for the reaction fractional step, we hard-coded the instructions for
evaluating the reaction rates of the GRI 1.2 reaction mechanism, implemented a facility for computing
the temperature-dependent kinetic coefficients only once per time step and grid point, and adopted a
modified Newton-Raphson scheme for solving the backward Euler non-linear system. Cumulatively, these
measures yield a reduction in runtime of the reaction step by about one order of magnitude.

In line with previous applications of the stochastic field method in the context of LES-PDF models [31–
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33], we invoke eight realizations of the stochastic fields. Mustata et al. [50], specifically, compared solutions
computed using both eight and sixteen stochastic fields and observed very small differences between the
resulting predictions of temporal mean and root mean square (rms) profiles for selected reactive scalars.
However, this agreement may have been, in part, due to the accurate spatial resolution in their LES,
entailing a low level of residual fluctuations. Subsequently, Jones and Navarro-Martinez [30] investigated
autoignition in a lifted turbulent H2-air flame and also found eight and sixteen stochastic fields to yield
almost coincidental profiles of mean and rms temperature, although the rms predictions slightly improved
for sixteen stochastic fields. These authors additionally estimated the instantaneous finite sampling error
for eight stochastic fields as approximately 10%, pointing out that this error significantly reduces on time
averaging.

The computational domain is cylindrical in shape and spans 16.67 d in the radial direction and 115 d
in the axial direction, where d = 6mm denotes the nozzle diameter (Figure 1). Since the wide nozzle rim
of the Delft III burner head acts as a bluff body enhancing the mixing and reinforcing the shear layer in
the near-field, we include a representation of the burner nozzle which extends by 2.5 d into the domain.
The finite volume grid encompasses 672, 70 and 36 cells in the axial, radial and circumferential directions,
respectively. Axially, the grid is stretched by a factor of 1.002 and, radially, cells are thinner near the
inner and outer nozzle diameter and stretch by a factor of 1.04 towards the lateral domain boundaries.
In the circumferential direction, by contrast, a uniform grid is employed.

The mean axial velocity inflow profiles of both the fuel jet and the primary air co-flow are taken as
power law profiles with exponents 1/6 and 1/2, respectively. The secondary air co-flow, on the other
hand, features a constant mean axial velocity inflow profile. The velocity turbulence intensities for the
jet and primary air co-flow, moreover, are set to 10%, while the turbulence intensity in the secondary
co-flow amounts to 1%. The axial and radial rms inflow velocities vary quadratically within the jet (at the
nozzle rim, they exceed the nominal centerline value by a factor of four) and reduce to constant profiles
in the primary and secondary air co-flows, respectively. Along the lateral boundaries of the domain,
both the stochastic scalars and the velocity field are subject to Dirichlet boundary conditions based on
nominal values in the secondary co-flow. Finally, at the domain outlet, zero-gradient and convective
outflow boundary conditions apply, respectively, to the stochastic scalars and the velocity field.

Temporal statistics were computed over a time period of approximately 250× 10−3 s and comple-
mented by circumferential averaging. The time measurements which we provide were obtained on 4
nodes of a Cray XC30 Supercomputer (ARCHER UK) and averaged over 100 time steps of 1.2× 10−6 s
at a point in time at which the temporal statistics of temperature had become time invariant.

7 Results and discussion

In order to assess the validity of our inflow boundary conditions, the time averaged (mean) and rms
profiles of axial velocity2 are compared with the experimentally measured profiles at 3mm above the
nozzle exit plane in Figure 2. Except for a slight overprediction on the centerline, our choice of inflow
boundary conditions approximates well the experimental mean axial velocity profile, including the weak
recirculation zone above the nozzle rim. The rms of axial velocity are also well reproduced in the jet,
except near the burner rim, but fall below the measured values in the primary co-flow, very similar to
the rms profile obtained by Ayache and Mastorakos [6].

Figure 3 shows the radial profiles of the mean axial velocity and temperature at 50mm, 150mm
and 250mm above the nozzle exit plane as well as the corresponding measurements from the Delft III
database. At the first two measurement stations, the mean axial velocity agrees well with the measured
values, while it is slightly underpredicted further downstream, indicating that the jet spreads rather too
rapidly. The mean temperature, moreover, is slightly overpredicted on the lean side of the reaction zone
and the maximum mean temperature exceeds the measured maximum value by approximately 300K.
Since this overprediction is passed downstream, its main cause seems to persist in the near-nozzle region
and may be related to the spatial resolution of our LES in the nearfield as well as the effectiveness or
accuracy of the eddy viscosity and micromixing closures. Indeed, other LES-based investigations of the
Delft III flame [6, 13, 48] reported much better agreement for the nearfield predictions using grids whose
radial mesh spacing was smaller than the one in our grid by up to a factor of three.

2For conciseness, we omit the term ‘Favre-filtered’ when referring to both instantaneous and time averaged Favre-filtered
variables.
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Figure 2: Comparing radial profiles of the mean and rms axial velocity (lines) with experimental mea-
surements (symbols) at 3mm above the nozzle exit plane.
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Figure 3: Comparing radial profiles of the mean axial velocity and temperature (lines) with experimental
measurements (symbols) at 50mm, 150mm and 250mm above the nozzle exit plane.

For the same axial measurement stations as in Figure 3, Figure 4 depicts both predicted and measured
radial profiles of the mean mass fractions of CO2, H2O, H2 and CO. The agreement here reflects the
discrepancy which we observed above for the temperature profiles: At the first measurement station, the
gas composition is well reproduced on the rich side, while the maximum mass fractions and the values
on the lean side are slightly overpredicted. The centerline value of CO2 is slightly underpredicted at
x = 150mm, while the CO mass fraction is overpredicted near the centerline, the overprediction persisting
throughout the radial profile. In general, the species profiles seem to be shifted radially outwards,
reflecting the slightly excessive jet spreading. This is even more severe at the furthest measurement
station, where the species profiles appear to be very diffusive. Here, the mass fractions of H2O and CO
are overpredicted throughout and the H2 mass fraction is notably underpredicted in the jet core.

Figure 5 depicts contour plots of the mean temperature, soot number density and soot volume fraction.
The superimposed contour in the left panel indicates the stoichiometric mixture fraction iso-line. For the
center and right panels, the soot number and volume densities were computed as the zeroth and third
moments, respectively, of the LES-filtered soot size distributions. At least qualitatively, the contours
of the mean soot number density and volume fraction are in line with those reported by Mueller and
Pitsch [48]. Both fields attain their maximum values on the centerline and the soot number density
peaks slightly earlier, at x ≈ 350mm, than the soot volume density (x ≈ 475mm). These observations
indicate that nucleation is more vigorous at distances closer to the nozzle, yielding to soot surface growth
further downstream. Furthermore, soot oxidation appears to act more effectively on the number density,
while soot volume fraction shows a slightly delayed response. In view of the soot particle size distributions
analyzed below (Figure 8), this may be the case because most soot particles persist in the nuclei size range
and are, hence, rapidly removed by oxidation. By contrast, the larger soot particles which contribute
significantly to the soot volume fraction can resist an oxidative gas composition for longer. Beyond the
stoichiometric mixture fraction contour most soot has been oxidized and both the soot number density
and volume fraction are close to vanishing.

In Figure 6, the centerline profiles of the predicted and experimentally measured mean soot volume
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Figure 4: Comparing radial profiles of selected mean species mass fractions (lines) with experimental
measurements (symbols) at 50mm, 150mm and 250mm above the nozzle exit plane.

fraction are compared. Here, the LES-PBE-PDF results indicate that soot formation commences much
further upstream than was observed experimentally and, quantitatively, the mean soot volume fraction
is underpredicted by one order of magnitude. A similar early onset and decay of soot formation was
observed by Mueller and Pitsch [48] and Donde et al. [14], albeit for a soot model based on the hybrid
method of moments and gas phase/soot kinetics which differed from the ones we employ here. These
authors attributed the early onset to uncertainties in the soot formation kinetics.

In the context of a RANS-presumed pdf approach based on the semi-empirical soot model of Brookes
and Moss [10], Reddy et al. [64] found that the upstream shift of the centerline soot volume fraction
profile can be remedied by computing the OH and O radical concentrations from equilibrium and partial
equilibrium relations independent of the governing gas phase reaction mechanism and the turbulence-
chemistry interaction model. Since the semi-empirical model of Brookes and Moss [10] is based on C2H2,
this is, possibly, related to the strong dependency of the C2H2 yield on the concentrations of OH and O
which may be increased by the equilibrium and partial equilibrium chemistry in the nearfield. Reddy and
De [63] and Reddy et al. [62, 64] further assessed the influence of different radiation models, but found
that, while the peak soot volume fraction on the centerline can vary significantly, its location changes
only slightly.

If we set aside the assumption of (partial) equilibrium OH and O concentrations, then both the present
and previous modelling attempts of the Delft III flame predict an early onset and termination of soot
formation. Since the modification employed by Reddy and De [63] and Reddy et al. [64] affects both the
gas phase chemistry and overrides the turbulence-chemistry submodel, this indicates that either aspect
may be held accountable. On the other hand, comparing our prediction and previous results [14, 48, 64]
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Figure 5: Contour plots of the mean temperature (left), soot number density (center) and soot volume
fraction (right) computed from the LES-PBE-PDF model. The white contour in the left panel indicates
stoichiometric mixture fraction values and the horizontal white lines show the near-field measurement
stations at 50mm, 150mm and 250mm above the nozzle. In the center panel, the white horizontal and
vertical lines indicate the locations for which the instantaneous soot size distributions are shown in Figure
7.

for the soot volume fraction indicates that closures of the turbulence-soot formation interaction and the
soot kinetics do not have as large an influence on the location of maximum soot volume fraction, albeit
being important for quantitative differences. Consequently, it seems possible that there is a physical effect
which is relevant for soot formation in methane-air combustion at moderate Reynolds numbers, but which
both our attempt and previous investigations of soot formation in the Delft III flame omitted. Such an
effect could be related to differential diffusion within the gas phase or differential micromixing between
gas phase scalars and soot. For sooting ethylene flames at larger Reynolds numbers, Xuan and Blanquart
[73] and Koo et al. [35] obtained very good predictions of soot volume fraction using LES-models similar
to the one proposed by Mueller and Pitsch [48]. In this light the ‘missing’ physical effect, may turn less
important under these conditions.

Apart from the upstream shift of the maximum soot volume fraction, our results in Figure 6 are
characterized by an almost immediate onset of soot formation in the nearfield and a rather abrupt
termination about 500mm above the nozzle. The early onset of soot formation reflects the abundance of
C2H2 and the large underprediction of soot volume fraction as well as the rapid decline in the vicinity
of stoichiometric conditions indicates that soot oxidation is rather vigorous, potentially catalyzed by the
temperature overprediction. Attili et al. [5] pointed out that soot surface growth takes place on much
larger time scales than soot oxidation; in this light, it is possible that the residence time of soot pockets
in flame regions which favour surface growth is too short, perhaps owing to limitations in the spatial LES
resolution.

In order to elucidate the preferential location of soot relative to the flame front, we analyze the
conditional soot number density and volume fraction in mixture fraction space for three different flame
cross-sections in Figure 7. Here, the scatter represents instantaneous values sampled at several different
time points, while the solid lines indicate time averages. The vertical dashed lines, furthermore, indicate
the stoichiometric mixture fraction value of 0.0705. In terms of both instantaneous scatter and mean
values the soot number density and volume fraction correlate well in mixture fraction space, reflecting
the dominance of nucleation mentioned above. The instantaneous scatter covers a wide range of number
density and volume fraction values on the rich side of the flame, emphasizing that soot number density
and soot volume fraction may not be uniquely related to mixture fraction. On the lean side, by contrast,
some scatter remains, but the number density and volume fraction values here are significantly reduced.
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Figure 6: Comparing the mean soot volume fraction along the centerline (solid line) with the experi-
mentally determined values (dashed line). Here, the LES-PBE-PDF predictions are scaled by a factor of
10.
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Figure 7: Instantaneous (scatter) and mean (solid lines) values of soot number density (top) and soot
volume fraction (bottom) conditioned on mixture fraction at 250mm, 300mm and 350mm above the
nozzle. The vertical dashed lines indicate the stoichiometric mixture fraction of 0.0705.

Possibly, oxidation is enhanced by the micromixing model whose rate applies, at the moment, equally to
the gas phase scalars and to soot. Further downstream, both soot number density and volume fraction
shift towards leaner mixture fraction values as the flame tip is approached. The soot that persists here
at low mixture fraction values is completely oxidized away by x = 550mm.

Figure 8 depicts the instantaneous soot particle size distributions along the centerline of the flame
and across the flame at the axial distance of maximum soot number density (x = 350mm). The grid lines
which emanate from the particle size coordinate axis illustrate the grid adaptivity in particle size space.
While the grid nodes are rather evenly spaced on a logarithmic scale at large particle sizes, the majority
of nodes have been drawn into the vicinity of the mean nuclei size at 2.5 nm and maintain an accurate
resolution of the sharp rise and decline in particle number density along the particle size coordinate. Both
along and across the flame, the soot particle size distributions do not vary significantly in shape such that
the grid nodes in particle size space display only very little spatial variability here. Throughout, the soot
particle size distribution remains unimodal and, at the largest values of total soot number density and
volume fraction, remains dominated by nucleation. In line with our observations for Figure 5, the particle
number density per unit of length in particle size space takes on maximum values near the centerline and
rapidly decreases further outwards.

In Table 2, we compare the average runtimes of the fractional steps for the stochastic scalars and the
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Figure 8: Instantaneous soot particle size distributions both along the flame centerline and across the
flame at the axial distance of maximummean soot number density. The spatial coordinate in the left panel
runs along the vertical white line depicted in the central panel of Figure 5, while the spatial coordinate
in the right panel corresponds to the horizontal white line.

Physical process Average runtime [s]

Flow field 1.94
Scalar convection/diffusion 6.89
Mixing 1.017
Gas phase reaction 10.85
Particle phase reaction 9.11

All processes 33.54

Table 2: Average runtimes for advancing the LES-PBE-PDF model by one time step (∆t = 1.2× 10−6 s)
on 4 nodes (96 MPI processes) of a Cray XC30 Supercomputer (ARCHER UK).

flow solver on 4 nodes of a Cray XC30 Supercomputer (ARCHER UK). Here, the reaction fractional step
for approximately 35.0% of reacting fluid cells takes slightly longer to execute than the PBE fractional
step (including radiation, species consumption/release and particle size grid adaptation) which is called
on all finite volume cells due to grid adaptivity. The PBE fractional step thus consumes about 27.2%
of the overall runtime per time step, approximately matching the time fraction of 26.3% jointly required
by scalar convection/diffusion and the flow solver.

The time measurements in Table 2 indicate that the combined LES-PBE-PDF approach is compu-
tationally feasible on modest resources of a modern computing system and that, compared to the gas
phase reaction step, the PBE step does not significantly increase the overall runtime. Our observations
thus demonstrate that a detailed resolution of particle size space within each fluid cell is viable and even
computationally efficient. By contrast, the majority of studies investigating soot formation in turbulent
flames have favoured moment based methods, at least in part, due to the concern that a detailed PBE
model would incur excessive computational costs.

8 Conclusions

In the present article, we incorporated the PBE as a Eulerian description for the evolution of a poly-
dispersed particulate phase into an LES model of a turbulent reacting flow with variable density. An
important application of our approach is the prediction of soot particle size distributions in turbulent
hydrocarbon flames. In order to resolve the turbulence-chemistry/particle formation interaction, we ob-
tained an evolution equation for the filtered one-point, one-time joint pdf of the instantaneous reactive
scalars and particle number density. Here, turbulent transport was closed by a gradient diffusion hy-
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pothesis, while two-point correlations of the reactive scalars and number density were replaced by a
micromixing model that accounts for differential diffusion between the gas and particle phases.

Numerically, the joint scalar-number density pdf transport equation was solved using the method
of Eulerian stochastic fields. In the context of LES, this approach has the advantage that its spatial
resolution is independent of the large-scale flow structures – as opposed to stochastic particle based
solvers, for instance. The stochastic process governing the stochastic fields is constructed such that, in a
statistical sense, the evolution of the joint scalar-number density pdf is reproduced.

An important feature of our numerical solution scheme is the adaptive grid discretization of particle
size space. This technique allows particle size distributions which vary largely in shape and width across
the flow domain, potentially including sharp peaks or near-discontinuities, to be represented with similar
accuracy, while maintaining consistency of the particle size discretization across the flow domain. Addi-
tionally, the number of grid points in particle size space is significantly reduced as compared to fixed grid
discretization approaches [68].

The combined LES-PBE-PDF model was applied to model soot formation in the Delft III diffusion
flame. Here, kinetic rate expressions for soot nucleation and growth were adopted from previous laminar
diffusion flame calculations and both species depletion as well as radiation based on the hypothesis of
optical thinness were included. At present, the formation of chain-like soot aggregates is not considered
such that our soot phase is described solely in terms of spherical primary particles. Similarly, the coagu-
lation of nascent soot particles is omitted, although we intend to incorporate coagulation in future times.
The gas phase kinetics were represented by the detailed GRI 1.2 reaction mechanism.

In the nearfield of the Delft III flame both the mean velocity and gas phase scalars agree reasonably
well with measurements. The overprediction on the lean side here seems to be due to limitations of the
spatial resolution which may render the turbulence closures less accurate. Similar to previous LES inves-
tigations of the Delft III flame, the soot volume fraction peaks further upstream than in the experimental
observations. Additionally, soot volume fractions are notably underpredicted. However, except for the
upstream shift and a slightly early onset of soot formation, the centerline soot volume fraction profile
compares well qualitatively with the experimental data. Predictions of the soot particle size distribution
reflect the dominance of soot nucleation and oxidation and their influence on the shape of the local par-
ticle size distribution. In terms of performance, we found the solver for the PBE fractional step to only
consume a modest fraction of the average runtime per time step.

Since most of the computational cost remains concentrated in the gas phase reaction step, we aim
at incorporating an apt tabulation technique in the near future [17]. Additionally, the more recently
proposed soot kinetics are based on PAH chemistry and, hence, require a more comprehensive gas phase
reaction mechanism. By applying a mechanism reduction technique, see, for example, Reference [34],
the number of gas phase scalars may be manageably reduced. On part of the soot formation processes,
the present LES-PBE-PDF framework is also suited for accommodating coagulation of incipient soot
particles. As a final model enhancement we mention the inclusion of gas phase differential diffusion as
well as the prescription of a different micromixing frequency for each gas phase scalar and for soot.

In conclusion, our investigation has demonstrated that modelling soot formation in a turbulent flame
based on the LES-PBE-PDF approach is not only advantageous seeing as any soot kinetics can be
accommodated without approximation and the entire particle size distribution is predicted, but also
computationally efficient.
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Appendix A An evolution equation for the transition pdf asso-

ciated with the stochastic fields

In this section, an evolution equation is obtained for the transition pdf h(z, t;x) associated with the
stochastic process θ(t; ·,x) that evolves according to Eq. (37) subject to the initial condition θ(t0; ·,x) =
(Y0(x), Nρ,0(·,x)). Following the rationale outlined by Sewerin and Rigopoulos [69, Appendix B], we
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introduce the fine-grained density function h′(z, t;x) associated with θ(t; ·,x),

h′(z, t;x) = δ(z − θ(t; ·,x)), (47)

and recall that applying the expectation operator 〈·〉 to Eq. (47) yields the transition pdf h(z, t;x),

h(z, t;x) = 〈h′(z, t;x)〉 = 〈δ(z− θ(t; ·,x))〉 . (48)

The spatial derivatives of h′(z, t;x) are given by

∂h′

∂xj

= −
ns+1∑

i=1

∂h′

∂zi

∂θi
∂xj

, j = 1, . . . , 3. (49)

Since the fine-grained density depends on time through the stochastic process θ(t; ·,x) (Eq. (47)), the
temporal derivative of h′(z, t;x) can be obtained from Itô’s formula [56, Section 3.4],

∂h′

∂t
= −

ns+1∑

i=1

∂h′

∂zi

∂θi
∂t

+
1

2

ns+1∑

i,j=1

3∑

k=1

∂2h′

∂zi∂zj
σikσjk, (50)

where σik(∂θi/∂xk,x, t) represents the diffusion coefficient associated with Eq. (37),

σik

(
∂θi
∂xk

,x, t

)
= −

√
2Γ(x, t)

∂θi
∂xk

. (51)

Introducing Eqs. (37) and (51) into Eq. (50) and taking into account Eq. (49) as well as the identity

ns+1∑

i=1

3∑

k=1



ρΓ

∂θi
∂xk

ns+1∑

j=1

∂2h′

∂zj∂zi
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− ∂h′
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∂
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(
ρΓ

∂θi
∂xk

)
 =

3∑

k=1

∂

∂xk

(
ρΓ

∂h′

∂xk

)
(52)

leads to the following evolution equation for the fine-grained pdf h′(z, t;x)

ρ
∂h′

∂t
+

3∑

j=1

ρũj

∂h′

∂xj

=

3∑

k=1

∂

∂xk

(
ρΓ

∂h′

∂xk

)
− ρ

√
2Γ

3∑

k=1

∂h′

∂xk

Ẇk(t)

−
ns+1∑

i=1

∂h′

∂zi
ρ (si(·, θ) +mi(x, t, θ)) .

(53)

By applying the expectation operator 〈·〉 to Eq. (53), we obtain on account of the commutation property
of 〈·〉, the 〈·〉-analogue of Eq. (25) and by the martingale property of the Itô stochastic integral

ρ
∂h

∂t
+

3∑

j=1

ρũj

∂h

∂xj

=

3∑

k=1

∂

∂xk

(
ρΓ

∂h

∂xk

)
−

ns+1∑

i=1

∂

∂zi
(ρh (si(·, z) +mi(x, t, z))) . (54)

This evolution equation corresponds to our physical modelled pdf transport equation for f̃(z;x, t) given
in Eqs. (28), (31) and (33).
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