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ABSTRACT 

 

BACKGROUND: Little is known of possible associations between Alzheimer’s disease (AD) 

biomarkers and instrumental activities of daily living (IADL) change over time.  

OBJECTIVE: The present study seeks to identify relationships between baseline imaging and 

fluid biomarker profiles, and decline in IADL utilising data collated from the AD Neuroimaging 

Initiative (ADNI) cohort. 

METHODS: Generalised estimating equations analysis, adjusted for cognitive deterioration, was 

applied to a cohort of 509 individuals from all stages of ADNI, including 156 healthy controls, 

189 early mild cognitive impairment (MCI) patients and 164 MCI patients. 

RESULTS: A significant correlation was found between baseline biomarkers - specifically CSF 

Aβ and FDG PET, and IADL change over a 3-year period in individuals with MCI. Importantly, 

comparable correlations between presence of pathological biomarker levels and temporal decline 

in both functional and cognitive performance were also noted. 

DISCUSSION: We show that distinct baseline biomarkers may predict latent changes in IADL. 

Our results necessitate a revision of the commonly held view upholding cognitive changes as the 

predominant endpoint measure associated with presence of abnormal baseline biomarkers. 

 

Keywords: Alzheimer’s disease, biomarker, prediction, early diagnosis, activities of daily living, 

cerebrospinal fluid, positron emission tomography, magnetic resonance imaging 
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1. Introduction 

The clinical stages of Alzheimer’s disease (AD) are characterised by a slowly progressive 

memory-dominant cognitive deterioration, which is accompanied by a progressive impairment of 

normal instrumental activities of daily living (IADL) [1, 2] including complex activities such as 

managing finances, driving or using public transportation, undertaking household chores or doing 

the shopping [3]. Presence of early cognitive, and IADL changes are evident up to 10 years before 

an individual meets the diagnostic criteria for AD dementia [4], where evidence of significant 

cognitive and functional deterioration is required to establish AD diagnosis [5].  

Until recently the in vivo diagnosis of AD was mainly based on clinical judgement, 

however newly proposed guidelines emphasise the use of biomarkers such as cerebrospinal fluid 

(CSF) and neuroimaging measures to identify the presence of AD pathology at different disease 

stages, as well as predict the progression from the earliest symptomatic stage, i.e. early mild 

cognitive impairment (eMCI) [6], to AD dementia [7, 8]. Although future cognitive decline can be 

predicted with relatively high accuracy using certain neuropsychological tests, established CSF, 

imaging and genetic biomarkers: total-Tau (t-tau), pospho-Tau181 (p-tau) and amyloid-β1-42 (A1-

42), magnetic resonance imaging (MRI) mediotemporal lobe atrophy, 18F-fluorodeoxyglucose 

(FDG) positron-emission-tomography (PET) glucose metabolism, C11-Pittsburgh-Compound-B 

(PIB) PET fibrillar amyloid load and apolipoprotein-ε4 allele (APOE-ε4) [9-11], little is known 

about the association between presence of AD risk-biomarkers and IADL change over time.  

It is well established that functional decline is commonly used as a co-primary endpoint in 

many clinical studies, along with cognitive decline [7, 8]. In addition, biomarkers are commonly 

used as surrogate endpoints in clinical drug trials, and have provided strong evidence of predicting 

cognitive decline over time. Recent Food and Drug Administration (FDA) guidelines [12] for AD 

clinical trials designed to capture participants at earlier disease stages, have asked that a combined 

cognitive and functional co-primary outcome measure approach be applied to demonstrate 
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efficacy, and ensure clinical meaningfulness of a cognitive benefit observed through drug 

treatment. Even though functional decline is considered an equally important and highly clinically 

relevant co-outcome measure, there is still very little evidence to show that baseline biomarker 

measures could serve as predictors of function decline (independent of cognitive decline). In order 

to reliably utilise AD biomarkers as surrogate endpoints in clinical trials involving functional and 

cognitive co-endpoint measures, it is critical to ascertain whether baseline biomarkers can indeed 

reliably predict functional decline independently of cognitive decline.  

Previously published data suggest that early biomarker measures may indicate future IADL 

regression usually in late prodromal and early stage disease populations [13-16]. However to date, 

no study has sought to put together a comprehensive picture of how multiple baseline AD 

biomarker measures may impact on downstream IADL decline, specifically within a prodromal 

population. Furthermore, it is not clear if baseline biomarkers predict IADL change independently 

of baseline cognitive status, which itself is a strong factor influencing functional performance. 

This study utilises data obtained from the AD Neuroimaging Initiative (ADNI) cohort. By 

analysing data collected from patients in the earliest clinical stages of AD as well as healthy 

elderly controls; we examined the relationship between baseline imaging and fluid biomarker 

measures and IADL change over time through comparisons of functional deterioration in 

individuals with normal versus abnormal baseline biomarker measures. 

 

2. Materials and methods 

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu) on 25th March 2014. The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has 

been to test whether serial MRI, PET, plus additional biological markers, clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and early 
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clinical AD. ADNI was reviewed and approved by all host study site review boards, and 

participants completed informed consent after receiving a comprehensive description of ADNI. 

Participants were aged between 55-90 (inclusive), considered cognitively normal (CN), eMCI, 

MCI or AD dementia diagnosed individuals, and underwent serial evaluations of functional, 

biomedical, neuropsychological and clinical status at various intervals.  

 

2.1 Study population 

The current study utilised data collected at baseline and 24- to 36-months in 12-month increments. 

In cases where there were an N too small to consider at 36-months, follow-ups were only included 

to 24-months (review Supplementary Figure 1 & 2). Included were baseline data from CN subjects 

(defined as MMSE score between 25 and 30, inclusive; CDR score of 0; no evidence of 

depression; and no memory complaints; n=156), subjects with eMCI (n=189), and patients with 

MCI (n=164) from all stages of ADNI (ADNI 1 n=199, ADNI GO n=6, ADNI 2 n=377). Both 

eMCI and MCI were defined as MMSE score between 24 and 30, inclusive; CDR score of 0.5; 

report of memory complaints; no significant functional impairment. Additionally, to distinguish 

between the diagnostic groups: eMCI and MCI; objective memory deficits on the Wechsler 

Memory-Scale-Logical Memory II test was used with scores between 0.5SD-1.5SD depicting 

eMCI and lower than 1.5SD below the norm indicative of MCI. This ensured no overlap between 

the diagnostic groups. Included subjects had available structural MRI scans, FDG PET, CSF 

proteins (Aβ1-42, t-tau and p-tau) and APOE-ε4 allele carrier status (dichotomised into carriers vs 

non-carriers). Of the samples obtained, 113 participants were missing baseline MRI scans, hence, 

the 3-month follow up visit data was alternatively included. Additionally included were available 

free recall trial measures from the Rey Auditory Verbal Learning Test (RAVLT) [17] and a 

measure of IADL, the Functional Activities Questionnaire (FAQ) [18], both being obtained from 

each of the above mentioned visit times, up to 36-months, where available (Table 1). The RAVLT 
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measures verbal memory performance, where the sum of the five RAVLT free recall trials score 

was used; scores ranging from 0–75; lower scores on the RAVLT indicate greater memory 

impairment. This tool was chosen for its known sensitivity in measuring early signs of episodic 

memory decline; a key indicator of MCI due to AD [19-22]. The FAQ is an informant-based 

measure of IADL. Ratings range from normal (0) to dependent (3) on 10 subscales for a total of 30 

points, with higher scores indicating more impaired functional status. An informant based 

questionnaire of functional performance far exceeds the cogency of a self-reporting version, with 

FAQ exhibiting highest validity in predicting AD related functional decline in multiple studies [2]. 

Further rationale for the utilisation of this instrument is reflected in a pioneering study reported by 

Teng and others, where the authors indicated that FAQ scores >6 were consistent with functional 

impairment [23]. 

 

2.2 Biomarkers 

An in-depth description of biomarker acquisition and performance measures in ADNI can be 

obtained at www.loni.ucla.edu/ADNI, with image and CSF collection protocols available 

elsewhere [24-27]. Briefly, TaqMan quantitative polymerase chain reaction assays were used for 

genotyping APOE nucleotides 334 TC and 472 CT with an ABI 7900 real-time thermocycler 

(Applied Biosystems, Foster City, CA) using DNA freshly prepared from whole blood samples 

[28]. Mean FDG count was obtained per subject based on a composite region of interest in an AD 

typical hypometabolic pattern [24, 26]. FreeSurfer software (http://surfer.nmr.mgh.harvard.edu) 

was utilised to extract MRI (1.5 T) measured hippocampal volume where an atlas-based approach 

was implemented and has been validated for use in subjects with a great deal of morphologic 

variability. Uncorrected hippocampal volume for head size was used as a previous study showed 

that the association between hippocampal volumes and cognition was not altered by intracranial 

volume normalization [29]. Peptide CSF measures were generated from aliquot samples collected 
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at the same time [30] using commercially available enzyme-linked immunosorbent assays 

(ELISAs). Validated cut-offs were applied to a differential between normal and pathological 

findings for CSF p-tau and t-tau [26, 31-32], CSF Aβ [24, 31-33], FDG PET [24-26] and MRI 

hippocampal volume [24-26, 31-33].  

 

2.3 Statistical analysis 

Linear generalised estimating equations (GEE) were conducted to examine the influence of 

baseline biomarker measures on IADL deterioration. The same analysis was utilised to compare 

and contrast results with cognitive deterioration. In this report, time is represented such that 

repeated measurements are dependent samples, whereas measurement between patients are 

considered to be independent. Accordingly, FAQ and RAVLT were modeled as dependent 

variables, and baseline biomarker measures as independent variables in separate GEE analyses. 

Baseline biomarker measures where dichotomized into positive (abnormal) and negative (normal) 

measures, hence our analyses are based on these values and not the original biomarker 

measurement values. GEE uses all available data from all points in time (including baseline 

measures) to estimate a population-averaged effect of biomarkers on FAQ/RAVLT over time. 

GEE does not model the (relative) change of FAQ/RAVLT as a dependent variable but as original 

values obtained from each individual over time. Concerning the dependent variable, GEE accounts 

for dependency of observations measured in the same individual over time by using a working 

correlation structure. Selection of GEE as an appropriate statistical model for this study allowed an 

estimation of the temporal effect of baseline imaging and CSF AD-biomarker measures presence 

on IADL across the investigated population (population-averaged effects), as opposed to within 

subject effects. Additionally, the model took into account missing values across the time course.  

Additional information on GEE models may be viewed elsewhere [34, 35].   
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Longitudinal analyses were adjusted for age, education and APOE 4-allele status. In 

addition, FAQ was adjusted for RAVLT at baseline and vice-versa. We did not adjust for gender 

due to identified studies reporting zero gender bias on variations in IADL performance over time 

[36]. Statistical two-sided significance level was set at 5% (p<0.05). To our knowledge, this study 

is the first to explore associations between baseline biomarkers and IADL change independently of 

cognitive decline, therefore our analyses are purely exploratory. Hence, we considered it 

appropriate not to adjust for multiple comparisons as this is only necessary for confirmatory 

analyses [37]. All analyses were performed using the gee and ggplot2-packages in R version 3.2.1 

[38-40]. 

 

3. Results 

Relevant sample characteristics are presented in Table 1.  

A significant association was found between baseline FAQ and RAVLT scores (p<0.001), where 

the Spearman’s correlation coefficient between baseline FAQ and RAVLT given as r=-0.40, 

however, FAQ and RAVLT scores after baseline were no longer comparable. Significant 

associations between IADL, cognitive performance and specific biomarkers were found in both 

eMCI and MCI groups prior to adjustment, but not in the CN group.  

There were no significant associations among the eMCI patient group once results were 

adjusted for age, APOE-ɛ4 carriage, education and respectively FAQ (GEE models for AVLT) or 

AVLT (GEE models for FAQ) (Table 2).   

In MCI patients, worsening FAQ scores were found to be associated with impaired glucose 

metabolism [FDG-PET data] (r=3.59, p<0.001) and low levels of CSF Aβ (r=2.97, p=0.028). In 

addition, RAVLT decline among MCI patients significantly correlated with abnormal glucose 

metabolism at baseline (r=-4.60, p=0.009), low CSF Aβ (r=-6.59, p<0.005) and high levels of CSF 

p-tau (r=-6.85, p<0.001) (Table 2). 
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In healthy controls, no significant associations were found between any of the biomarkers 

and FAQ as well as RAVLT scores.  

The associations between baseline biomarkers and FAQ scores for all investigated subjects 

are presented in Supplementary Figure 1, and for RAVLT in Supplementary Figure 2. The results 

indicate that FAQ decline is independent of RAVLT decline, as can be seen by the inconsistent 

coefficients, that is, the signs of the coefficients (RAVLT vs. FAQ) for the same biomarker are 

neither consensual (same direction; e.g. both positive) nor opposing. Moreover, relative 

differences between the two scales do not correlate after 12, 24 and 36 months (Spearman’s 

correlation coefficient: <0.2), whereby a high correlation (<.05) between the relative differences 

(e.g. baseline vs 12-months) of the two scales would suggest a dependence between the FAQ and 

RAVLT scales. 

 

4. Discussion  

Identification of alternate clinical study endpoint measures for AD clinical trials remains a crucial 

endeavour to be pursued, in light of recent FDA guidelines advocating the implementation of a 

multi-outcome measure approach (utilising not only cognitive, but also functional outcome 

measures) for a more robust design when executing clinical trials investigating AD drug targets 

[12]. Although emerging evidence posits that functional decline may serve as an adjunctive 

primary outcome measure with cognitive deterioration, and results on baseline biomarkers reliably 

predicting latent cognitive decline are none too few; the data on associations between distinct 

baseline AD risk biomarkers and temporal changes in IADL remain very limited. In a bid to 

determine whether baseline biomarkers co-predict changes not only in cognitive, but also 

functional performance, we sought to explore the association between baseline AD biomarker 

measures and functional decline independently of cognitive decline over time in healthy, eMCI 

and MCI elderly individuals. We therefore aimed to observe whether functional decline would 
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significantly differ between individuals who present with positive (abnormal) versus negative 

(normal) biomarker measures at baseline. By utilising a sub-set of participant data from the ADNI 

cohort, we implemented GEE to critically evaluate notable associations between objective 

assessments of cognitive (RAVLT) and functional (FAQ) change in relation to distinct AD risk 

biomarkers collected at subject enrolment.  

 Our data, adjusted for baseline cognitive performance and APOE ɛ4-allele carriage, 

revealed that functional decline in the MCI subject group was significantly correlated with 

abnormal glucose metabolism (assessed using FDG-PET) and CSF Aβ. It is important to highlight 

that reported associations between these biomarkers (present at baseline) and FAQ scores over 36-

months remained significant even after adjusting for baseline RAVLT scores, suggesting that these 

baseline biomarkers may predict functional change independently of baseline cognitive status. No 

significant adjusted associations between baseline biomarkers and functional decline in the eMCI 

group were observed.  

Baseline biomarker measures as a predictive factor of functional decline is a novel area of 

research, with very few studies having explored such relationships and of those comparable; our 

findings are congruent [14-16, 41-43]. Two separate studies found regional cortical thinning and 

decreased CSF A1-42 to predict IADL decline across the AD spectrum [15, 41]. Likewise, 

correlations between cerebral atrophy and IADL decline in MCI individuals have been reported 

[14], with rate of decline found to increase three fold in APOE-4 positive individuals [42]. 

Although not identified in our study, decreased hippocampal volume in MCI individuals too has 

been linked to reduced functional performance, compared to MCI individuals who do not exhibit 

this biomarker deficit [43]. However, once again baseline cognition was not controlled for. While 

not a primary aim, our results also replicate those found in relation to baseline biomarkers and 

cognitive decline. For example, a recent study found the combined temporal, lateral parietal, and 
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posterior cingulate hypo metabolism seen on FDG-PET as well as CSF A1-42  and p-tau to be 

associated with cognitive decline in MCI and mild AD dementia patient groups [16].  

Our data is an extension of these recent findings through the exploration of a more 

comprehensive range of biomarkers from the earliest AD stage, namely, individuals presenting 

with eMCI, a currently experimental subject group which in itself is a strength and novelty. 

Interestingly, there were no statistically significant associations observed between any of the 

investigated baseline biomarkers and functional decline in the eMCI cohort. A possible 

explanation for this finding could be the heterogeneous nature of both MCI and possibly more so 

the eMCI subjects in terms of AD related disease and symptom progression.  eMCI is an 

experimental concept whereby likelihood of progression to AD dementia has not been extensively 

explored. A recent exploratory study utilising the ADNI cohort sought to define latent classes 

based on similar growth patterns between cognitive and functional decline using Growth Mixture 

Modelling (GMM) or person-centred modelling approach to identify baseline risk characteristics 

associated with the specified trajectories [44]. In doing so, they were able to create a decision tree 

using clinical predictors to ascertain GMM determined trajectories. Three trajectory classes (C) 

were identified; C1 (steepest decline), C2 (intermediate) and C3 (shallow decline). Of notable 

differences between C1 and C3 were the mean age (C1 = 74.7, C3 = 72.9), APOE ɛ4 carriage (C1 

= 69.1%, C3 = 38.3%) and amyloid status (C1 = 92%, C3 = 48.2%). Differences in these same risk 

variables between the eMCI and MCI cohorts explored in this study are congruent to C3 and C1 

group characteristics respectively, potentially explaining the reduced likelihood of functional 

decline in the eMCI cohort. Indeed both cognitive and functional decline was steeper in the C1 

group versus the C3 group. A longer follow-up period may bring about observed functional 

decline based on baseline AD-biomarker positivity in the eMCI cohort, if this data were available.  

To our knowledge this is the first study to explore the association between baseline 

biomarker measures and functional decline independently of baseline cognitive performance and 
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APOE 4 status. Our study suggests a significant predictive value for baseline biomarkers on 

functional decline in MCI individuals, particularly with measures such as glucose metabolism 

(FDG-PET) and CSF A (see Supplementary Figure 1). According to the current hypothetical 

model of AD related biomarker trajectories [45], reduced cerebral glucose metabolism as shown in 

FDG PET and lower CSF A concentrations are all biomarker changes known to manifest during 

MCI disease stage. Such predictors are associated with conversion and likely reflect disease 

severity, i.e., how close an individual is to a significant clinical transition [45]. Hence, it may be 

expected that the associations are stronger for baseline FDG-PET and CSF A measures with 

functional decline due to these biomarkers being a manifestation of a disease stage involving 

conversion from MCI to AD, and hence a natural follow-on of functional decline would be 

expected within this 36-month follow-up period.  

Study limitations must be acknowledged; it is important to mention that the standardisation 

of biomarker cut-offs is currently limited and results often vary among laboratories. Ultimately, it 

will be necessary to interpret biomarker data in the context of well-established normative values. 

Positive or abnormal values should fall within reliable and valid pathological ranges. However, 

current cut-offs have been used in numerous ADNI studies, and appear to show reasonable validity 

for the purposes of this paper [24-26, 32, 33, 46]. Additionally, the ADNI cohort is namely white, 

middle class, educated and without any major comorbidity, thus, it would be important to repeat 

such a study with a larger and more widely represented demographic. In addition, our analyses do 

not take into account biomarker changes over time as AD pathophysiology progresses, which 

impacts on the association of biomarkers and cognitive as well as functional abilities at any given 

point in time during the course of AD. Furthermore, we did not explore the effects of co-

morbidities and non-AD (e.g. cerebrovascular) brain changes on the studied clinical parameters. 

As a result, the lack of histopathological verification of the clinical diagnoses is another limitation, 

but the ADNI cohort is on purpose enriched with probable pre-dementia AD cases, evidenced by 
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the first autopsy studies [47]. In regards to the exploratory nature of this study, multiplicity was 

not taken into consideration, hence it is prudent to recognise that caution must be taken when 

reviewing the significant outcomes of this analysis, noting the observed exploratory correlations 

may indicate true correlations, whereby confidence in such inferences are strengthened by 

congruent findings elsewhere as discussed in the manuscript [37]. Certainly there is value in 

running a confirmatory study, where outcomes would be sufficiently informative whether or not 

significance is reached. Finally, there is some missing data, especially in later visit time-points as 

study participants drop off. This is a classic pattern observed in prospective clinical research, and 

more studies surrounding participant retention across the AD spectrum is needed.  

In light of next steps, exploring IADL sub-category scores by dichotomizing into complex 

vs simple functional tasks for added sensitivity may yield stronger correlations with baseline 

biomarker measures. This may also assist in validating complex IADL change as a further clinical 

characteristic observed in eMCI. Studies have indeed found increased sensitivity of IADL scoring 

in the MCI demographic, once scores are split into complex and simple categories [48, 49]. 

Furthermore, it may be more practical to utilise a combination of biomarkers, potentially with 

different weights, than individual markers to predict functional decline, and the validation of such 

a composite biomarker index is another important step. Finally, there is a growing interest in the 

literature relating to AD plasma biomarkers and functional decline whereby further exploration is 

warranted and may bring about production of invaluable confirmatory studies.  

 

5. Conclusion 

Patient behavioural changes and inability to perform daily functional tasks are directly related to 

caregiver burden, and as such provide a more meaningful construct to caregivers, practitioners, 

and payers [50]. Hence, it is critical that functional decline be more fully understood in relation to 

disease stage and correlations with well-known AD biomarkers. These results yield promise in 
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supporting postulations that baseline biomarker measures may prove a significant indicator of 

projected functional decline, hence strengthening efficacy in utilising functional decline as a co-

primary endpoint in AD clinical research. 
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Table 1. Description of the study sample  

 Diagnostic group 

 Overall Normal eMCI MCI 

(N = 509) (n = 156) (n = 189) (n = 164) 

Age, mean ± SD 73.2 ± 7.1 74.8 ± 5.5 71.2 ± 7.5 74.0 ± 7.4 

Gender, male (%) 58.0 57.7 55.0 61.6 

FAQ, Median (IQR)     

Baseline 0.0 (3.0)* 0.0 (0.0) 1.0 (3.0) 2.0 (6.0)* 

Month 12 0.0 (4.0)* 0.0 (0.0)* 1.0 (4.0)* 4.0 (9.0)* 

Month 24 1.0 (4.0)* 0.0 (0.0)* 1.0 (3.0)* 6.0 (12.0)* 

Month 36 2.0 (8.0)* 0.0 (0.75)* 1.0 (4.0)* 8.5 (16.0)* 

RAVLT, Median (IQR)     

Baseline 37.0 (16.0) 44.0 (15.0) 37.0 (15.0) 30.0 (12.0) 

12 37.0 (16.25)* 43.0 (14.0)* 38.0 (14.0)* 29.0 (11.0)* 

24 37.0 (18.0)* 44.5 (14.25)* 37.0 (16.5)* 28.0 (13.0)* 

36 34.0 (16.0)* 39.0 (10.5)* 37.0 (13.75)* 24.0 (12.0)* 

Biomarkers, AD-positive 

(abnormal) (%) 

    

APOE 4 39.1 23.1 38.6 54.9 

FDG-PET (count value 

≤1.21)  

32.4 19.9 24.3 53.7 

MRI hippocampal 

volume (≤3260 mm3) 

30.5 16.0 23.3 52.4 

CSF Aβ1-42 (≤192 pg/ml)  47.0 32.7 36.0 73.2 

CSF p-tau181 (>23 pg/ml)  46.6 33.3 38.1 68.9 

CSF ttau (≥66 pg/ml)  30.4 21.6 24.6 45.4 

*: based on available cases specified (FAQ and/or AVLT scores were not ascertained at missed 

visit time-points); IQR: Interquartile Range; eMCI: early Mild Cognitive Impairment; MCI: Mild 

Cognitive Impairment; FAQ: Functional activity questionnaire (higher scores indicate greater 

functional impairment); RAVLT: Rey auditory verbal learning test (lower scores indicate greater 

memory impairment); Positive (abnormal): baseline biomarkers which measured within the 

pathological range; Negative (normal): baseline biomarkers which measured within the normal 

range; APOE: Apolipoprotien E; CSF: cerebrospinal fluid; FDG PET: [18F] fluorodeoxyglucose 

positron emission tomography; p-tau181: tau phosphorylated at threonine 181; Aβ (+): participants 

with β- amyloid 1-42 levels in cerebrospinal fluid (CSF) lower ≤192 pg/ml. 
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Table 2. Associations between FAQ and RAVLT progression with baseline AD-risk biomarkers 

in normal, eMCI and MCI participants 

    RAVLT     FAQ   

AD-Positive Biomarkers    Regression  p-value 
(sig.<0.05) 

  Regression  p-value  
(sig.<0.05) 

  coefficient   coefficient 

FDG-PET (count value 
≤1.21)        

Normal  -3.680 0.620  0.242 1.000 

eMCI  -0.027 1.000  1.382 0.426 

MCI   -4.605 0.009*  3.592 <0.001* 

MRI hippocampal volume 
(≤3260 mm3)        

Normal  1.227 1.000  0.769 1.000 

eMCI  -0.623 1.000  1.578 0.222 

MCI   -1.584 1.000  2.221 0.161 

CSF Aβ1-42 (≤192 pg/ml)        

Normal  0.200 1.000  0.117 1.000 

eMCI  -3.777 0.063  1.056 0.636 

MCI   -6.594 0.005*  2.972 0.028* 

CSF p-tau181 (>23 pg/ml)        

Normal  0.343 1.000  0.333 1.000 

eMCI  -0.835 1.000  0.419 1.000 

MCI   -6.850 <0.001*  0.421 1.000 

CSF ttau (≥66 pg/ml)        

Normal  -1.741 1.000  0.804 1.000 

eMCI  -0.666 1.000  1.083 1.000 

MCI   -3.279 0.236  -0.339 1.000 

 

*: p ≤ 0.05 (GEE models were adjusted for age, APOE ɛ4, education, and respectively FAQ (GEE 

models for RAVLT) or RAVLT (GEE models for FAQ) at baseline) 

eMCI: early Mild Cognitive Impairment; MCI: Mild Cognitive Impairment; FAQ: Functional 

activity questionnaire; RAVLT: Rey auditory verbal learning test; Positive (abnormal): baseline 

biomarkers which measured within the pathological range; Negative (normal): baseline biomarkers 
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which measured within the normal range; APOE: Apolipoprotien E; CSF: cerebrospinal fluid; 

FDG PET: [18F] fluorodeoxyglucose positron emission tomography; p-tau181: tau phosphorylated 

at threonine 181; t-tau: total tau measurement; CSF Aβ (+): participants with β- amyloid 1-42 

levels in cerebrospinal fluid (CSF) lower ≤192 pg/ml.  
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Supplementary Figure 2. Temporal representation of RAVLT composite measurements in 

normal, eMCI and MCI subjects according to baseline biomarker profiles (raw and unadjusted 

values). 

 

eMCI: early Mild Cognitive Impairment; MCI: Mild Cognitive Impairment; FAQ: Functional activity questionnaire; 

abnormal: baseline biomarkers which measured within the pathological range; normal: baseline biomarkers which 

measured within the normal range; CSF: cerebrospinal fluid; FDG PET: [18F] fluorodeoxyglucose positron emission 

tomography; p-tau181: tau phosphorylated at threonine 181; t-tau: total tau measurement; CSF Aβ positive: 

participants with β-amyloid 1-42 levels in cerebrospinal fluid (CSF) lower ≤192 pg/ml. 


