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MRI is finding increased clinical use in neonatal populations; the extent to which electromagnetic models used for
quantification of specific absorption rate (SAR) by commercial MRI scanners accurately reflect this alternative scenario
is unclear. This study investigates how SAR predictions relating to adults can be related to neonates under differing
conditions when imaged using 1.5 T and 3TMRI scanners. Electromagnetic simulations were produced in neonatal sub-
jects of different sizes and positions within a generic MRI body transmit device operating at both 64MHz and 128MHz,
corresponding to 1.5 T and 3T MRI scanners, respectively. An adult model was also simulated, as was a spherical salt-
water phantom, which was also used in a calorimetry experiment. The SAR in neonatal subjects was found to be less
than that experienced in an adult in all scenarios; however, the overestimation factor was variable. For example a
3T body scan resulting in local 10g SAR of 10.1Wkg�1 in an adult would deposit 2.6Wkg�1 in a neonate: an approx-
imately fourfold difference. The SAR experienced by neonatal subjects undergoing MRI is lower than that in adults in
equivalent situations. If the safety of such procedures is assessed using adult-appropriate models then the result is a
conservative estimate. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.
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INTRODUCTION

There is increasing interest in using MRI procedures on neonates
(1). A major benefit of MRI is the absence of ionizing radiation,
making it suitable for use on any patient group or on healthy vol-
unteers. Nonetheless, safe operation of in vivo MR systems does
require a strong safety culture and rigorous working practises
compliant with strict safety guidelines. Careful control of power
deposition from applied RF fields within the subject being exam-
ined is necessary to avoid temperature increases that are large
enough to cause excessive physiological stress or pose a risk of
tissue damage. Since it is not straightforward to directly monitor
or accurately predict the spatial and temporal distributions of
temperature in a subject, power deposition (as quantified by
the specific absorption rate, SAR) is used as a surrogate. National
and international regulatory authorities publish maximum limits
on exposure in guidelines and standards (2–4). Table 1 lists tem-
perature and SAR limits cited in the international standard IEC
(International Electrotechnical Commission) 60601-2-33 (2). Al-
though the 2010 IEC 60601-2-33 standard contains limits for lo-
cal SAR averaged over 10 g of tissue (SAR10g), these apply only
in the case of local transmit coils, i.e. not for volume transmitters
used in standard commercial whole body systems. As well as
whole body and head averaged SAR, IEC 60601-2-33 also spec-
ifies limits for partial body SAR, which do apply for volume trans-
mit coils. Partial body SAR is defined as SAR averaged over the
exposed mass, and the limits specified vary depending on this
mass as a fraction of the whole body mass; values quoted in
Table 1 have been calculated for exposed mass fractions relevant
to the scenarios studied in this paper. Details can be found in the
Methods section. The International Commission on Non-ionizing

Radiation Protection (ICNIRP) statement on protection of pa-
tients undergoing MRI (3), which is still current regarding RF ex-
posures (4), does impose limits on local SAR10g in the head,
trunk, and extremities, and it is common practice for research pa-
pers on SAR modelling for MRI to consider these limits. This is in
part motivated by the fact that there are several examples in the
literature of simulations of exposure to body coils that indicate
that the SAR10g limit is exceeded before the whole body SAR
limit is reached (5–8). All limits have been stated in Table 1,
and adherence to all results in a conservative estimate of safety,
but the reader should be aware of the differing standards.
Although it is possible to monitor the RF power produced

by an MRI scanner, it is not possible to directly measure the
resulting SAR distribution within the subject’s body; to relate

* Correspondence to: S. Malik, Centre for the Developing Brain and Department of
Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering,
King’s College London, King’s Health Partners, St Thomas’ Hospital, London, UK.
E-mail: shaihan.malik@kcl.ac.uk

S. J. Malik, A. Beqiri, A. N. Price, J. N. Teixeira, J. W. Hand, J. V. Hajnal
Centre for the Developing Brain and Department of Biomedical Engineering,
Division of Imaging Sciences and Biomedical Engineering, King’s College Lon-
don, King’s Health Partners, St Thomas’ Hospital, London, UK

This is an open access article under the terms of the Creative Commons At-
tribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

Abbreviations used: SAR, specific absorption rate; SAR10g, local 10 g aver-
aged SAR; TPN, total parenteral nutrition; IEC, International Electrotechnical
Commission; ICNIRP, International Commission on Non-ionizing Radiation
Protection.

Research article

Received: 26 August 2014, Revised: 1 December 2014, Accepted: 9 December 2014, Published online in Wiley Online Library: 16 January 2015

(wileyonlinelibrary.com) DOI: 10.1002/nbm.3256

NMR Biomed. 2015; 28: 344–352 © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

344

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


the two, safety checking algorithms employed by scanner
manufacturers rely on predictions from computer models. The
exact nature of these models is often undisclosed; however, in
our experience they can include simple geometric shaped
objects or human models. There is therefore some uncertainty
in extrapolating the predicted values to neonatal subjects. Recent
studies have considered multiple (adult and paediatric) models
(9) and foetal subjects in utero (10), but none have considered
directly the case of a neonate scanned ex utero. In this work we
simulate exposure of a neonate to the RF field produced by
generic birdcage coils at 1.5 T and 3 T using a digital anatomical
phantom and a commercial electromagnetic solver. Two posi-
tions of the neonate relative to the coil (head and heart centred)
are considered, as well as variants of the neonate voxel model
with different physical sizes, with simulated touching heels and
with insertion of a total parenteral nutrition (TPN) line. In each
case the resulting whole body and head averaged SARs and local
10 g averaged SAR are predicted. An adult model is also included
for the purposes of comparison with the neonatal models and
with predictions from a commercial system’s internal SAR model,
whose details are unknown.

METHODS

Numerical simulations

The Microwave Studio® Transient Solver within CST Studio Suite®
2013 (Computer Simulation Technology, Darmstadt, Germany)
was used to solve the electromagnetic problem on personal
computers with 3.6 GHz Intel® Core™ i7-3820 processors and
16GB RAM. Electric and magnetic field distributions at the oper-
ating frequency were extracted along with SAR distributions
within the tissue models averaged over the head, the whole
body), and locally over 10 g of tissue (SAR10g).

RF transmit coil model

A generic birdcage transmit coil representative of the type used
in commercial 1.5 T and 3 T MRI systems was modelled. Specifi-
cally this was a 16-rung circular band-pass birdcage coil with di-
ameter 0.6m and centre to centre spacing of the end rings 0.4m,
positioned within a 1.0m long 1mm thick cylindrical metal
shield with internal diameter 0.678m. The coil was tuned to
128MHz (3 T) or 64MHz (1.5 T) and driven in quadrature. All me-
tallic components were assumed to have the same conductivity
as copper (5.997 × 107 Sm�1).

Voxel models

Voxel models simulating neonates of term equivalent age
(40weeks gestational age) were created starting from an existing
model of a deceased eight week old female baby of mass 4.2 kg
and length 57 cm (24h post mortem). The original model was de-
rived from high resolution CT data segmented into 31 tissue types.
It was acquired under a licensing agreement from the Institute of
Radiation Protection (now Research Unit Medical Radiation Physics
and Diagnostics) at the Helmholtz ZentrumMünchen, German Re-
search Centre for Environmental Health (11,12). Since the original
baby’s weight was at the 97th percentile for term aged girls
(95th percentile for boys) and its length exceeded the median by
more than three standard deviations for both boys and girls (13),
we scaled its voxels down by 10% in all three dimensions to create
a simulated neonate (“Baby A”) ofmass 3.02 kg (32nd percentile for
females, 25th percentile for males at term equivalent age) and
length 51.3 cm (88th percentile for females, 77th for males at term
equivalent age) (13), resulting in 0.76× 0.76× 3.6mm3 voxels. A
second neonatal model more typical of female newborns was cre-
ated by anisotropically scaling the original voxel model to produce
“Baby B”, with 0.805×0.805×3.45mm3 voxels resulting in mass
3.25 kg (52nd percentile for females, 42nd percentile for males)

Table 1. SAR and temperature limits within standard IEC-60601-2-33

Normal mode First level controlled mode

Whole body SAR (Wkg�1) 2.0 4.0

Head SAR (W kg�1) 3.2 3.2

Partial body SAR (W kg�1) Adult exposure (43%) 6.6 7.4
Baby head centred exposure (83%) 3.4 5.0
Baby heart-centred exposure (100%) 2.0 4.0

Local SAR10g (W kg�1) Head 10 20
Trunk 10 20
Extremities 20 40

Temperature (°C) Maximum core temperature 39 40
Max. local tissue temperature 39 40
Increase in core temperature 0.5 1

SAR limits are averaged over 6minutes; during any 10 s period SAR must not exceed twice the above values. For long duration
examinations the specific absorbed energy must not exceed 240W.minute kg�1 Operation in the normal mode does not cause
physiological stress to patients; operation in the first level controlled mode can cause physiological stress to patients which
needs to be controlled by medical supervision. According to IEC-60601-2-33 (2010) the local SAR10g limits only apply to local
transmit coils (i.e. not the ones modelled in this study). Volume coils must however respect partial body SAR limits calculated
from the exposed mass. For normal mode operation the Partial Body SAR limit is calculated as 10Wkg�1- (8W kg�1 × r) and for
the first controlled mode this is 10Wkg�1- (6W kg�1 × r) where r is the exposed mass fraction (quoted as percentages in the
table). Partial Body SAR limits for values of r relevant to the models in this paper are given.
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and length 49 cm (47th percentile for females, 32nd percentile for
males).

Two further variants of the Baby A model were also inves-
tigated (Fig. 1). In one model the baby’s heels were con-
nected by a medium with permittivity of 80 and
conductivity of 1 Sm�1 (similar to 6 g L�1 saline at 20 °C
(14)) to simulate the effect of introducing a conducting loop,
as might occur if the heels are touching or a saline bag is
placed between them. In the second variant a baby undergo-
ing TPN via a catheter with outer diameter 4mm and wall
thickness 1mm inserted into the umbilical vein to a depth
of approximately 50mm via the umbilical stump was simu-
lated. Externally to the baby, the catheter was modelled as
oriented parallel to the axis of the transmit coil with length
0.55m, taking it out of the RF coil. The major ionic constitu-
ents of the perfusate were taken to be sodium (6.25mM), po-
tassium (2.5mM), calcium (1.9mM), phosphate (2.5mM), and
chloride (3.8mM). Permittivity and conductivity values of 80
and 0.2 Sm�1 and 3.5 and 7 × 10�17 Sm�1 were used for the
perfusate and catheter, respectively. The properties of the
perfusate would give the RF wavelength in this medium as
approximately 0.26m, and an approximate estimate of the
Q factor of any resonance (estimated as the inverse of the
loss tangent) is Q≈ 3, suggesting that any resonant effect
would be highly damped.

An adult male voxel model (NORMAN (15)) of height
1.76 m and mass 73 kg with 2 × 2 × 2mm3 voxels was also
simulated, positioned with heart centred in the same
coil. All models were simulated at 3 T; additionally, the
Baby A heart-centred model and the adult model were
simulated at 1.5 T to provide direct comparisons at lower
frequency.

Dielectric properties

Although there is a considerable body of data relating to the per-
mittivity and conductivity of adult tissues, there are fewer data
describing the properties of neonatal tissues. Several studies
have indicated that dielectric properties reflect age dependent

changes in the water content of tissues (16–18). The dielectric
properties required for the neonatal models used in this study
were derived using a similar approach to that reported by
Dimbylow et al. (19), who scaled adult dielectric properties by
the ratios calculated between the dielectric properties of new-
born and adult rats (18). In this work the relevant ratios are taken
from Reference 18 for 130MHz (the lowest frequency studied in
Reference 18) and adult human values based on data from Ref-
erences 20–22 were obtained online (23); see Table 2 for all rel-
evant data.

Partial body SAR calculation

Partial body SAR is calculated by averaging over the region of
the body within the effective volume of the RF coil (2). This
volume extends some way beyond the physical limits of the
coil since incident fields decay through space. For the heart-
centred baby model the baby was fully within this volume (i.
e. 100% exposure) while for the head centred baby this was
83% (exposed mass = 2.5 kg) and for the heart-centred adult
model the exposure was 43% (exposed mass = 31 kg). These ex-
posure levels were used to calculate the resulting partial body
SAR limits quoted in Table 1, and partial body SAR was calcu-
lated by numerically integrating the results over the specified
volumes.

Normalization of results

Simulations produce estimates of SAR and RF magnetic field
strength (B1) for an arbitrary input power; generally, MRI scan-
ners make in situ measurements of the NMR active circularly
polarized component of B1 (referred to as B1

+) and scale their
output power accordingly. SAR values for B1

+ = 1 μT at 100%
duty cycle are quoted since these can be used to predict SAR
for any sequence and MRI scanner with similar RF hardware
by scaling appropriately. Normalization to 1 μT was achieved
by dividing predicted SAR values by the square of the average
predicted B1

+ within a 50mm diameter circular region of inter-
est on the central transverse slice (thickness 5mm) of the

Figure 1. Baby models studied. (a) Baby A (lateral and anterior views), (b) Baby B (lateral and anterior views), (c) Baby A with heels connected, (d) Baby
A with TPN line. (a) and (b), drawn to the same scale, indicate the differences in shape and size between Baby A and Baby B. The different grey shading
indicates the segmentation of the limbs that was present in the original model.
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model. A small region was chosen in order to provide consis-
tency over the multiple models of different shapes and sizes.
Total accepted power – i.e. the amount of power dissipated
by the coil into the subject and other loss mechanisms such
as radiation and resistive loss – is also quoted for reference.
Table 4 also quotes the SAR estimates scaled for actual B1

+

and duty cycle conditions used by Philips 1.5 T (Achieva, soft-
ware version R3.2.1) and 3 T (Achieva, software version R3.2.1)
MRI scanners (Philips Medical Systems, Best, The Netherlands)
set to scan at their maximum permissible SAR for normal oper-
ation. These scanners operate with their own models for
estimating local and global SAR (details unknown) and
quote the limiting value to the user. The limiting SAR quoted
by the scanner for the 1.5 T example is whole body averaged
SAR= 4Wkg�1. The 3 T system operates under two different
regimes: (i) body scanning and (ii) head scanning. In the
body scanning limit the scanner quotes local torso

SAR10g = 10Wkg�1, while for head scanning the limiting value
is head averaged SAR = 3.2Wkg�1. The latter is more permis-
sive, since it assumes an adult having a head scan, where most
of the body is outside the scanner and therefore not exposed
to the RF. The Philips scanner modelled in this work selects
the head scanning SAR limit if a head receiver coil is used for
signal reception. Neonatal subjects are routinely scanned using
adult head coils for reception and therefore activate this model,
irrespective of the fact that the neonate remains fully exposed
to the RF field, hence both scenarios are evaluated. Scan proto-
cols for all three of the above scenarios were defined for an
adult subject of mass 73 kg, and the following conditions were
then obtained from the user interface: for 1.5 T, B1

+ = 23.0 μT,
duty cycle = 3.9%; for 3 T “body limited”, B1

+ = 13.5 μT, duty cy-
cle = 1.4%; for 3 T “head limited”, B1

+ = 13.5μT, duty cycle= 3.0%.
Scaling of the SAR values was performed by multiplying the 1 μT
100% duty cycle values by (B1

+/1 μT)2 × (duty cycle/100).

Table 2. Permittivity and conductivity of newborn tissues

Tissue Permittivity
ratio a

Newborn tissue
Permittivity b

Conductivity ratio a Newborn tissue
Conductivity b

(Sm�1)

Density c

(kgm�3)

128MHz 64MHz 128MHz 64MHz

Adrenals 1.28 85.50 94.65 1.7 1.3670 1.3231 1050
Bone 2.18 32.12 36.36 3.9 0.2623 0.2321 1562
Bladder wall 1.28 28.01 31.48 1.5 0.4468 0.4310 1050
Bladder contents 1.0 21.88 24.6 1.0 0.2979 0.2870 987
Brain 1.45 91.61 119.81 1.7 0.7883 0.6820 987
Breast 1.28 7.23 7.43 1.5 0.0454 0.0443 1050
Connective tissue 1.28 66.43 76.15 1.5 0.7470 0.7115 987
Eyes 1.28 83.30 96.38 1.5 1.3758 1.3240 1050
Eye lens 1.28 68.00 77.48 1.5 0.9129 0.8787 1050
Gall bladder wall 1.0 74.29 87.40 1.0 1.0409 0.9660 1050
Gall bladder contents 1.0 89.09 105.44 1.0 1.5753 1.4818 1050
Heart 1.28 108.09 136.33 1.5 1.1475 1.0176 1050
Kidney 1.34 120.41 158.87 1.5 1.2764 1.1120 1050
Large intestine wall 1.28 98.18 121.22 1.5 1.0560 0.9570 1050
Large intestine contents 1.0 63.60 72.20 1.0 0.7190 0.6880 987
Liver 1.14 73.40 91.84 1.3 0.6631 0.5824 1050
Lung 1.28 81.71 96.36 1.5 0.8627 0.7965 296
Muscle 1.39 88.36 100.41 1.7 1.2220 1.1699 1050
Oesophagus 1.28 95.97 109.85 1.5 1.3686 1.3167 1050
Ovaries 1.28 101.64 136.72 1.5 1.1836 1.0278 50
Pancreas 1.28 85.56 94.65 1.5 1.2057 1.1675 50
Skin 1.89 116.63 145.01 2.1 1.1413 1.0249 1105
Small intestine wall 1.28 112.91 151.50 1.5 2.5374 2.3871 1050
Small intestine contents 1.0 63.60 72.20 1.0 0.7190 0.6880 987
Spinal cord 1.28 56.52 70.48 1.5 0.5299 0.4683 1050
Spleen 1.14 94.75 126.04 1.5 1.0843 0.9671 1050
Stomach wall 1.28 95.97 109.85 1.5 1.3686 1.3167 1050
Stomach contents 1.0 63.60 72.20 1.0 0.7190 0.6880 987
Thymus 1.28 85.56 94.65 1.5 1.2057 1.1675 1050
Thyroid 1.28 85.56 94.65 1.5 1.2057 1.1675 1050
Uterus 1.28 96.72 117.91 1.5 1.4405 1.3659 987
aThe permittivity (conductivity) ratio is (permittivity (conductivity) of newborn tissue)/( permittivity (conductivity) of adult tissue) at
130MHz as reported by Peyman et al. (18).
bNewborn tissue permittivity (conductivity) values are the adult values (from References 20–22) multiplied by the appropriate ratio.
cDensity values provided by Helmholtz Zentrum München.
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Verification experiment

A calorimetry experiment was performed using a spherical phan-
tom of internal diameter 100mm filled with a salt-water solution
of concentration 6 g L�1, on a Philips 3 T Achieva MRI scanner.
The phantom was wrapped in foam packing material and placed
within two nested polystyrene boxes for thermal insulation.
Temperature was recorded using a Luxtron FOT Lab Kit with
two fibre-optic temperature probes (Luxtron, now LumaSense
Technologies, Santa Clara, CA, USA) located at the centre of the
phantom (separation< 1 cm), and two additional probes mea-
suring ambient air temperature in the scanner bore. Phantoms
were left to temperature stabilize in the scanner room overnight
before scanning, which was performed for 1 h with temperature
recorded at 1 s intervals during the experiment and for an hour
either side using TrueTemp v2.0 (Luxtron). SAR was calculated
from SAR ¼ C ΔT

Δt , where C is the specific heat capacity of water
(4118 J kg�1 K�1), ΔT is the measured temperature increase and
Δt is the scanning duration. SAR in the phantom was also
modelled as described above using conductivity and relative
permittivity estimated using relations from Reference 16 to be
0.9 Sm�1 and 78 respectively. A map of the B1

+
field was acquired

using the actual flip angle imaging method (24) (repetition times
30ms and 150ms, flip angle 60°) as part of the phantom exper-
iment, and simulated fields were normalized to match these.

RESULTS

Verification experiment

Temperature readings were averaged across the two probes
inserted into the phantom (these showed very similar trends but
had a slight offset that was attributed to calibration differences).
The temperature increased linearly during RF heating with a
measured rate of change of 0.01280±0.0005 °Cmin�1 obtained
via linear regression (R2 = 0.95), translating to a measured SAR of
0.88± 0.03Wkg�1. The high R2 value indicates a strongly linear
temperature increase, suggesting that other heat transfer mecha-
nisms can be safely neglected. The temperature was not observed
to change in the period after RF was switched off; linear regression
gave the trend to be �0.0010±0.0001 °Cmin�1 with R2 = 0.04.

The absence of prominent detectable temperature change in
this period indicates that the phantom was well insulated and
other heat transfer effects were not detected. The correspond-
ing simulated whole phantom SAR was calculated by scaling
the simulated SAR by the measured B1

+ and correct duty cycle.
For nominal B1

+ = 1 μT, the true value was measured as
B1

+ = 1.08 ± 0.02 μT at the centre of the phantom, giving a pre-
diction of 0.85 ± 0.04W kg�1.

SAR simulations

Tables 3 and 4 summarize the numerical SAR predictions for 1
μT, duty cycle = 100%, and under realistic operating conditions
respectively. Figure 2 shows some examples of spatial SAR distri-
butions. In the case of the adult model, the predicted maximum
local SAR10g located in the trunk was 10.1Wkg�1 for a 3 T scan at
the body scanning limit (B1

+ = 13.5 μT, duty cycle = 1.4%); the
Philips 3 T MRI scanner’s estimate was 10Wkg�1. The same scan
on Baby A yielded global SAR values ranging from 0.34Wkg�1 to
0.53W kg�1, head averaged SAR from 0.37Wkg�1 to
0.55W kg�1, and local SAR10g from 2.15W kg�1 to 2.53Wkg�1,
depending on the specific model. For the heart-centred baby
model, since the baby is fully exposed to the RF fields, the partial
body SAR and whole body SAR are the same. For the head
centred baby (83% exposure) the partial body SAR was slightly
more, at 0.4W kg�1 (Table 4, first row). There is very little differ-
ence in the predictions for the heart-centred models; the addi-
tion of a TPN feed line did not alter any of the quoted SAR
values, and introducing a conductive medium between the heels
changed values by less than 5%. Whole body averaged SAR is
larger in the heart-centred case while head averaged SAR is
greater in the head-centred case, as may be expected given
the difference in position (Fig. 2; see index marks). Baby B is a
more typically sized model for a newborn, and in this case too
the results are similar to the heart-centred Baby A models. If
the scans were run at the adult head scanning limit (B1

+ = 13.5
μT, duty cycle = 3.0%), the absolute SAR values increased, with
whole body SAR ranging from 0.71Wkg�1 to 1.14Wkg�1 (in-
cluding all models for both Baby A and Baby B), head averaged
SAR from 0.77Wkg�1 to 1.15W kg�1, and local SAR10g from
4.48W kg�1 to 5.40Wkg�1 (Table 4, right panel). At 1.5 T

Table 3. Summary of simulated SAR results for 1 μT at 100% duty cycle

Model Total accepted
power (W)

Whole body
averaged

SAR (W kg�1)

Head
averaged SAR

(W kg�1)

Partial
body
SAR

(W kg�1)

Max. local
SAR10g trunk
(Wkg�1)

Max. local
SAR10g head
(W kg�1)

127MHz
Baby A head centred 0.85 0.13 0.21 0.15 0.82 0.88
Baby A heart centred 0.95 0.20 0.14 0.20 0.96 0.92
Baby A heart centred heels
connected

0.95 0.20 0.14 0.20 0.93 0.89

Baby A heart centred TPN 0.95 0.20 0.14 0.20 0.96 0.92
Baby B heart centred 1.00 0.21 0.15 0.21 0.98 0.91
Adult heart centred 28.4 0.33 0.07 0.74 3.83 2.06
64MHz
Baby A heart centred 0.54 0.05 0.03 0.05 0.21 0.21
Adult heart centred 16.0 0.08 0.01 0.18 1.32 0.34

SAR simulation results, scaled for B1
+ = 1 μT in a 50mm region of interest close to the isocentre at 100% duty cycle.
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(B1
+ = 23.0 μT, duty cycle = 3.9%) the predicted whole body SAR

for baby A was 0.98Wkg�1, the head average was 0.65W kg�1

and the local SAR10g maximum was 4.38W kg�1. For the adult
model the values were higher, with partial body SAR of
3.7Wkg�1 and maximum SAR10g of 27.2W kg�1.

DISCUSSION

This study assessed the RF exposure of neonates undergoing
MRI procedures. The algorithms implemented on commercial
MRI systems to monitor RF power deposition are typically de-
signed based on data from electromagnetic models whose exact
nature is not disclosed, hence it is reasonable to assume that
these may not necessarily provide accurate estimates for neo-
nates. It was found for the neonatal models tested in this study
that predicted SAR values were substantially lower than those
obtained for a widely used model of an adult male under the
same conditions. The closest result was the whole head average,
which for the neonate was 57% of the adult value (head-centred
baby compared with heart-centred adult both at 3 T) while the
largest discrepancy was for maximum SAR10g in body scanning
conditions, where at 3 T the neonate experiences 23% of the
adult value and at 1.5 T this dropped to only 16% of the adult
value. Direct comparison of the results from the neonatal models
simulated at both 3 T and 1.5 T showed that much lower SAR
values were obtained than were reported by the commercial
scanner software, indicating that the displayed SAR estimates
were rather conservative. SAR calculations for the adult model
agreed particularly well with the estimates provided by the com-
mercial scanner software at 3 T, though no local SAR estimate

was given by the scanner for 1.5 T. The calculation process was
verified using calorimetry and found to give an accurate predic-
tion to within experimental error.
The study considered different sized baby models and models

with features designed to provoke potentially unsafe conditions
(a TPN feed line and a saline bag introduced between the heels),
but these did not result in major differences. A larger potential
source of error when scanning at 3 T was found to be the use
by the manufacturer of “head” and “body” limited scanning re-
gimes, distinguished by the presence or absence of a head re-
ceiver coil. In the body limited case, a scan producing whole
body SAR 0.87Wkg�1 and maximum local SAR10g of 10.1W kg�1

in an adult model produced whole body SAR 0.55W kg�1 and
maximum SAR10g of 2.59Wkg�1 in a neonatal model; the local
SAR for the neonate is just 26% of the recommended limit for
normal operation (2,3). A neonate positioned identically but
scanned in the head limited regime would experience whole
body SAR of 1.14Wkg�1 and maximum SAR10g of 5.4W kg�1.
This approximately twofold increase in local SAR would not be
apparent to the scan operator. Some caution is therefore advised
when using adult head receivers for neonatal scans (arguably
this is “off label” use); however, it should be stressed that the
values obtained are still well within the IEC limits. Operators usu-
ally exercise a greater degree of caution with respect to SAR
when scanning at 3 T than 1.5 T; however, this study found that
whole body SAR was 0.98Wkg�1 and maximum SAR10g was
4.38W kg�1 in the neonate at 1.5 T, which are both approxi-
mately a factor of two higher than the body limited results at
3 T (but still within regulatory limits). Table 3 shows that when
normalized to 1 μT the SAR predictions for 3 T are higher than
1.5 T by approximately a factor of 4, as would be expected.

Figure 2. Local SAR10g distributions on anterior surface (left), posterior surface (centre), and coronal section for (a) Baby A head centred and (b) Baby A
heart centred. The dotted lines mark the centre of the RF coil in each case; all images have the same relative colour scale; for quantitative SAR mea-
surements please refer to Tables 3 and 4.
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However the operational values in Table 4 are greater at 1.5 T
than 3 T because the different scanners operate at different B1

+

and duty cycles. The large margin of difference between the
neonatal and adult models is however maintained at 1.5 T. As
mentioned in the introduction, SAR10g is not subject to control
within the IEC standard for volume transmit coils; instead, partial
body SAR is used. For a baby with 100% exposure the partial and
whole body SAR values are the same, and the regulatory limits
are also the same (see Table 1). For a head-centred baby the par-
tial body SAR is slightly higher, but the relevant regulatory limit is
also increased; partial body SAR was not close to the stated limits
in any of the scenarios investigated. Also note that the partial
body SAR for the adult at 1.5 T was 3.7W kg�1, well within the
limit of 6.6W kg�1 given in Table 1 for normal operation.
The clear finding of this study is that that in every scenario

tested the SAR estimates produced by the MRI scanner were
conservative for neonates. This may be seen as an intuitive re-
sult; indeed, simulated values for total accepted power also show
that far more power is dissipated in the adult than the neonatal
models: Table 3 shows accepted power is approximately 30
times greater for the adult models at both field strengths. These
figures are approximately in line with predictions from scaling ar-
guments such as those in Reference 25, which suggests that total
losses in a spherical object scale with radius to the fifth power (a
30-fold difference in power thus corresponds to approximately a
twofold difference in radius, which is reasonable if comparing
the adult and infant just in the axial plane). This type of argu-
ment cannot be used to justify safety on its own, since details
of the overall field distributions, including local SAR10g distribu-
tions, do not scale in this way. In view of these results it might
be argued that neonates can be imaged safely using less strin-
gent (more appropriate) RF exposure models. Since many rapid
MRI protocols are limited by SAR concerns, use of neonate spe-
cific models could be used as a means of improving MR image
quality in this population. However, such a change would only
be appropriate if dedicated neonatal safety models are in place,
as it is evident that while adult based models result in an in-
creased safety margin they do not provide accurate estimates
upon which to determine revised operating conditions.
Reliance on numerically predicted SAR must of course be

placed in the context of uncertainties associated with the
method of prediction. These can arise from numerous sources
including numerical errors in the solver, uncertainty in the elec-
trical model of the RF coil, normalization of the models, the
small number of voxel models available to represent an overall
population, and uncertainty in dielectric properties. In our own
experience, when the subject can be modelled accurately, the
numerical method is accurate to within less than 10% and usu-
ally better (26,27). The phantom experiment in this study was
one such scenario, and in this case achieved agreement with
calorimetry to within experimental error. Since local SAR10g is
more dependent on local geometry than the global average,
these values are subject to greater uncertainty, especially when
attempting to represent a population using a small number of
models. It is difficult to assess this uncertainty; a 30% estimate
is given in the mobile communications literature (28) (in the
GHz range); however, the lower frequencies used in MRI will
lead to deviations closer to 10% (29). Our own SAR10g estimate
for an adult model at 3 T was very close to the scanner’s pre-
diction (10.1W kg�1 compared with 10Wkg�1), though this
may be coincidental given that the model used by the scan-
ner’s own software is unknown. In the case of neonates there

is additional uncertainty due to the age dependency (through
tissue water content) of dielectric properties and the changing
composition of the subject, for example the amount of adipose
tissue. The model used in this work did not contain a subcuta-
neous fat layer, instead only having a surface layer, which was
treated as skin for the presented results. We found that if this
was instead treated as a layer of pure fat the peak SAR10g
values were up to 10% lower, making our simulations a worst
case. Taking all of these factors into account, we estimate that
the overall uncertainty in SAR10g if applying our results to a
general neonate population is approximately 20%. Uncertainty
in global average SAR is considerably less but is not the limit-
ing case for safety.

Although SAR is commonly used in RF safety assessments, it
is the combination of excessive temperature and its duration
that has the potential to cause tissue damage. Indeed, local
SAR10g values have been shown to be only weakly associated
with local tissue changes (30). Limits to tissue temperature
and temperature change (2,3) are listed in Table 1. These limits
are based on the assumption that adverse health effects are
not expected in people with unimpaired thermo-regulatory
and cardiovascular functions if the increase in body tempera-
ture does not exceed 1 °C (31). Thermal transport mechanisms
in neonatal subjects differ from those in adults, however, and
the ICNIRP standard (3) states that it is “desirable” to limit core
temperature increases in infants to 0.5 °C. Neonates have a
2.5–3.0 times higher surface area to bodyweight ratio com-
pared with adults, increasing the relative potential surface for
heat loss (32). This is limited by the reduced insulating capacity
from a lower quantity of subcutaneous fat and the inability of
neonates to generate heat by shivering; the main concern for
MRI of preterm neonates in this regard is actually keeping
them warm. In contrast, the lower cerebral blood flow and im-
mature peripheral circulation in neonates may have opposing
effects on thermoregulation, as will swaddling or sedating in-
fants in preparation for scanning. Such factors, along with the
predicted SAR distributions, which indicate that the highest en-
ergy deposition is towards the surface of the neonate (Fig. 2),
need to be considered in an appropriate thermal model to
be investigated in the future.

In summary, this study provides evidence that SAR is lower in
neonates than in adults under equivalent RF conditions
(matched B1

+
fields). SAR calculators designed for adults may

therefore overestimate power deposition, creating an additional
safety margin, but also potentially creating unnecessarily limiting
operating conditions. However adjusting safety limits would not
be wise without explicitly using dedicated neonatal models,
since, as our calculations demonstrate, the margin of overestima-
tion from adult based predictions is not consistent enough to act
as the basis to estimate neonatal SAR.
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